1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LazyValueInfo.h" 25 #include "llvm/Analysis/Loads.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/ValueHandle.h" 30 #include "llvm/Pass.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetLibraryInfo.h" 35 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 36 #include "llvm/Transforms/Utils/Local.h" 37 #include "llvm/Transforms/Utils/SSAUpdater.h" 38 using namespace llvm; 39 40 #define DEBUG_TYPE "jump-threading" 41 42 STATISTIC(NumThreads, "Number of jumps threaded"); 43 STATISTIC(NumFolds, "Number of terminators folded"); 44 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 45 46 static cl::opt<unsigned> 47 Threshold("jump-threading-threshold", 48 cl::desc("Max block size to duplicate for jump threading"), 49 cl::init(6), cl::Hidden); 50 51 namespace { 52 // These are at global scope so static functions can use them too. 53 typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo; 54 typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy; 55 56 // This is used to keep track of what kind of constant we're currently hoping 57 // to find. 58 enum ConstantPreference { 59 WantInteger, 60 WantBlockAddress 61 }; 62 63 /// This pass performs 'jump threading', which looks at blocks that have 64 /// multiple predecessors and multiple successors. If one or more of the 65 /// predecessors of the block can be proven to always jump to one of the 66 /// successors, we forward the edge from the predecessor to the successor by 67 /// duplicating the contents of this block. 68 /// 69 /// An example of when this can occur is code like this: 70 /// 71 /// if () { ... 72 /// X = 4; 73 /// } 74 /// if (X < 3) { 75 /// 76 /// In this case, the unconditional branch at the end of the first if can be 77 /// revectored to the false side of the second if. 78 /// 79 class JumpThreading : public FunctionPass { 80 const DataLayout *DL; 81 TargetLibraryInfo *TLI; 82 LazyValueInfo *LVI; 83 #ifdef NDEBUG 84 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 85 #else 86 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 87 #endif 88 DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet; 89 90 // RAII helper for updating the recursion stack. 91 struct RecursionSetRemover { 92 DenseSet<std::pair<Value*, BasicBlock*> > &TheSet; 93 std::pair<Value*, BasicBlock*> ThePair; 94 95 RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S, 96 std::pair<Value*, BasicBlock*> P) 97 : TheSet(S), ThePair(P) { } 98 99 ~RecursionSetRemover() { 100 TheSet.erase(ThePair); 101 } 102 }; 103 public: 104 static char ID; // Pass identification 105 JumpThreading() : FunctionPass(ID) { 106 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 107 } 108 109 bool runOnFunction(Function &F) override; 110 111 void getAnalysisUsage(AnalysisUsage &AU) const override { 112 AU.addRequired<LazyValueInfo>(); 113 AU.addPreserved<LazyValueInfo>(); 114 AU.addRequired<TargetLibraryInfo>(); 115 } 116 117 void FindLoopHeaders(Function &F); 118 bool ProcessBlock(BasicBlock *BB); 119 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 120 BasicBlock *SuccBB); 121 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 122 const SmallVectorImpl<BasicBlock *> &PredBBs); 123 124 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 125 PredValueInfo &Result, 126 ConstantPreference Preference); 127 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 128 ConstantPreference Preference); 129 130 bool ProcessBranchOnPHI(PHINode *PN); 131 bool ProcessBranchOnXOR(BinaryOperator *BO); 132 133 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 134 bool TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB); 135 }; 136 } 137 138 char JumpThreading::ID = 0; 139 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 140 "Jump Threading", false, false) 141 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo) 142 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 143 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 144 "Jump Threading", false, false) 145 146 // Public interface to the Jump Threading pass 147 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); } 148 149 /// runOnFunction - Top level algorithm. 150 /// 151 bool JumpThreading::runOnFunction(Function &F) { 152 if (skipOptnoneFunction(F)) 153 return false; 154 155 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 156 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 157 DL = DLP ? &DLP->getDataLayout() : nullptr; 158 TLI = &getAnalysis<TargetLibraryInfo>(); 159 LVI = &getAnalysis<LazyValueInfo>(); 160 161 // Remove unreachable blocks from function as they may result in infinite 162 // loop. We do threading if we found something profitable. Jump threading a 163 // branch can create other opportunities. If these opportunities form a cycle 164 // i.e. if any jump treading is undoing previous threading in the path, then 165 // we will loop forever. We take care of this issue by not jump threading for 166 // back edges. This works for normal cases but not for unreachable blocks as 167 // they may have cycle with no back edge. 168 removeUnreachableBlocks(F); 169 170 FindLoopHeaders(F); 171 172 bool Changed, EverChanged = false; 173 do { 174 Changed = false; 175 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 176 BasicBlock *BB = I; 177 // Thread all of the branches we can over this block. 178 while (ProcessBlock(BB)) 179 Changed = true; 180 181 ++I; 182 183 // If the block is trivially dead, zap it. This eliminates the successor 184 // edges which simplifies the CFG. 185 if (pred_begin(BB) == pred_end(BB) && 186 BB != &BB->getParent()->getEntryBlock()) { 187 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 188 << "' with terminator: " << *BB->getTerminator() << '\n'); 189 LoopHeaders.erase(BB); 190 LVI->eraseBlock(BB); 191 DeleteDeadBlock(BB); 192 Changed = true; 193 continue; 194 } 195 196 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 197 198 // Can't thread an unconditional jump, but if the block is "almost 199 // empty", we can replace uses of it with uses of the successor and make 200 // this dead. 201 if (BI && BI->isUnconditional() && 202 BB != &BB->getParent()->getEntryBlock() && 203 // If the terminator is the only non-phi instruction, try to nuke it. 204 BB->getFirstNonPHIOrDbg()->isTerminator()) { 205 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 206 // block, we have to make sure it isn't in the LoopHeaders set. We 207 // reinsert afterward if needed. 208 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 209 BasicBlock *Succ = BI->getSuccessor(0); 210 211 // FIXME: It is always conservatively correct to drop the info 212 // for a block even if it doesn't get erased. This isn't totally 213 // awesome, but it allows us to use AssertingVH to prevent nasty 214 // dangling pointer issues within LazyValueInfo. 215 LVI->eraseBlock(BB); 216 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { 217 Changed = true; 218 // If we deleted BB and BB was the header of a loop, then the 219 // successor is now the header of the loop. 220 BB = Succ; 221 } 222 223 if (ErasedFromLoopHeaders) 224 LoopHeaders.insert(BB); 225 } 226 } 227 EverChanged |= Changed; 228 } while (Changed); 229 230 LoopHeaders.clear(); 231 return EverChanged; 232 } 233 234 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 235 /// thread across it. Stop scanning the block when passing the threshold. 236 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB, 237 unsigned Threshold) { 238 /// Ignore PHI nodes, these will be flattened when duplication happens. 239 BasicBlock::const_iterator I = BB->getFirstNonPHI(); 240 241 // FIXME: THREADING will delete values that are just used to compute the 242 // branch, so they shouldn't count against the duplication cost. 243 244 // Sum up the cost of each instruction until we get to the terminator. Don't 245 // include the terminator because the copy won't include it. 246 unsigned Size = 0; 247 for (; !isa<TerminatorInst>(I); ++I) { 248 249 // Stop scanning the block if we've reached the threshold. 