1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "jump-threading" 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/IntrinsicInst.h" 17 #include "llvm/LLVMContext.h" 18 #include "llvm/Pass.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LazyValueInfo.h" 21 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 22 #include "llvm/Transforms/Utils/Local.h" 23 #include "llvm/Transforms/Utils/SSAUpdater.h" 24 #include "llvm/Target/TargetData.h" 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 using namespace llvm; 34 35 STATISTIC(NumThreads, "Number of jumps threaded"); 36 STATISTIC(NumFolds, "Number of terminators folded"); 37 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 38 39 static cl::opt<unsigned> 40 Threshold("jump-threading-threshold", 41 cl::desc("Max block size to duplicate for jump threading"), 42 cl::init(6), cl::Hidden); 43 44 // Turn on use of LazyValueInfo. 45 static cl::opt<bool> 46 EnableLVI("enable-jump-threading-lvi", cl::ReallyHidden); 47 48 49 50 namespace { 51 /// This pass performs 'jump threading', which looks at blocks that have 52 /// multiple predecessors and multiple successors. If one or more of the 53 /// predecessors of the block can be proven to always jump to one of the 54 /// successors, we forward the edge from the predecessor to the successor by 55 /// duplicating the contents of this block. 56 /// 57 /// An example of when this can occur is code like this: 58 /// 59 /// if () { ... 60 /// X = 4; 61 /// } 62 /// if (X < 3) { 63 /// 64 /// In this case, the unconditional branch at the end of the first if can be 65 /// revectored to the false side of the second if. 66 /// 67 class JumpThreading : public FunctionPass { 68 TargetData *TD; 69 LazyValueInfo *LVI; 70 #ifdef NDEBUG 71 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 72 #else 73 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 74 #endif 75 public: 76 static char ID; // Pass identification 77 JumpThreading() : FunctionPass(&ID) {} 78 79 bool runOnFunction(Function &F); 80 81 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 82 if (EnableLVI) 83 AU.addRequired<LazyValueInfo>(); 84 } 85 86 void FindLoopHeaders(Function &F); 87 bool ProcessBlock(BasicBlock *BB); 88 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 89 BasicBlock *SuccBB); 90 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 91 BasicBlock *PredBB); 92 93 typedef SmallVectorImpl<std::pair<ConstantInt*, 94 BasicBlock*> > PredValueInfo; 95 96 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 97 PredValueInfo &Result); 98 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB); 99 100 101 bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 102 bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 103 104 bool ProcessJumpOnPHI(PHINode *PN); 105 106 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 107 }; 108 } 109 110 char JumpThreading::ID = 0; 111 static RegisterPass<JumpThreading> 112 X("jump-threading", "Jump Threading"); 113 114 // Public interface to the Jump Threading pass 115 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); } 116 117 /// runOnFunction - Top level algorithm. 118 /// 119 bool JumpThreading::runOnFunction(Function &F) { 120 DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n"); 121 TD = getAnalysisIfAvailable<TargetData>(); 122 LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0; 123 124 FindLoopHeaders(F); 125 126 bool AnotherIteration = true, EverChanged = false; 127 while (AnotherIteration) { 128 AnotherIteration = false; 129 bool Changed = false; 130 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 131 BasicBlock *BB = I; 132 // Thread all of the branches we can over this block. 133 while (ProcessBlock(BB)) 134 Changed = true; 135 136 ++I; 137 138 // If the block is trivially dead, zap it. This eliminates the successor 139 // edges which simplifies the CFG. 140 if (pred_begin(BB) == pred_end(BB) && 141 BB != &BB->getParent()->getEntryBlock()) { 142 DEBUG(errs() << " JT: Deleting dead block '" << BB->getName() 143 << "' with terminator: " << *BB->getTerminator() << '\n'); 144 LoopHeaders.erase(BB); 145 DeleteDeadBlock(BB); 146 Changed = true; 147 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 148 // Can't thread an unconditional jump, but if the block is "almost 149 // empty", we can replace uses of it with uses of the successor and make 150 // this dead. 151 if (BI->isUnconditional() && 152 BB != &BB->getParent()->getEntryBlock()) { 153 BasicBlock::iterator BBI = BB->getFirstNonPHI(); 154 // Ignore dbg intrinsics. 155 while (isa<DbgInfoIntrinsic>(BBI)) 156 ++BBI; 157 // If the terminator is the only non-phi instruction, try to nuke it. 158 if (BBI->isTerminator()) { 159 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 160 // block, we have to make sure it isn't in the LoopHeaders set. We 161 // reinsert afterward in the rare case when the block isn't deleted. 162 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 163 164 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) 165 Changed = true; 166 else if (ErasedFromLoopHeaders) 167 LoopHeaders.insert(BB); 168 } 169 } 170 } 171 } 172 AnotherIteration = Changed; 173 EverChanged |= Changed; 174 } 175 176 LoopHeaders.clear(); 177 return EverChanged; 178 } 179 180 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 181 /// thread across it. 182 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) { 183 /// Ignore PHI nodes, these will be flattened when duplication happens. 184 BasicBlock::const_iterator I = BB->getFirstNonPHI(); 185 186 // FIXME: THREADING will delete values that are just used to compute the 187 // branch, so they shouldn't count against the duplication cost. 188 189 190 // Sum up the cost of each instruction until we get to the terminator. Don't 191 // include the terminator because the copy won't include it. 192 unsigned Size = 0; 193 for (; !isa<TerminatorInst>(I); ++I) { 194 // Debugger intrinsics don't incur code size. 195 if (isa<DbgInfoIntrinsic>(I)) continue; 196 197 // If this is a pointer->pointer bitcast, it is free. 198 if (isa<BitCastInst>(I) && isa<PointerType>(I->getType())) 199 continue; 200 201 // All other instructions count for at least one unit. 202 ++Size; 203 204 // Calls are more expensive. If they are non-intrinsic calls, we model them 205 // as having cost of 4. If they are a non-vector intrinsic, we model them 206 // as having cost of 2 total, and if they are a vector intrinsic, we model 207 // them as having cost 1. 