1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LazyValueInfo.h" 25 #include "llvm/Analysis/Loads.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/Metadata.h" 30 #include "llvm/IR/ValueHandle.h" 31 #include "llvm/Pass.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetLibraryInfo.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Local.h" 38 #include "llvm/Transforms/Utils/SSAUpdater.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "jump-threading" 42 43 STATISTIC(NumThreads, "Number of jumps threaded"); 44 STATISTIC(NumFolds, "Number of terminators folded"); 45 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 46 47 static cl::opt<unsigned> 48 Threshold("jump-threading-threshold", 49 cl::desc("Max block size to duplicate for jump threading"), 50 cl::init(6), cl::Hidden); 51 52 namespace { 53 // These are at global scope so static functions can use them too. 54 typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo; 55 typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy; 56 57 // This is used to keep track of what kind of constant we're currently hoping 58 // to find. 59 enum ConstantPreference { 60 WantInteger, 61 WantBlockAddress 62 }; 63 64 /// This pass performs 'jump threading', which looks at blocks that have 65 /// multiple predecessors and multiple successors. If one or more of the 66 /// predecessors of the block can be proven to always jump to one of the 67 /// successors, we forward the edge from the predecessor to the successor by 68 /// duplicating the contents of this block. 69 /// 70 /// An example of when this can occur is code like this: 71 /// 72 /// if () { ... 73 /// X = 4; 74 /// } 75 /// if (X < 3) { 76 /// 77 /// In this case, the unconditional branch at the end of the first if can be 78 /// revectored to the false side of the second if. 79 /// 80 class JumpThreading : public FunctionPass { 81 const DataLayout *DL; 82 TargetLibraryInfo *TLI; 83 LazyValueInfo *LVI; 84 #ifdef NDEBUG 85 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 86 #else 87 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 88 #endif 89 DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet; 90 91 // RAII helper for updating the recursion stack. 92 struct RecursionSetRemover { 93 DenseSet<std::pair<Value*, BasicBlock*> > &TheSet; 94 std::pair<Value*, BasicBlock*> ThePair; 95 96 RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S, 97 std::pair<Value*, BasicBlock*> P) 98 : TheSet(S), ThePair(P) { } 99 100 ~RecursionSetRemover() { 101 TheSet.erase(ThePair); 102 } 103 }; 104 public: 105 static char ID; // Pass identification 106 JumpThreading() : FunctionPass(ID) { 107 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 108 } 109 110 bool runOnFunction(Function &F) override; 111 112 void getAnalysisUsage(AnalysisUsage &AU) const override { 113 AU.addRequired<LazyValueInfo>(); 114 AU.addPreserved<LazyValueInfo>(); 115 AU.addRequired<TargetLibraryInfo>(); 116 } 117 118 void FindLoopHeaders(Function &F); 119 bool ProcessBlock(BasicBlock *BB); 120 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 121 BasicBlock *SuccBB); 122 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 123 const SmallVectorImpl<BasicBlock *> &PredBBs); 124 125 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 126 PredValueInfo &Result, 127 ConstantPreference Preference); 128 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 129 ConstantPreference Preference); 130 131 bool ProcessBranchOnPHI(PHINode *PN); 132 bool ProcessBranchOnXOR(BinaryOperator *BO); 133 134 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 135 bool TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB); 136 }; 137 } 138 139 char JumpThreading::ID = 0; 140 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 141 "Jump Threading", false, false) 142 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo) 143 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 144 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 145 "Jump Threading", false, false) 146 147 // Public interface to the Jump Threading pass 148 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); } 149 150 /// runOnFunction - Top level algorithm. 151 /// 152 bool JumpThreading::runOnFunction(Function &F) { 153 if (skipOptnoneFunction(F)) 154 return false; 155 156 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 157 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 158 DL = DLP ? &DLP->getDataLayout() : nullptr; 159 TLI = &getAnalysis<TargetLibraryInfo>(); 160 LVI = &getAnalysis<LazyValueInfo>(); 161 162 // Remove unreachable blocks from function as they may result in infinite 163 // loop. We do threading if we found something profitable. Jump threading a 164 // branch can create other opportunities. If these opportunities form a cycle 165 // i.e. if any jump treading is undoing previous threading in the path, then 166 // we will loop forever. We take care of this issue by not jump threading for 167 // back edges. This works for normal cases but not for unreachable blocks as 168 // they may have cycle with no back edge. 169 removeUnreachableBlocks(F); 170 171 FindLoopHeaders(F); 172 173 bool Changed, EverChanged = false; 174 do { 175 Changed = false; 176 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 177 BasicBlock *BB = I; 178 // Thread all of the branches we can over this block. 179 while (ProcessBlock(BB)) 180 Changed = true; 181 182 ++I; 183 184 // If the block is trivially dead, zap it. This eliminates the successor 185 // edges which simplifies the CFG. 186 if (pred_begin(BB) == pred_end(BB) && 187 BB != &BB->getParent()->getEntryBlock()) { 188 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 189 << "' with terminator: " << *BB->getTerminator() << '\n'); 190 LoopHeaders.erase(BB); 191 LVI->eraseBlock(BB); 192 DeleteDeadBlock(BB); 193 Changed = true; 194 continue; 195 } 196 197 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 198 199 // Can't thread an unconditional jump, but if the block is "almost 200 // empty", we can replace uses of it with uses of the successor and make 201 // this dead. 202 if (BI && BI->isUnconditional() && 203 BB != &BB->getParent()->getEntryBlock() && 204 // If the terminator is the only non-phi instruction, try to nuke it. 205 BB->getFirstNonPHIOrDbg()->isTerminator()) { 206 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 207 // block, we have to make sure it isn't in the LoopHeaders set. We 208 // reinsert afterward if needed. 209 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 210 BasicBlock *Succ = BI->getSuccessor(0); 211 212 // FIXME: It is always conservatively correct to drop the info 213 // for a block even if it doesn't get erased. This isn't totally 214 // awesome, but it allows us to use AssertingVH to prevent nasty 215 // dangling pointer issues within LazyValueInfo. 216 LVI->eraseBlock(BB); 217 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { 218 Changed = true; 219 // If we deleted BB and BB was the header of a loop, then the 220 // successor is now the header of the loop. 221 BB = Succ; 222 } 223 224 if (ErasedFromLoopHeaders) 225 LoopHeaders.insert(BB); 226 } 227 } 228 EverChanged |= Changed; 229 } while (Changed); 230 231 LoopHeaders.clear(); 232 return EverChanged; 233 } 234 235 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 236 /// thread across it. Stop scanning the block when passing the threshold. 237 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB, 238 unsigned Threshold) { 239 /// Ignore PHI nodes, these will be flattened when duplication happens. 240 BasicBlock::const_iterator I = BB->getFirstNonPHI(); 241 242 // FIXME: THREADING will delete values that are just used to compute the 243 // branch, so they shouldn't count against the duplication cost. 244 245 // Sum up the cost of each instruction until we get to the terminator. Don't 246 // include the terminator because the copy won't include it. 247 unsigned Size = 0; 248 for (; !isa<TerminatorInst>(I); ++I) { 249 250 // Stop scanning the block if we've reached the threshold. 