250 if (Size > Threshold) 251 return Size; 252 253 // Debugger intrinsics don't incur code size. 254 if (isa<DbgInfoIntrinsic>(I)) continue; 255 256 // If this is a pointer->pointer bitcast, it is free. 257 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 258 continue; 259 260 // All other instructions count for at least one unit. 261 ++Size; 262 263 // Calls are more expensive. If they are non-intrinsic calls, we model them 264 // as having cost of 4. If they are a non-vector intrinsic, we model them 265 // as having cost of 2 total, and if they are a vector intrinsic, we model 266 // them as having cost 1. 267 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 268 if (CI->cannotDuplicate()) 269 // Blocks with NoDuplicate are modelled as having infinite cost, so they 270 // are never duplicated. 271 return ~0U; 272 else if (!isa<IntrinsicInst>(CI)) 273 Size += 3; 274 else if (!CI->getType()->isVectorTy()) 275 Size += 1; 276 } 277 } 278 279 // Threading through a switch statement is particularly profitable. If this 280 // block ends in a switch, decrease its cost to make it more likely to happen. 281 if (isa<SwitchInst>(I)) 282 Size = Size > 6 ? Size-6 : 0; 283 284 // The same holds for indirect branches, but slightly more so. 285 if (isa<IndirectBrInst>(I)) 286 Size = Size > 8 ? Size-8 : 0; 287 288 return Size; 289 } 290 291 /// FindLoopHeaders - We do not want jump threading to turn proper loop 292 /// structures into irreducible loops. Doing this breaks up the loop nesting 293 /// hierarchy and pessimizes later transformations. To prevent this from 294 /// happening, we first have to find the loop headers. Here we approximate this 295 /// by finding targets of backedges in the CFG. 296 /// 297 /// Note that there definitely are cases when we want to allow threading of 298 /// edges across a loop header. For example, threading a jump from outside the 299 /// loop (the preheader) to an exit block of the loop is definitely profitable. 300 /// It is also almost always profitable to thread backedges from within the loop 301 /// to exit blocks, and is often profitable to thread backedges to other blocks 302 /// within the loop (forming a nested loop). This simple analysis is not rich 303 /// enough to track all of these properties and keep it up-to-date as the CFG 304 /// mutates, so we don't allow any of these transformations. 305 /// 306 void JumpThreading::FindLoopHeaders(Function &F) { 307 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 308 FindFunctionBackedges(F, Edges); 309 310 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 311 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 312 } 313 314 /// getKnownConstant - Helper method to determine if we can thread over a 315 /// terminator with the given value as its condition, and if so what value to 316 /// use for that. What kind of value this is depends on whether we want an 317 /// integer or a block address, but an undef is always accepted. 318 /// Returns null if Val is null or not an appropriate constant. 319 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 320 if (!Val) 321 return nullptr; 322 323 // Undef is "known" enough. 324 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 325 return U; 326 327 if (Preference == WantBlockAddress) 328 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 329 330 return dyn_cast<ConstantInt>(Val); 331 } 332 333 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 334 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 335 /// in any of our predecessors. If so, return the known list of value and pred 336 /// BB in the result vector. 337 /// 338 /// This returns true if there were any known values. 339 /// 340 bool JumpThreading:: 341 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result, 342 ConstantPreference Preference) { 343 // This method walks up use-def chains recursively. Because of this, we could 344 // get into an infinite loop going around loops in the use-def chain. To 345 // prevent this, keep track of what (value, block) pairs we've already visited 346 // and terminate the search if we loop back to them 347 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 348 return false; 349 350 // An RAII help to remove this pair from the recursion set once the recursion 351 // stack pops back out again. 352 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 353 354 // If V is a constant, then it is known in all predecessors. 355 if (Constant *KC = getKnownConstant(V, Preference)) { 356 for (BasicBlock *Pred : predecessors(BB)) 357 Result.push_back(std::make_pair(KC, Pred)); 358 359 return true; 360 } 361 362 // If V is a non-instruction value, or an instruction in a different block, 363 // then it can't be derived from a PHI. 364 Instruction *I = dyn_cast<Instruction>(V); 365 if (!I || I->getParent() != BB) { 366 367 // Okay, if this is a live-in value, see if it has a known value at the end 368 // of any of our predecessors. 369 // 370 // FIXME: This should be an edge property, not a block end property. 371 /// TODO: Per PR2563, we could infer value range information about a 372 /// predecessor based on its terminator. 373 // 374 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 375 // "I" is a non-local compare-with-a-constant instruction. This would be 376 // able to handle value inequalities better, for example if the compare is 377 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 378 // Perhaps getConstantOnEdge should be smart enough to do this? 379 380 for (BasicBlock *P : predecessors(BB)) { 381 // If the value is known by LazyValueInfo to be a constant in a 382 // predecessor, use that information to try to thread this block. 383 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB); 384 if (Constant *KC = getKnownConstant(PredCst, Preference)) 385 Result.push_back(std::make_pair(KC, P)); 386 } 387 388 return !Result.empty(); 389 } 390 391 /// If I is a PHI node, then we know the incoming values for any constants. 392 if (PHINode *PN = dyn_cast<PHINode>(I)) { 393 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 394 Value *InVal = PN->getIncomingValue(i); 395 if (Constant *KC = getKnownConstant(InVal, Preference)) { 396 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 397 } else { 398 Constant *CI = LVI->getConstantOnEdge(InVal, 399 PN->getIncomingBlock(i), BB); 400 if (Constant *KC = getKnownConstant(CI, Preference)) 401 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 402 } 403 } 404 405 return !Result.empty(); 406 } 407 408 PredValueInfoTy LHSVals, RHSVals; 409 410 // Handle some boolean conditions. 411 if (I->getType()->getPrimitiveSizeInBits() == 1) { 412 assert(Preference == WantInteger && "One-bit non-integer type?"); 413 // X | true -> true 414 // X & false -> false 415 if (I->getOpcode() == Instruction::Or || 416 I->getOpcode() == Instruction::And) { 417 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 418 WantInteger); 419 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 420 WantInteger); 421 422 if (LHSVals.empty() && RHSVals.empty()) 423 return false; 424 425 ConstantInt *InterestingVal; 426 if (I->getOpcode() == Instruction::Or) 427 InterestingVal = ConstantInt::getTrue(I->getContext()); 428 else 429 InterestingVal = ConstantInt::getFalse(I->getContext()); 430 431 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 432 433 // Scan for the sentinel. If we find an undef, force it to the 434 // interesting value: x|undef -> true and x&undef -> false. 