1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "jump-threading" 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/IntrinsicInst.h" 17 #include "llvm/LLVMContext.h" 18 #include "llvm/Pass.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/LazyValueInfo.h" 22 #include "llvm/Analysis/Loads.h" 23 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 24 #include "llvm/Transforms/Utils/Local.h" 25 #include "llvm/Transforms/Utils/SSAUpdater.h" 26 #include "llvm/Target/TargetData.h" 27 #include "llvm/ADT/DenseMap.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ValueHandle.h" 35 #include "llvm/Support/raw_ostream.h" 36 using namespace llvm; 37 38 STATISTIC(NumThreads, "Number of jumps threaded"); 39 STATISTIC(NumFolds, "Number of terminators folded"); 40 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 41 42 static cl::opt<unsigned> 43 Threshold("jump-threading-threshold", 44 cl::desc("Max block size to duplicate for jump threading"), 45 cl::init(6), cl::Hidden); 46 47 // Turn on use of LazyValueInfo. 48 static cl::opt<bool> 49 EnableLVI("enable-jump-threading-lvi", 50 cl::desc("Use LVI for jump threading"), 51 cl::init(true), 52 cl::ReallyHidden); 53 54 55 56 namespace { 57 /// This pass performs 'jump threading', which looks at blocks that have 58 /// multiple predecessors and multiple successors. If one or more of the 59 /// predecessors of the block can be proven to always jump to one of the 60 /// successors, we forward the edge from the predecessor to the successor by 61 /// duplicating the contents of this block. 62 /// 63 /// An example of when this can occur is code like this: 64 /// 65 /// if () { ... 66 /// X = 4; 67 /// } 68 /// if (X < 3) { 69 /// 70 /// In this case, the unconditional branch at the end of the first if can be 71 /// revectored to the false side of the second if. 72 /// 73 class JumpThreading : public FunctionPass { 74 TargetData *TD; 75 LazyValueInfo *LVI; 76 #ifdef NDEBUG 77 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 78 #else 79 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 80 #endif 81 public: 82 static char ID; // Pass identification 83 JumpThreading() : FunctionPass(ID) {} 84 85 bool runOnFunction(Function &F); 86 87 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 88 if (EnableLVI) 89 AU.addRequired<LazyValueInfo>(); 90 } 91 92 void FindLoopHeaders(Function &F); 93 bool ProcessBlock(BasicBlock *BB); 94 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 95 BasicBlock *SuccBB); 96 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 97 const SmallVectorImpl<BasicBlock *> &PredBBs); 98 99 typedef SmallVectorImpl<std::pair<ConstantInt*, 100 BasicBlock*> > PredValueInfo; 101 102 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 103 PredValueInfo &Result); 104 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB); 105 106 107 bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 108 bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 109 110 bool ProcessBranchOnPHI(PHINode *PN); 111 bool ProcessBranchOnXOR(BinaryOperator *BO); 112 113 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 114 }; 115 } 116 117 char JumpThreading::ID = 0; 118 INITIALIZE_PASS(JumpThreading, "jump-threading", 119 "Jump Threading", false, false); 120 121 // Public interface to the Jump Threading pass 122 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); } 123 124 /// runOnFunction - Top level algorithm. 125 /// 126 bool JumpThreading::runOnFunction(Function &F) { 127 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 128 TD = getAnalysisIfAvailable<TargetData>(); 129 LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0; 130 131 FindLoopHeaders(F); 132 133 bool Changed, EverChanged = false; 134 do { 135 Changed = false; 136 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 137 BasicBlock *BB = I; 138 // Thread all of the branches we can over this block. 139 while (ProcessBlock(BB)) 140 Changed = true; 141 142 ++I; 143 144 // If the block is trivially dead, zap it. This eliminates the successor 145 // edges which simplifies the CFG. 146 if (pred_begin(BB) == pred_end(BB) && 147 BB != &BB->getParent()->getEntryBlock()) { 148 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 149 << "' with terminator: " << *BB->getTerminator() << '\n'); 150 LoopHeaders.erase(BB); 151 if (LVI) LVI->eraseBlock(BB); 152 DeleteDeadBlock(BB); 153 Changed = true; 154 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 155 // Can't thread an unconditional jump, but if the block is "almost 156 // empty", we can replace uses of it with uses of the successor and make 157 // this dead. 158 if (BI->isUnconditional() && 159 BB != &BB->getParent()->getEntryBlock()) { 160 BasicBlock::iterator BBI = BB->getFirstNonPHI(); 161 // Ignore dbg intrinsics. 162 while (isa<DbgInfoIntrinsic>(BBI)) 163 ++BBI; 164 // If the terminator is the only non-phi instruction, try to nuke it. 165 if (BBI->isTerminator()) { 166 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 167 // block, we have to make sure it isn't in the LoopHeaders set. We 168 // reinsert afterward if needed. 169 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 170 BasicBlock *Succ = BI->getSuccessor(0); 171 172 // FIXME: It is always conservatively correct to drop the info 173 // for a block even if it doesn't get erased. This isn't totally 174 // awesome, but it allows us to use AssertingVH to prevent nasty 175 // dangling pointer issues within LazyValueInfo. 176 if (LVI) LVI->eraseBlock(BB); 177 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { 178 Changed = true; 179 // If we deleted BB and BB was the header of a loop, then the 180 // successor is now the header of the loop. 181 BB = Succ; 182 } 183 184 if (ErasedFromLoopHeaders) 185 LoopHeaders.insert(BB); 186 } 187 } 188 } 189 } 190 EverChanged |= Changed; 191 } while (Changed); 192 193 LoopHeaders.clear(); 194 return EverChanged; 195 } 196 197 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 198 /// thread across it. 199 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) { 200 /// Ignore PHI nodes, these will be flattened when duplication happens. 201 BasicBlock::const_iterator I = BB->getFirstNonPHI(); 202 203 // FIXME: THREADING will delete values that are just used to compute the 204 // branch, so they shouldn't count against the duplication cost. 205 206 207 // Sum up the cost of each instruction until we get to the terminator. Don't 208 // include the terminator because the copy won't include it. 209 unsigned Size = 0; 210 for (; !isa<TerminatorInst>(I); ++I) { 211 // Debugger intrinsics don't incur code size. 212 if (isa<DbgInfoIntrinsic>(I)) continue; 213 214 // If this is a pointer->pointer bitcast, it is free. 215 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 216 continue; 217 218 // All other instructions count for at least one unit. 219 ++Size; 220 221 // Calls are more expensive. If they are non-intrinsic calls, we model them 222 // as having cost of 4. If they are a non-vector intrinsic, we model them 223 // as having cost of 2 total, and if they are a vector intrinsic, we model 224 // them as having cost 1. 225 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 226 if (!isa<IntrinsicInst>(CI)) 227 Size += 3; 228 else if (!CI->getType()->isVectorTy()) 229 Size += 1; 230 } 231 } 232 233 // Threading through a switch statement is particularly profitable. If this 234 // block ends in a switch, decrease its cost to make it more likely to happen. 