208 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 209 if (!isa<IntrinsicInst>(CI)) 210 Size += 3; 211 else if (!isa<VectorType>(CI->getType())) 212 Size += 1; 213 } 214 } 215 216 // Threading through a switch statement is particularly profitable. If this 217 // block ends in a switch, decrease its cost to make it more likely to happen. 218 if (isa<SwitchInst>(I)) 219 Size = Size > 6 ? Size-6 : 0; 220 221 return Size; 222 } 223 224 /// FindLoopHeaders - We do not want jump threading to turn proper loop 225 /// structures into irreducible loops. Doing this breaks up the loop nesting 226 /// hierarchy and pessimizes later transformations. To prevent this from 227 /// happening, we first have to find the loop headers. Here we approximate this 228 /// by finding targets of backedges in the CFG. 229 /// 230 /// Note that there definitely are cases when we want to allow threading of 231 /// edges across a loop header. For example, threading a jump from outside the 232 /// loop (the preheader) to an exit block of the loop is definitely profitable. 233 /// It is also almost always profitable to thread backedges from within the loop 234 /// to exit blocks, and is often profitable to thread backedges to other blocks 235 /// within the loop (forming a nested loop). This simple analysis is not rich 236 /// enough to track all of these properties and keep it up-to-date as the CFG 237 /// mutates, so we don't allow any of these transformations. 238 /// 239 void JumpThreading::FindLoopHeaders(Function &F) { 240 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 241 FindFunctionBackedges(F, Edges); 242 243 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 244 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 245 } 246 247 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 248 /// if we can infer that the value is a known ConstantInt in any of our 249 /// predecessors. If so, return the known list of value and pred BB in the 250 /// result vector. If a value is known to be undef, it is returned as null. 251 /// 252 /// This returns true if there were any known values. 253 /// 254 bool JumpThreading:: 255 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){ 256 // If V is a constantint, then it is known in all predecessors. 257 if (isa<ConstantInt>(V) || isa<UndefValue>(V)) { 258 ConstantInt *CI = dyn_cast<ConstantInt>(V); 259 260 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 261 Result.push_back(std::make_pair(CI, *PI)); 262 return true; 263 } 264 265 // If V is a non-instruction value, or an instruction in a different block, 266 // then it can't be derived from a PHI. 267 Instruction *I = dyn_cast<Instruction>(V); 268 if (I == 0 || I->getParent() != BB) { 269 270 // Okay, if this is a live-in value, see if it has a known value at the end 271 // of any of our predecessors. 272 // 273 // FIXME: This should be an edge property, not a block end property. 274 /// TODO: Per PR2563, we could infer value range information about a 275 /// predecessor based on its terminator. 276 // 277 if (LVI) { 278 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 279 // If the value is known by LazyValueInfo to be a constant in a 280 // predecessor, use that information to try to thread this block. 281 Constant *PredCst = LVI->getConstantOnEdge(V, *PI, BB); 282 if (PredCst == 0 || 283 (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst))) 284 continue; 285 286 Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), *PI)); 287 } 288 289 return !Result.empty(); 290 } 291 292 return false; 293 } 294 295 /// If I is a PHI node, then we know the incoming values for any constants. 296 if (PHINode *PN = dyn_cast<PHINode>(I)) { 297 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 298 Value *InVal = PN->getIncomingValue(i); 299 if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) { 300 ConstantInt *CI = dyn_cast<ConstantInt>(InVal); 301 Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i))); 302 } 303 } 304 return !Result.empty(); 305 } 306 307 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals; 308 309 // Handle some boolean conditions. 310 if (I->getType()->getPrimitiveSizeInBits() == 1) { 311 // X | true -> true 312 // X & false -> false 313 if (I->getOpcode() == Instruction::Or || 314 I->getOpcode() == Instruction::And) { 315 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals); 316 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals); 317 318 if (LHSVals.empty() && RHSVals.empty()) 319 return false; 320 321 ConstantInt *InterestingVal; 322 if (I->getOpcode() == Instruction::Or) 323 InterestingVal = ConstantInt::getTrue(I->getContext()); 324 else 325 InterestingVal = ConstantInt::getFalse(I->getContext()); 326 327 // Scan for the sentinel. 328 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 329 if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) 330 Result.push_back(LHSVals[i]); 331 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 332 if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) 333 Result.push_back(RHSVals[i]); 334 return !Result.empty(); 335 } 336 337 // Handle the NOT form of XOR. 338 if (I->getOpcode() == Instruction::Xor && 339 isa<ConstantInt>(I->getOperand(1)) && 340 cast<ConstantInt>(I->getOperand(1))->isOne()) { 341 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result); 342 if (Result.empty()) 343 return false; 344 345 // Invert the known values. 346 for (unsigned i = 0, e = Result.size(); i != e; ++i) 347 Result[i].first = 348 cast<ConstantInt>(ConstantExpr::getNot(Result[i].first)); 349 return true; 350 } 351 } 352 353 // Handle compare with phi operand, where the PHI is defined in this block. 354 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 355 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 356 if (PN && PN->getParent() == BB) { 357 // We can do this simplification if any comparisons fold to true or false. 