xref: /llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp (revision c893c4ed101307b08cda4cbbdc10b36ce59a4608)
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "jump-threading"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/IntrinsicInst.h"
17 #include "llvm/LLVMContext.h"
18 #include "llvm/Pass.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LazyValueInfo.h"
21 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
22 #include "llvm/Transforms/Utils/Local.h"
23 #include "llvm/Transforms/Utils/SSAUpdater.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 using namespace llvm;
34 
35 STATISTIC(NumThreads, "Number of jumps threaded");
36 STATISTIC(NumFolds,   "Number of terminators folded");
37 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
38 
39 static cl::opt<unsigned>
40 Threshold("jump-threading-threshold",
41           cl::desc("Max block size to duplicate for jump threading"),
42           cl::init(6), cl::Hidden);
43 
44 // Turn on use of LazyValueInfo.
45 static cl::opt<bool>
46 EnableLVI("enable-jump-threading-lvi", cl::ReallyHidden);
47 
48 
49 
50 namespace {
51   /// This pass performs 'jump threading', which looks at blocks that have
52   /// multiple predecessors and multiple successors.  If one or more of the
53   /// predecessors of the block can be proven to always jump to one of the
54   /// successors, we forward the edge from the predecessor to the successor by
55   /// duplicating the contents of this block.
56   ///
57   /// An example of when this can occur is code like this:
58   ///
59   ///   if () { ...
60   ///     X = 4;
61   ///   }
62   ///   if (X < 3) {
63   ///
64   /// In this case, the unconditional branch at the end of the first if can be
65   /// revectored to the false side of the second if.
66   ///
67   class JumpThreading : public FunctionPass {
68     TargetData *TD;
69     LazyValueInfo *LVI;
70 #ifdef NDEBUG
71     SmallPtrSet<BasicBlock*, 16> LoopHeaders;
72 #else
73     SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
74 #endif
75   public:
76     static char ID; // Pass identification
77     JumpThreading() : FunctionPass(&ID) {}
78 
79     bool runOnFunction(Function &F);
80 
81     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
82       if (EnableLVI)
83         AU.addRequired<LazyValueInfo>();
84     }
85 
86     void FindLoopHeaders(Function &F);
87     bool ProcessBlock(BasicBlock *BB);
88     bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
89                     BasicBlock *SuccBB);
90     bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
91                                           BasicBlock *PredBB);
92 
93     typedef SmallVectorImpl<std::pair<ConstantInt*,
94                                       BasicBlock*> > PredValueInfo;
95 
96     bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
97                                          PredValueInfo &Result);
98     bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB);
99 
100 
101     bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
102     bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
103 
104     bool ProcessJumpOnPHI(PHINode *PN);
105 
106     bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
107   };
108 }
109 
110 char JumpThreading::ID = 0;
111 static RegisterPass<JumpThreading>
112 X("jump-threading", "Jump Threading");
113 
114 // Public interface to the Jump Threading pass
115 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
116 
117 /// runOnFunction - Top level algorithm.
118 ///
119 bool JumpThreading::runOnFunction(Function &F) {
120   DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n");
121   TD = getAnalysisIfAvailable<TargetData>();
122   LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0;
123 
124   FindLoopHeaders(F);
125 
126   bool AnotherIteration = true, EverChanged = false;
127   while (AnotherIteration) {
128     AnotherIteration = false;
129     bool Changed = false;
130     for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
131       BasicBlock *BB = I;
132       // Thread all of the branches we can over this block.
133       while (ProcessBlock(BB))
134         Changed = true;
135 
136       ++I;
137 
138       // If the block is trivially dead, zap it.  This eliminates the successor
139       // edges which simplifies the CFG.
140       if (pred_begin(BB) == pred_end(BB) &&
141           BB != &BB->getParent()->getEntryBlock()) {
142         DEBUG(errs() << "  JT: Deleting dead block '" << BB->getName()
143               << "' with terminator: " << *BB->getTerminator() << '\n');
144         LoopHeaders.erase(BB);
145         DeleteDeadBlock(BB);
146         Changed = true;
147       } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
148         // Can't thread an unconditional jump, but if the block is "almost
149         // empty", we can replace uses of it with uses of the successor and make
150         // this dead.
151         if (BI->isUnconditional() &&
152             BB != &BB->getParent()->getEntryBlock()) {
153           BasicBlock::iterator BBI = BB->getFirstNonPHI();
154           // Ignore dbg intrinsics.
155           while (isa<DbgInfoIntrinsic>(BBI))
156             ++BBI;
157           // If the terminator is the only non-phi instruction, try to nuke it.
158           if (BBI->isTerminator()) {
159             // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
160             // block, we have to make sure it isn't in the LoopHeaders set.  We
161             // reinsert afterward in the rare case when the block isn't deleted.
162             bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
163 
164             if (TryToSimplifyUncondBranchFromEmptyBlock(BB))
165               Changed = true;
166             else if (ErasedFromLoopHeaders)
167               LoopHeaders.insert(BB);
168           }
169         }
170       }
171     }
172     AnotherIteration = Changed;
173     EverChanged |= Changed;
174   }
175 
176   LoopHeaders.clear();
177   return EverChanged;
178 }
179 
180 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
181 /// thread across it.
182 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
183   /// Ignore PHI nodes, these will be flattened when duplication happens.
184   BasicBlock::const_iterator I = BB->getFirstNonPHI();
185 
186   // FIXME: THREADING will delete values that are just used to compute the
187   // branch, so they shouldn't count against the duplication cost.
188 
189 
190   // Sum up the cost of each instruction until we get to the terminator.  Don't
191   // include the terminator because the copy won't include it.
192   unsigned Size = 0;
193   for (; !isa<TerminatorInst>(I); ++I) {
194     // Debugger intrinsics don't incur code size.