235 if (isa<SwitchInst>(I)) 236 Size = Size > 6 ? Size-6 : 0; 237 238 return Size; 239 } 240 241 /// FindLoopHeaders - We do not want jump threading to turn proper loop 242 /// structures into irreducible loops. Doing this breaks up the loop nesting 243 /// hierarchy and pessimizes later transformations. To prevent this from 244 /// happening, we first have to find the loop headers. Here we approximate this 245 /// by finding targets of backedges in the CFG. 246 /// 247 /// Note that there definitely are cases when we want to allow threading of 248 /// edges across a loop header. For example, threading a jump from outside the 249 /// loop (the preheader) to an exit block of the loop is definitely profitable. 250 /// It is also almost always profitable to thread backedges from within the loop 251 /// to exit blocks, and is often profitable to thread backedges to other blocks 252 /// within the loop (forming a nested loop). This simple analysis is not rich 253 /// enough to track all of these properties and keep it up-to-date as the CFG 254 /// mutates, so we don't allow any of these transformations. 255 /// 256 void JumpThreading::FindLoopHeaders(Function &F) { 257 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 258 FindFunctionBackedges(F, Edges); 259 260 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 261 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 262 } 263 264 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 265 /// if we can infer that the value is a known ConstantInt in any of our 266 /// predecessors. If so, return the known list of value and pred BB in the 267 /// result vector. If a value is known to be undef, it is returned as null. 268 /// 269 /// This returns true if there were any known values. 270 /// 271 bool JumpThreading:: 272 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){ 273 // If V is a constantint, then it is known in all predecessors. 274 if (isa<ConstantInt>(V) || isa<UndefValue>(V)) { 275 ConstantInt *CI = dyn_cast<ConstantInt>(V); 276 277 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 278 Result.push_back(std::make_pair(CI, *PI)); 279 return true; 280 } 281 282 // If V is a non-instruction value, or an instruction in a different block, 283 // then it can't be derived from a PHI. 284 Instruction *I = dyn_cast<Instruction>(V); 285 if (I == 0 || I->getParent() != BB) { 286 287 // Okay, if this is a live-in value, see if it has a known value at the end 288 // of any of our predecessors. 289 // 290 // FIXME: This should be an edge property, not a block end property. 291 /// TODO: Per PR2563, we could infer value range information about a 292 /// predecessor based on its terminator. 293 // 294 if (LVI) { 295 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 296 // "I" is a non-local compare-with-a-constant instruction. This would be 297 // able to handle value inequalities better, for example if the compare is 298 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 299 // Perhaps getConstantOnEdge should be smart enough to do this? 300 301 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 302 BasicBlock *P = *PI; 303 // If the value is known by LazyValueInfo to be a constant in a 304 // predecessor, use that information to try to thread this block. 305 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB); 306 if (PredCst == 0 || 307 (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst))) 308 continue; 309 310 Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), P)); 311 } 312 313 return !Result.empty(); 314 } 315 316 return false; 317 } 318 319 /// If I is a PHI node, then we know the incoming values for any constants. 320 if (PHINode *PN = dyn_cast<PHINode>(I)) { 321 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 322 Value *InVal = PN->getIncomingValue(i); 323 if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) { 324 ConstantInt *CI = dyn_cast<ConstantInt>(InVal); 325 Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i))); 326 } else if (LVI) { 327 Constant *CI = LVI->getConstantOnEdge(InVal, 328 PN->getIncomingBlock(i), BB); 329 // LVI returns null is no value could be determined. 330 if (!CI) continue; 331 ConstantInt *CInt = dyn_cast<ConstantInt>(CI); 332 Result.push_back(std::make_pair(CInt, PN->getIncomingBlock(i))); 333 } 334 } 335 return !Result.empty(); 336 } 337 338 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals; 339 340 // Handle some boolean conditions. 341 if (I->getType()->getPrimitiveSizeInBits() == 1) { 342 // X | true -> true 343 // X & false -> false 344 if (I->getOpcode() == Instruction::Or || 345 I->getOpcode() == Instruction::And) { 346 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals); 347 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals); 348 349 if (LHSVals.empty() && RHSVals.empty()) 350 return false; 351 352 ConstantInt *InterestingVal; 353 if (I->getOpcode() == Instruction::Or) 354 InterestingVal = ConstantInt::getTrue(I->getContext()); 355 else 356 InterestingVal = ConstantInt::getFalse(I->getContext()); 357 358 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 359 360 // Scan for the sentinel. If we find an undef, force it to the 361 // interesting value: x|undef -> true and x&undef -> false. 362 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 363 if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) { 364 Result.push_back(LHSVals[i]); 365 Result.back().first = InterestingVal; 366 LHSKnownBBs.insert(LHSVals[i].second); 367 } 368 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 369 if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) { 370 // If we already inferred a value for this block on the LHS, don't 371 // re-add it. 372 if (!LHSKnownBBs.count(RHSVals[i].second)) { 373 Result.push_back(RHSVals[i]); 374 Result.back().first = InterestingVal; 375 } 376 } 377 return !Result.empty(); 378 } 379 380 // Handle the NOT form of XOR. 381 if (I->getOpcode() == Instruction::Xor && 382 isa<ConstantInt>(I->getOperand(1)) && 383 cast<ConstantInt>(I->getOperand(1))->isOne()) { 384 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result); 385 if (Result.empty()) 386 return false; 387 388 // Invert the known values. 389 for (unsigned i = 0, e = Result.size(); i != e; ++i) 390 if (Result[i].first) 391 Result[i].first = 392 cast<ConstantInt>(ConstantExpr::getNot(Result[i].first)); 393 return true; 394 } 395 396 // Try to simplify some other binary operator values. 397 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 398 // AND or OR of a value with itself is that value. 399 ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)); 400 if (CI && (BO->getOpcode() == Instruction::And || 401 BO->getOpcode() == Instruction::Or)) { 402 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals; 403 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals); 404 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 405 if (LHSVals[i].first == 0) { 406 ConstantInt *Zero = 407 cast<ConstantInt>(ConstantInt::get(BO->getType(), 0)); 408 Result.push_back(std::make_pair(Zero, LHSVals[i].second)); 409 } else if (Constant *Folded = ConstantExpr::get(BO->getOpcode(), 410 LHSVals[i].first, CI)) { 411 Result.push_back(std::make_pair(cast<ConstantInt>(Folded), 412 LHSVals[i].second)); 413 } 414 415 return !Result.empty(); 416 } 417 } 418 419 // Handle compare with phi operand, where the PHI is defined in this block. 420 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 421 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 422 if (PN && PN->getParent() == BB) { 423 // We can do this simplification if any comparisons fold to true or false. 424 // See if any do. 425 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 426 BasicBlock *PredBB = PN->getIncomingBlock(i); 427 Value *LHS = PN->getIncomingValue(i); 428 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 429 430 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD); 431 if (Res == 0) { 432 if (!LVI || !isa<Constant>(RHS)) 433 continue; 434 435 LazyValueInfo::Tristate 436 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 437 cast<Constant>(RHS), PredBB, BB); 438 if (ResT == LazyValueInfo::Unknown) 439 continue; 440 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 441 } 442 443 if (isa<UndefValue>(Res)) 444 Result.push_back(std::make_pair((ConstantInt*)0, PredBB)); 445 else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res)) 446 Result.push_back(std::make_pair(CI, PredBB)); 447 } 448 449 return !Result.empty(); 450 } 451 452 453 // If comparing a live-in value against a constant, see if we know the 454 // live-in value on any predecessors. 