251 if (Size > Threshold) 252 return Size; 253 254 // Debugger intrinsics don't incur code size. 255 if (isa<DbgInfoIntrinsic>(I)) continue; 256 257 // If this is a pointer->pointer bitcast, it is free. 258 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 259 continue; 260 261 // All other instructions count for at least one unit. 262 ++Size; 263 264 // Calls are more expensive. If they are non-intrinsic calls, we model them 265 // as having cost of 4. If they are a non-vector intrinsic, we model them 266 // as having cost of 2 total, and if they are a vector intrinsic, we model 267 // them as having cost 1. 268 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 269 if (CI->cannotDuplicate()) 270 // Blocks with NoDuplicate are modelled as having infinite cost, so they 271 // are never duplicated. 272 return ~0U; 273 else if (!isa<IntrinsicInst>(CI)) 274 Size += 3; 275 else if (!CI->getType()->isVectorTy()) 276 Size += 1; 277 } 278 } 279 280 // Threading through a switch statement is particularly profitable. If this 281 // block ends in a switch, decrease its cost to make it more likely to happen. 282 if (isa<SwitchInst>(I)) 283 Size = Size > 6 ? Size-6 : 0; 284 285 // The same holds for indirect branches, but slightly more so. 286 if (isa<IndirectBrInst>(I)) 287 Size = Size > 8 ? Size-8 : 0; 288 289 return Size; 290 } 291 292 /// FindLoopHeaders - We do not want jump threading to turn proper loop 293 /// structures into irreducible loops. Doing this breaks up the loop nesting 294 /// hierarchy and pessimizes later transformations. To prevent this from 295 /// happening, we first have to find the loop headers. Here we approximate this 296 /// by finding targets of backedges in the CFG. 297 /// 298 /// Note that there definitely are cases when we want to allow threading of 299 /// edges across a loop header. For example, threading a jump from outside the 300 /// loop (the preheader) to an exit block of the loop is definitely profitable. 301 /// It is also almost always profitable to thread backedges from within the loop 302 /// to exit blocks, and is often profitable to thread backedges to other blocks 303 /// within the loop (forming a nested loop). This simple analysis is not rich 304 /// enough to track all of these properties and keep it up-to-date as the CFG 305 /// mutates, so we don't allow any of these transformations. 306 /// 307 void JumpThreading::FindLoopHeaders(Function &F) { 308 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 309 FindFunctionBackedges(F, Edges); 310 311 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 312 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 313 } 314 315 /// getKnownConstant - Helper method to determine if we can thread over a 316 /// terminator with the given value as its condition, and if so what value to 317 /// use for that. What kind of value this is depends on whether we want an 318 /// integer or a block address, but an undef is always accepted. 319 /// Returns null if Val is null or not an appropriate constant. 320 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 321 if (!Val) 322 return nullptr; 323 324 // Undef is "known" enough. 325 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 326 return U; 327 328 if (Preference == WantBlockAddress) 329 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 330 331 return dyn_cast<ConstantInt>(Val); 332 } 333 334 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 335 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 336 /// in any of our predecessors. If so, return the known list of value and pred 337 /// BB in the result vector. 338 /// 339 /// This returns true if there were any known values. 340 /// 341 bool JumpThreading:: 342 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result, 343 ConstantPreference Preference) { 344 // This method walks up use-def chains recursively. Because of this, we could 345 // get into an infinite loop going around loops in the use-def chain. To 346 // prevent this, keep track of what (value, block) pairs we've already visited 347 // and terminate the search if we loop back to them 348 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 349 return false; 350 351 // An RAII help to remove this pair from the recursion set once the recursion 352 // stack pops back out again. 353 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 354 355 // If V is a constant, then it is known in all predecessors. 356 if (Constant *KC = getKnownConstant(V, Preference)) { 357 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 358 Result.push_back(std::make_pair(KC, *PI)); 359 360 return true; 361 } 362 363 // If V is a non-instruction value, or an instruction in a different block, 364 // then it can't be derived from a PHI. 365 Instruction *I = dyn_cast<Instruction>(V); 366 if (!I || I->getParent() != BB) { 367 368 // Okay, if this is a live-in value, see if it has a known value at the end 369 // of any of our predecessors. 370 // 371 // FIXME: This should be an edge property, not a block end property. 372 /// TODO: Per PR2563, we could infer value range information about a 373 /// predecessor based on its terminator. 374 // 375 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 376 // "I" is a non-local compare-with-a-constant instruction. This would be 377 // able to handle value inequalities better, for example if the compare is 378 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 379 // Perhaps getConstantOnEdge should be smart enough to do this? 380 381 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 382 BasicBlock *P = *PI; 383 // If the value is known by LazyValueInfo to be a constant in a 384 // predecessor, use that information to try to thread this block. 385 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB); 386 if (Constant *KC = getKnownConstant(PredCst, Preference)) 387 Result.push_back(std::make_pair(KC, P)); 388 } 389 390 return !Result.empty(); 391 } 392 393 /// If I is a PHI node, then we know the incoming values for any constants. 394 if (PHINode *PN = dyn_cast<PHINode>(I)) { 395 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 396 Value *InVal = PN->getIncomingValue(i); 397 if (Constant *KC = getKnownConstant(InVal, Preference)) { 398 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 399 } else { 400 Constant *CI = LVI->getConstantOnEdge(InVal, 401 PN->getIncomingBlock(i), BB); 402 if (Constant *KC = getKnownConstant(CI, Preference)) 403 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 404 } 405 } 406 407 return !Result.empty(); 408 } 409 410 PredValueInfoTy LHSVals, RHSVals; 411 412 // Handle some boolean conditions. 413 if (I->getType()->getPrimitiveSizeInBits() == 1) { 414 assert(Preference == WantInteger && "One-bit non-integer type?"); 415 // X | true -> true 416 // X & false -> false 417 if (I->getOpcode() == Instruction::Or || 418 I->getOpcode() == Instruction::And) { 419 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 420 WantInteger); 421 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 422 WantInteger); 423 424 if (LHSVals.empty() && RHSVals.empty()) 425 return false; 426 427 ConstantInt *InterestingVal; 428 if (I->getOpcode() == Instruction::Or) 429 InterestingVal = ConstantInt::getTrue(I->getContext()); 430 else 431 InterestingVal = ConstantInt::getFalse(I->getContext()); 432 433 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 434 435 // Scan for the sentinel. If we find an undef, force it to the 436 // interesting value: x|undef -> true and x&undef -> false. 