195     if (isa<DbgInfoIntrinsic>(I)) continue;
196 
197     // If this is a pointer->pointer bitcast, it is free.
198     if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
199       continue;
200 
201     // All other instructions count for at least one unit.
202     ++Size;
203 
204     // Calls are more expensive.  If they are non-intrinsic calls, we model them
205     // as having cost of 4.  If they are a non-vector intrinsic, we model them
206     // as having cost of 2 total, and if they are a vector intrinsic, we model
207     // them as having cost 1.
208     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
209       if (!isa<IntrinsicInst>(CI))
210         Size += 3;
211       else if (!isa<VectorType>(CI->getType()))
212         Size += 1;
213     }
214   }
215 
216   // Threading through a switch statement is particularly profitable.  If this
217   // block ends in a switch, decrease its cost to make it more likely to happen.
218   if (isa<SwitchInst>(I))
219     Size = Size > 6 ? Size-6 : 0;
220 
221   return Size;
222 }
223 
224 /// FindLoopHeaders - We do not want jump threading to turn proper loop
225 /// structures into irreducible loops.  Doing this breaks up the loop nesting
226 /// hierarchy and pessimizes later transformations.  To prevent this from
227 /// happening, we first have to find the loop headers.  Here we approximate this
228 /// by finding targets of backedges in the CFG.
229 ///
230 /// Note that there definitely are cases when we want to allow threading of
231 /// edges across a loop header.  For example, threading a jump from outside the
232 /// loop (the preheader) to an exit block of the loop is definitely profitable.
233 /// It is also almost always profitable to thread backedges from within the loop
234 /// to exit blocks, and is often profitable to thread backedges to other blocks
235 /// within the loop (forming a nested loop).  This simple analysis is not rich
236 /// enough to track all of these properties and keep it up-to-date as the CFG
237 /// mutates, so we don't allow any of these transformations.
238 ///
239 void JumpThreading::FindLoopHeaders(Function &F) {
240   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
241   FindFunctionBackedges(F, Edges);
242 
243   for (unsigned i = 0, e = Edges.size(); i != e; ++i)
244     LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
245 }
246 
247 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
248 /// if we can infer that the value is a known ConstantInt in any of our
249 /// predecessors.  If so, return the known list of value and pred BB in the
250 /// result vector.  If a value is known to be undef, it is returned as null.
251 ///
252 /// This returns true if there were any known values.
253 ///
254 bool JumpThreading::
255 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
256   // If V is a constantint, then it is known in all predecessors.
257   if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
258     ConstantInt *CI = dyn_cast<ConstantInt>(V);
259 
260     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
261       Result.push_back(std::make_pair(CI, *PI));
262     return true;
263   }
264 
265   // If V is a non-instruction value, or an instruction in a different block,
266   // then it can't be derived from a PHI.
267   Instruction *I = dyn_cast<Instruction>(V);
268   if (I == 0 || I->getParent() != BB) {
269 
270     // Okay, if this is a live-in value, see if it has a known value at the end
271     // of any of our predecessors.
272     //
273     // FIXME: This should be an edge property, not a block end property.
274     /// TODO: Per PR2563, we could infer value range information about a
275     /// predecessor based on its terminator.
276     //
277     if (LVI) {
278       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
279         // If the value is known by LazyValueInfo to be a constant in a
280         // predecessor, use that information to try to thread this block.
281         Constant *PredCst = LVI->getConstantOnEdge(V, *PI, BB);
282         if (PredCst == 0 ||
283             (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst)))
284           continue;
285 
286         Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), *PI));
287       }
288 
289       return !Result.empty();
290     }
291 
292     return false;
293   }
294 
295   /// If I is a PHI node, then we know the incoming values for any constants.
296   if (PHINode *PN = dyn_cast<PHINode>(I)) {
297     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
298       Value *InVal = PN->getIncomingValue(i);
299       if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
300         ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
301         Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
302       }
303     }
304     return !Result.empty();
305   }
306 
307   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
308 
309   // Handle some boolean conditions.
310   if (I->getType()->getPrimitiveSizeInBits() == 1) {
311     // X | true -> true
312     // X & false -> false
313     if (I->getOpcode() == Instruction::Or ||
314         I->getOpcode() == Instruction::And) {
315       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
316       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
317 
318       if (LHSVals.empty() && RHSVals.empty())
319         return false;
320 
321       ConstantInt *InterestingVal;
322       if (I->getOpcode() == Instruction::Or)
323         InterestingVal = ConstantInt::getTrue(I->getContext());
324       else
325         InterestingVal = ConstantInt::getFalse(I->getContext());
326 
327       // Scan for the sentinel.
328       for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
329         if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0)
330           Result.push_back(LHSVals[i]);
331       for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
332         if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0)
333           Result.push_back(RHSVals[i]);
334       return !Result.empty();
335     }
336 
337     // Handle the NOT form of XOR.
338     if (I->getOpcode() == Instruction::Xor &&
339         isa<ConstantInt>(I->getOperand(1)) &&
340         cast<ConstantInt>(I->getOperand(1))->isOne()) {
341       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result);
342       if (Result.empty())
343         return false;
344 
345       // Invert the known values.
346       for (unsigned i = 0, e = Result.size(); i != e; ++i)
347         Result[i].first =
348           cast<ConstantInt>(ConstantExpr::getNot(Result[i].first));
349       return true;
350     }
351   }
352 
353   // Handle compare with phi operand, where the PHI is defined in this block.
354   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
355     PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
356     if (PN && PN->getParent() == BB) {
357       // We can do this simplification if any comparisons fold to true or false.
358       // See if any do.