358 // See if any do. 359 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 360 BasicBlock *PredBB = PN->getIncomingBlock(i); 361 Value *LHS = PN->getIncomingValue(i); 362 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 363 364 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD); 365 if (Res == 0) continue; 366 367 if (isa<UndefValue>(Res)) 368 Result.push_back(std::make_pair((ConstantInt*)0, PredBB)); 369 else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res)) 370 Result.push_back(std::make_pair(CI, PredBB)); 371 } 372 373 return !Result.empty(); 374 } 375 376 377 // If comparing a live-in value against a constant, see if we know the 378 // live-in value on any predecessors. 379 if (LVI && isa<Constant>(Cmp->getOperand(1)) && 380 Cmp->getType()->isInteger() && // Not vector compare. 381 (!isa<Instruction>(Cmp->getOperand(0)) || 382 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB)) { 383 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 384 385 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 386 // If the value is known by LazyValueInfo to be a constant in a 387 // predecessor, use that information to try to thread this block. 388 LazyValueInfo::Tristate 389 Res = LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 390 RHSCst, *PI, BB); 391 if (Res == LazyValueInfo::Unknown) 392 continue; 393 394 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 395 Result.push_back(std::make_pair(cast<ConstantInt>(ResC), *PI)); 396 } 397 398 return !Result.empty(); 399 } 400 } 401 return false; 402 } 403 404 405 406 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 407 /// in an undefined jump, decide which block is best to revector to. 408 /// 409 /// Since we can pick an arbitrary destination, we pick the successor with the 410 /// fewest predecessors. This should reduce the in-degree of the others. 411 /// 412 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 413 TerminatorInst *BBTerm = BB->getTerminator(); 414 unsigned MinSucc = 0; 415 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 416 // Compute the successor with the minimum number of predecessors. 417 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 418 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 419 TestBB = BBTerm->getSuccessor(i); 420 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 421 if (NumPreds < MinNumPreds) 422 MinSucc = i; 423 } 424 425 return MinSucc; 426 } 427 428 /// ProcessBlock - If there are any predecessors whose control can be threaded 429 /// through to a successor, transform them now. 430 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 431 // If this block has a single predecessor, and if that pred has a single 432 // successor, merge the blocks. This encourages recursive jump threading 433 // because now the condition in this block can be threaded through 434 // predecessors of our predecessor block. 435 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 436 if (SinglePred->getTerminator()->getNumSuccessors() == 1 && 437 SinglePred != BB) { 438 // If SinglePred was a loop header, BB becomes one. 439 if (LoopHeaders.erase(SinglePred)) 440 LoopHeaders.insert(BB); 441 442 // Remember if SinglePred was the entry block of the function. If so, we 443 // will need to move BB back to the entry position. 444 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 445 MergeBasicBlockIntoOnlyPred(BB); 446 447 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 448 BB->moveBefore(&BB->getParent()->getEntryBlock()); 449 return true; 450 } 451 } 452 453 // Look to see if the terminator is a branch of switch, if not we can't thread 454 // it. 455 Value *Condition; 456 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 457 // Can't thread an unconditional jump. 458 if (BI->isUnconditional()) return false; 459 Condition = BI->getCondition(); 460 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 461 Condition = SI->getCondition(); 462 else 463 return false; // Must be an invoke. 464 465 // If the terminator of this block is branching on a constant, simplify the 466 // terminator to an unconditional branch. This can occur due to threading in 467 // other blocks. 468 if (isa<ConstantInt>(Condition)) { 469 DEBUG(errs() << " In block '" << BB->getName() 470 << "' folding terminator: " << *BB->getTerminator() << '\n'); 471 ++NumFolds; 472 ConstantFoldTerminator(BB); 473 return true; 474 } 475 476 // If the terminator is branching on an undef, we can pick any of the 477 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 478 if (isa<UndefValue>(Condition)) { 479 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 480 481 // Fold the branch/switch. 482 TerminatorInst *BBTerm = BB->getTerminator(); 483 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 484 if (i == BestSucc) continue; 485 RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD); 486 } 487 488 DEBUG(errs() << " In block '" << BB->getName() 489 << "' folding undef terminator: " << *BBTerm << '\n'); 490 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 491 BBTerm->eraseFromParent(); 492 return true; 493 } 494 495 Instruction *CondInst = dyn_cast<Instruction>(Condition); 496 497 // If the condition is an instruction defined in another block, see if a 498 // predecessor has the same condition: 499 // br COND, BBX, BBY 500 // BBX: 501 // br COND, BBZ, BBW 502 if (!LVI && 503 !Condition->hasOneUse() && // Multiple uses. 504 (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition. 505 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 506 if (isa<BranchInst>(BB->getTerminator())) { 507 for (; PI != E; ++PI) 508 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 509 if (PBI->isConditional() && PBI->getCondition() == Condition && 510 ProcessBranchOnDuplicateCond(*PI, BB)) 511 return true; 512 } else { 513 assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator"); 514 for (; PI != E; ++PI) 515 if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator())) 516 if (PSI->getCondition() == Condition && 517 ProcessSwitchOnDuplicateCond(*PI, BB)) 518 return true; 519 } 520 } 521 522 // All the rest of our checks depend on the condition being an instruction. 523 if (CondInst == 0) { 524 // FIXME: Unify this with code below. 525 if (LVI && ProcessThreadableEdges(Condition, BB)) 526 return true; 527 return false; 528 } 529 530 531 // See if this is a phi node in the current block. 532 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 533 if (PN->getParent() == BB) 534 return ProcessJumpOnPHI(PN); 535 536 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 537 if (!LVI && 538 (!isa<PHINode>(CondCmp->getOperand(0)) || 539 cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) { 540 // If we have a comparison, loop over the predecessors to see if there is 541 // a condition with a lexically identical value. 