437 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 438 if (LHSVals[i].first == InterestingVal || 439 isa<UndefValue>(LHSVals[i].first)) { 440 Result.push_back(LHSVals[i]); 441 Result.back().first = InterestingVal; 442 LHSKnownBBs.insert(LHSVals[i].second); 443 } 444 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 445 if (RHSVals[i].first == InterestingVal || 446 isa<UndefValue>(RHSVals[i].first)) { 447 // If we already inferred a value for this block on the LHS, don't 448 // re-add it. 449 if (!LHSKnownBBs.count(RHSVals[i].second)) { 450 Result.push_back(RHSVals[i]); 451 Result.back().first = InterestingVal; 452 } 453 } 454 455 return !Result.empty(); 456 } 457 458 // Handle the NOT form of XOR. 459 if (I->getOpcode() == Instruction::Xor && 460 isa<ConstantInt>(I->getOperand(1)) && 461 cast<ConstantInt>(I->getOperand(1))->isOne()) { 462 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 463 WantInteger); 464 if (Result.empty()) 465 return false; 466 467 // Invert the known values. 468 for (unsigned i = 0, e = Result.size(); i != e; ++i) 469 Result[i].first = ConstantExpr::getNot(Result[i].first); 470 471 return true; 472 } 473 474 // Try to simplify some other binary operator values. 475 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 476 assert(Preference != WantBlockAddress 477 && "A binary operator creating a block address?"); 478 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 479 PredValueInfoTy LHSVals; 480 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 481 WantInteger); 482 483 // Try to use constant folding to simplify the binary operator. 484 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 485 Constant *V = LHSVals[i].first; 486 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 487 488 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 489 Result.push_back(std::make_pair(KC, LHSVals[i].second)); 490 } 491 } 492 493 return !Result.empty(); 494 } 495 496 // Handle compare with phi operand, where the PHI is defined in this block. 497 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 498 assert(Preference == WantInteger && "Compares only produce integers"); 499 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 500 if (PN && PN->getParent() == BB) { 501 // We can do this simplification if any comparisons fold to true or false. 502 // See if any do. 503 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 504 BasicBlock *PredBB = PN->getIncomingBlock(i); 505 Value *LHS = PN->getIncomingValue(i); 506 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 507 508 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL); 509 if (!Res) { 510 if (!isa<Constant>(RHS)) 511 continue; 512 513 LazyValueInfo::Tristate 514 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 515 cast<Constant>(RHS), PredBB, BB); 516 if (ResT == LazyValueInfo::Unknown) 517 continue; 518 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 519 } 520 521 if (Constant *KC = getKnownConstant(Res, WantInteger)) 522 Result.push_back(std::make_pair(KC, PredBB)); 523 } 524 525 return !Result.empty(); 526 } 527 528 529 // If comparing a live-in value against a constant, see if we know the 530 // live-in value on any predecessors. 531 if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) { 532 if (!isa<Instruction>(Cmp->getOperand(0)) || 533 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) { 534 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 535 536 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){ 537 BasicBlock *P = *PI; 538 // If the value is known by LazyValueInfo to be a constant in a 539 // predecessor, use that information to try to thread this block. 540 LazyValueInfo::Tristate Res = 541 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 542 RHSCst, P, BB); 543 if (Res == LazyValueInfo::Unknown) 544 continue; 545 546 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 547 Result.push_back(std::make_pair(ResC, P)); 548 } 549 550 return !Result.empty(); 551 } 552 553 // Try to find a constant value for the LHS of a comparison, 554 // and evaluate it statically if we can. 555 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) { 556 PredValueInfoTy LHSVals; 557 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 558 WantInteger); 559 560 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 561 Constant *V = LHSVals[i].first; 562 Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(), 563 V, CmpConst); 564 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 565 Result.push_back(std::make_pair(KC, LHSVals[i].second)); 566 } 567 568 return !Result.empty(); 569 } 570 } 571 } 572 573 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 574 // Handle select instructions where at least one operand is a known constant 575 // and we can figure out the condition value for any predecessor block. 576 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 577 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 578 PredValueInfoTy Conds; 579 if ((TrueVal || FalseVal) && 580 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 581 WantInteger)) { 582 for (unsigned i = 0, e = Conds.size(); i != e; ++i) { 583 Constant *Cond = Conds[i].first; 584 585 // Figure out what value to use for the condition. 586 bool KnownCond; 587 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 588 // A known boolean. 589 KnownCond = CI->isOne(); 590 } else { 591 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 592 // Either operand will do, so be sure to pick the one that's a known 593 // constant. 594 // FIXME: Do this more cleverly if both values are known constants? 595 KnownCond = (TrueVal != nullptr); 596 } 597 598 // See if the select has a known constant value for this predecessor. 599 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 600 Result.push_back(std::make_pair(Val, Conds[i].second)); 601 } 602 603 return !Result.empty(); 604 } 605 } 606 607 // If all else fails, see if LVI can figure out a constant value for us. 608 Constant *CI = LVI->getConstant(V, BB); 609 if (Constant *KC = getKnownConstant(CI, Preference)) { 610 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 611 Result.push_back(std::make_pair(KC, *PI)); 612 } 613 614 return !Result.empty(); 615 } 616 617 618 619 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 620 /// in an undefined jump, decide which block is best to revector to. 621 /// 622 /// Since we can pick an arbitrary destination, we pick the successor with the 623 /// fewest predecessors. This should reduce the in-degree of the others. 624 /// 625 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 626 TerminatorInst *BBTerm = BB->getTerminator(); 627 unsigned MinSucc = 0; 628 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 629 // Compute the successor with the minimum number of predecessors. 630 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 631 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 632 TestBB = BBTerm->getSuccessor(i); 633 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 634 if (NumPreds < MinNumPreds) { 635 MinSucc = i; 636 MinNumPreds = NumPreds; 637 } 638 } 639 640 return MinSucc; 641 } 642 643 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 644 if (!BB->hasAddressTaken()) return false; 645 646 // If the block has its address taken, it may be a tree of dead constants 647 // hanging off of it. These shouldn't keep the block alive. 648 BlockAddress *BA = BlockAddress::get(BB); 649 BA->removeDeadConstantUsers(); 650 return !BA->use_empty(); 651 } 652 653 /// ProcessBlock - If there are any predecessors whose control can be threaded 654 /// through to a successor, transform them now. 655 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 656 // If the block is trivially dead, just return and let the caller nuke it. 657 // This simplifies other transformations. 658 if (pred_begin(BB) == pred_end(BB) && 659 BB != &BB->getParent()->getEntryBlock()) 660 return false; 661 662 // If this block has a single predecessor, and if that pred has a single 663 // successor, merge the blocks. This encourages recursive jump threading 664 // because now the condition in this block can be threaded through 665 // predecessors of our predecessor block. 