359       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
360         BasicBlock *PredBB = PN->getIncomingBlock(i);
361         Value *LHS = PN->getIncomingValue(i);
362         Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
363 
364         Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
365         if (Res == 0) continue;
366 
367         if (isa<UndefValue>(Res))
368           Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
369         else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
370           Result.push_back(std::make_pair(CI, PredBB));
371       }
372 
373       return !Result.empty();
374     }
375 
376 
377     // If comparing a live-in value against a constant, see if we know the
378     // live-in value on any predecessors.
379     if (LVI && isa<Constant>(Cmp->getOperand(1)) &&
380         Cmp->getType()->isInteger() && // Not vector compare.
381         (!isa<Instruction>(Cmp->getOperand(0)) ||
382          cast<Instruction>(Cmp->getOperand(0))->getParent() != BB)) {
383       Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
384 
385       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
386         // If the value is known by LazyValueInfo to be a constant in a
387         // predecessor, use that information to try to thread this block.
388         LazyValueInfo::Tristate
389           Res = LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
390                                         RHSCst, *PI, BB);
391         if (Res == LazyValueInfo::Unknown)
392           continue;
393 
394         Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
395         Result.push_back(std::make_pair(cast<ConstantInt>(ResC), *PI));
396       }
397 
398       return !Result.empty();
399     }
400   }
401   return false;
402 }
403 
404 
405 
406 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
407 /// in an undefined jump, decide which block is best to revector to.
408 ///
409 /// Since we can pick an arbitrary destination, we pick the successor with the
410 /// fewest predecessors.  This should reduce the in-degree of the others.
411 ///
412 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
413   TerminatorInst *BBTerm = BB->getTerminator();
414   unsigned MinSucc = 0;
415   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
416   // Compute the successor with the minimum number of predecessors.
417   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
418   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
419     TestBB = BBTerm->getSuccessor(i);
420     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
421     if (NumPreds < MinNumPreds)
422       MinSucc = i;
423   }
424 
425   return MinSucc;
426 }
427 
428 /// ProcessBlock - If there are any predecessors whose control can be threaded
429 /// through to a successor, transform them now.
430 bool JumpThreading::ProcessBlock(BasicBlock *BB) {
431   // If this block has a single predecessor, and if that pred has a single
432   // successor, merge the blocks.  This encourages recursive jump threading
433   // because now the condition in this block can be threaded through
434   // predecessors of our predecessor block.
435   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
436     if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
437         SinglePred != BB) {
438       // If SinglePred was a loop header, BB becomes one.
439       if (LoopHeaders.erase(SinglePred))
440         LoopHeaders.insert(BB);
441 
442       // Remember if SinglePred was the entry block of the function.  If so, we
443       // will need to move BB back to the entry position.
444       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
445       MergeBasicBlockIntoOnlyPred(BB);
446 
447       if (isEntry && BB != &BB->getParent()->getEntryBlock())
448         BB->moveBefore(&BB->getParent()->getEntryBlock());
449       return true;
450     }
451   }
452 
453   // Look to see if the terminator is a branch of switch, if not we can't thread
454   // it.
455   Value *Condition;
456   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
457     // Can't thread an unconditional jump.
458     if (BI->isUnconditional()) return false;
459     Condition = BI->getCondition();
460   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
461     Condition = SI->getCondition();
462   else
463     return false; // Must be an invoke.
464 
465   // If the terminator of this block is branching on a constant, simplify the
466   // terminator to an unconditional branch.  This can occur due to threading in
467   // other blocks.
468   if (isa<ConstantInt>(Condition)) {
469     DEBUG(errs() << "  In block '" << BB->getName()
470           << "' folding terminator: " << *BB->getTerminator() << '\n');
471     ++NumFolds;
472     ConstantFoldTerminator(BB);
473     return true;
474   }
475 
476   // If the terminator is branching on an undef, we can pick any of the
477   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
478   if (isa<UndefValue>(Condition)) {
479     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
480 
481     // Fold the branch/switch.
482     TerminatorInst *BBTerm = BB->getTerminator();
483     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
484       if (i == BestSucc) continue;
485       RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
486     }
487 
488     DEBUG(errs() << "  In block '" << BB->getName()
489           << "' folding undef terminator: " << *BBTerm << '\n');
490     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
491     BBTerm->eraseFromParent();
492     return true;
493   }
494 
495   Instruction *CondInst = dyn_cast<Instruction>(Condition);
496 
497   // If the condition is an instruction defined in another block, see if a
498   // predecessor has the same condition:
499   //     br COND, BBX, BBY
500   //  BBX:
501   //     br COND, BBZ, BBW
502   if (!LVI &&
503       !Condition->hasOneUse() && // Multiple uses.
504       (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
505     pred_iterator PI = pred_begin(BB), E = pred_end(BB);
506     if (isa<BranchInst>(BB->getTerminator())) {
507       for (; PI != E; ++PI)
508         if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
509           if (PBI->isConditional() && PBI->getCondition() == Condition &&
510               ProcessBranchOnDuplicateCond(*PI, BB))
511             return true;
512     } else {
513       assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
514       for (; PI != E; ++PI)
515         if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
516           if (PSI->getCondition() == Condition &&
517               ProcessSwitchOnDuplicateCond(*PI, BB))
518             return true;
519     }
520   }
521 
522   // All the rest of our checks depend on the condition being an instruction.
523   if (CondInst == 0) {
524     // FIXME: Unify this with code below.
525     if (LVI && ProcessThreadableEdges(Condition, BB))
526       return true;
527     return false;
528   }
529 
530 
531   // See if this is a phi node in the current block.
532   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
533     if (PN->getParent() == BB)
534       return ProcessJumpOnPHI(PN);
535 
536   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
537     if (!LVI &&
538         (!isa<PHINode>(CondCmp->getOperand(0)) ||
539          cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) {
540       // If we have a comparison, loop over the predecessors to see if there is
541       // a condition with a lexically identical value.