542 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 543 for (; PI != E; ++PI) 544 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 545 if (PBI->isConditional() && *PI != BB) { 546 if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) { 547 if (CI->getOperand(0) == CondCmp->getOperand(0) && 548 CI->getOperand(1) == CondCmp->getOperand(1) && 549 CI->getPredicate() == CondCmp->getPredicate()) { 550 // TODO: Could handle things like (x != 4) --> (x == 17) 551 if (ProcessBranchOnDuplicateCond(*PI, BB)) 552 return true; 553 } 554 } 555 } 556 } 557 } 558 559 // Check for some cases that are worth simplifying. Right now we want to look 560 // for loads that are used by a switch or by the condition for the branch. If 561 // we see one, check to see if it's partially redundant. If so, insert a PHI 562 // which can then be used to thread the values. 563 // 564 // This is particularly important because reg2mem inserts loads and stores all 565 // over the place, and this blocks jump threading if we don't zap them. 566 Value *SimplifyValue = CondInst; 567 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 568 if (isa<Constant>(CondCmp->getOperand(1))) 569 SimplifyValue = CondCmp->getOperand(0); 570 571 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 572 if (SimplifyPartiallyRedundantLoad(LI)) 573 return true; 574 575 576 // Handle a variety of cases where we are branching on something derived from 577 // a PHI node in the current block. If we can prove that any predecessors 578 // compute a predictable value based on a PHI node, thread those predecessors. 579 // 580 if (ProcessThreadableEdges(CondInst, BB)) 581 return true; 582 583 584 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 585 // "(X == 4)" thread through this block. 586 587 return false; 588 } 589 590 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that 591 /// block that jump on exactly the same condition. This means that we almost 592 /// always know the direction of the edge in the DESTBB: 593 /// PREDBB: 594 /// br COND, DESTBB, BBY 595 /// DESTBB: 596 /// br COND, BBZ, BBW 597 /// 598 /// If DESTBB has multiple predecessors, we can't just constant fold the branch 599 /// in DESTBB, we have to thread over it. 600 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB, 601 BasicBlock *BB) { 602 BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator()); 603 604 // If both successors of PredBB go to DESTBB, we don't know anything. We can 605 // fold the branch to an unconditional one, which allows other recursive 606 // simplifications. 607 bool BranchDir; 608 if (PredBI->getSuccessor(1) != BB) 609 BranchDir = true; 610 else if (PredBI->getSuccessor(0) != BB) 611 BranchDir = false; 612 else { 613 DEBUG(errs() << " In block '" << PredBB->getName() 614 << "' folding terminator: " << *PredBB->getTerminator() << '\n'); 615 ++NumFolds; 616 ConstantFoldTerminator(PredBB); 617 return true; 618 } 619 620 BranchInst *DestBI = cast<BranchInst>(BB->getTerminator()); 621 622 // If the dest block has one predecessor, just fix the branch condition to a 623 // constant and fold it. 624 if (BB->getSinglePredecessor()) { 625 DEBUG(errs() << " In block '" << BB->getName() 626 << "' folding condition to '" << BranchDir << "': " 627 << *BB->getTerminator() << '\n'); 628 ++NumFolds; 629 Value *OldCond = DestBI->getCondition(); 630 DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 631 BranchDir)); 632 ConstantFoldTerminator(BB); 633 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 634 return true; 635 } 636 637 638 // Next, figure out which successor we are threading to. 639 BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir); 640 641 SmallVector<BasicBlock*, 2> Preds; 642 Preds.push_back(PredBB); 643 644 // Ok, try to thread it! 645 return ThreadEdge(BB, Preds, SuccBB); 646 } 647 648 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that 649 /// block that switch on exactly the same condition. This means that we almost 650 /// always know the direction of the edge in the DESTBB: 651 /// PREDBB: 652 /// switch COND [... DESTBB, BBY ... ] 653 /// DESTBB: 654 /// switch COND [... BBZ, BBW ] 655 /// 656 /// Optimizing switches like this is very important, because simplifycfg builds 657 /// switches out of repeated 'if' conditions. 658 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, 659 BasicBlock *DestBB) { 660 // Can't thread edge to self. 661 if (PredBB == DestBB) 662 return false; 663 664 SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator()); 665 SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator()); 666 667 // There are a variety of optimizations that we can potentially do on these 668 // blocks: we order them from most to least preferable. 669 670 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB 671 // directly to their destination. This does not introduce *any* code size 672 // growth. Skip debug info first. 673 BasicBlock::iterator BBI = DestBB->begin(); 674 while (isa<DbgInfoIntrinsic>(BBI)) 675 BBI++; 676 677 // FIXME: Thread if it just contains a PHI. 678 if (isa<SwitchInst>(BBI)) { 679 bool MadeChange = false; 680 // Ignore the default edge for now. 681 for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) { 682 ConstantInt *DestVal = DestSI->getCaseValue(i); 683 BasicBlock *DestSucc = DestSI->getSuccessor(i); 684 685 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if 686 // PredSI has an explicit case for it. If so, forward. If it is covered 687 // by the default case, we can't update PredSI. 688 unsigned PredCase = PredSI->findCaseValue(DestVal); 689 if (PredCase == 0) continue; 690 691 // If PredSI doesn't go to DestBB on this value, then it won't reach the 692 // case on this condition. 693 if (PredSI->getSuccessor(PredCase) != DestBB && 694 DestSI->getSuccessor(i) != DestBB) 695 continue; 696 697 // Otherwise, we're safe to make the change. Make sure that the edge from 698 // DestSI to DestSucc is not critical and has no PHI nodes. 699 DEBUG(errs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI); 700 DEBUG(errs() << "THROUGH: " << *DestSI); 701 702 // If the destination has PHI nodes, just split the edge for updating 703 // simplicity. 