666 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 667 if (SinglePred->getTerminator()->getNumSuccessors() == 1 && 668 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 669 // If SinglePred was a loop header, BB becomes one. 670 if (LoopHeaders.erase(SinglePred)) 671 LoopHeaders.insert(BB); 672 673 LVI->eraseBlock(SinglePred); 674 MergeBasicBlockIntoOnlyPred(BB); 675 676 return true; 677 } 678 } 679 680 // What kind of constant we're looking for. 681 ConstantPreference Preference = WantInteger; 682 683 // Look to see if the terminator is a conditional branch, switch or indirect 684 // branch, if not we can't thread it. 685 Value *Condition; 686 Instruction *Terminator = BB->getTerminator(); 687 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 688 // Can't thread an unconditional jump. 689 if (BI->isUnconditional()) return false; 690 Condition = BI->getCondition(); 691 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 692 Condition = SI->getCondition(); 693 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 694 // Can't thread indirect branch with no successors. 695 if (IB->getNumSuccessors() == 0) return false; 696 Condition = IB->getAddress()->stripPointerCasts(); 697 Preference = WantBlockAddress; 698 } else { 699 return false; // Must be an invoke. 700 } 701 702 // Run constant folding to see if we can reduce the condition to a simple 703 // constant. 704 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 705 Value *SimpleVal = ConstantFoldInstruction(I, DL, TLI); 706 if (SimpleVal) { 707 I->replaceAllUsesWith(SimpleVal); 708 I->eraseFromParent(); 709 Condition = SimpleVal; 710 } 711 } 712 713 // If the terminator is branching on an undef, we can pick any of the 714 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 715 if (isa<UndefValue>(Condition)) { 716 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 717 718 // Fold the branch/switch. 719 TerminatorInst *BBTerm = BB->getTerminator(); 720 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 721 if (i == BestSucc) continue; 722 BBTerm->getSuccessor(i)->removePredecessor(BB, true); 723 } 724 725 DEBUG(dbgs() << " In block '" << BB->getName() 726 << "' folding undef terminator: " << *BBTerm << '\n'); 727 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 728 BBTerm->eraseFromParent(); 729 return true; 730 } 731 732 // If the terminator of this block is branching on a constant, simplify the 733 // terminator to an unconditional branch. This can occur due to threading in 734 // other blocks. 735 if (getKnownConstant(Condition, Preference)) { 736 DEBUG(dbgs() << " In block '" << BB->getName() 737 << "' folding terminator: " << *BB->getTerminator() << '\n'); 738 ++NumFolds; 739 ConstantFoldTerminator(BB, true); 740 return true; 741 } 742 743 Instruction *CondInst = dyn_cast<Instruction>(Condition); 744 745 // All the rest of our checks depend on the condition being an instruction. 746 if (!CondInst) { 747 // FIXME: Unify this with code below. 748 if (ProcessThreadableEdges(Condition, BB, Preference)) 749 return true; 750 return false; 751 } 752 753 754 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 755 // For a comparison where the LHS is outside this block, it's possible 756 // that we've branched on it before. Used LVI to see if we can simplify 757 // the branch based on that. 758 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 759 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 760 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 761 if (CondBr && CondConst && CondBr->isConditional() && PI != PE && 762 (!isa<Instruction>(CondCmp->getOperand(0)) || 763 cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) { 764 // For predecessor edge, determine if the comparison is true or false 765 // on that edge. If they're all true or all false, we can simplify the 766 // branch. 767 // FIXME: We could handle mixed true/false by duplicating code. 768 LazyValueInfo::Tristate Baseline = 769 LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0), 770 CondConst, *PI, BB); 771 if (Baseline != LazyValueInfo::Unknown) { 772 // Check that all remaining incoming values match the first one. 773 while (++PI != PE) { 774 LazyValueInfo::Tristate Ret = 775 LVI->getPredicateOnEdge(CondCmp->getPredicate(), 776 CondCmp->getOperand(0), CondConst, *PI, BB); 777 if (Ret != Baseline) break; 778 } 779 780 // If we terminated early, then one of the values didn't match. 781 if (PI == PE) { 782 unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0; 783 unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1; 784 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 785 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 786 CondBr->eraseFromParent(); 787 return true; 788 } 789 } 790 791 } 792 793 if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB)) 794 return true; 795 } 796 797 // Check for some cases that are worth simplifying. Right now we want to look 798 // for loads that are used by a switch or by the condition for the branch. If 799 // we see one, check to see if it's partially redundant. If so, insert a PHI 800 // which can then be used to thread the values. 801 // 802 Value *SimplifyValue = CondInst; 803 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 804 if (isa<Constant>(CondCmp->getOperand(1))) 805 SimplifyValue = CondCmp->getOperand(0); 806 807 // TODO: There are other places where load PRE would be profitable, such as 808 // more complex comparisons. 809 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 810 if (SimplifyPartiallyRedundantLoad(LI)) 811 return true; 812 813 814 // Handle a variety of cases where we are branching on something derived from 815 // a PHI node in the current block. If we can prove that any predecessors 816 // compute a predictable value based on a PHI node, thread those predecessors. 817 // 818 if (ProcessThreadableEdges(CondInst, BB, Preference)) 819 return true; 820 821 // If this is an otherwise-unfoldable branch on a phi node in the current 822 // block, see if we can simplify. 823 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 824 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 825 return ProcessBranchOnPHI(PN); 826 827 828 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 829 if (CondInst->getOpcode() == Instruction::Xor && 830 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 831 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 832 833 834 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 835 // "(X == 4)", thread through this block. 836 837 return false; 838 } 839 840 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 841 /// load instruction, eliminate it by replacing it with a PHI node. This is an 842 /// important optimization that encourages jump threading, and needs to be run 843 /// interlaced with other jump threading tasks. 844 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 845 // Don't hack volatile/atomic loads. 846 if (!LI->isSimple()) return false; 847 848 // If the load is defined in a block with exactly one predecessor, it can't be 849 // partially redundant. 850 BasicBlock *LoadBB = LI->getParent(); 851 if (LoadBB->getSinglePredecessor()) 852 return false; 853 854 // If the load is defined in a landing pad, it can't be partially redundant, 855 // because the edges between the invoke and the landing pad cannot have other 856 // instructions between them. 857 if (LoadBB->isLandingPad()) 858 return false; 859 860 Value *LoadedPtr = LI->getOperand(0); 861 862 // If the loaded operand is defined in the LoadBB, it can't be available. 863 // TODO: Could do simple PHI translation, that would be fun :) 864 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 865 if (PtrOp->getParent() == LoadBB) 866 return false; 867 868 // Scan a few instructions up from the load, to see if it is obviously live at 869 // the entry to its block. 870 BasicBlock::iterator BBIt = LI; 871 872 if (Value *AvailableVal = 873 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) { 874 // If the value if the load is locally available within the block, just use 875 // it. This frequently occurs for reg2mem'd allocas. 876 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 877 878 // If the returned value is the load itself, replace with an undef. This can 879 // only happen in dead loops. 