542       pred_iterator PI = pred_begin(BB), E = pred_end(BB);
543       for (; PI != E; ++PI)
544         if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
545           if (PBI->isConditional() && *PI != BB) {
546             if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
547               if (CI->getOperand(0) == CondCmp->getOperand(0) &&
548                   CI->getOperand(1) == CondCmp->getOperand(1) &&
549                   CI->getPredicate() == CondCmp->getPredicate()) {
550                 // TODO: Could handle things like (x != 4) --> (x == 17)
551                 if (ProcessBranchOnDuplicateCond(*PI, BB))
552                   return true;
553               }
554             }
555           }
556     }
557   }
558 
559   // Check for some cases that are worth simplifying.  Right now we want to look
560   // for loads that are used by a switch or by the condition for the branch.  If
561   // we see one, check to see if it's partially redundant.  If so, insert a PHI
562   // which can then be used to thread the values.
563   //
564   // This is particularly important because reg2mem inserts loads and stores all
565   // over the place, and this blocks jump threading if we don't zap them.
566   Value *SimplifyValue = CondInst;
567   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
568     if (isa<Constant>(CondCmp->getOperand(1)))
569       SimplifyValue = CondCmp->getOperand(0);
570 
571   if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
572     if (SimplifyPartiallyRedundantLoad(LI))
573       return true;
574 
575 
576   // Handle a variety of cases where we are branching on something derived from
577   // a PHI node in the current block.  If we can prove that any predecessors
578   // compute a predictable value based on a PHI node, thread those predecessors.
579   //
580   if (ProcessThreadableEdges(CondInst, BB))
581     return true;
582 
583 
584   // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
585   // "(X == 4)" thread through this block.
586 
587   return false;
588 }
589 
590 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
591 /// block that jump on exactly the same condition.  This means that we almost
592 /// always know the direction of the edge in the DESTBB:
593 ///  PREDBB:
594 ///     br COND, DESTBB, BBY
595 ///  DESTBB:
596 ///     br COND, BBZ, BBW
597 ///
598 /// If DESTBB has multiple predecessors, we can't just constant fold the branch
599 /// in DESTBB, we have to thread over it.
600 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
601                                                  BasicBlock *BB) {
602   BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
603 
604   // If both successors of PredBB go to DESTBB, we don't know anything.  We can
605   // fold the branch to an unconditional one, which allows other recursive
606   // simplifications.
607   bool BranchDir;
608   if (PredBI->getSuccessor(1) != BB)
609     BranchDir = true;
610   else if (PredBI->getSuccessor(0) != BB)
611     BranchDir = false;
612   else {
613     DEBUG(errs() << "  In block '" << PredBB->getName()
614           << "' folding terminator: " << *PredBB->getTerminator() << '\n');
615     ++NumFolds;
616     ConstantFoldTerminator(PredBB);
617     return true;
618   }
619 
620   BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
621 
622   // If the dest block has one predecessor, just fix the branch condition to a
623   // constant and fold it.
624   if (BB->getSinglePredecessor()) {
625     DEBUG(errs() << "  In block '" << BB->getName()
626           << "' folding condition to '" << BranchDir << "': "
627           << *BB->getTerminator() << '\n');
628     ++NumFolds;
629     Value *OldCond = DestBI->getCondition();
630     DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
631                                           BranchDir));
632     ConstantFoldTerminator(BB);
633     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
634     return true;
635   }
636 
637 
638   // Next, figure out which successor we are threading to.
639   BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
640 
641   SmallVector<BasicBlock*, 2> Preds;
642   Preds.push_back(PredBB);
643 
644   // Ok, try to thread it!
645   return ThreadEdge(BB, Preds, SuccBB);
646 }
647 
648 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
649 /// block that switch on exactly the same condition.  This means that we almost
650 /// always know the direction of the edge in the DESTBB:
651 ///  PREDBB:
652 ///     switch COND [... DESTBB, BBY ... ]
653 ///  DESTBB:
654 ///     switch COND [... BBZ, BBW ]
655 ///
656 /// Optimizing switches like this is very important, because simplifycfg builds
657 /// switches out of repeated 'if' conditions.
658 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
659                                                  BasicBlock *DestBB) {
660   // Can't thread edge to self.
661   if (PredBB == DestBB)
662     return false;
663 
664   SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
665   SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
666 
667   // There are a variety of optimizations that we can potentially do on these
668   // blocks: we order them from most to least preferable.
669 
670   // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
671   // directly to their destination.  This does not introduce *any* code size
672   // growth.  Skip debug info first.
673   BasicBlock::iterator BBI = DestBB->begin();
674   while (isa<DbgInfoIntrinsic>(BBI))
675     BBI++;
676 
677   // FIXME: Thread if it just contains a PHI.
678   if (isa<SwitchInst>(BBI)) {
679     bool MadeChange = false;
680     // Ignore the default edge for now.
681     for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
682       ConstantInt *DestVal = DestSI->getCaseValue(i);
683       BasicBlock *DestSucc = DestSI->getSuccessor(i);
684 
685       // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
686       // PredSI has an explicit case for it.  If so, forward.  If it is covered
687       // by the default case, we can't update PredSI.
688       unsigned PredCase = PredSI->findCaseValue(DestVal);
689       if (PredCase == 0) continue;
690 
691       // If PredSI doesn't go to DestBB on this value, then it won't reach the
692       // case on this condition.
693       if (PredSI->getSuccessor(PredCase) != DestBB &&
694           DestSI->getSuccessor(i) != DestBB)
695         continue;
696 
697       // Otherwise, we're safe to make the change.  Make sure that the edge from
698       // DestSI to DestSucc is not critical and has no PHI nodes.
699       DEBUG(errs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
700       DEBUG(errs() << "THROUGH: " << *DestSI);
701 
702       // If the destination has PHI nodes, just split the edge for updating
703       // simplicity.