455 if (LVI && isa<Constant>(Cmp->getOperand(1)) && 456 Cmp->getType()->isIntegerTy()) { 457 if (!isa<Instruction>(Cmp->getOperand(0)) || 458 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) { 459 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 460 461 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){ 462 BasicBlock *P = *PI; 463 // If the value is known by LazyValueInfo to be a constant in a 464 // predecessor, use that information to try to thread this block. 465 LazyValueInfo::Tristate Res = 466 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 467 RHSCst, P, BB); 468 if (Res == LazyValueInfo::Unknown) 469 continue; 470 471 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 472 Result.push_back(std::make_pair(cast<ConstantInt>(ResC), P)); 473 } 474 475 return !Result.empty(); 476 } 477 478 // Try to find a constant value for the LHS of an equality comparison, 479 // and evaluate it statically if we can. 480 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) { 481 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals; 482 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals); 483 484 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 485 if (LHSVals[i].first == 0) 486 Result.push_back(std::make_pair((ConstantInt*)0, 487 LHSVals[i].second)); 488 else if (Constant *Folded = ConstantExpr::getCompare( 489 Cmp->getPredicate(), LHSVals[i].first, CmpConst)) 490 Result.push_back(std::make_pair(cast<ConstantInt>(Folded), 491 LHSVals[i].second)); 492 } 493 494 return !Result.empty(); 495 } 496 } 497 } 498 499 if (LVI) { 500 // If all else fails, see if LVI can figure out a constant value for us. 501 Constant *CI = LVI->getConstant(V, BB); 502 ConstantInt *CInt = dyn_cast_or_null<ConstantInt>(CI); 503 if (CInt) { 504 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 505 Result.push_back(std::make_pair(CInt, *PI)); 506 } 507 508 return !Result.empty(); 509 } 510 511 return false; 512 } 513 514 515 516 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 517 /// in an undefined jump, decide which block is best to revector to. 518 /// 519 /// Since we can pick an arbitrary destination, we pick the successor with the 520 /// fewest predecessors. This should reduce the in-degree of the others. 521 /// 522 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 523 TerminatorInst *BBTerm = BB->getTerminator(); 524 unsigned MinSucc = 0; 525 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 526 // Compute the successor with the minimum number of predecessors. 527 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 528 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 529 TestBB = BBTerm->getSuccessor(i); 530 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 531 if (NumPreds < MinNumPreds) 532 MinSucc = i; 533 } 534 535 return MinSucc; 536 } 537 538 /// ProcessBlock - If there are any predecessors whose control can be threaded 539 /// through to a successor, transform them now. 540 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 541 // If the block is trivially dead, just return and let the caller nuke it. 542 // This simplifies other transformations. 543 if (pred_begin(BB) == pred_end(BB) && 544 BB != &BB->getParent()->getEntryBlock()) 545 return false; 546 547 // If this block has a single predecessor, and if that pred has a single 548 // successor, merge the blocks. This encourages recursive jump threading 549 // because now the condition in this block can be threaded through 550 // predecessors of our predecessor block. 551 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 552 if (SinglePred->getTerminator()->getNumSuccessors() == 1 && 553 SinglePred != BB) { 554 // If SinglePred was a loop header, BB becomes one. 555 if (LoopHeaders.erase(SinglePred)) 556 LoopHeaders.insert(BB); 557 558 // Remember if SinglePred was the entry block of the function. If so, we 559 // will need to move BB back to the entry position. 560 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 561 if (LVI) LVI->eraseBlock(SinglePred); 562 MergeBasicBlockIntoOnlyPred(BB); 563 564 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 565 BB->moveBefore(&BB->getParent()->getEntryBlock()); 566 return true; 567 } 568 } 569 570 // Look to see if the terminator is a branch of switch, if not we can't thread 571 // it. 572 Value *Condition; 573 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 574 // Can't thread an unconditional jump. 575 if (BI->isUnconditional()) return false; 576 Condition = BI->getCondition(); 577 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 578 Condition = SI->getCondition(); 579 else 580 return false; // Must be an invoke. 581 582 // If the terminator of this block is branching on a constant, simplify the 583 // terminator to an unconditional branch. This can occur due to threading in 584 // other blocks. 585 if (isa<ConstantInt>(Condition)) { 586 DEBUG(dbgs() << " In block '" << BB->getName() 587 << "' folding terminator: " << *BB->getTerminator() << '\n'); 588 ++NumFolds; 589 ConstantFoldTerminator(BB); 590 return true; 591 } 592 593 // If the terminator is branching on an undef, we can pick any of the 594 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 595 if (isa<UndefValue>(Condition)) { 596 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 597 598 // Fold the branch/switch. 599 TerminatorInst *BBTerm = BB->getTerminator(); 600 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 601 if (i == BestSucc) continue; 602 RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD); 603 } 604 605 DEBUG(dbgs() << " In block '" << BB->getName() 606 << "' folding undef terminator: " << *BBTerm << '\n'); 607 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 608 BBTerm->eraseFromParent(); 609 return true; 610 } 611 612 Instruction *CondInst = dyn_cast<Instruction>(Condition); 613 614 // If the condition is an instruction defined in another block, see if a 615 // predecessor has the same condition: 616 // br COND, BBX, BBY 617 // BBX: 618 // br COND, BBZ, BBW 619 if (!LVI && 620 !Condition->hasOneUse() && // Multiple uses. 621 (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition. 622 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 623 if (isa<BranchInst>(BB->getTerminator())) { 624 for (; PI != E; ++PI) { 625 BasicBlock *P = *PI; 626 if (BranchInst *PBI = dyn_cast<BranchInst>(P->getTerminator())) 627 if (PBI->isConditional() && PBI->getCondition() == Condition && 628 ProcessBranchOnDuplicateCond(P, BB)) 629 return true; 630 } 631 } else { 632 assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator"); 633 for (; PI != E; ++PI) { 634 BasicBlock *P = *PI; 635 if (SwitchInst *PSI = dyn_cast<SwitchInst>(P->getTerminator())) 636 if (PSI->getCondition() == Condition && 637 ProcessSwitchOnDuplicateCond(P, BB)) 638 return true; 639 } 640 } 641 } 642 643 // All the rest of our checks depend on the condition being an instruction. 644 if (CondInst == 0) { 645 // FIXME: Unify this with code below. 646 if (LVI && ProcessThreadableEdges(Condition, BB)) 647 return true; 648 return false; 649 } 650 651 652 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 653 if (!LVI && 654 (!isa<PHINode>(CondCmp->getOperand(0)) || 655 cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) { 656 // If we have a comparison, loop over the predecessors to see if there is 657 // a condition with a lexically identical value. 