704 if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){ 705 SplitCriticalEdge(DestSI, i, this); 706 DestSucc = DestSI->getSuccessor(i); 707 } 708 FoldSingleEntryPHINodes(DestSucc); 709 PredSI->setSuccessor(PredCase, DestSucc); 710 MadeChange = true; 711 } 712 713 if (MadeChange) 714 return true; 715 } 716 717 return false; 718 } 719 720 721 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 722 /// load instruction, eliminate it by replacing it with a PHI node. This is an 723 /// important optimization that encourages jump threading, and needs to be run 724 /// interlaced with other jump threading tasks. 725 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 726 // Don't hack volatile loads. 727 if (LI->isVolatile()) return false; 728 729 // If the load is defined in a block with exactly one predecessor, it can't be 730 // partially redundant. 731 BasicBlock *LoadBB = LI->getParent(); 732 if (LoadBB->getSinglePredecessor()) 733 return false; 734 735 Value *LoadedPtr = LI->getOperand(0); 736 737 // If the loaded operand is defined in the LoadBB, it can't be available. 738 // FIXME: Could do PHI translation, that would be fun :) 739 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 740 if (PtrOp->getParent() == LoadBB) 741 return false; 742 743 // Scan a few instructions up from the load, to see if it is obviously live at 744 // the entry to its block. 745 BasicBlock::iterator BBIt = LI; 746 747 if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB, 748 BBIt, 6)) { 749 // If the value if the load is locally available within the block, just use 750 // it. This frequently occurs for reg2mem'd allocas. 751 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 752 753 // If the returned value is the load itself, replace with an undef. This can 754 // only happen in dead loops. 755 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 756 LI->replaceAllUsesWith(AvailableVal); 757 LI->eraseFromParent(); 758 return true; 759 } 760 761 // Otherwise, if we scanned the whole block and got to the top of the block, 762 // we know the block is locally transparent to the load. If not, something 763 // might clobber its value. 764 if (BBIt != LoadBB->begin()) 765 return false; 766 767 768 SmallPtrSet<BasicBlock*, 8> PredsScanned; 769 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 770 AvailablePredsTy AvailablePreds; 771 BasicBlock *OneUnavailablePred = 0; 772 773 // If we got here, the loaded value is transparent through to the start of the 774 // block. Check to see if it is available in any of the predecessor blocks. 775 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 776 PI != PE; ++PI) { 777 BasicBlock *PredBB = *PI; 778 779 // If we already scanned this predecessor, skip it. 780 if (!PredsScanned.insert(PredBB)) 781 continue; 782 783 // Scan the predecessor to see if the value is available in the pred. 784 BBIt = PredBB->end(); 785 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6); 786 if (!PredAvailable) { 787 OneUnavailablePred = PredBB; 788 continue; 789 } 790 791 // If so, this load is partially redundant. Remember this info so that we 792 // can create a PHI node. 793 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 794 } 795 796 // If the loaded value isn't available in any predecessor, it isn't partially 797 // redundant. 798 if (AvailablePreds.empty()) return false; 799 800 // Okay, the loaded value is available in at least one (and maybe all!) 801 // predecessors. If the value is unavailable in more than one unique 802 // predecessor, we want to insert a merge block for those common predecessors. 803 // This ensures that we only have to insert one reload, thus not increasing 804 // code size. 805 BasicBlock *UnavailablePred = 0; 806 807 // If there is exactly one predecessor where the value is unavailable, the 808 // already computed 'OneUnavailablePred' block is it. If it ends in an 809 // unconditional branch, we know that it isn't a critical edge. 810 if (PredsScanned.size() == AvailablePreds.size()+1 && 811 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 812 UnavailablePred = OneUnavailablePred; 813 } else if (PredsScanned.size() != AvailablePreds.size()) { 814 // Otherwise, we had multiple unavailable predecessors or we had a critical 815 // edge from the one. 816 SmallVector<BasicBlock*, 8> PredsToSplit; 817 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 818 819 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 820 AvailablePredSet.insert(AvailablePreds[i].first); 821 822 // Add all the unavailable predecessors to the PredsToSplit list. 823 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 824 PI != PE; ++PI) 825 if (!AvailablePredSet.count(*PI)) 826 PredsToSplit.push_back(*PI); 827 828 // Split them out to their own block. 829 UnavailablePred = 830 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(), 831 "thread-split", this); 832 } 833 834 // If the value isn't available in all predecessors, then there will be 835 // exactly one where it isn't available. Insert a load on that edge and add 836 // it to the AvailablePreds list. 837 if (UnavailablePred) { 838 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 839 "Can't handle critical edge here!"); 840 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", 841 UnavailablePred->getTerminator()); 842 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 843 } 844 845 // Now we know that each predecessor of this block has a value in 846 // AvailablePreds, sort them for efficient access as we're walking the preds. 847 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 848 849 // Create a PHI node at the start of the block for the PRE'd load value. 850 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin()); 851 PN->takeName(LI); 852 853 // Insert new entries into the PHI for each predecessor. A single block may 854 // have multiple entries here. 855 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E; 856 ++PI) { 857 AvailablePredsTy::iterator I = 858 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 859 std::make_pair(*PI, (Value*)0)); 860 861 assert(I != AvailablePreds.end() && I->first == *PI && 862 "Didn't find entry for predecessor!"); 863 864 PN->addIncoming(I->second, I->first); 865 } 866 867 //cerr << "PRE: " << *LI << *PN << "\n"; 868 869 LI->replaceAllUsesWith(PN); 870 LI->eraseFromParent(); 871 872 return true; 873 } 874 875 /// FindMostPopularDest - The specified list contains multiple possible 876 /// threadable destinations. Pick the one that occurs the most frequently in 877 /// the list. 878 static BasicBlock * 879 FindMostPopularDest(BasicBlock *BB, 880 const SmallVectorImpl<std::pair<BasicBlock*, 881 BasicBlock*> > &PredToDestList) { 882 assert(!PredToDestList.empty()); 883 884 // Determine popularity. If there are multiple possible destinations, we 885 // explicitly choose to ignore 'undef' destinations. We prefer to thread 886 // blocks with known and real destinations to threading undef. We'll handle 887 // them later if interesting. 