704       if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
705         SplitCriticalEdge(DestSI, i, this);
706         DestSucc = DestSI->getSuccessor(i);
707       }
708       FoldSingleEntryPHINodes(DestSucc);
709       PredSI->setSuccessor(PredCase, DestSucc);
710       MadeChange = true;
711     }
712 
713     if (MadeChange)
714       return true;
715   }
716 
717   return false;
718 }
719 
720 
721 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
722 /// load instruction, eliminate it by replacing it with a PHI node.  This is an
723 /// important optimization that encourages jump threading, and needs to be run
724 /// interlaced with other jump threading tasks.
725 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
726   // Don't hack volatile loads.
727   if (LI->isVolatile()) return false;
728 
729   // If the load is defined in a block with exactly one predecessor, it can't be
730   // partially redundant.
731   BasicBlock *LoadBB = LI->getParent();
732   if (LoadBB->getSinglePredecessor())
733     return false;
734 
735   Value *LoadedPtr = LI->getOperand(0);
736 
737   // If the loaded operand is defined in the LoadBB, it can't be available.
738   // FIXME: Could do PHI translation, that would be fun :)
739   if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
740     if (PtrOp->getParent() == LoadBB)
741       return false;
742 
743   // Scan a few instructions up from the load, to see if it is obviously live at
744   // the entry to its block.
745   BasicBlock::iterator BBIt = LI;
746 
747   if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB,
748                                                      BBIt, 6)) {
749     // If the value if the load is locally available within the block, just use
750     // it.  This frequently occurs for reg2mem'd allocas.
751     //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
752 
753     // If the returned value is the load itself, replace with an undef. This can
754     // only happen in dead loops.
755     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
756     LI->replaceAllUsesWith(AvailableVal);
757     LI->eraseFromParent();
758     return true;
759   }
760 
761   // Otherwise, if we scanned the whole block and got to the top of the block,
762   // we know the block is locally transparent to the load.  If not, something
763   // might clobber its value.
764   if (BBIt != LoadBB->begin())
765     return false;
766 
767 
768   SmallPtrSet<BasicBlock*, 8> PredsScanned;
769   typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
770   AvailablePredsTy AvailablePreds;
771   BasicBlock *OneUnavailablePred = 0;
772 
773   // If we got here, the loaded value is transparent through to the start of the
774   // block.  Check to see if it is available in any of the predecessor blocks.
775   for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
776        PI != PE; ++PI) {
777     BasicBlock *PredBB = *PI;
778 
779     // If we already scanned this predecessor, skip it.
780     if (!PredsScanned.insert(PredBB))
781       continue;
782 
783     // Scan the predecessor to see if the value is available in the pred.
784     BBIt = PredBB->end();
785     Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
786     if (!PredAvailable) {
787       OneUnavailablePred = PredBB;
788       continue;
789     }
790 
791     // If so, this load is partially redundant.  Remember this info so that we
792     // can create a PHI node.
793     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
794   }
795 
796   // If the loaded value isn't available in any predecessor, it isn't partially
797   // redundant.
798   if (AvailablePreds.empty()) return false;
799 
800   // Okay, the loaded value is available in at least one (and maybe all!)
801   // predecessors.  If the value is unavailable in more than one unique
802   // predecessor, we want to insert a merge block for those common predecessors.
803   // This ensures that we only have to insert one reload, thus not increasing
804   // code size.
805   BasicBlock *UnavailablePred = 0;
806 
807   // If there is exactly one predecessor where the value is unavailable, the
808   // already computed 'OneUnavailablePred' block is it.  If it ends in an
809   // unconditional branch, we know that it isn't a critical edge.
810   if (PredsScanned.size() == AvailablePreds.size()+1 &&
811       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
812     UnavailablePred = OneUnavailablePred;
813   } else if (PredsScanned.size() != AvailablePreds.size()) {
814     // Otherwise, we had multiple unavailable predecessors or we had a critical
815     // edge from the one.
816     SmallVector<BasicBlock*, 8> PredsToSplit;
817     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
818 
819     for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
820       AvailablePredSet.insert(AvailablePreds[i].first);
821 
822     // Add all the unavailable predecessors to the PredsToSplit list.
823     for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
824          PI != PE; ++PI)
825       if (!AvailablePredSet.count(*PI))
826         PredsToSplit.push_back(*PI);
827 
828     // Split them out to their own block.
829     UnavailablePred =
830       SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
831                              "thread-split", this);
832   }
833 
834   // If the value isn't available in all predecessors, then there will be
835   // exactly one where it isn't available.  Insert a load on that edge and add
836   // it to the AvailablePreds list.
837   if (UnavailablePred) {
838     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
839            "Can't handle critical edge here!");
840     Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr",
841                                  UnavailablePred->getTerminator());
842     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
843   }
844 
845   // Now we know that each predecessor of this block has a value in
846   // AvailablePreds, sort them for efficient access as we're walking the preds.
847   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
848 
849   // Create a PHI node at the start of the block for the PRE'd load value.
850   PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
851   PN->takeName(LI);
852 
853   // Insert new entries into the PHI for each predecessor.  A single block may
854   // have multiple entries here.
855   for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
856        ++PI) {
857     AvailablePredsTy::iterator I =
858       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
859                        std::make_pair(*PI, (Value*)0));
860 
861     assert(I != AvailablePreds.end() && I->first == *PI &&
862            "Didn't find entry for predecessor!");
863 
864     PN->addIncoming(I->second, I->first);
865   }
866 
867   //cerr << "PRE: " << *LI << *PN << "\n";
868 
869   LI->replaceAllUsesWith(PN);
870   LI->eraseFromParent();
871 
872   return true;
873 }
874 
875 /// FindMostPopularDest - The specified list contains multiple possible
876 /// threadable destinations.  Pick the one that occurs the most frequently in
877 /// the list.