658 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 659 for (; PI != E; ++PI) { 660 BasicBlock *P = *PI; 661 if (BranchInst *PBI = dyn_cast<BranchInst>(P->getTerminator())) 662 if (PBI->isConditional() && P != BB) { 663 if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) { 664 if (CI->getOperand(0) == CondCmp->getOperand(0) && 665 CI->getOperand(1) == CondCmp->getOperand(1) && 666 CI->getPredicate() == CondCmp->getPredicate()) { 667 // TODO: Could handle things like (x != 4) --> (x == 17) 668 if (ProcessBranchOnDuplicateCond(P, BB)) 669 return true; 670 } 671 } 672 } 673 } 674 } 675 676 // For a comparison where the LHS is outside this block, it's possible 677 // that we've branched on it before. Used LVI to see if we can simplify 678 // the branch based on that. 679 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 680 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 681 if (LVI && CondBr && CondConst && CondBr->isConditional() && 682 (!isa<Instruction>(CondCmp->getOperand(0)) || 683 cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) { 684 // For predecessor edge, determine if the comparison is true or false 685 // on that edge. If they're all true or all false, we can simplify the 686 // branch. 687 // FIXME: We could handle mixed true/false by duplicating code. 688 unsigned Trues = 0, Falses = 0, predcount = 0; 689 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB);PI != PE; ++PI){ 690 ++predcount; 691 LazyValueInfo::Tristate Ret = 692 LVI->getPredicateOnEdge(CondCmp->getPredicate(), 693 CondCmp->getOperand(0), CondConst, *PI, BB); 694 if (Ret == LazyValueInfo::True) 695 ++Trues; 696 else if (Ret == LazyValueInfo::False) 697 ++Falses; 698 } 699 700 // If we can determine the branch direction statically, convert 701 // the conditional branch to an unconditional one. 702 if (Trues && Trues == predcount) { 703 RemovePredecessorAndSimplify(CondBr->getSuccessor(1), BB, TD); 704 BranchInst::Create(CondBr->getSuccessor(0), CondBr); 705 CondBr->eraseFromParent(); 706 return true; 707 } else if (Falses && Falses == predcount) { 708 RemovePredecessorAndSimplify(CondBr->getSuccessor(0), BB, TD); 709 BranchInst::Create(CondBr->getSuccessor(1), CondBr); 710 CondBr->eraseFromParent(); 711 return true; 712 } 713 } 714 } 715 716 // Check for some cases that are worth simplifying. Right now we want to look 717 // for loads that are used by a switch or by the condition for the branch. If 718 // we see one, check to see if it's partially redundant. If so, insert a PHI 719 // which can then be used to thread the values. 720 // 721 Value *SimplifyValue = CondInst; 722 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 723 if (isa<Constant>(CondCmp->getOperand(1))) 724 SimplifyValue = CondCmp->getOperand(0); 725 726 // TODO: There are other places where load PRE would be profitable, such as 727 // more complex comparisons. 728 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 729 if (SimplifyPartiallyRedundantLoad(LI)) 730 return true; 731 732 733 // Handle a variety of cases where we are branching on something derived from 734 // a PHI node in the current block. If we can prove that any predecessors 735 // compute a predictable value based on a PHI node, thread those predecessors. 736 // 737 if (ProcessThreadableEdges(CondInst, BB)) 738 return true; 739 740 // If this is an otherwise-unfoldable branch on a phi node in the current 741 // block, see if we can simplify. 742 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 743 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 744 return ProcessBranchOnPHI(PN); 745 746 747 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 748 if (CondInst->getOpcode() == Instruction::Xor && 749 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 750 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 751 752 753 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 754 // "(X == 4)", thread through this block. 755 756 return false; 757 } 758 759 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that 760 /// block that jump on exactly the same condition. This means that we almost 761 /// always know the direction of the edge in the DESTBB: 762 /// PREDBB: 763 /// br COND, DESTBB, BBY 764 /// DESTBB: 765 /// br COND, BBZ, BBW 766 /// 767 /// If DESTBB has multiple predecessors, we can't just constant fold the branch 768 /// in DESTBB, we have to thread over it. 769 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB, 770 BasicBlock *BB) { 771 BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator()); 772 773 // If both successors of PredBB go to DESTBB, we don't know anything. We can 774 // fold the branch to an unconditional one, which allows other recursive 775 // simplifications. 776 bool BranchDir; 777 if (PredBI->getSuccessor(1) != BB) 778 BranchDir = true; 779 else if (PredBI->getSuccessor(0) != BB) 780 BranchDir = false; 781 else { 782 DEBUG(dbgs() << " In block '" << PredBB->getName() 783 << "' folding terminator: " << *PredBB->getTerminator() << '\n'); 784 ++NumFolds; 785 ConstantFoldTerminator(PredBB); 786 return true; 787 } 788 789 BranchInst *DestBI = cast<BranchInst>(BB->getTerminator()); 790 791 // If the dest block has one predecessor, just fix the branch condition to a 792 // constant and fold it. 793 if (BB->getSinglePredecessor()) { 794 DEBUG(dbgs() << " In block '" << BB->getName() 795 << "' folding condition to '" << BranchDir << "': " 796 << *BB->getTerminator() << '\n'); 797 ++NumFolds; 798 Value *OldCond = DestBI->getCondition(); 799 DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 800 BranchDir)); 801 // Delete dead instructions before we fold the branch. Folding the branch 802 // can eliminate edges from the CFG which can end up deleting OldCond. 803 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 804 ConstantFoldTerminator(BB); 805 return true; 806 } 807 808 809 // Next, figure out which successor we are threading to. 810 BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir); 811 812 SmallVector<BasicBlock*, 2> Preds; 813 Preds.push_back(PredBB); 814 815 // Ok, try to thread it! 816 return ThreadEdge(BB, Preds, SuccBB); 817 } 818 819 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that 820 /// block that switch on exactly the same condition. This means that we almost 821 /// always know the direction of the edge in the DESTBB: 822 /// PREDBB: 823 /// switch COND [... DESTBB, BBY ... ] 824 /// DESTBB: 825 /// switch COND [... BBZ, BBW ] 826 /// 827 /// Optimizing switches like this is very important, because simplifycfg builds 828 /// switches out of repeated 'if' conditions. 829 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, 830 BasicBlock *DestBB) { 831 // Can't thread edge to self. 832 if (PredBB == DestBB) 833 return false; 834 835 SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator()); 836 SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator()); 837 838 // There are a variety of optimizations that we can potentially do on these 839 // blocks: we order them from most to least preferable. 840 841 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB 842 // directly to their destination. This does not introduce *any* code size 843 // growth. Skip debug info first. 844 BasicBlock::iterator BBI = DestBB->begin(); 845 while (isa<DbgInfoIntrinsic>(BBI)) 846 BBI++; 847 848 // FIXME: Thread if it just contains a PHI. 849 if (isa<SwitchInst>(BBI)) { 850 bool MadeChange = false; 851 // Ignore the default edge for now. 852 for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) { 853 ConstantInt *DestVal = DestSI->getCaseValue(i); 854 BasicBlock *DestSucc = DestSI->getSuccessor(i); 855 856 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if 857 // PredSI has an explicit case for it. If so, forward. If it is covered 858 // by the default case, we can't update PredSI. 