435 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 436 if (LHSVals[i].first == InterestingVal || 437 isa<UndefValue>(LHSVals[i].first)) { 438 Result.push_back(LHSVals[i]); 439 Result.back().first = InterestingVal; 440 LHSKnownBBs.insert(LHSVals[i].second); 441 } 442 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 443 if (RHSVals[i].first == InterestingVal || 444 isa<UndefValue>(RHSVals[i].first)) { 445 // If we already inferred a value for this block on the LHS, don't 446 // re-add it. 447 if (!LHSKnownBBs.count(RHSVals[i].second)) { 448 Result.push_back(RHSVals[i]); 449 Result.back().first = InterestingVal; 450 } 451 } 452 453 return !Result.empty(); 454 } 455 456 // Handle the NOT form of XOR. 457 if (I->getOpcode() == Instruction::Xor && 458 isa<ConstantInt>(I->getOperand(1)) && 459 cast<ConstantInt>(I->getOperand(1))->isOne()) { 460 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 461 WantInteger); 462 if (Result.empty()) 463 return false; 464 465 // Invert the known values. 466 for (unsigned i = 0, e = Result.size(); i != e; ++i) 467 Result[i].first = ConstantExpr::getNot(Result[i].first); 468 469 return true; 470 } 471 472 // Try to simplify some other binary operator values. 473 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 474 assert(Preference != WantBlockAddress 475 && "A binary operator creating a block address?"); 476 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 477 PredValueInfoTy LHSVals; 478 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 479 WantInteger); 480 481 // Try to use constant folding to simplify the binary operator. 482 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 483 Constant *V = LHSVals[i].first; 484 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 485 486 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 487 Result.push_back(std::make_pair(KC, LHSVals[i].second)); 488 } 489 } 490 491 return !Result.empty(); 492 } 493 494 // Handle compare with phi operand, where the PHI is defined in this block. 495 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 496 assert(Preference == WantInteger && "Compares only produce integers"); 497 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 498 if (PN && PN->getParent() == BB) { 499 // We can do this simplification if any comparisons fold to true or false. 500 // See if any do. 501 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 502 BasicBlock *PredBB = PN->getIncomingBlock(i); 503 Value *LHS = PN->getIncomingValue(i); 504 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 505 506 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL); 507 if (!Res) { 508 if (!isa<Constant>(RHS)) 509 continue; 510 511 LazyValueInfo::Tristate 512 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 513 cast<Constant>(RHS), PredBB, BB); 514 if (ResT == LazyValueInfo::Unknown) 515 continue; 516 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 517 } 518 519 if (Constant *KC = getKnownConstant(Res, WantInteger)) 520 Result.push_back(std::make_pair(KC, PredBB)); 521 } 522 523 return !Result.empty(); 524 } 525 526 527 // If comparing a live-in value against a constant, see if we know the 528 // live-in value on any predecessors. 529 if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) { 530 if (!isa<Instruction>(Cmp->getOperand(0)) || 531 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) { 532 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 533 534 for (BasicBlock *P : predecessors(BB)) { 535 // If the value is known by LazyValueInfo to be a constant in a 536 // predecessor, use that information to try to thread this block. 537 LazyValueInfo::Tristate Res = 538 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 539 RHSCst, P, BB); 540 if (Res == LazyValueInfo::Unknown) 541 continue; 542 543 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 544 Result.push_back(std::make_pair(ResC, P)); 545 } 546 547 return !Result.empty(); 548 } 549 550 // Try to find a constant value for the LHS of a comparison, 551 // and evaluate it statically if we can. 552 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) { 553 PredValueInfoTy LHSVals; 554 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 555 WantInteger); 556 557 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 558 Constant *V = LHSVals[i].first; 559 Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(), 560 V, CmpConst); 561 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 562 Result.push_back(std::make_pair(KC, LHSVals[i].second)); 563 } 564 565 return !Result.empty(); 566 } 567 } 568 } 569 570 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 571 // Handle select instructions where at least one operand is a known constant 572 // and we can figure out the condition value for any predecessor block. 573 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 574 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 575 PredValueInfoTy Conds; 576 if ((TrueVal || FalseVal) && 577 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 578 WantInteger)) { 579 for (unsigned i = 0, e = Conds.size(); i != e; ++i) { 580 Constant *Cond = Conds[i].first; 581 582 // Figure out what value to use for the condition. 583 bool KnownCond; 584 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 585 // A known boolean. 586 KnownCond = CI->isOne(); 587 } else { 588 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 589 // Either operand will do, so be sure to pick the one that's a known 590 // constant. 591 // FIXME: Do this more cleverly if both values are known constants? 592 KnownCond = (TrueVal != nullptr); 593 } 594 595 // See if the select has a known constant value for this predecessor. 596 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 597 Result.push_back(std::make_pair(Val, Conds[i].second)); 598 } 599 600 return !Result.empty(); 601 } 602 } 603 604 // If all else fails, see if LVI can figure out a constant value for us. 605 Constant *CI = LVI->getConstant(V, BB); 606 if (Constant *KC = getKnownConstant(CI, Preference)) { 607 for (BasicBlock *Pred : predecessors(BB)) 608 Result.push_back(std::make_pair(KC, Pred)); 609 } 610 611 return !Result.empty(); 612 } 613 614 615 616 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 617 /// in an undefined jump, decide which block is best to revector to. 618 /// 619 /// Since we can pick an arbitrary destination, we pick the successor with the 620 /// fewest predecessors. This should reduce the in-degree of the others. 621 /// 622 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 623 TerminatorInst *BBTerm = BB->getTerminator(); 624 unsigned MinSucc = 0; 625 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 626 // Compute the successor with the minimum number of predecessors. 627 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 628 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 629 TestBB = BBTerm->getSuccessor(i); 630 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 631 if (NumPreds < MinNumPreds) { 632 MinSucc = i; 633 MinNumPreds = NumPreds; 634 } 635 } 636 637 return MinSucc; 638 } 639 640 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 641 if (!BB->hasAddressTaken()) return false; 642 643 // If the block has its address taken, it may be a tree of dead constants 644 // hanging off of it. These shouldn't keep the block alive. 645 BlockAddress *BA = BlockAddress::get(BB); 646 BA->removeDeadConstantUsers(); 647 return !BA->use_empty(); 648 } 649 650 /// ProcessBlock - If there are any predecessors whose control can be threaded 651 /// through to a successor, transform them now. 652 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 653 // If the block is trivially dead, just return and let the caller nuke it. 654 // This simplifies other transformations. 655 if (pred_begin(BB) == pred_end(BB) && 656 BB != &BB->getParent()->getEntryBlock()) 657 return false; 658 659 // If this block has a single predecessor, and if that pred has a single 660 // successor, merge the blocks. This encourages recursive jump threading 661 // because now the condition in this block can be threaded through 662 // predecessors of our predecessor block. 