878 static BasicBlock *
879 FindMostPopularDest(BasicBlock *BB,
880                     const SmallVectorImpl<std::pair<BasicBlock*,
881                                   BasicBlock*> > &PredToDestList) {
882   assert(!PredToDestList.empty());
883 
884   // Determine popularity.  If there are multiple possible destinations, we
885   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
886   // blocks with known and real destinations to threading undef.  We'll handle
887   // them later if interesting.
888   DenseMap<BasicBlock*, unsigned> DestPopularity;
889   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
890     if (PredToDestList[i].second)
891       DestPopularity[PredToDestList[i].second]++;
892 
893   // Find the most popular dest.
894   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
895   BasicBlock *MostPopularDest = DPI->first;
896   unsigned Popularity = DPI->second;
897   SmallVector<BasicBlock*, 4> SamePopularity;
898 
899   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
900     // If the popularity of this entry isn't higher than the popularity we've
901     // seen so far, ignore it.
902     if (DPI->second < Popularity)
903       ; // ignore.
904     else if (DPI->second == Popularity) {
905       // If it is the same as what we've seen so far, keep track of it.
906       SamePopularity.push_back(DPI->first);
907     } else {
908       // If it is more popular, remember it.
909       SamePopularity.clear();
910       MostPopularDest = DPI->first;
911       Popularity = DPI->second;
912     }
913   }
914 
915   // Okay, now we know the most popular destination.  If there is more than
916   // destination, we need to determine one.  This is arbitrary, but we need
917   // to make a deterministic decision.  Pick the first one that appears in the
918   // successor list.
919   if (!SamePopularity.empty()) {
920     SamePopularity.push_back(MostPopularDest);
921     TerminatorInst *TI = BB->getTerminator();
922     for (unsigned i = 0; ; ++i) {
923       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
924 
925       if (std::find(SamePopularity.begin(), SamePopularity.end(),
926                     TI->getSuccessor(i)) == SamePopularity.end())
927         continue;
928 
929       MostPopularDest = TI->getSuccessor(i);
930       break;
931     }
932   }
933 
934   // Okay, we have finally picked the most popular destination.
935   return MostPopularDest;
936 }
937 
938 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) {
939   // If threading this would thread across a loop header, don't even try to
940   // thread the edge.
941   if (LoopHeaders.count(BB))
942     return false;
943 
944   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
945   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues))
946     return false;
947   assert(!PredValues.empty() &&
948          "ComputeValueKnownInPredecessors returned true with no values");
949 
950   DEBUG(errs() << "IN BB: " << *BB;
951         for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
952           errs() << "  BB '" << BB->getName() << "': FOUND condition = ";
953           if (PredValues[i].first)
954             errs() << *PredValues[i].first;
955           else
956             errs() << "UNDEF";
957           errs() << " for pred '" << PredValues[i].second->getName()
958           << "'.\n";
959         });
960 
961   // Decide what we want to thread through.  Convert our list of known values to
962   // a list of known destinations for each pred.  This also discards duplicate
963   // predecessors and keeps track of the undefined inputs (which are represented
964   // as a null dest in the PredToDestList).
965   SmallPtrSet<BasicBlock*, 16> SeenPreds;
966   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
967 
968   BasicBlock *OnlyDest = 0;
969   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
970 
971   for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
972     BasicBlock *Pred = PredValues[i].second;
973     if (!SeenPreds.insert(Pred))
974       continue;  // Duplicate predecessor entry.
975 
976     // If the predecessor ends with an indirect goto, we can't change its
977     // destination.
978     if (isa<IndirectBrInst>(Pred->getTerminator()))
979       continue;
980 
981     ConstantInt *Val = PredValues[i].first;
982 
983     BasicBlock *DestBB;
984     if (Val == 0)      // Undef.
985       DestBB = 0;
986     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
987       DestBB = BI->getSuccessor(Val->isZero());
988     else {
989       SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
990       DestBB = SI->getSuccessor(SI->findCaseValue(Val));
991     }
992 
993     // If we have exactly one destination, remember it for efficiency below.
994     if (i == 0)
995       OnlyDest = DestBB;
996     else if (OnlyDest != DestBB)
997       OnlyDest = MultipleDestSentinel;
998 
999     PredToDestList.push_back(std::make_pair(Pred, DestBB));
1000   }
1001 
1002   // If all edges were unthreadable, we fail.
1003   if (PredToDestList.empty())
1004     return false;
1005 
1006   // Determine which is the most common successor.  If we have many inputs and
1007   // this block is a switch, we want to start by threading the batch that goes
1008   // to the most popular destination first.  If we only know about one
1009   // threadable destination (the common case) we can avoid this.
1010   BasicBlock *MostPopularDest = OnlyDest;
1011 
1012   if (MostPopularDest == MultipleDestSentinel)
1013     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1014 
1015   // Now that we know what the most popular destination is, factor all
1016   // predecessors that will jump to it into a single predecessor.
1017   SmallVector<BasicBlock*, 16> PredsToFactor;
1018   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1019     if (PredToDestList[i].second == MostPopularDest) {
1020       BasicBlock *Pred = PredToDestList[i].first;
1021 
1022       // This predecessor may be a switch or something else that has multiple
1023       // edges to the block.  Factor each of these edges by listing them
1024       // according to # occurrences in PredsToFactor.
1025       TerminatorInst *PredTI = Pred->getTerminator();
1026       for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1027         if (PredTI->getSuccessor(i) == BB)
1028           PredsToFactor.push_back(Pred);
1029     }
1030 
1031   // If the threadable edges are branching on an undefined value, we get to pick
1032   // the destination that these predecessors should get to.