880 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 881 LI->replaceAllUsesWith(AvailableVal); 882 LI->eraseFromParent(); 883 return true; 884 } 885 886 // Otherwise, if we scanned the whole block and got to the top of the block, 887 // we know the block is locally transparent to the load. If not, something 888 // might clobber its value. 889 if (BBIt != LoadBB->begin()) 890 return false; 891 892 // If all of the loads and stores that feed the value have the same AA tags, 893 // then we can propagate them onto any newly inserted loads. 894 AAMDNodes AATags; 895 LI->getAAMetadata(AATags); 896 897 SmallPtrSet<BasicBlock*, 8> PredsScanned; 898 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 899 AvailablePredsTy AvailablePreds; 900 BasicBlock *OneUnavailablePred = nullptr; 901 902 // If we got here, the loaded value is transparent through to the start of the 903 // block. Check to see if it is available in any of the predecessor blocks. 904 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 905 PI != PE; ++PI) { 906 BasicBlock *PredBB = *PI; 907 908 // If we already scanned this predecessor, skip it. 909 if (!PredsScanned.insert(PredBB)) 910 continue; 911 912 // Scan the predecessor to see if the value is available in the pred. 913 BBIt = PredBB->end(); 914 AAMDNodes ThisAATags; 915 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6, 916 nullptr, &ThisAATags); 917 if (!PredAvailable) { 918 OneUnavailablePred = PredBB; 919 continue; 920 } 921 922 // If AA tags disagree or are not present, forget about them. 923 if (AATags != ThisAATags) AATags = AAMDNodes(); 924 925 // If so, this load is partially redundant. Remember this info so that we 926 // can create a PHI node. 927 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 928 } 929 930 // If the loaded value isn't available in any predecessor, it isn't partially 931 // redundant. 932 if (AvailablePreds.empty()) return false; 933 934 // Okay, the loaded value is available in at least one (and maybe all!) 935 // predecessors. If the value is unavailable in more than one unique 936 // predecessor, we want to insert a merge block for those common predecessors. 937 // This ensures that we only have to insert one reload, thus not increasing 938 // code size. 939 BasicBlock *UnavailablePred = nullptr; 940 941 // If there is exactly one predecessor where the value is unavailable, the 942 // already computed 'OneUnavailablePred' block is it. If it ends in an 943 // unconditional branch, we know that it isn't a critical edge. 944 if (PredsScanned.size() == AvailablePreds.size()+1 && 945 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 946 UnavailablePred = OneUnavailablePred; 947 } else if (PredsScanned.size() != AvailablePreds.size()) { 948 // Otherwise, we had multiple unavailable predecessors or we had a critical 949 // edge from the one. 950 SmallVector<BasicBlock*, 8> PredsToSplit; 951 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 952 953 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 954 AvailablePredSet.insert(AvailablePreds[i].first); 955 956 // Add all the unavailable predecessors to the PredsToSplit list. 957 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 958 PI != PE; ++PI) { 959 BasicBlock *P = *PI; 960 // If the predecessor is an indirect goto, we can't split the edge. 961 if (isa<IndirectBrInst>(P->getTerminator())) 962 return false; 963 964 if (!AvailablePredSet.count(P)) 965 PredsToSplit.push_back(P); 966 } 967 968 // Split them out to their own block. 969 UnavailablePred = 970 SplitBlockPredecessors(LoadBB, PredsToSplit, "thread-pre-split", this); 971 } 972 973 // If the value isn't available in all predecessors, then there will be 974 // exactly one where it isn't available. Insert a load on that edge and add 975 // it to the AvailablePreds list. 976 if (UnavailablePred) { 977 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 978 "Can't handle critical edge here!"); 979 LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, 980 LI->getAlignment(), 981 UnavailablePred->getTerminator()); 982 NewVal->setDebugLoc(LI->getDebugLoc()); 983 if (AATags) 984 NewVal->setAAMetadata(AATags); 985 986 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 987 } 988 989 // Now we know that each predecessor of this block has a value in 990 // AvailablePreds, sort them for efficient access as we're walking the preds. 991 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 992 993 // Create a PHI node at the start of the block for the PRE'd load value. 994 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 995 PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "", 996 LoadBB->begin()); 997 PN->takeName(LI); 998 PN->setDebugLoc(LI->getDebugLoc()); 999 1000 // Insert new entries into the PHI for each predecessor. A single block may 1001 // have multiple entries here. 1002 for (pred_iterator PI = PB; PI != PE; ++PI) { 1003 BasicBlock *P = *PI; 1004 AvailablePredsTy::iterator I = 1005 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1006 std::make_pair(P, (Value*)nullptr)); 1007 1008 assert(I != AvailablePreds.end() && I->first == P && 1009 "Didn't find entry for predecessor!"); 1010 1011 PN->addIncoming(I->second, I->first); 1012 } 1013 1014 //cerr << "PRE: " << *LI << *PN << "\n"; 1015 1016 LI->replaceAllUsesWith(PN); 1017 LI->eraseFromParent(); 1018 1019 return true; 1020 } 1021 1022 /// FindMostPopularDest - The specified list contains multiple possible 1023 /// threadable destinations. Pick the one that occurs the most frequently in 1024 /// the list. 1025 static BasicBlock * 1026 FindMostPopularDest(BasicBlock *BB, 1027 const SmallVectorImpl<std::pair<BasicBlock*, 1028 BasicBlock*> > &PredToDestList) { 1029 assert(!PredToDestList.empty()); 1030 1031 // Determine popularity. If there are multiple possible destinations, we 1032 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1033 // blocks with known and real destinations to threading undef. We'll handle 1034 // them later if interesting. 1035 DenseMap<BasicBlock*, unsigned> DestPopularity; 1036 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1037 if (PredToDestList[i].second) 1038 DestPopularity[PredToDestList[i].second]++; 1039 1040 // Find the most popular dest. 1041 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1042 BasicBlock *MostPopularDest = DPI->first; 1043 unsigned Popularity = DPI->second; 1044 SmallVector<BasicBlock*, 4> SamePopularity; 1045 1046 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1047 // If the popularity of this entry isn't higher than the popularity we've 1048 // seen so far, ignore it. 1049 if (DPI->second < Popularity) 1050 ; // ignore. 1051 else if (DPI->second == Popularity) { 1052 // If it is the same as what we've seen so far, keep track of it. 1053 SamePopularity.push_back(DPI->first); 1054 } else { 1055 // If it is more popular, remember it. 1056 SamePopularity.clear(); 1057 MostPopularDest = DPI->first; 1058 Popularity = DPI->second; 1059 } 1060 } 1061 1062 // Okay, now we know the most popular destination. If there is more than one 1063 // destination, we need to determine one. This is arbitrary, but we need 1064 // to make a deterministic decision. Pick the first one that appears in the 1065 // successor list. 1066 if (!SamePopularity.empty()) { 1067 SamePopularity.push_back(MostPopularDest); 1068 TerminatorInst *TI = BB->getTerminator(); 1069 for (unsigned i = 0; ; ++i) { 1070 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1071 1072 if (std::find(SamePopularity.begin(), SamePopularity.end(), 1073 TI->getSuccessor(i)) == SamePopularity.end()) 1074 continue; 1075 1076 MostPopularDest = TI->getSuccessor(i); 1077 break; 1078 } 1079 } 1080 1081 // Okay, we have finally picked the most popular destination. 