663 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 664 if (SinglePred->getTerminator()->getNumSuccessors() == 1 && 665 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 666 // If SinglePred was a loop header, BB becomes one. 667 if (LoopHeaders.erase(SinglePred)) 668 LoopHeaders.insert(BB); 669 670 LVI->eraseBlock(SinglePred); 671 MergeBasicBlockIntoOnlyPred(BB); 672 673 return true; 674 } 675 } 676 677 // What kind of constant we're looking for. 678 ConstantPreference Preference = WantInteger; 679 680 // Look to see if the terminator is a conditional branch, switch or indirect 681 // branch, if not we can't thread it. 682 Value *Condition; 683 Instruction *Terminator = BB->getTerminator(); 684 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 685 // Can't thread an unconditional jump. 686 if (BI->isUnconditional()) return false; 687 Condition = BI->getCondition(); 688 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 689 Condition = SI->getCondition(); 690 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 691 // Can't thread indirect branch with no successors. 692 if (IB->getNumSuccessors() == 0) return false; 693 Condition = IB->getAddress()->stripPointerCasts(); 694 Preference = WantBlockAddress; 695 } else { 696 return false; // Must be an invoke. 697 } 698 699 // Run constant folding to see if we can reduce the condition to a simple 700 // constant. 701 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 702 Value *SimpleVal = ConstantFoldInstruction(I, DL, TLI); 703 if (SimpleVal) { 704 I->replaceAllUsesWith(SimpleVal); 705 I->eraseFromParent(); 706 Condition = SimpleVal; 707 } 708 } 709 710 // If the terminator is branching on an undef, we can pick any of the 711 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 712 if (isa<UndefValue>(Condition)) { 713 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 714 715 // Fold the branch/switch. 716 TerminatorInst *BBTerm = BB->getTerminator(); 717 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 718 if (i == BestSucc) continue; 719 BBTerm->getSuccessor(i)->removePredecessor(BB, true); 720 } 721 722 DEBUG(dbgs() << " In block '" << BB->getName() 723 << "' folding undef terminator: " << *BBTerm << '\n'); 724 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 725 BBTerm->eraseFromParent(); 726 return true; 727 } 728 729 // If the terminator of this block is branching on a constant, simplify the 730 // terminator to an unconditional branch. This can occur due to threading in 731 // other blocks. 732 if (getKnownConstant(Condition, Preference)) { 733 DEBUG(dbgs() << " In block '" << BB->getName() 734 << "' folding terminator: " << *BB->getTerminator() << '\n'); 735 ++NumFolds; 736 ConstantFoldTerminator(BB, true); 737 return true; 738 } 739 740 Instruction *CondInst = dyn_cast<Instruction>(Condition); 741 742 // All the rest of our checks depend on the condition being an instruction. 743 if (!CondInst) { 744 // FIXME: Unify this with code below. 745 if (ProcessThreadableEdges(Condition, BB, Preference)) 746 return true; 747 return false; 748 } 749 750 751 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 752 // For a comparison where the LHS is outside this block, it's possible 753 // that we've branched on it before. Used LVI to see if we can simplify 754 // the branch based on that. 755 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 756 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 757 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 758 if (CondBr && CondConst && CondBr->isConditional() && PI != PE && 759 (!isa<Instruction>(CondCmp->getOperand(0)) || 760 cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) { 761 // For predecessor edge, determine if the comparison is true or false 762 // on that edge. If they're all true or all false, we can simplify the 763 // branch. 764 // FIXME: We could handle mixed true/false by duplicating code. 765 LazyValueInfo::Tristate Baseline = 766 LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0), 767 CondConst, *PI, BB); 768 if (Baseline != LazyValueInfo::Unknown) { 769 // Check that all remaining incoming values match the first one. 770 while (++PI != PE) { 771 LazyValueInfo::Tristate Ret = 772 LVI->getPredicateOnEdge(CondCmp->getPredicate(), 773 CondCmp->getOperand(0), CondConst, *PI, BB); 774 if (Ret != Baseline) break; 775 } 776 777 // If we terminated early, then one of the values didn't match. 778 if (PI == PE) { 779 unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0; 780 unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1; 781 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 782 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 783 CondBr->eraseFromParent(); 784 return true; 785 } 786 } 787 788 } 789 790 if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB)) 791 return true; 792 } 793 794 // Check for some cases that are worth simplifying. Right now we want to look 795 // for loads that are used by a switch or by the condition for the branch. If 796 // we see one, check to see if it's partially redundant. If so, insert a PHI 797 // which can then be used to thread the values. 798 // 799 Value *SimplifyValue = CondInst; 800 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 801 if (isa<Constant>(CondCmp->getOperand(1))) 802 SimplifyValue = CondCmp->getOperand(0); 803 804 // TODO: There are other places where load PRE would be profitable, such as 805 // more complex comparisons. 806 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 807 if (SimplifyPartiallyRedundantLoad(LI)) 808 return true; 809 810 811 // Handle a variety of cases where we are branching on something derived from 812 // a PHI node in the current block. If we can prove that any predecessors 813 // compute a predictable value based on a PHI node, thread those predecessors. 814 // 815 if (ProcessThreadableEdges(CondInst, BB, Preference)) 816 return true; 817 818 // If this is an otherwise-unfoldable branch on a phi node in the current 819 // block, see if we can simplify. 820 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 821 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 822 return ProcessBranchOnPHI(PN); 823 824 825 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 826 if (CondInst->getOpcode() == Instruction::Xor && 827 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 828 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 829 830 831 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 832 // "(X == 4)", thread through this block. 833 834 return false; 835 } 836 837 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 838 /// load instruction, eliminate it by replacing it with a PHI node. This is an 839 /// important optimization that encourages jump threading, and needs to be run 840 /// interlaced with other jump threading tasks. 841 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 842 // Don't hack volatile/atomic loads. 843 if (!LI->isSimple()) return false; 844 845 // If the load is defined in a block with exactly one predecessor, it can't be 846 // partially redundant. 847 BasicBlock *LoadBB = LI->getParent(); 848 if (LoadBB->getSinglePredecessor()) 849 return false; 850 851 // If the load is defined in a landing pad, it can't be partially redundant, 852 // because the edges between the invoke and the landing pad cannot have other 853 // instructions between them. 854 if (LoadBB->isLandingPad()) 855 return false; 856 857 Value *LoadedPtr = LI->getOperand(0); 858 859 // If the loaded operand is defined in the LoadBB, it can't be available. 860 // TODO: Could do simple PHI translation, that would be fun :) 861 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 862 if (PtrOp->getParent() == LoadBB) 863 return false; 864 865 // Scan a few instructions up from the load, to see if it is obviously live at 866 // the entry to its block. 867 BasicBlock::iterator BBIt = LI; 868 869 if (Value *AvailableVal = 870 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) { 871 // If the value if the load is locally available within the block, just use 872 // it. This frequently occurs for reg2mem'd allocas. 873 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 874 875 // If the returned value is the load itself, replace with an undef. This can 876 // only happen in dead loops. 