1033   if (MostPopularDest == 0)
1034     MostPopularDest = BB->getTerminator()->
1035                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1036 
1037   // Ok, try to thread it!
1038   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1039 }
1040 
1041 /// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
1042 /// the current block.  See if there are any simplifications we can do based on
1043 /// inputs to the phi node.
1044 ///
1045 bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
1046   BasicBlock *BB = PN->getParent();
1047 
1048   // If any of the predecessor blocks end in an unconditional branch, we can
1049   // *duplicate* the jump into that block in order to further encourage jump
1050   // threading and to eliminate cases where we have branch on a phi of an icmp
1051   // (branch on icmp is much better).
1052 
1053   // We don't want to do this tranformation for switches, because we don't
1054   // really want to duplicate a switch.
1055   if (isa<SwitchInst>(BB->getTerminator()))
1056     return false;
1057 
1058   // Look for unconditional branch predecessors.
1059   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1060     BasicBlock *PredBB = PN->getIncomingBlock(i);
1061     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1062       if (PredBr->isUnconditional() &&
1063           // Try to duplicate BB into PredBB.
1064           DuplicateCondBranchOnPHIIntoPred(BB, PredBB))
1065         return true;
1066   }
1067 
1068   return false;
1069 }
1070 
1071 
1072 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1073 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1074 /// NewPred using the entries from OldPred (suitably mapped).
1075 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1076                                             BasicBlock *OldPred,
1077                                             BasicBlock *NewPred,
1078                                      DenseMap<Instruction*, Value*> &ValueMap) {
1079   for (BasicBlock::iterator PNI = PHIBB->begin();
1080        PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1081     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1082     // DestBlock.
1083     Value *IV = PN->getIncomingValueForBlock(OldPred);
1084 
1085     // Remap the value if necessary.
1086     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1087       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1088       if (I != ValueMap.end())
1089         IV = I->second;
1090     }
1091 
1092     PN->addIncoming(IV, NewPred);
1093   }
1094 }
1095 
1096 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1097 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1098 /// across BB.  Transform the IR to reflect this change.
1099 bool JumpThreading::ThreadEdge(BasicBlock *BB,
1100                                const SmallVectorImpl<BasicBlock*> &PredBBs,
1101                                BasicBlock *SuccBB) {
1102   // If threading to the same block as we come from, we would infinite loop.
1103   if (SuccBB == BB) {
1104     DEBUG(errs() << "  Not threading across BB '" << BB->getName()
1105           << "' - would thread to self!\n");
1106     return false;
1107   }
1108 
1109   // If threading this would thread across a loop header, don't thread the edge.
1110   // See the comments above FindLoopHeaders for justifications and caveats.
1111   if (LoopHeaders.count(BB)) {
1112     DEBUG(errs() << "  Not threading across loop header BB '" << BB->getName()
1113           << "' to dest BB '" << SuccBB->getName()
1114           << "' - it might create an irreducible loop!\n");
1115     return false;
1116   }
1117 
1118   unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1119   if (JumpThreadCost > Threshold) {
1120     DEBUG(errs() << "  Not threading BB '" << BB->getName()
1121           << "' - Cost is too high: " << JumpThreadCost << "\n");
1122     return false;
1123   }
1124 
1125   // And finally, do it!  Start by factoring the predecessors is needed.
1126   BasicBlock *PredBB;
1127   if (PredBBs.size() == 1)
1128     PredBB = PredBBs[0];
1129   else {
1130     DEBUG(errs() << "  Factoring out " << PredBBs.size()
1131           << " common predecessors.\n");
1132     PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1133                                     ".thr_comm", this);
1134   }
1135 
1136   // And finally, do it!
1137   DEBUG(errs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1138         << SuccBB->getName() << "' with cost: " << JumpThreadCost
1139         << ", across block:\n    "
1140         << *BB << "\n");
1141 
1142   // We are going to have to map operands from the original BB block to the new
1143   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1144   // account for entry from PredBB.
1145   DenseMap<Instruction*, Value*> ValueMapping;
1146 
1147   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1148                                          BB->getName()+".thread",
1149                                          BB->getParent(), BB);
1150   NewBB->moveAfter(PredBB);
1151 
1152   BasicBlock::iterator BI = BB->begin();
1153   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1154     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1155 
1156   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1157   // mapping and using it to remap operands in the cloned instructions.
1158   for (; !isa<TerminatorInst>(BI); ++BI) {
1159     Instruction *New = BI->clone();
1160     New->setName(BI->getName());
1161     NewBB->getInstList().push_back(New);
1162     ValueMapping[BI] = New;
1163 
1164     // Remap operands to patch up intra-block references.
1165     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1166       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1167         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1168         if (I != ValueMapping.end())
1169           New->setOperand(i, I->second);
1170       }
1171   }
1172 
1173   // We didn't copy the terminator from BB over to NewBB, because there is now
1174   // an unconditional jump to SuccBB.  Insert the unconditional jump.
1175   BranchInst::Create(SuccBB, NewBB);
1176 
1177   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1178   // PHI nodes for NewBB now.
1179   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1180 
1181   // If there were values defined in BB that are used outside the block, then we
1182   // now have to update all uses of the value to use either the original value,
1183   // the cloned value, or some PHI derived value.  This can require arbitrary
1184   // PHI insertion, of which we are prepared to do, clean these up now.
1185   SSAUpdater SSAUpdate;
1186   SmallVector<Use*, 16> UsesToRename;
1187   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1188     // Scan all uses of this instruction to see if it is used outside of its
1189     // block, and if so, record them in UsesToRename.
1190     for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1191          ++UI) {
1192       Instruction *User = cast<Instruction>(*UI);
1193       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1194         if (UserPN->getIncomingBlock(UI) == BB)
1195           continue;
1196       } else if (User->getParent() == BB)
1197         continue;
1198 
1199       UsesToRename.push_back(&UI.getUse());
1200     }
1201 
1202     // If there are no uses outside the block, we're done with this instruction.