859 unsigned PredCase = PredSI->findCaseValue(DestVal); 860 if (PredCase == 0) continue; 861 862 // If PredSI doesn't go to DestBB on this value, then it won't reach the 863 // case on this condition. 864 if (PredSI->getSuccessor(PredCase) != DestBB && 865 DestSI->getSuccessor(i) != DestBB) 866 continue; 867 868 // Do not forward this if it already goes to this destination, this would 869 // be an infinite loop. 870 if (PredSI->getSuccessor(PredCase) == DestSucc) 871 continue; 872 873 // Otherwise, we're safe to make the change. Make sure that the edge from 874 // DestSI to DestSucc is not critical and has no PHI nodes. 875 DEBUG(dbgs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI); 876 DEBUG(dbgs() << "THROUGH: " << *DestSI); 877 878 // If the destination has PHI nodes, just split the edge for updating 879 // simplicity. 880 if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){ 881 SplitCriticalEdge(DestSI, i, this); 882 DestSucc = DestSI->getSuccessor(i); 883 } 884 FoldSingleEntryPHINodes(DestSucc); 885 PredSI->setSuccessor(PredCase, DestSucc); 886 MadeChange = true; 887 } 888 889 if (MadeChange) 890 return true; 891 } 892 893 return false; 894 } 895 896 897 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 898 /// load instruction, eliminate it by replacing it with a PHI node. This is an 899 /// important optimization that encourages jump threading, and needs to be run 900 /// interlaced with other jump threading tasks. 901 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 902 // Don't hack volatile loads. 903 if (LI->isVolatile()) return false; 904 905 // If the load is defined in a block with exactly one predecessor, it can't be 906 // partially redundant. 907 BasicBlock *LoadBB = LI->getParent(); 908 if (LoadBB->getSinglePredecessor()) 909 return false; 910 911 Value *LoadedPtr = LI->getOperand(0); 912 913 // If the loaded operand is defined in the LoadBB, it can't be available. 914 // TODO: Could do simple PHI translation, that would be fun :) 915 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 916 if (PtrOp->getParent() == LoadBB) 917 return false; 918 919 // Scan a few instructions up from the load, to see if it is obviously live at 920 // the entry to its block. 921 BasicBlock::iterator BBIt = LI; 922 923 if (Value *AvailableVal = 924 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) { 925 // If the value if the load is locally available within the block, just use 926 // it. This frequently occurs for reg2mem'd allocas. 927 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 928 929 // If the returned value is the load itself, replace with an undef. This can 930 // only happen in dead loops. 931 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 932 LI->replaceAllUsesWith(AvailableVal); 933 LI->eraseFromParent(); 934 return true; 935 } 936 937 // Otherwise, if we scanned the whole block and got to the top of the block, 938 // we know the block is locally transparent to the load. If not, something 939 // might clobber its value. 940 if (BBIt != LoadBB->begin()) 941 return false; 942 943 944 SmallPtrSet<BasicBlock*, 8> PredsScanned; 945 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 946 AvailablePredsTy AvailablePreds; 947 BasicBlock *OneUnavailablePred = 0; 948 949 // If we got here, the loaded value is transparent through to the start of the 950 // block. Check to see if it is available in any of the predecessor blocks. 951 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 952 PI != PE; ++PI) { 953 BasicBlock *PredBB = *PI; 954 955 // If we already scanned this predecessor, skip it. 956 if (!PredsScanned.insert(PredBB)) 957 continue; 958 959 // Scan the predecessor to see if the value is available in the pred. 960 BBIt = PredBB->end(); 961 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6); 962 if (!PredAvailable) { 963 OneUnavailablePred = PredBB; 964 continue; 965 } 966 967 // If so, this load is partially redundant. Remember this info so that we 968 // can create a PHI node. 969 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 970 } 971 972 // If the loaded value isn't available in any predecessor, it isn't partially 973 // redundant. 974 if (AvailablePreds.empty()) return false; 975 976 // Okay, the loaded value is available in at least one (and maybe all!) 977 // predecessors. If the value is unavailable in more than one unique 978 // predecessor, we want to insert a merge block for those common predecessors. 979 // This ensures that we only have to insert one reload, thus not increasing 980 // code size. 981 BasicBlock *UnavailablePred = 0; 982 983 // If there is exactly one predecessor where the value is unavailable, the 984 // already computed 'OneUnavailablePred' block is it. If it ends in an 985 // unconditional branch, we know that it isn't a critical edge. 986 if (PredsScanned.size() == AvailablePreds.size()+1 && 987 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 988 UnavailablePred = OneUnavailablePred; 989 } else if (PredsScanned.size() != AvailablePreds.size()) { 990 // Otherwise, we had multiple unavailable predecessors or we had a critical 991 // edge from the one. 992 SmallVector<BasicBlock*, 8> PredsToSplit; 993 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 994 995 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 996 AvailablePredSet.insert(AvailablePreds[i].first); 997 998 // Add all the unavailable predecessors to the PredsToSplit list. 999 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 1000 PI != PE; ++PI) { 1001 BasicBlock *P = *PI; 1002 // If the predecessor is an indirect goto, we can't split the edge. 1003 if (isa<IndirectBrInst>(P->getTerminator())) 1004 return false; 1005 1006 if (!AvailablePredSet.count(P)) 1007 PredsToSplit.push_back(P); 1008 } 1009 1010 // Split them out to their own block. 1011 UnavailablePred = 1012 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(), 1013 "thread-pre-split", this); 1014 } 1015 1016 // If the value isn't available in all predecessors, then there will be 1017 // exactly one where it isn't available. Insert a load on that edge and add 1018 // it to the AvailablePreds list. 1019 if (UnavailablePred) { 1020 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1021 "Can't handle critical edge here!"); 1022 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, 1023 LI->getAlignment(), 1024 UnavailablePred->getTerminator()); 1025 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1026 } 1027 1028 // Now we know that each predecessor of this block has a value in 1029 // AvailablePreds, sort them for efficient access as we're walking the preds. 1030 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1031 1032 // Create a PHI node at the start of the block for the PRE'd load value. 1033 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin()); 1034 PN->takeName(LI); 1035 1036 // Insert new entries into the PHI for each predecessor. A single block may 1037 // have multiple entries here. 1038 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E; 1039 ++PI) { 1040 BasicBlock *P = *PI; 1041 AvailablePredsTy::iterator I = 1042 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1043 std::make_pair(P, (Value*)0)); 1044 1045 assert(I != AvailablePreds.end() && I->first == P && 1046 "Didn't find entry for predecessor!"); 1047 1048 PN->addIncoming(I->second, I->first); 1049 } 1050 1051 //cerr << "PRE: " << *LI << *PN << "\n"; 1052 1053 LI->replaceAllUsesWith(PN); 1054 LI->eraseFromParent(); 1055 1056 return true; 1057 } 1058 1059 /// FindMostPopularDest - The specified list contains multiple possible 1060 /// threadable destinations. Pick the one that occurs the most frequently in 1061 /// the list. 1062 static BasicBlock * 1063 FindMostPopularDest(BasicBlock *BB, 1064 const SmallVectorImpl<std::pair<BasicBlock*, 1065 BasicBlock*> > &PredToDestList) { 1066 assert(!PredToDestList.empty()); 1067 1068 // Determine popularity. If there are multiple possible destinations, we 1069 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1070 // blocks with known and real destinations to threading undef. We'll handle 1071 // them later if interesting. 