877 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 878 LI->replaceAllUsesWith(AvailableVal); 879 LI->eraseFromParent(); 880 return true; 881 } 882 883 // Otherwise, if we scanned the whole block and got to the top of the block, 884 // we know the block is locally transparent to the load. If not, something 885 // might clobber its value. 886 if (BBIt != LoadBB->begin()) 887 return false; 888 889 // If all of the loads and stores that feed the value have the same TBAA tag, 890 // then we can propagate it onto any newly inserted loads. 891 MDNode *TBAATag = LI->getMetadata(LLVMContext::MD_tbaa); 892 893 SmallPtrSet<BasicBlock*, 8> PredsScanned; 894 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 895 AvailablePredsTy AvailablePreds; 896 BasicBlock *OneUnavailablePred = nullptr; 897 898 // If we got here, the loaded value is transparent through to the start of the 899 // block. Check to see if it is available in any of the predecessor blocks. 900 for (BasicBlock *PredBB : predecessors(LoadBB)) { 901 // If we already scanned this predecessor, skip it. 902 if (!PredsScanned.insert(PredBB)) 903 continue; 904 905 // Scan the predecessor to see if the value is available in the pred. 906 BBIt = PredBB->end(); 907 MDNode *ThisTBAATag = nullptr; 908 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6, 909 nullptr, &ThisTBAATag); 910 if (!PredAvailable) { 911 OneUnavailablePred = PredBB; 912 continue; 913 } 914 915 // If tbaa tags disagree or are not present, forget about them. 916 if (TBAATag != ThisTBAATag) TBAATag = nullptr; 917 918 // If so, this load is partially redundant. Remember this info so that we 919 // can create a PHI node. 920 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 921 } 922 923 // If the loaded value isn't available in any predecessor, it isn't partially 924 // redundant. 925 if (AvailablePreds.empty()) return false; 926 927 // Okay, the loaded value is available in at least one (and maybe all!) 928 // predecessors. If the value is unavailable in more than one unique 929 // predecessor, we want to insert a merge block for those common predecessors. 930 // This ensures that we only have to insert one reload, thus not increasing 931 // code size. 932 BasicBlock *UnavailablePred = nullptr; 933 934 // If there is exactly one predecessor where the value is unavailable, the 935 // already computed 'OneUnavailablePred' block is it. If it ends in an 936 // unconditional branch, we know that it isn't a critical edge. 937 if (PredsScanned.size() == AvailablePreds.size()+1 && 938 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 939 UnavailablePred = OneUnavailablePred; 940 } else if (PredsScanned.size() != AvailablePreds.size()) { 941 // Otherwise, we had multiple unavailable predecessors or we had a critical 942 // edge from the one. 943 SmallVector<BasicBlock*, 8> PredsToSplit; 944 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 945 946 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 947 AvailablePredSet.insert(AvailablePreds[i].first); 948 949 // Add all the unavailable predecessors to the PredsToSplit list. 950 for (BasicBlock *P : predecessors(LoadBB)) { 951 // If the predecessor is an indirect goto, we can't split the edge. 952 if (isa<IndirectBrInst>(P->getTerminator())) 953 return false; 954 955 if (!AvailablePredSet.count(P)) 956 PredsToSplit.push_back(P); 957 } 958 959 // Split them out to their own block. 960 UnavailablePred = 961 SplitBlockPredecessors(LoadBB, PredsToSplit, "thread-pre-split", this); 962 } 963 964 // If the value isn't available in all predecessors, then there will be 965 // exactly one where it isn't available. Insert a load on that edge and add 966 // it to the AvailablePreds list. 967 if (UnavailablePred) { 968 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 969 "Can't handle critical edge here!"); 970 LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, 971 LI->getAlignment(), 972 UnavailablePred->getTerminator()); 973 NewVal->setDebugLoc(LI->getDebugLoc()); 974 if (TBAATag) 975 NewVal->setMetadata(LLVMContext::MD_tbaa, TBAATag); 976 977 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 978 } 979 980 // Now we know that each predecessor of this block has a value in 981 // AvailablePreds, sort them for efficient access as we're walking the preds. 982 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 983 984 // Create a PHI node at the start of the block for the PRE'd load value. 985 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 986 PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "", 987 LoadBB->begin()); 988 PN->takeName(LI); 989 PN->setDebugLoc(LI->getDebugLoc()); 990 991 // Insert new entries into the PHI for each predecessor. A single block may 992 // have multiple entries here. 993 for (pred_iterator PI = PB; PI != PE; ++PI) { 994 BasicBlock *P = *PI; 995 AvailablePredsTy::iterator I = 996 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 997 std::make_pair(P, (Value*)nullptr)); 998 999 assert(I != AvailablePreds.end() && I->first == P && 1000 "Didn't find entry for predecessor!"); 1001 1002 PN->addIncoming(I->second, I->first); 1003 } 1004 1005 //cerr << "PRE: " << *LI << *PN << "\n"; 1006 1007 LI->replaceAllUsesWith(PN); 1008 LI->eraseFromParent(); 1009 1010 return true; 1011 } 1012 1013 /// FindMostPopularDest - The specified list contains multiple possible 1014 /// threadable destinations. Pick the one that occurs the most frequently in 1015 /// the list. 1016 static BasicBlock * 1017 FindMostPopularDest(BasicBlock *BB, 1018 const SmallVectorImpl<std::pair<BasicBlock*, 1019 BasicBlock*> > &PredToDestList) { 1020 assert(!PredToDestList.empty()); 1021 1022 // Determine popularity. If there are multiple possible destinations, we 1023 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1024 // blocks with known and real destinations to threading undef. We'll handle 1025 // them later if interesting. 1026 DenseMap<BasicBlock*, unsigned> DestPopularity; 1027 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1028 if (PredToDestList[i].second) 1029 DestPopularity[PredToDestList[i].second]++; 1030 1031 // Find the most popular dest. 1032 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1033 BasicBlock *MostPopularDest = DPI->first; 1034 unsigned Popularity = DPI->second; 1035 SmallVector<BasicBlock*, 4> SamePopularity; 1036 1037 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1038 // If the popularity of this entry isn't higher than the popularity we've 1039 // seen so far, ignore it. 1040 if (DPI->second < Popularity) 1041 ; // ignore. 1042 else if (DPI->second == Popularity) { 1043 // If it is the same as what we've seen so far, keep track of it. 1044 SamePopularity.push_back(DPI->first); 1045 } else { 1046 // If it is more popular, remember it. 1047 SamePopularity.clear(); 1048 MostPopularDest = DPI->first; 1049 Popularity = DPI->second; 1050 } 1051 } 1052 1053 // Okay, now we know the most popular destination. If there is more than one 1054 // destination, we need to determine one. This is arbitrary, but we need 1055 // to make a deterministic decision. Pick the first one that appears in the 1056 // successor list. 1057 if (!SamePopularity.empty()) { 1058 SamePopularity.push_back(MostPopularDest); 1059 TerminatorInst *TI = BB->getTerminator(); 1060 for (unsigned i = 0; ; ++i) { 1061 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1062 1063 if (std::find(SamePopularity.begin(), SamePopularity.end(), 1064 TI->getSuccessor(i)) == SamePopularity.end()) 1065 continue; 1066 1067 MostPopularDest = TI->getSuccessor(i); 1068 break; 1069 } 1070 } 1071 1072 // Okay, we have finally picked the most popular destination. 