1203     if (UsesToRename.empty())
1204       continue;
1205 
1206     DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1207 
1208     // We found a use of I outside of BB.  Rename all uses of I that are outside
1209     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1210     // with the two values we know.
1211     SSAUpdate.Initialize(I);
1212     SSAUpdate.AddAvailableValue(BB, I);
1213     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1214 
1215     while (!UsesToRename.empty())
1216       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1217     DEBUG(errs() << "\n");
1218   }
1219 
1220 
1221   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1222   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1223   // us to simplify any PHI nodes in BB.
1224   TerminatorInst *PredTerm = PredBB->getTerminator();
1225   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1226     if (PredTerm->getSuccessor(i) == BB) {
1227       RemovePredecessorAndSimplify(BB, PredBB, TD);
1228       PredTerm->setSuccessor(i, NewBB);
1229     }
1230 
1231   // At this point, the IR is fully up to date and consistent.  Do a quick scan
1232   // over the new instructions and zap any that are constants or dead.  This
1233   // frequently happens because of phi translation.
1234   BI = NewBB->begin();
1235   for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
1236     Instruction *Inst = BI++;
1237 
1238     if (Value *V = SimplifyInstruction(Inst, TD)) {
1239       WeakVH BIHandle(BI);
1240       ReplaceAndSimplifyAllUses(Inst, V, TD);
1241       if (BIHandle == 0)
1242         BI = NewBB->begin();
1243       continue;
1244     }
1245 
1246     RecursivelyDeleteTriviallyDeadInstructions(Inst);
1247   }
1248 
1249   // Threaded an edge!
1250   ++NumThreads;
1251   return true;
1252 }
1253 
1254 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1255 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1256 /// If we can duplicate the contents of BB up into PredBB do so now, this
1257 /// improves the odds that the branch will be on an analyzable instruction like
1258 /// a compare.
1259 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1260                                                      BasicBlock *PredBB) {
1261   // If BB is a loop header, then duplicating this block outside the loop would
1262   // cause us to transform this into an irreducible loop, don't do this.
1263   // See the comments above FindLoopHeaders for justifications and caveats.
1264   if (LoopHeaders.count(BB)) {
1265     DEBUG(errs() << "  Not duplicating loop header '" << BB->getName()
1266           << "' into predecessor block '" << PredBB->getName()
1267           << "' - it might create an irreducible loop!\n");
1268     return false;
1269   }
1270 
1271   unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1272   if (DuplicationCost > Threshold) {
1273     DEBUG(errs() << "  Not duplicating BB '" << BB->getName()
1274           << "' - Cost is too high: " << DuplicationCost << "\n");
1275     return false;
1276   }
1277 
1278   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1279   // of PredBB.
1280   DEBUG(errs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1281         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1282         << DuplicationCost << " block is:" << *BB << "\n");
1283 
1284   // We are going to have to map operands from the original BB block into the
1285   // PredBB block.  Evaluate PHI nodes in BB.
1286   DenseMap<Instruction*, Value*> ValueMapping;
1287 
1288   BasicBlock::iterator BI = BB->begin();
1289   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1290     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1291 
1292   BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1293 
1294   // Clone the non-phi instructions of BB into PredBB, keeping track of the
1295   // mapping and using it to remap operands in the cloned instructions.
1296   for (; BI != BB->end(); ++BI) {
1297     Instruction *New = BI->clone();
1298     New->setName(BI->getName());
1299     PredBB->getInstList().insert(OldPredBranch, New);
1300     ValueMapping[BI] = New;
1301 
1302     // Remap operands to patch up intra-block references.
1303     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1304       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1305         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1306         if (I != ValueMapping.end())
1307           New->setOperand(i, I->second);
1308       }
1309   }
1310 
1311   // Check to see if the targets of the branch had PHI nodes. If so, we need to
1312   // add entries to the PHI nodes for branch from PredBB now.
1313   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1314   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1315                                   ValueMapping);
1316   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1317                                   ValueMapping);
1318 
1319   // If there were values defined in BB that are used outside the block, then we
1320   // now have to update all uses of the value to use either the original value,
1321   // the cloned value, or some PHI derived value.  This can require arbitrary
1322   // PHI insertion, of which we are prepared to do, clean these up now.
1323   SSAUpdater SSAUpdate;
1324   SmallVector<Use*, 16> UsesToRename;
1325   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1326     // Scan all uses of this instruction to see if it is used outside of its
1327     // block, and if so, record them in UsesToRename.
1328     for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1329          ++UI) {
1330       Instruction *User = cast<Instruction>(*UI);
1331       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1332         if (UserPN->getIncomingBlock(UI) == BB)
1333           continue;
1334       } else if (User->getParent() == BB)
1335         continue;
1336 
1337       UsesToRename.push_back(&UI.getUse());
1338     }
1339 
1340     // If there are no uses outside the block, we're done with this instruction.
1341     if (UsesToRename.empty())
1342       continue;
1343 
1344     DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1345 
1346     // We found a use of I outside of BB.  Rename all uses of I that are outside
1347     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1348     // with the two values we know.
1349     SSAUpdate.Initialize(I);
1350     SSAUpdate.AddAvailableValue(BB, I);
1351     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1352 
1353     while (!UsesToRename.empty())
1354       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1355     DEBUG(errs() << "\n");
1356   }
1357 
1358   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1359   // that we nuked.
1360   RemovePredecessorAndSimplify(BB, PredBB, TD);
1361 
1362   // Remove the unconditional branch at the end of the PredBB block.
1363   OldPredBranch->eraseFromParent();
1364 
1365   ++NumDupes;
1366   return true;
1367 }
1368 
1369 
1370