888 DenseMap<BasicBlock*, unsigned> DestPopularity; 889 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 890 if (PredToDestList[i].second) 891 DestPopularity[PredToDestList[i].second]++; 892 893 // Find the most popular dest. 894 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 895 BasicBlock *MostPopularDest = DPI->first; 896 unsigned Popularity = DPI->second; 897 SmallVector<BasicBlock*, 4> SamePopularity; 898 899 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 900 // If the popularity of this entry isn't higher than the popularity we've 901 // seen so far, ignore it. 902 if (DPI->second < Popularity) 903 ; // ignore. 904 else if (DPI->second == Popularity) { 905 // If it is the same as what we've seen so far, keep track of it. 906 SamePopularity.push_back(DPI->first); 907 } else { 908 // If it is more popular, remember it. 909 SamePopularity.clear(); 910 MostPopularDest = DPI->first; 911 Popularity = DPI->second; 912 } 913 } 914 915 // Okay, now we know the most popular destination. If there is more than 916 // destination, we need to determine one. This is arbitrary, but we need 917 // to make a deterministic decision. Pick the first one that appears in the 918 // successor list. 919 if (!SamePopularity.empty()) { 920 SamePopularity.push_back(MostPopularDest); 921 TerminatorInst *TI = BB->getTerminator(); 922 for (unsigned i = 0; ; ++i) { 923 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 924 925 if (std::find(SamePopularity.begin(), SamePopularity.end(), 926 TI->getSuccessor(i)) == SamePopularity.end()) 927 continue; 928 929 MostPopularDest = TI->getSuccessor(i); 930 break; 931 } 932 } 933 934 // Okay, we have finally picked the most popular destination. 935 return MostPopularDest; 936 } 937 938 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) { 939 // If threading this would thread across a loop header, don't even try to 940 // thread the edge. 941 if (LoopHeaders.count(BB)) 942 return false; 943 944 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues; 945 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues)) 946 return false; 947 assert(!PredValues.empty() && 948 "ComputeValueKnownInPredecessors returned true with no values"); 949 950 DEBUG(errs() << "IN BB: " << *BB; 951 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 952 errs() << " BB '" << BB->getName() << "': FOUND condition = "; 953 if (PredValues[i].first) 954 errs() << *PredValues[i].first; 955 else 956 errs() << "UNDEF"; 957 errs() << " for pred '" << PredValues[i].second->getName() 958 << "'.\n"; 959 }); 960 961 // Decide what we want to thread through. Convert our list of known values to 962 // a list of known destinations for each pred. This also discards duplicate 963 // predecessors and keeps track of the undefined inputs (which are represented 964 // as a null dest in the PredToDestList). 965 SmallPtrSet<BasicBlock*, 16> SeenPreds; 966 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 967 968 BasicBlock *OnlyDest = 0; 969 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 970 971 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 972 BasicBlock *Pred = PredValues[i].second; 973 if (!SeenPreds.insert(Pred)) 974 continue; // Duplicate predecessor entry. 975 976 // If the predecessor ends with an indirect goto, we can't change its 977 // destination. 978 if (isa<IndirectBrInst>(Pred->getTerminator())) 979 continue; 980 981 ConstantInt *Val = PredValues[i].first; 982 983 BasicBlock *DestBB; 984 if (Val == 0) // Undef. 985 DestBB = 0; 986 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 987 DestBB = BI->getSuccessor(Val->isZero()); 988 else { 989 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator()); 990 DestBB = SI->getSuccessor(SI->findCaseValue(Val)); 991 } 992 993 // If we have exactly one destination, remember it for efficiency below. 994 if (i == 0) 995 OnlyDest = DestBB; 996 else if (OnlyDest != DestBB) 997 OnlyDest = MultipleDestSentinel; 998 999 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1000 } 1001 1002 // If all edges were unthreadable, we fail. 1003 if (PredToDestList.empty()) 1004 return false; 1005 1006 // Determine which is the most common successor. If we have many inputs and 1007 // this block is a switch, we want to start by threading the batch that goes 1008 // to the most popular destination first. If we only know about one 1009 // threadable destination (the common case) we can avoid this. 1010 BasicBlock *MostPopularDest = OnlyDest; 1011 1012 if (MostPopularDest == MultipleDestSentinel) 1013 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1014 1015 // Now that we know what the most popular destination is, factor all 1016 // predecessors that will jump to it into a single predecessor. 1017 SmallVector<BasicBlock*, 16> PredsToFactor; 1018 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1019 if (PredToDestList[i].second == MostPopularDest) { 1020 BasicBlock *Pred = PredToDestList[i].first; 1021 1022 // This predecessor may be a switch or something else that has multiple 1023 // edges to the block. Factor each of these edges by listing them 1024 // according to # occurrences in PredsToFactor. 1025 TerminatorInst *PredTI = Pred->getTerminator(); 1026 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 1027 if (PredTI->getSuccessor(i) == BB) 1028 PredsToFactor.push_back(Pred); 1029 } 1030 1031 // If the threadable edges are branching on an undefined value, we get to pick 1032 // the destination that these predecessors should get to. 1033 if (MostPopularDest == 0) 1034 MostPopularDest = BB->getTerminator()-> 1035 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1036 1037 // Ok, try to thread it! 1038 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1039 } 1040 1041 /// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in 1042 /// the current block. See if there are any simplifications we can do based on 1043 /// inputs to the phi node. 1044 /// 1045 bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) { 1046 BasicBlock *BB = PN->getParent(); 1047 1048 // If any of the predecessor blocks end in an unconditional branch, we can 1049 // *duplicate* the jump into that block in order to further encourage jump 1050 // threading and to eliminate cases where we have branch on a phi of an icmp 1051 // (branch on icmp is much better). 