1072 DenseMap<BasicBlock*, unsigned> DestPopularity; 1073 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1074 if (PredToDestList[i].second) 1075 DestPopularity[PredToDestList[i].second]++; 1076 1077 // Find the most popular dest. 1078 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1079 BasicBlock *MostPopularDest = DPI->first; 1080 unsigned Popularity = DPI->second; 1081 SmallVector<BasicBlock*, 4> SamePopularity; 1082 1083 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1084 // If the popularity of this entry isn't higher than the popularity we've 1085 // seen so far, ignore it. 1086 if (DPI->second < Popularity) 1087 ; // ignore. 1088 else if (DPI->second == Popularity) { 1089 // If it is the same as what we've seen so far, keep track of it. 1090 SamePopularity.push_back(DPI->first); 1091 } else { 1092 // If it is more popular, remember it. 1093 SamePopularity.clear(); 1094 MostPopularDest = DPI->first; 1095 Popularity = DPI->second; 1096 } 1097 } 1098 1099 // Okay, now we know the most popular destination. If there is more than 1100 // destination, we need to determine one. This is arbitrary, but we need 1101 // to make a deterministic decision. Pick the first one that appears in the 1102 // successor list. 1103 if (!SamePopularity.empty()) { 1104 SamePopularity.push_back(MostPopularDest); 1105 TerminatorInst *TI = BB->getTerminator(); 1106 for (unsigned i = 0; ; ++i) { 1107 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1108 1109 if (std::find(SamePopularity.begin(), SamePopularity.end(), 1110 TI->getSuccessor(i)) == SamePopularity.end()) 1111 continue; 1112 1113 MostPopularDest = TI->getSuccessor(i); 1114 break; 1115 } 1116 } 1117 1118 // Okay, we have finally picked the most popular destination. 1119 return MostPopularDest; 1120 } 1121 1122 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) { 1123 // If threading this would thread across a loop header, don't even try to 1124 // thread the edge. 1125 if (LoopHeaders.count(BB)) 1126 return false; 1127 1128 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues; 1129 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues)) 1130 return false; 1131 assert(!PredValues.empty() && 1132 "ComputeValueKnownInPredecessors returned true with no values"); 1133 1134 DEBUG(dbgs() << "IN BB: " << *BB; 1135 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1136 dbgs() << " BB '" << BB->getName() << "': FOUND condition = "; 1137 if (PredValues[i].first) 1138 dbgs() << *PredValues[i].first; 1139 else 1140 dbgs() << "UNDEF"; 1141 dbgs() << " for pred '" << PredValues[i].second->getName() 1142 << "'.\n"; 1143 }); 1144 1145 // Decide what we want to thread through. Convert our list of known values to 1146 // a list of known destinations for each pred. This also discards duplicate 1147 // predecessors and keeps track of the undefined inputs (which are represented 1148 // as a null dest in the PredToDestList). 1149 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1150 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1151 1152 BasicBlock *OnlyDest = 0; 1153 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1154 1155 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1156 BasicBlock *Pred = PredValues[i].second; 1157 if (!SeenPreds.insert(Pred)) 1158 continue; // Duplicate predecessor entry. 1159 1160 // If the predecessor ends with an indirect goto, we can't change its 1161 // destination. 1162 if (isa<IndirectBrInst>(Pred->getTerminator())) 1163 continue; 1164 1165 ConstantInt *Val = PredValues[i].first; 1166 1167 BasicBlock *DestBB; 1168 if (Val == 0) // Undef. 1169 DestBB = 0; 1170 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1171 DestBB = BI->getSuccessor(Val->isZero()); 1172 else { 1173 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator()); 1174 DestBB = SI->getSuccessor(SI->findCaseValue(Val)); 1175 } 1176 1177 // If we have exactly one destination, remember it for efficiency below. 1178 if (i == 0) 1179 OnlyDest = DestBB; 1180 else if (OnlyDest != DestBB) 1181 OnlyDest = MultipleDestSentinel; 1182 1183 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1184 } 1185 1186 // If all edges were unthreadable, we fail. 1187 if (PredToDestList.empty()) 1188 return false; 1189 1190 // Determine which is the most common successor. If we have many inputs and 1191 // this block is a switch, we want to start by threading the batch that goes 1192 // to the most popular destination first. If we only know about one 1193 // threadable destination (the common case) we can avoid this. 1194 BasicBlock *MostPopularDest = OnlyDest; 1195 1196 if (MostPopularDest == MultipleDestSentinel) 1197 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1198 1199 // Now that we know what the most popular destination is, factor all 1200 // predecessors that will jump to it into a single predecessor. 1201 SmallVector<BasicBlock*, 16> PredsToFactor; 1202 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1203 if (PredToDestList[i].second == MostPopularDest) { 1204 BasicBlock *Pred = PredToDestList[i].first; 1205 1206 // This predecessor may be a switch or something else that has multiple 1207 // edges to the block. Factor each of these edges by listing them 1208 // according to # occurrences in PredsToFactor. 1209 TerminatorInst *PredTI = Pred->getTerminator(); 1210 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 1211 if (PredTI->getSuccessor(i) == BB) 1212 PredsToFactor.push_back(Pred); 1213 } 1214 1215 // If the threadable edges are branching on an undefined value, we get to pick 1216 // the destination that these predecessors should get to. 1217 if (MostPopularDest == 0) 1218 MostPopularDest = BB->getTerminator()-> 1219 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1220 1221 // Ok, try to thread it! 1222 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1223 } 1224 1225 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1226 /// a PHI node in the current block. See if there are any simplifications we 1227 /// can do based on inputs to the phi node. 1228 /// 1229 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) { 1230 BasicBlock *BB = PN->getParent(); 1231 1232 // TODO: We could make use of this to do it once for blocks with common PHI 1233 // values. 1234 SmallVector<BasicBlock*, 1> PredBBs; 1235 PredBBs.resize(1); 1236 1237 // If any of the predecessor blocks end in an unconditional branch, we can 1238 // *duplicate* the conditional branch into that block in order to further 1239 // encourage jump threading and to eliminate cases where we have branch on a 1240 // phi of an icmp (branch on icmp is much better). 1241 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1242 BasicBlock *PredBB = PN->getIncomingBlock(i); 1243 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1244 if (PredBr->isUnconditional()) { 1245 PredBBs[0] = PredBB; 1246 // Try to duplicate BB into PredBB. 1247 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1248 return true; 1249 } 1250 } 1251 1252 return false; 1253 } 1254 1255 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1256 /// a xor instruction in the current block. See if there are any 1257 /// simplifications we can do based on inputs to the xor. 1258 /// 1259 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) { 1260 BasicBlock *BB = BO->getParent(); 1261 1262 // If either the LHS or RHS of the xor is a constant, don't do this 1263 // optimization. 