1073 return MostPopularDest; 1074 } 1075 1076 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1077 ConstantPreference Preference) { 1078 // If threading this would thread across a loop header, don't even try to 1079 // thread the edge. 1080 if (LoopHeaders.count(BB)) 1081 return false; 1082 1083 PredValueInfoTy PredValues; 1084 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference)) 1085 return false; 1086 1087 assert(!PredValues.empty() && 1088 "ComputeValueKnownInPredecessors returned true with no values"); 1089 1090 DEBUG(dbgs() << "IN BB: " << *BB; 1091 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1092 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1093 << *PredValues[i].first 1094 << " for pred '" << PredValues[i].second->getName() << "'.\n"; 1095 }); 1096 1097 // Decide what we want to thread through. Convert our list of known values to 1098 // a list of known destinations for each pred. This also discards duplicate 1099 // predecessors and keeps track of the undefined inputs (which are represented 1100 // as a null dest in the PredToDestList). 1101 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1102 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1103 1104 BasicBlock *OnlyDest = nullptr; 1105 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1106 1107 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1108 BasicBlock *Pred = PredValues[i].second; 1109 if (!SeenPreds.insert(Pred)) 1110 continue; // Duplicate predecessor entry. 1111 1112 // If the predecessor ends with an indirect goto, we can't change its 1113 // destination. 1114 if (isa<IndirectBrInst>(Pred->getTerminator())) 1115 continue; 1116 1117 Constant *Val = PredValues[i].first; 1118 1119 BasicBlock *DestBB; 1120 if (isa<UndefValue>(Val)) 1121 DestBB = nullptr; 1122 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1123 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1124 else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1125 DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor(); 1126 } else { 1127 assert(isa<IndirectBrInst>(BB->getTerminator()) 1128 && "Unexpected terminator"); 1129 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1130 } 1131 1132 // If we have exactly one destination, remember it for efficiency below. 1133 if (PredToDestList.empty()) 1134 OnlyDest = DestBB; 1135 else if (OnlyDest != DestBB) 1136 OnlyDest = MultipleDestSentinel; 1137 1138 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1139 } 1140 1141 // If all edges were unthreadable, we fail. 1142 if (PredToDestList.empty()) 1143 return false; 1144 1145 // Determine which is the most common successor. If we have many inputs and 1146 // this block is a switch, we want to start by threading the batch that goes 1147 // to the most popular destination first. If we only know about one 1148 // threadable destination (the common case) we can avoid this. 1149 BasicBlock *MostPopularDest = OnlyDest; 1150 1151 if (MostPopularDest == MultipleDestSentinel) 1152 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1153 1154 // Now that we know what the most popular destination is, factor all 1155 // predecessors that will jump to it into a single predecessor. 1156 SmallVector<BasicBlock*, 16> PredsToFactor; 1157 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1158 if (PredToDestList[i].second == MostPopularDest) { 1159 BasicBlock *Pred = PredToDestList[i].first; 1160 1161 // This predecessor may be a switch or something else that has multiple 1162 // edges to the block. Factor each of these edges by listing them 1163 // according to # occurrences in PredsToFactor. 1164 TerminatorInst *PredTI = Pred->getTerminator(); 1165 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 1166 if (PredTI->getSuccessor(i) == BB) 1167 PredsToFactor.push_back(Pred); 1168 } 1169 1170 // If the threadable edges are branching on an undefined value, we get to pick 1171 // the destination that these predecessors should get to. 1172 if (!MostPopularDest) 1173 MostPopularDest = BB->getTerminator()-> 1174 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1175 1176 // Ok, try to thread it! 1177 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1178 } 1179 1180 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1181 /// a PHI node in the current block. See if there are any simplifications we 1182 /// can do based on inputs to the phi node. 1183 /// 1184 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) { 1185 BasicBlock *BB = PN->getParent(); 1186 1187 // TODO: We could make use of this to do it once for blocks with common PHI 1188 // values. 1189 SmallVector<BasicBlock*, 1> PredBBs; 1190 PredBBs.resize(1); 1191 1192 // If any of the predecessor blocks end in an unconditional branch, we can 1193 // *duplicate* the conditional branch into that block in order to further 1194 // encourage jump threading and to eliminate cases where we have branch on a 1195 // phi of an icmp (branch on icmp is much better). 1196 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1197 BasicBlock *PredBB = PN->getIncomingBlock(i); 1198 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1199 if (PredBr->isUnconditional()) { 1200 PredBBs[0] = PredBB; 1201 // Try to duplicate BB into PredBB. 1202 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1203 return true; 1204 } 1205 } 1206 1207 return false; 1208 } 1209 1210 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1211 /// a xor instruction in the current block. See if there are any 1212 /// simplifications we can do based on inputs to the xor. 1213 /// 1214 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) { 1215 BasicBlock *BB = BO->getParent(); 1216 1217 // If either the LHS or RHS of the xor is a constant, don't do this 1218 // optimization. 1219 if (isa<ConstantInt>(BO->getOperand(0)) || 1220 isa<ConstantInt>(BO->getOperand(1))) 1221 return false; 1222 1223 // If the first instruction in BB isn't a phi, we won't be able to infer 1224 // anything special about any particular predecessor. 1225 if (!isa<PHINode>(BB->front())) 1226 return false; 1227 1228 // If we have a xor as the branch input to this block, and we know that the 1229 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1230 // the condition into the predecessor and fix that value to true, saving some 1231 // logical ops on that path and encouraging other paths to simplify. 1232 // 1233 // This copies something like this: 1234 // 1235 // BB: 1236 // %X = phi i1 [1], [%X'] 1237 // %Y = icmp eq i32 %A, %B 1238 // %Z = xor i1 %X, %Y 1239 // br i1 %Z, ... 1240 // 1241 // Into: 1242 // BB': 1243 // %Y = icmp ne i32 %A, %B 1244 // br i1 %Z, ... 1245 1246 PredValueInfoTy XorOpValues; 1247 bool isLHS = true; 1248 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1249 WantInteger)) { 1250 assert(XorOpValues.empty()); 1251 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1252 WantInteger)) 1253 return false; 1254 isLHS = false; 1255 } 1256 1257 assert(!XorOpValues.empty() && 1258 "ComputeValueKnownInPredecessors returned true with no values"); 1259 1260 // Scan the information to see which is most popular: true or false. The 1261 // predecessors can be of the set true, false, or undef. 1262 unsigned NumTrue = 0, NumFalse = 0; 1263 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1264 if (isa<UndefValue>(XorOpValues[i].first)) 1265 // Ignore undefs for the count. 1266 continue; 1267 if (cast<ConstantInt>(XorOpValues[i].first)->isZero()) 1268 ++NumFalse; 1269 else 1270 ++NumTrue; 1271 } 1272 1273 // Determine which value to split on, true, false, or undef if neither. 1274 ConstantInt *SplitVal = nullptr; 1275 if (NumTrue > NumFalse) 1276 SplitVal = ConstantInt::getTrue(BB->getContext()); 1277 else if (NumTrue != 0 || NumFalse != 0) 1278 SplitVal = ConstantInt::getFalse(BB->getContext()); 1279 1280 // Collect all of the blocks that this can be folded into so that we can 1281 // factor this once and clone it once. 1282 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1283 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1284 if (XorOpValues[i].first != SplitVal && 1285 !isa<UndefValue>(XorOpValues[i].first)) 1286 continue; 1287 1288 BlocksToFoldInto.push_back(XorOpValues[i].second); 1289 } 1290 1291 // If we inferred a value for all of the predecessors, then duplication won't 1292 // help us. However, we can just replace the LHS or RHS with the constant. 