1082 return MostPopularDest; 1083 } 1084 1085 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1086 ConstantPreference Preference) { 1087 // If threading this would thread across a loop header, don't even try to 1088 // thread the edge. 1089 if (LoopHeaders.count(BB)) 1090 return false; 1091 1092 PredValueInfoTy PredValues; 1093 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference)) 1094 return false; 1095 1096 assert(!PredValues.empty() && 1097 "ComputeValueKnownInPredecessors returned true with no values"); 1098 1099 DEBUG(dbgs() << "IN BB: " << *BB; 1100 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1101 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1102 << *PredValues[i].first 1103 << " for pred '" << PredValues[i].second->getName() << "'.\n"; 1104 }); 1105 1106 // Decide what we want to thread through. Convert our list of known values to 1107 // a list of known destinations for each pred. This also discards duplicate 1108 // predecessors and keeps track of the undefined inputs (which are represented 1109 // as a null dest in the PredToDestList). 1110 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1111 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1112 1113 BasicBlock *OnlyDest = nullptr; 1114 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1115 1116 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1117 BasicBlock *Pred = PredValues[i].second; 1118 if (!SeenPreds.insert(Pred)) 1119 continue; // Duplicate predecessor entry. 1120 1121 // If the predecessor ends with an indirect goto, we can't change its 1122 // destination. 1123 if (isa<IndirectBrInst>(Pred->getTerminator())) 1124 continue; 1125 1126 Constant *Val = PredValues[i].first; 1127 1128 BasicBlock *DestBB; 1129 if (isa<UndefValue>(Val)) 1130 DestBB = nullptr; 1131 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1132 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1133 else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1134 DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor(); 1135 } else { 1136 assert(isa<IndirectBrInst>(BB->getTerminator()) 1137 && "Unexpected terminator"); 1138 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1139 } 1140 1141 // If we have exactly one destination, remember it for efficiency below. 1142 if (PredToDestList.empty()) 1143 OnlyDest = DestBB; 1144 else if (OnlyDest != DestBB) 1145 OnlyDest = MultipleDestSentinel; 1146 1147 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1148 } 1149 1150 // If all edges were unthreadable, we fail. 1151 if (PredToDestList.empty()) 1152 return false; 1153 1154 // Determine which is the most common successor. If we have many inputs and 1155 // this block is a switch, we want to start by threading the batch that goes 1156 // to the most popular destination first. If we only know about one 1157 // threadable destination (the common case) we can avoid this. 1158 BasicBlock *MostPopularDest = OnlyDest; 1159 1160 if (MostPopularDest == MultipleDestSentinel) 1161 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1162 1163 // Now that we know what the most popular destination is, factor all 1164 // predecessors that will jump to it into a single predecessor. 1165 SmallVector<BasicBlock*, 16> PredsToFactor; 1166 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1167 if (PredToDestList[i].second == MostPopularDest) { 1168 BasicBlock *Pred = PredToDestList[i].first; 1169 1170 // This predecessor may be a switch or something else that has multiple 1171 // edges to the block. Factor each of these edges by listing them 1172 // according to # occurrences in PredsToFactor. 1173 TerminatorInst *PredTI = Pred->getTerminator(); 1174 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 1175 if (PredTI->getSuccessor(i) == BB) 1176 PredsToFactor.push_back(Pred); 1177 } 1178 1179 // If the threadable edges are branching on an undefined value, we get to pick 1180 // the destination that these predecessors should get to. 1181 if (!MostPopularDest) 1182 MostPopularDest = BB->getTerminator()-> 1183 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1184 1185 // Ok, try to thread it! 1186 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1187 } 1188 1189 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1190 /// a PHI node in the current block. See if there are any simplifications we 1191 /// can do based on inputs to the phi node. 1192 /// 1193 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) { 1194 BasicBlock *BB = PN->getParent(); 1195 1196 // TODO: We could make use of this to do it once for blocks with common PHI 1197 // values. 1198 SmallVector<BasicBlock*, 1> PredBBs; 1199 PredBBs.resize(1); 1200 1201 // If any of the predecessor blocks end in an unconditional branch, we can 1202 // *duplicate* the conditional branch into that block in order to further 1203 // encourage jump threading and to eliminate cases where we have branch on a 1204 // phi of an icmp (branch on icmp is much better). 1205 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1206 BasicBlock *PredBB = PN->getIncomingBlock(i); 1207 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1208 if (PredBr->isUnconditional()) { 1209 PredBBs[0] = PredBB; 1210 // Try to duplicate BB into PredBB. 1211 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1212 return true; 1213 } 1214 } 1215 1216 return false; 1217 } 1218 1219 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1220 /// a xor instruction in the current block. See if there are any 1221 /// simplifications we can do based on inputs to the xor. 1222 /// 1223 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) { 1224 BasicBlock *BB = BO->getParent(); 1225 1226 // If either the LHS or RHS of the xor is a constant, don't do this 1227 // optimization. 1228 if (isa<ConstantInt>(BO->getOperand(0)) || 1229 isa<ConstantInt>(BO->getOperand(1))) 1230 return false; 1231 1232 // If the first instruction in BB isn't a phi, we won't be able to infer 1233 // anything special about any particular predecessor. 1234 if (!isa<PHINode>(BB->front())) 1235 return false; 1236 1237 // If we have a xor as the branch input to this block, and we know that the 1238 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1239 // the condition into the predecessor and fix that value to true, saving some 1240 // logical ops on that path and encouraging other paths to simplify. 1241 // 1242 // This copies something like this: 1243 // 1244 // BB: 1245 // %X = phi i1 [1], [%X'] 1246 // %Y = icmp eq i32 %A, %B 1247 // %Z = xor i1 %X, %Y 1248 // br i1 %Z, ... 1249 // 1250 // Into: 1251 // BB': 1252 // %Y = icmp ne i32 %A, %B 1253 // br i1 %Z, ... 1254 1255 PredValueInfoTy XorOpValues; 1256 bool isLHS = true; 1257 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1258 WantInteger)) { 1259 assert(XorOpValues.empty()); 1260 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1261 WantInteger)) 1262 return false; 1263 isLHS = false; 1264 } 1265 1266 assert(!XorOpValues.empty() && 1267 "ComputeValueKnownInPredecessors returned true with no values"); 1268 1269 // Scan the information to see which is most popular: true or false. The 1270 // predecessors can be of the set true, false, or undef. 1271 unsigned NumTrue = 0, NumFalse = 0; 1272 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1273 if (isa<UndefValue>(XorOpValues[i].first)) 1274 // Ignore undefs for the count. 1275 continue; 1276 if (cast<ConstantInt>(XorOpValues[i].first)->isZero()) 1277 ++NumFalse; 1278 else 1279 ++NumTrue; 1280 } 1281 1282 // Determine which value to split on, true, false, or undef if neither. 1283 ConstantInt *SplitVal = nullptr; 1284 if (NumTrue > NumFalse) 1285 SplitVal = ConstantInt::getTrue(BB->getContext()); 1286 else if (NumTrue != 0 || NumFalse != 0) 1287 SplitVal = ConstantInt::getFalse(BB->getContext()); 1288 1289 // Collect all of the blocks that this can be folded into so that we can 1290 // factor this once and clone it once. 1291 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1292 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1293 if (XorOpValues[i].first != SplitVal && 1294 !isa<UndefValue>(XorOpValues[i].first)) 1295 continue; 1296 1297 BlocksToFoldInto.push_back(XorOpValues[i].second); 1298 } 1299 1300 // If we inferred a value for all of the predecessors, then duplication won't 1301 // help us. However, we can just replace the LHS or RHS with the constant. 