1264 if (isa<ConstantInt>(BO->getOperand(0)) || 1265 isa<ConstantInt>(BO->getOperand(1))) 1266 return false; 1267 1268 // If the first instruction in BB isn't a phi, we won't be able to infer 1269 // anything special about any particular predecessor. 1270 if (!isa<PHINode>(BB->front())) 1271 return false; 1272 1273 // If we have a xor as the branch input to this block, and we know that the 1274 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1275 // the condition into the predecessor and fix that value to true, saving some 1276 // logical ops on that path and encouraging other paths to simplify. 1277 // 1278 // This copies something like this: 1279 // 1280 // BB: 1281 // %X = phi i1 [1], [%X'] 1282 // %Y = icmp eq i32 %A, %B 1283 // %Z = xor i1 %X, %Y 1284 // br i1 %Z, ... 1285 // 1286 // Into: 1287 // BB': 1288 // %Y = icmp ne i32 %A, %B 1289 // br i1 %Z, ... 1290 1291 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> XorOpValues; 1292 bool isLHS = true; 1293 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues)) { 1294 assert(XorOpValues.empty()); 1295 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues)) 1296 return false; 1297 isLHS = false; 1298 } 1299 1300 assert(!XorOpValues.empty() && 1301 "ComputeValueKnownInPredecessors returned true with no values"); 1302 1303 // Scan the information to see which is most popular: true or false. The 1304 // predecessors can be of the set true, false, or undef. 1305 unsigned NumTrue = 0, NumFalse = 0; 1306 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1307 if (!XorOpValues[i].first) continue; // Ignore undefs for the count. 1308 if (XorOpValues[i].first->isZero()) 1309 ++NumFalse; 1310 else 1311 ++NumTrue; 1312 } 1313 1314 // Determine which value to split on, true, false, or undef if neither. 1315 ConstantInt *SplitVal = 0; 1316 if (NumTrue > NumFalse) 1317 SplitVal = ConstantInt::getTrue(BB->getContext()); 1318 else if (NumTrue != 0 || NumFalse != 0) 1319 SplitVal = ConstantInt::getFalse(BB->getContext()); 1320 1321 // Collect all of the blocks that this can be folded into so that we can 1322 // factor this once and clone it once. 1323 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1324 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1325 if (XorOpValues[i].first != SplitVal && XorOpValues[i].first != 0) continue; 1326 1327 BlocksToFoldInto.push_back(XorOpValues[i].second); 1328 } 1329 1330 // If we inferred a value for all of the predecessors, then duplication won't 1331 // help us. However, we can just replace the LHS or RHS with the constant. 1332 if (BlocksToFoldInto.size() == 1333 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1334 if (SplitVal == 0) { 1335 // If all preds provide undef, just nuke the xor, because it is undef too. 1336 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1337 BO->eraseFromParent(); 1338 } else if (SplitVal->isZero()) { 1339 // If all preds provide 0, replace the xor with the other input. 1340 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1341 BO->eraseFromParent(); 1342 } else { 1343 // If all preds provide 1, set the computed value to 1. 1344 BO->setOperand(!isLHS, SplitVal); 1345 } 1346 1347 return true; 1348 } 1349 1350 // Try to duplicate BB into PredBB. 1351 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1352 } 1353 1354 1355 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1356 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1357 /// NewPred using the entries from OldPred (suitably mapped). 1358 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1359 BasicBlock *OldPred, 1360 BasicBlock *NewPred, 1361 DenseMap<Instruction*, Value*> &ValueMap) { 1362 for (BasicBlock::iterator PNI = PHIBB->begin(); 1363 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1364 // Ok, we have a PHI node. Figure out what the incoming value was for the 1365 // DestBlock. 1366 Value *IV = PN->getIncomingValueForBlock(OldPred); 1367 1368 // Remap the value if necessary. 1369 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1370 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1371 if (I != ValueMap.end()) 1372 IV = I->second; 1373 } 1374 1375 PN->addIncoming(IV, NewPred); 1376 } 1377 } 1378 1379 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1380 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1381 /// across BB. Transform the IR to reflect this change. 1382 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1383 const SmallVectorImpl<BasicBlock*> &PredBBs, 1384 BasicBlock *SuccBB) { 1385 // If threading to the same block as we come from, we would infinite loop. 1386 if (SuccBB == BB) { 1387 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1388 << "' - would thread to self!\n"); 1389 return false; 1390 } 1391 1392 // If threading this would thread across a loop header, don't thread the edge. 1393 // See the comments above FindLoopHeaders for justifications and caveats. 1394 if (LoopHeaders.count(BB)) { 1395 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1396 << "' to dest BB '" << SuccBB->getName() 1397 << "' - it might create an irreducible loop!\n"); 1398 return false; 1399 } 1400 1401 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB); 1402 if (JumpThreadCost > Threshold) { 1403 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1404 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1405 return false; 1406 } 1407 1408 // And finally, do it! Start by factoring the predecessors is needed. 1409 BasicBlock *PredBB; 1410 if (PredBBs.size() == 1) 1411 PredBB = PredBBs[0]; 1412 else { 1413 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1414 << " common predecessors.\n"); 1415 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), 1416 ".thr_comm", this); 1417 } 1418 1419 // And finally, do it! 1420 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1421 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1422 << ", across block:\n " 1423 << *BB << "\n"); 1424 1425 if (LVI) 1426 LVI->threadEdge(PredBB, BB, SuccBB); 1427 1428 // We are going to have to map operands from the original BB block to the new 1429 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1430 // account for entry from PredBB. 1431 DenseMap<Instruction*, Value*> ValueMapping; 1432 1433 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1434 BB->getName()+".thread", 1435 BB->getParent(), BB); 1436 NewBB->moveAfter(PredBB); 1437 1438 BasicBlock::iterator BI = BB->begin(); 1439 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1440 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1441 1442 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1443 // mapping and using it to remap operands in the cloned instructions. 1444 for (; !isa<TerminatorInst>(BI); ++BI) { 1445 Instruction *New = BI->clone(); 1446 New->setName(BI->getName()); 1447 NewBB->getInstList().push_back(New); 1448 ValueMapping[BI] = New; 1449 1450 // Remap operands to patch up intra-block references. 1451 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1452 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1453 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1454 if (I != ValueMapping.end()) 1455 New->setOperand(i, I->second); 1456 } 1457 } 1458 1459 // We didn't copy the terminator from BB over to NewBB, because there is now 1460 // an unconditional jump to SuccBB. Insert the unconditional jump. 1461 BranchInst::Create(SuccBB, NewBB); 1462 1463 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1464 // PHI nodes for NewBB now. 1465 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1466 1467 // If there were values defined in BB that are used outside the block, then we 1468 // now have to update all uses of the value to use either the original value, 1469 // the cloned value, or some PHI derived value. This can require arbitrary 1470 // PHI insertion, of which we are prepared to do, clean these up now. 1471 SSAUpdater SSAUpdate; 1472 SmallVector<Use*, 16> UsesToRename; 1473 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1474 // Scan all uses of this instruction to see if it is used outside of its 1475 // block, and if so, record them in UsesToRename. 