1293 if (BlocksToFoldInto.size() == 1294 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1295 if (!SplitVal) { 1296 // If all preds provide undef, just nuke the xor, because it is undef too. 1297 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1298 BO->eraseFromParent(); 1299 } else if (SplitVal->isZero()) { 1300 // If all preds provide 0, replace the xor with the other input. 1301 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1302 BO->eraseFromParent(); 1303 } else { 1304 // If all preds provide 1, set the computed value to 1. 1305 BO->setOperand(!isLHS, SplitVal); 1306 } 1307 1308 return true; 1309 } 1310 1311 // Try to duplicate BB into PredBB. 1312 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1313 } 1314 1315 1316 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1317 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1318 /// NewPred using the entries from OldPred (suitably mapped). 1319 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1320 BasicBlock *OldPred, 1321 BasicBlock *NewPred, 1322 DenseMap<Instruction*, Value*> &ValueMap) { 1323 for (BasicBlock::iterator PNI = PHIBB->begin(); 1324 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1325 // Ok, we have a PHI node. Figure out what the incoming value was for the 1326 // DestBlock. 1327 Value *IV = PN->getIncomingValueForBlock(OldPred); 1328 1329 // Remap the value if necessary. 1330 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1331 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1332 if (I != ValueMap.end()) 1333 IV = I->second; 1334 } 1335 1336 PN->addIncoming(IV, NewPred); 1337 } 1338 } 1339 1340 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1341 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1342 /// across BB. Transform the IR to reflect this change. 1343 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1344 const SmallVectorImpl<BasicBlock*> &PredBBs, 1345 BasicBlock *SuccBB) { 1346 // If threading to the same block as we come from, we would infinite loop. 1347 if (SuccBB == BB) { 1348 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1349 << "' - would thread to self!\n"); 1350 return false; 1351 } 1352 1353 // If threading this would thread across a loop header, don't thread the edge. 1354 // See the comments above FindLoopHeaders for justifications and caveats. 1355 if (LoopHeaders.count(BB)) { 1356 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1357 << "' to dest BB '" << SuccBB->getName() 1358 << "' - it might create an irreducible loop!\n"); 1359 return false; 1360 } 1361 1362 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, Threshold); 1363 if (JumpThreadCost > Threshold) { 1364 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1365 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1366 return false; 1367 } 1368 1369 // And finally, do it! Start by factoring the predecessors is needed. 1370 BasicBlock *PredBB; 1371 if (PredBBs.size() == 1) 1372 PredBB = PredBBs[0]; 1373 else { 1374 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1375 << " common predecessors.\n"); 1376 PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this); 1377 } 1378 1379 // And finally, do it! 1380 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1381 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1382 << ", across block:\n " 1383 << *BB << "\n"); 1384 1385 LVI->threadEdge(PredBB, BB, SuccBB); 1386 1387 // We are going to have to map operands from the original BB block to the new 1388 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1389 // account for entry from PredBB. 1390 DenseMap<Instruction*, Value*> ValueMapping; 1391 1392 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1393 BB->getName()+".thread", 1394 BB->getParent(), BB); 1395 NewBB->moveAfter(PredBB); 1396 1397 BasicBlock::iterator BI = BB->begin(); 1398 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1399 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1400 1401 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1402 // mapping and using it to remap operands in the cloned instructions. 1403 for (; !isa<TerminatorInst>(BI); ++BI) { 1404 Instruction *New = BI->clone(); 1405 New->setName(BI->getName()); 1406 NewBB->getInstList().push_back(New); 1407 ValueMapping[BI] = New; 1408 1409 // Remap operands to patch up intra-block references. 1410 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1411 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1412 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1413 if (I != ValueMapping.end()) 1414 New->setOperand(i, I->second); 1415 } 1416 } 1417 1418 // We didn't copy the terminator from BB over to NewBB, because there is now 1419 // an unconditional jump to SuccBB. Insert the unconditional jump. 1420 BranchInst *NewBI =BranchInst::Create(SuccBB, NewBB); 1421 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1422 1423 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1424 // PHI nodes for NewBB now. 1425 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1426 1427 // If there were values defined in BB that are used outside the block, then we 1428 // now have to update all uses of the value to use either the original value, 1429 // the cloned value, or some PHI derived value. This can require arbitrary 1430 // PHI insertion, of which we are prepared to do, clean these up now. 1431 SSAUpdater SSAUpdate; 1432 SmallVector<Use*, 16> UsesToRename; 1433 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1434 // Scan all uses of this instruction to see if it is used outside of its 1435 // block, and if so, record them in UsesToRename. 1436 for (Use &U : I->uses()) { 1437 Instruction *User = cast<Instruction>(U.getUser()); 1438 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1439 if (UserPN->getIncomingBlock(U) == BB) 1440 continue; 1441 } else if (User->getParent() == BB) 1442 continue; 1443 1444 UsesToRename.push_back(&U); 1445 } 1446 1447 // If there are no uses outside the block, we're done with this instruction. 1448 if (UsesToRename.empty()) 1449 continue; 1450 1451 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1452 1453 // We found a use of I outside of BB. Rename all uses of I that are outside 1454 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1455 // with the two values we know. 1456 SSAUpdate.Initialize(I->getType(), I->getName()); 1457 SSAUpdate.AddAvailableValue(BB, I); 1458 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); 1459 1460 while (!UsesToRename.empty()) 1461 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1462 DEBUG(dbgs() << "\n"); 1463 } 1464 1465 1466 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1467 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1468 // us to simplify any PHI nodes in BB. 1469 TerminatorInst *PredTerm = PredBB->getTerminator(); 1470 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1471 if (PredTerm->getSuccessor(i) == BB) { 1472 BB->removePredecessor(PredBB, true); 1473 PredTerm->setSuccessor(i, NewBB); 1474 } 1475 1476 // At this point, the IR is fully up to date and consistent. Do a quick scan 1477 // over the new instructions and zap any that are constants or dead. This 1478 // frequently happens because of phi translation. 1479 SimplifyInstructionsInBlock(NewBB, DL, TLI); 1480 1481 // Threaded an edge! 1482 ++NumThreads; 1483 return true; 1484 } 1485 1486 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1487 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1488 /// If we can duplicate the contents of BB up into PredBB do so now, this 1489 /// improves the odds that the branch will be on an analyzable instruction like 1490 /// a compare. 1491 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1492 const SmallVectorImpl<BasicBlock *> &PredBBs) { 1493 assert(!PredBBs.empty() && "Can't handle an empty set"); 1494 1495 // If BB is a loop header, then duplicating this block outside the loop would 1496 // cause us to transform this into an irreducible loop, don't do this. 1497 // See the comments above FindLoopHeaders for justifications and caveats. 