1302 if (BlocksToFoldInto.size() == 1303 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1304 if (!SplitVal) { 1305 // If all preds provide undef, just nuke the xor, because it is undef too. 1306 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1307 BO->eraseFromParent(); 1308 } else if (SplitVal->isZero()) { 1309 // If all preds provide 0, replace the xor with the other input. 1310 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1311 BO->eraseFromParent(); 1312 } else { 1313 // If all preds provide 1, set the computed value to 1. 1314 BO->setOperand(!isLHS, SplitVal); 1315 } 1316 1317 return true; 1318 } 1319 1320 // Try to duplicate BB into PredBB. 1321 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1322 } 1323 1324 1325 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1326 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1327 /// NewPred using the entries from OldPred (suitably mapped). 1328 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1329 BasicBlock *OldPred, 1330 BasicBlock *NewPred, 1331 DenseMap<Instruction*, Value*> &ValueMap) { 1332 for (BasicBlock::iterator PNI = PHIBB->begin(); 1333 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1334 // Ok, we have a PHI node. Figure out what the incoming value was for the 1335 // DestBlock. 1336 Value *IV = PN->getIncomingValueForBlock(OldPred); 1337 1338 // Remap the value if necessary. 1339 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1340 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1341 if (I != ValueMap.end()) 1342 IV = I->second; 1343 } 1344 1345 PN->addIncoming(IV, NewPred); 1346 } 1347 } 1348 1349 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1350 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1351 /// across BB. Transform the IR to reflect this change. 1352 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1353 const SmallVectorImpl<BasicBlock*> &PredBBs, 1354 BasicBlock *SuccBB) { 1355 // If threading to the same block as we come from, we would infinite loop. 1356 if (SuccBB == BB) { 1357 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1358 << "' - would thread to self!\n"); 1359 return false; 1360 } 1361 1362 // If threading this would thread across a loop header, don't thread the edge. 1363 // See the comments above FindLoopHeaders for justifications and caveats. 1364 if (LoopHeaders.count(BB)) { 1365 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1366 << "' to dest BB '" << SuccBB->getName() 1367 << "' - it might create an irreducible loop!\n"); 1368 return false; 1369 } 1370 1371 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, Threshold); 1372 if (JumpThreadCost > Threshold) { 1373 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1374 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1375 return false; 1376 } 1377 1378 // And finally, do it! Start by factoring the predecessors is needed. 1379 BasicBlock *PredBB; 1380 if (PredBBs.size() == 1) 1381 PredBB = PredBBs[0]; 1382 else { 1383 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1384 << " common predecessors.\n"); 1385 PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this); 1386 } 1387 1388 // And finally, do it! 1389 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1390 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1391 << ", across block:\n " 1392 << *BB << "\n"); 1393 1394 LVI->threadEdge(PredBB, BB, SuccBB); 1395 1396 // We are going to have to map operands from the original BB block to the new 1397 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1398 // account for entry from PredBB. 1399 DenseMap<Instruction*, Value*> ValueMapping; 1400 1401 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1402 BB->getName()+".thread", 1403 BB->getParent(), BB); 1404 NewBB->moveAfter(PredBB); 1405 1406 BasicBlock::iterator BI = BB->begin(); 1407 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1408 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1409 1410 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1411 // mapping and using it to remap operands in the cloned instructions. 1412 for (; !isa<TerminatorInst>(BI); ++BI) { 1413 Instruction *New = BI->clone(); 1414 New->setName(BI->getName()); 1415 NewBB->getInstList().push_back(New); 1416 ValueMapping[BI] = New; 1417 1418 // Remap operands to patch up intra-block references. 1419 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1420 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1421 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1422 if (I != ValueMapping.end()) 1423 New->setOperand(i, I->second); 1424 } 1425 } 1426 1427 // We didn't copy the terminator from BB over to NewBB, because there is now 1428 // an unconditional jump to SuccBB. Insert the unconditional jump. 1429 BranchInst *NewBI =BranchInst::Create(SuccBB, NewBB); 1430 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1431 1432 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1433 // PHI nodes for NewBB now. 1434 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1435 1436 // If there were values defined in BB that are used outside the block, then we 1437 // now have to update all uses of the value to use either the original value, 1438 // the cloned value, or some PHI derived value. This can require arbitrary 1439 // PHI insertion, of which we are prepared to do, clean these up now. 1440 SSAUpdater SSAUpdate; 1441 SmallVector<Use*, 16> UsesToRename; 1442 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1443 // Scan all uses of this instruction to see if it is used outside of its 1444 // block, and if so, record them in UsesToRename. 1445 for (Use &U : I->uses()) { 1446 Instruction *User = cast<Instruction>(U.getUser()); 1447 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1448 if (UserPN->getIncomingBlock(U) == BB) 1449 continue; 1450 } else if (User->getParent() == BB) 1451 continue; 1452 1453 UsesToRename.push_back(&U); 1454 } 1455 1456 // If there are no uses outside the block, we're done with this instruction. 1457 if (UsesToRename.empty()) 1458 continue; 1459 1460 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1461 1462 // We found a use of I outside of BB. Rename all uses of I that are outside 1463 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1464 // with the two values we know. 1465 SSAUpdate.Initialize(I->getType(), I->getName()); 1466 SSAUpdate.AddAvailableValue(BB, I); 1467 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); 1468 1469 while (!UsesToRename.empty()) 1470 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1471 DEBUG(dbgs() << "\n"); 1472 } 1473 1474 1475 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1476 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1477 // us to simplify any PHI nodes in BB. 1478 TerminatorInst *PredTerm = PredBB->getTerminator(); 1479 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1480 if (PredTerm->getSuccessor(i) == BB) { 1481 BB->removePredecessor(PredBB, true); 1482 PredTerm->setSuccessor(i, NewBB); 1483 } 1484 1485 // At this point, the IR is fully up to date and consistent. Do a quick scan 1486 // over the new instructions and zap any that are constants or dead. This 1487 // frequently happens because of phi translation. 1488 SimplifyInstructionsInBlock(NewBB, DL, TLI); 1489 1490 // Threaded an edge! 1491 ++NumThreads; 1492 return true; 1493 } 1494 1495 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1496 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1497 /// If we can duplicate the contents of BB up into PredBB do so now, this 1498 /// improves the odds that the branch will be on an analyzable instruction like 1499 /// a compare. 