1052 1053 // We don't want to do this tranformation for switches, because we don't 1054 // really want to duplicate a switch. 1055 if (isa<SwitchInst>(BB->getTerminator())) 1056 return false; 1057 1058 // Look for unconditional branch predecessors. 1059 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1060 BasicBlock *PredBB = PN->getIncomingBlock(i); 1061 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1062 if (PredBr->isUnconditional() && 1063 // Try to duplicate BB into PredBB. 1064 DuplicateCondBranchOnPHIIntoPred(BB, PredBB)) 1065 return true; 1066 } 1067 1068 return false; 1069 } 1070 1071 1072 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1073 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1074 /// NewPred using the entries from OldPred (suitably mapped). 1075 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1076 BasicBlock *OldPred, 1077 BasicBlock *NewPred, 1078 DenseMap<Instruction*, Value*> &ValueMap) { 1079 for (BasicBlock::iterator PNI = PHIBB->begin(); 1080 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1081 // Ok, we have a PHI node. Figure out what the incoming value was for the 1082 // DestBlock. 1083 Value *IV = PN->getIncomingValueForBlock(OldPred); 1084 1085 // Remap the value if necessary. 1086 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1087 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1088 if (I != ValueMap.end()) 1089 IV = I->second; 1090 } 1091 1092 PN->addIncoming(IV, NewPred); 1093 } 1094 } 1095 1096 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1097 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1098 /// across BB. Transform the IR to reflect this change. 1099 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1100 const SmallVectorImpl<BasicBlock*> &PredBBs, 1101 BasicBlock *SuccBB) { 1102 // If threading to the same block as we come from, we would infinite loop. 1103 if (SuccBB == BB) { 1104 DEBUG(errs() << " Not threading across BB '" << BB->getName() 1105 << "' - would thread to self!\n"); 1106 return false; 1107 } 1108 1109 // If threading this would thread across a loop header, don't thread the edge. 1110 // See the comments above FindLoopHeaders for justifications and caveats. 1111 if (LoopHeaders.count(BB)) { 1112 DEBUG(errs() << " Not threading across loop header BB '" << BB->getName() 1113 << "' to dest BB '" << SuccBB->getName() 1114 << "' - it might create an irreducible loop!\n"); 1115 return false; 1116 } 1117 1118 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB); 1119 if (JumpThreadCost > Threshold) { 1120 DEBUG(errs() << " Not threading BB '" << BB->getName() 1121 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1122 return false; 1123 } 1124 1125 // And finally, do it! Start by factoring the predecessors is needed. 1126 BasicBlock *PredBB; 1127 if (PredBBs.size() == 1) 1128 PredBB = PredBBs[0]; 1129 else { 1130 DEBUG(errs() << " Factoring out " << PredBBs.size() 1131 << " common predecessors.\n"); 1132 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), 1133 ".thr_comm", this); 1134 } 1135 1136 // And finally, do it! 1137 DEBUG(errs() << " Threading edge from '" << PredBB->getName() << "' to '" 1138 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1139 << ", across block:\n " 1140 << *BB << "\n"); 1141 1142 // We are going to have to map operands from the original BB block to the new 1143 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1144 // account for entry from PredBB. 1145 DenseMap<Instruction*, Value*> ValueMapping; 1146 1147 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1148 BB->getName()+".thread", 1149 BB->getParent(), BB); 1150 NewBB->moveAfter(PredBB); 1151 1152 BasicBlock::iterator BI = BB->begin(); 1153 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1154 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1155 1156 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1157 // mapping and using it to remap operands in the cloned instructions. 1158 for (; !isa<TerminatorInst>(BI); ++BI) { 1159 Instruction *New = BI->clone(); 1160 New->setName(BI->getName()); 1161 NewBB->getInstList().push_back(New); 1162 ValueMapping[BI] = New; 1163 1164 // Remap operands to patch up intra-block references. 1165 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1166 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1167 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1168 if (I != ValueMapping.end()) 1169 New->setOperand(i, I->second); 1170 } 1171 } 1172 1173 // We didn't copy the terminator from BB over to NewBB, because there is now 1174 // an unconditional jump to SuccBB. Insert the unconditional jump. 1175 BranchInst::Create(SuccBB, NewBB); 1176 1177 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1178 // PHI nodes for NewBB now. 1179 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1180 1181 // If there were values defined in BB that are used outside the block, then we 1182 // now have to update all uses of the value to use either the original value, 1183 // the cloned value, or some PHI derived value. This can require arbitrary 1184 // PHI insertion, of which we are prepared to do, clean these up now. 1185 SSAUpdater SSAUpdate; 1186 SmallVector<Use*, 16> UsesToRename; 1187 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1188 // Scan all uses of this instruction to see if it is used outside of its 1189 // block, and if so, record them in UsesToRename. 1190 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1191 ++UI) { 1192 Instruction *User = cast<Instruction>(*UI); 1193 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1194 if (UserPN->getIncomingBlock(UI) == BB) 1195 continue; 1196 } else if (User->getParent() == BB) 1197 continue; 1198 1199 UsesToRename.push_back(&UI.getUse()); 1200 } 1201 1202 // If there are no uses outside the block, we're done with this instruction. 