1498 if (LoopHeaders.count(BB)) { 1499 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1500 << "' into predecessor block '" << PredBBs[0]->getName() 1501 << "' - it might create an irreducible loop!\n"); 1502 return false; 1503 } 1504 1505 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, Threshold); 1506 if (DuplicationCost > Threshold) { 1507 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1508 << "' - Cost is too high: " << DuplicationCost << "\n"); 1509 return false; 1510 } 1511 1512 // And finally, do it! Start by factoring the predecessors is needed. 1513 BasicBlock *PredBB; 1514 if (PredBBs.size() == 1) 1515 PredBB = PredBBs[0]; 1516 else { 1517 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1518 << " common predecessors.\n"); 1519 PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this); 1520 } 1521 1522 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1523 // of PredBB. 1524 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1525 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1526 << DuplicationCost << " block is:" << *BB << "\n"); 1527 1528 // Unless PredBB ends with an unconditional branch, split the edge so that we 1529 // can just clone the bits from BB into the end of the new PredBB. 1530 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 1531 1532 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 1533 PredBB = SplitEdge(PredBB, BB, this); 1534 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1535 } 1536 1537 // We are going to have to map operands from the original BB block into the 1538 // PredBB block. Evaluate PHI nodes in BB. 1539 DenseMap<Instruction*, Value*> ValueMapping; 1540 1541 BasicBlock::iterator BI = BB->begin(); 1542 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1543 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1544 1545 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1546 // mapping and using it to remap operands in the cloned instructions. 1547 for (; BI != BB->end(); ++BI) { 1548 Instruction *New = BI->clone(); 1549 1550 // Remap operands to patch up intra-block references. 1551 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1552 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1553 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1554 if (I != ValueMapping.end()) 1555 New->setOperand(i, I->second); 1556 } 1557 1558 // If this instruction can be simplified after the operands are updated, 1559 // just use the simplified value instead. This frequently happens due to 1560 // phi translation. 1561 if (Value *IV = SimplifyInstruction(New, DL)) { 1562 delete New; 1563 ValueMapping[BI] = IV; 1564 } else { 1565 // Otherwise, insert the new instruction into the block. 1566 New->setName(BI->getName()); 1567 PredBB->getInstList().insert(OldPredBranch, New); 1568 ValueMapping[BI] = New; 1569 } 1570 } 1571 1572 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1573 // add entries to the PHI nodes for branch from PredBB now. 1574 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1575 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1576 ValueMapping); 1577 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1578 ValueMapping); 1579 1580 // If there were values defined in BB that are used outside the block, then we 1581 // now have to update all uses of the value to use either the original value, 1582 // the cloned value, or some PHI derived value. This can require arbitrary 1583 // PHI insertion, of which we are prepared to do, clean these up now. 1584 SSAUpdater SSAUpdate; 1585 SmallVector<Use*, 16> UsesToRename; 1586 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1587 // Scan all uses of this instruction to see if it is used outside of its 1588 // block, and if so, record them in UsesToRename. 1589 for (Use &U : I->uses()) { 1590 Instruction *User = cast<Instruction>(U.getUser()); 1591 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1592 if (UserPN->getIncomingBlock(U) == BB) 1593 continue; 1594 } else if (User->getParent() == BB) 1595 continue; 1596 1597 UsesToRename.push_back(&U); 1598 } 1599 1600 // If there are no uses outside the block, we're done with this instruction. 1601 if (UsesToRename.empty()) 1602 continue; 1603 1604 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1605 1606 // We found a use of I outside of BB. Rename all uses of I that are outside 1607 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1608 // with the two values we know. 1609 SSAUpdate.Initialize(I->getType(), I->getName()); 1610 SSAUpdate.AddAvailableValue(BB, I); 1611 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); 1612 1613 while (!UsesToRename.empty()) 1614 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1615 DEBUG(dbgs() << "\n"); 1616 } 1617 1618 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1619 // that we nuked. 1620 BB->removePredecessor(PredBB, true); 1621 1622 // Remove the unconditional branch at the end of the PredBB block. 1623 OldPredBranch->eraseFromParent(); 1624 1625 ++NumDupes; 1626 return true; 1627 } 1628 1629 /// TryToUnfoldSelect - Look for blocks of the form 1630 /// bb1: 1631 /// %a = select 1632 /// br bb 1633 /// 1634 /// bb2: 1635 /// %p = phi [%a, %bb] ... 1636 /// %c = icmp %p 1637 /// br i1 %c 1638 /// 1639 /// And expand the select into a branch structure if one of its arms allows %c 1640 /// to be folded. This later enables threading from bb1 over bb2. 1641 bool JumpThreading::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 1642 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1643 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 1644 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 1645 1646 if (!CondBr || !CondBr->isConditional() || !CondLHS || 1647 CondLHS->getParent() != BB) 1648 return false; 1649 1650 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 1651 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 1652 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 1653 1654 // Look if one of the incoming values is a select in the corresponding 1655 // predecessor. 1656 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 1657 continue; 1658 1659 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 1660 if (!PredTerm || !PredTerm->isUnconditional()) 1661 continue; 1662 1663 // Now check if one of the select values would allow us to constant fold the 1664 // terminator in BB. We don't do the transform if both sides fold, those 1665 // cases will be threaded in any case. 1666 LazyValueInfo::Tristate LHSFolds = 1667 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 1668 CondRHS, Pred, BB); 1669 LazyValueInfo::Tristate RHSFolds = 1670 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 1671 CondRHS, Pred, BB); 1672 if ((LHSFolds != LazyValueInfo::Unknown || 1673 RHSFolds != LazyValueInfo::Unknown) && 1674 LHSFolds != RHSFolds) { 1675 // Expand the select. 1676 // 1677 // Pred -- 1678 // | v 1679 // | NewBB 1680 // | | 1681 // |----- 1682 // v 1683 // BB 1684 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 1685 BB->getParent(), BB); 1686 // Move the unconditional branch to NewBB. 1687 PredTerm->removeFromParent(); 1688 NewBB->getInstList().insert(NewBB->end(), PredTerm); 1689 // Create a conditional branch and update PHI nodes. 1690 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 1691 CondLHS->setIncomingValue(I, SI->getFalseValue()); 1692 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 1693 // The select is now dead. 1694 SI->eraseFromParent(); 1695 1696 // Update any other PHI nodes in BB. 1697 for (BasicBlock::iterator BI = BB->begin(); 1698 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 1699 if (Phi != CondLHS) 1700 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 1701 return true; 1702 } 1703 } 1704 return false; 1705 } 1706