1500 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1501 const SmallVectorImpl<BasicBlock *> &PredBBs) { 1502 assert(!PredBBs.empty() && "Can't handle an empty set"); 1503 1504 // If BB is a loop header, then duplicating this block outside the loop would 1505 // cause us to transform this into an irreducible loop, don't do this. 1506 // See the comments above FindLoopHeaders for justifications and caveats. 1507 if (LoopHeaders.count(BB)) { 1508 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1509 << "' into predecessor block '" << PredBBs[0]->getName() 1510 << "' - it might create an irreducible loop!\n"); 1511 return false; 1512 } 1513 1514 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, Threshold); 1515 if (DuplicationCost > Threshold) { 1516 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1517 << "' - Cost is too high: " << DuplicationCost << "\n"); 1518 return false; 1519 } 1520 1521 // And finally, do it! Start by factoring the predecessors is needed. 1522 BasicBlock *PredBB; 1523 if (PredBBs.size() == 1) 1524 PredBB = PredBBs[0]; 1525 else { 1526 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1527 << " common predecessors.\n"); 1528 PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this); 1529 } 1530 1531 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1532 // of PredBB. 1533 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1534 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1535 << DuplicationCost << " block is:" << *BB << "\n"); 1536 1537 // Unless PredBB ends with an unconditional branch, split the edge so that we 1538 // can just clone the bits from BB into the end of the new PredBB. 1539 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 1540 1541 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 1542 PredBB = SplitEdge(PredBB, BB, this); 1543 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1544 } 1545 1546 // We are going to have to map operands from the original BB block into the 1547 // PredBB block. Evaluate PHI nodes in BB. 1548 DenseMap<Instruction*, Value*> ValueMapping; 1549 1550 BasicBlock::iterator BI = BB->begin(); 1551 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1552 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1553 1554 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1555 // mapping and using it to remap operands in the cloned instructions. 1556 for (; BI != BB->end(); ++BI) { 1557 Instruction *New = BI->clone(); 1558 1559 // Remap operands to patch up intra-block references. 1560 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1561 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1562 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1563 if (I != ValueMapping.end()) 1564 New->setOperand(i, I->second); 1565 } 1566 1567 // If this instruction can be simplified after the operands are updated, 1568 // just use the simplified value instead. This frequently happens due to 1569 // phi translation. 1570 if (Value *IV = SimplifyInstruction(New, DL)) { 1571 delete New; 1572 ValueMapping[BI] = IV; 1573 } else { 1574 // Otherwise, insert the new instruction into the block. 1575 New->setName(BI->getName()); 1576 PredBB->getInstList().insert(OldPredBranch, New); 1577 ValueMapping[BI] = New; 1578 } 1579 } 1580 1581 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1582 // add entries to the PHI nodes for branch from PredBB now. 1583 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1584 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1585 ValueMapping); 1586 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1587 ValueMapping); 1588 1589 // If there were values defined in BB that are used outside the block, then we 1590 // now have to update all uses of the value to use either the original value, 1591 // the cloned value, or some PHI derived value. This can require arbitrary 1592 // PHI insertion, of which we are prepared to do, clean these up now. 1593 SSAUpdater SSAUpdate; 1594 SmallVector<Use*, 16> UsesToRename; 1595 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1596 // Scan all uses of this instruction to see if it is used outside of its 1597 // block, and if so, record them in UsesToRename. 1598 for (Use &U : I->uses()) { 1599 Instruction *User = cast<Instruction>(U.getUser()); 1600 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1601 if (UserPN->getIncomingBlock(U) == BB) 1602 continue; 1603 } else if (User->getParent() == BB) 1604 continue; 1605 1606 UsesToRename.push_back(&U); 1607 } 1608 1609 // If there are no uses outside the block, we're done with this instruction. 1610 if (UsesToRename.empty()) 1611 continue; 1612 1613 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1614 1615 // We found a use of I outside of BB. Rename all uses of I that are outside 1616 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1617 // with the two values we know. 1618 SSAUpdate.Initialize(I->getType(), I->getName()); 1619 SSAUpdate.AddAvailableValue(BB, I); 1620 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); 1621 1622 while (!UsesToRename.empty()) 1623 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1624 DEBUG(dbgs() << "\n"); 1625 } 1626 1627 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1628 // that we nuked. 1629 BB->removePredecessor(PredBB, true); 1630 1631 // Remove the unconditional branch at the end of the PredBB block. 1632 OldPredBranch->eraseFromParent(); 1633 1634 ++NumDupes; 1635 return true; 1636 } 1637 1638 /// TryToUnfoldSelect - Look for blocks of the form 1639 /// bb1: 1640 /// %a = select 1641 /// br bb 1642 /// 1643 /// bb2: 1644 /// %p = phi [%a, %bb] ... 1645 /// %c = icmp %p 1646 /// br i1 %c 1647 /// 1648 /// And expand the select into a branch structure if one of its arms allows %c 1649 /// to be folded. This later enables threading from bb1 over bb2. 1650 bool JumpThreading::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 1651 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1652 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 1653 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 1654 1655 if (!CondBr || !CondBr->isConditional() || !CondLHS || 1656 CondLHS->getParent() != BB) 1657 return false; 1658 1659 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 1660 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 1661 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 1662 1663 // Look if one of the incoming values is a select in the corresponding 1664 // predecessor. 1665 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 1666 continue; 1667 1668 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 1669 if (!PredTerm || !PredTerm->isUnconditional()) 1670 continue; 1671 1672 // Now check if one of the select values would allow us to constant fold the 1673 // terminator in BB. We don't do the transform if both sides fold, those 1674 // cases will be threaded in any case. 1675 LazyValueInfo::Tristate LHSFolds = 1676 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 1677 CondRHS, Pred, BB); 1678 LazyValueInfo::Tristate RHSFolds = 1679 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 1680 CondRHS, Pred, BB); 1681 if ((LHSFolds != LazyValueInfo::Unknown || 1682 RHSFolds != LazyValueInfo::Unknown) && 1683 LHSFolds != RHSFolds) { 1684 // Expand the select. 1685 // 1686 // Pred -- 1687 // | v 1688 // | NewBB 1689 // | | 1690 // |----- 1691 // v 1692 // BB 1693 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 1694 BB->getParent(), BB); 1695 // Move the unconditional branch to NewBB. 1696 PredTerm->removeFromParent(); 1697 NewBB->getInstList().insert(NewBB->end(), PredTerm); 1698 // Create a conditional branch and update PHI nodes. 1699 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 1700 CondLHS->setIncomingValue(I, SI->getFalseValue()); 1701 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 1702 // The select is now dead. 1703 SI->eraseFromParent(); 1704 1705 // Update any other PHI nodes in BB. 1706 for (BasicBlock::iterator BI = BB->begin(); 1707 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 1708 if (Phi != CondLHS) 1709 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 1710 return true; 1711 } 1712 } 1713 return false; 1714 } 1715