1203 if (UsesToRename.empty()) 1204 continue; 1205 1206 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1207 1208 // We found a use of I outside of BB. Rename all uses of I that are outside 1209 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1210 // with the two values we know. 1211 SSAUpdate.Initialize(I); 1212 SSAUpdate.AddAvailableValue(BB, I); 1213 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); 1214 1215 while (!UsesToRename.empty()) 1216 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1217 DEBUG(errs() << "\n"); 1218 } 1219 1220 1221 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1222 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1223 // us to simplify any PHI nodes in BB. 1224 TerminatorInst *PredTerm = PredBB->getTerminator(); 1225 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1226 if (PredTerm->getSuccessor(i) == BB) { 1227 RemovePredecessorAndSimplify(BB, PredBB, TD); 1228 PredTerm->setSuccessor(i, NewBB); 1229 } 1230 1231 // At this point, the IR is fully up to date and consistent. Do a quick scan 1232 // over the new instructions and zap any that are constants or dead. This 1233 // frequently happens because of phi translation. 1234 BI = NewBB->begin(); 1235 for (BasicBlock::iterator E = NewBB->end(); BI != E; ) { 1236 Instruction *Inst = BI++; 1237 1238 if (Value *V = SimplifyInstruction(Inst, TD)) { 1239 WeakVH BIHandle(BI); 1240 ReplaceAndSimplifyAllUses(Inst, V, TD); 1241 if (BIHandle == 0) 1242 BI = NewBB->begin(); 1243 continue; 1244 } 1245 1246 RecursivelyDeleteTriviallyDeadInstructions(Inst); 1247 } 1248 1249 // Threaded an edge! 1250 ++NumThreads; 1251 return true; 1252 } 1253 1254 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1255 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1256 /// If we can duplicate the contents of BB up into PredBB do so now, this 1257 /// improves the odds that the branch will be on an analyzable instruction like 1258 /// a compare. 1259 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1260 BasicBlock *PredBB) { 1261 // If BB is a loop header, then duplicating this block outside the loop would 1262 // cause us to transform this into an irreducible loop, don't do this. 1263 // See the comments above FindLoopHeaders for justifications and caveats. 1264 if (LoopHeaders.count(BB)) { 1265 DEBUG(errs() << " Not duplicating loop header '" << BB->getName() 1266 << "' into predecessor block '" << PredBB->getName() 1267 << "' - it might create an irreducible loop!\n"); 1268 return false; 1269 } 1270 1271 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB); 1272 if (DuplicationCost > Threshold) { 1273 DEBUG(errs() << " Not duplicating BB '" << BB->getName() 1274 << "' - Cost is too high: " << DuplicationCost << "\n"); 1275 return false; 1276 } 1277 1278 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1279 // of PredBB. 1280 DEBUG(errs() << " Duplicating block '" << BB->getName() << "' into end of '" 1281 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1282 << DuplicationCost << " block is:" << *BB << "\n"); 1283 1284 // We are going to have to map operands from the original BB block into the 1285 // PredBB block. Evaluate PHI nodes in BB. 1286 DenseMap<Instruction*, Value*> ValueMapping; 1287 1288 BasicBlock::iterator BI = BB->begin(); 1289 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1290 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1291 1292 BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1293 1294 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1295 // mapping and using it to remap operands in the cloned instructions. 1296 for (; BI != BB->end(); ++BI) { 1297 Instruction *New = BI->clone(); 1298 New->setName(BI->getName()); 1299 PredBB->getInstList().insert(OldPredBranch, New); 1300 ValueMapping[BI] = New; 1301 1302 // Remap operands to patch up intra-block references. 1303 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1304 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1305 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1306 if (I != ValueMapping.end()) 1307 New->setOperand(i, I->second); 1308 } 1309 } 1310 1311 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1312 // add entries to the PHI nodes for branch from PredBB now. 1313 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1314 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1315 ValueMapping); 1316 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1317 ValueMapping); 1318 1319 // If there were values defined in BB that are used outside the block, then we 1320 // now have to update all uses of the value to use either the original value, 1321 // the cloned value, or some PHI derived value. This can require arbitrary 1322 // PHI insertion, of which we are prepared to do, clean these up now. 1323 SSAUpdater SSAUpdate; 1324 SmallVector<Use*, 16> UsesToRename; 1325 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1326 // Scan all uses of this instruction to see if it is used outside of its 1327 // block, and if so, record them in UsesToRename. 1328 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1329 ++UI) { 1330 Instruction *User = cast<Instruction>(*UI); 1331 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1332 if (UserPN->getIncomingBlock(UI) == BB) 1333 continue; 1334 } else if (User->getParent() == BB) 1335 continue; 1336 1337 UsesToRename.push_back(&UI.getUse()); 1338 } 1339 1340 // If there are no uses outside the block, we're done with this instruction. 1341 if (UsesToRename.empty()) 1342 continue; 1343 1344 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1345 1346 // We found a use of I outside of BB. Rename all uses of I that are outside 1347 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1348 // with the two values we know. 1349 SSAUpdate.Initialize(I); 1350 SSAUpdate.AddAvailableValue(BB, I); 1351 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); 1352 1353 while (!UsesToRename.empty()) 1354 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1355 DEBUG(errs() << "\n"); 1356 } 1357 1358 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1359 // that we nuked. 1360 RemovePredecessorAndSimplify(BB, PredBB, TD); 1361 1362 // Remove the unconditional branch at the end of the PredBB block. 1363 OldPredBranch->eraseFromParent(); 1364 1365 ++NumDupes; 1366 return true; 1367 } 1368 1369 1370