1476 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1477 ++UI) { 1478 Instruction *User = cast<Instruction>(*UI); 1479 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1480 if (UserPN->getIncomingBlock(UI) == BB) 1481 continue; 1482 } else if (User->getParent() == BB) 1483 continue; 1484 1485 UsesToRename.push_back(&UI.getUse()); 1486 } 1487 1488 // If there are no uses outside the block, we're done with this instruction. 1489 if (UsesToRename.empty()) 1490 continue; 1491 1492 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1493 1494 // We found a use of I outside of BB. Rename all uses of I that are outside 1495 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1496 // with the two values we know. 1497 SSAUpdate.Initialize(I); 1498 SSAUpdate.AddAvailableValue(BB, I); 1499 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); 1500 1501 while (!UsesToRename.empty()) 1502 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1503 DEBUG(dbgs() << "\n"); 1504 } 1505 1506 1507 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1508 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1509 // us to simplify any PHI nodes in BB. 1510 TerminatorInst *PredTerm = PredBB->getTerminator(); 1511 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1512 if (PredTerm->getSuccessor(i) == BB) { 1513 RemovePredecessorAndSimplify(BB, PredBB, TD); 1514 PredTerm->setSuccessor(i, NewBB); 1515 } 1516 1517 // At this point, the IR is fully up to date and consistent. Do a quick scan 1518 // over the new instructions and zap any that are constants or dead. This 1519 // frequently happens because of phi translation. 1520 SimplifyInstructionsInBlock(NewBB, TD); 1521 1522 // Threaded an edge! 1523 ++NumThreads; 1524 return true; 1525 } 1526 1527 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1528 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1529 /// If we can duplicate the contents of BB up into PredBB do so now, this 1530 /// improves the odds that the branch will be on an analyzable instruction like 1531 /// a compare. 1532 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1533 const SmallVectorImpl<BasicBlock *> &PredBBs) { 1534 assert(!PredBBs.empty() && "Can't handle an empty set"); 1535 1536 // If BB is a loop header, then duplicating this block outside the loop would 1537 // cause us to transform this into an irreducible loop, don't do this. 1538 // See the comments above FindLoopHeaders for justifications and caveats. 1539 if (LoopHeaders.count(BB)) { 1540 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1541 << "' into predecessor block '" << PredBBs[0]->getName() 1542 << "' - it might create an irreducible loop!\n"); 1543 return false; 1544 } 1545 1546 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB); 1547 if (DuplicationCost > Threshold) { 1548 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1549 << "' - Cost is too high: " << DuplicationCost << "\n"); 1550 return false; 1551 } 1552 1553 // And finally, do it! Start by factoring the predecessors is needed. 1554 BasicBlock *PredBB; 1555 if (PredBBs.size() == 1) 1556 PredBB = PredBBs[0]; 1557 else { 1558 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1559 << " common predecessors.\n"); 1560 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), 1561 ".thr_comm", this); 1562 } 1563 1564 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1565 // of PredBB. 1566 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1567 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1568 << DuplicationCost << " block is:" << *BB << "\n"); 1569 1570 // Unless PredBB ends with an unconditional branch, split the edge so that we 1571 // can just clone the bits from BB into the end of the new PredBB. 1572 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 1573 1574 if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) { 1575 PredBB = SplitEdge(PredBB, BB, this); 1576 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1577 } 1578 1579 // We are going to have to map operands from the original BB block into the 1580 // PredBB block. Evaluate PHI nodes in BB. 1581 DenseMap<Instruction*, Value*> ValueMapping; 1582 1583 BasicBlock::iterator BI = BB->begin(); 1584 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1585 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1586 1587 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1588 // mapping and using it to remap operands in the cloned instructions. 1589 for (; BI != BB->end(); ++BI) { 1590 Instruction *New = BI->clone(); 1591 1592 // Remap operands to patch up intra-block references. 1593 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1594 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1595 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1596 if (I != ValueMapping.end()) 1597 New->setOperand(i, I->second); 1598 } 1599 1600 // If this instruction can be simplified after the operands are updated, 1601 // just use the simplified value instead. This frequently happens due to 1602 // phi translation. 1603 if (Value *IV = SimplifyInstruction(New, TD)) { 1604 delete New; 1605 ValueMapping[BI] = IV; 1606 } else { 1607 // Otherwise, insert the new instruction into the block. 1608 New->setName(BI->getName()); 1609 PredBB->getInstList().insert(OldPredBranch, New); 1610 ValueMapping[BI] = New; 1611 } 1612 } 1613 1614 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1615 // add entries to the PHI nodes for branch from PredBB now. 1616 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1617 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1618 ValueMapping); 1619 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1620 ValueMapping); 1621 1622 // If there were values defined in BB that are used outside the block, then we 1623 // now have to update all uses of the value to use either the original value, 1624 // the cloned value, or some PHI derived value. This can require arbitrary 1625 // PHI insertion, of which we are prepared to do, clean these up now. 1626 SSAUpdater SSAUpdate; 1627 SmallVector<Use*, 16> UsesToRename; 1628 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1629 // Scan all uses of this instruction to see if it is used outside of its 1630 // block, and if so, record them in UsesToRename. 1631 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1632 ++UI) { 1633 Instruction *User = cast<Instruction>(*UI); 1634 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1635 if (UserPN->getIncomingBlock(UI) == BB) 1636 continue; 1637 } else if (User->getParent() == BB) 1638 continue; 1639 1640 UsesToRename.push_back(&UI.getUse()); 1641 } 1642 1643 // If there are no uses outside the block, we're done with this instruction. 1644 if (UsesToRename.empty()) 1645 continue; 1646 1647 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1648 1649 // We found a use of I outside of BB. Rename all uses of I that are outside 1650 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1651 // with the two values we know. 1652 SSAUpdate.Initialize(I); 1653 SSAUpdate.AddAvailableValue(BB, I); 1654 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); 1655 1656 while (!UsesToRename.empty()) 1657 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1658 DEBUG(dbgs() << "\n"); 1659 } 1660 1661 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1662 // that we nuked. 1663 RemovePredecessorAndSimplify(BB, PredBB, TD); 1664 1665 // Remove the unconditional branch at the end of the PredBB block. 1666 OldPredBranch->eraseFromParent(); 1667 1668 ++NumDupes; 1669 return true; 1670 } 1671 1672 1673