xref: /llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp (revision c5978f1eb5eeca8610b9dfce1fcbf1f473911cd8)
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Jump Threading pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Scalar/JumpThreading.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/BlockFrequencyInfo.h"
23 #include "llvm/Analysis/BranchProbabilityInfo.h"
24 #include "llvm/Analysis/CFG.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/GlobalsModRef.h"
27 #include "llvm/Analysis/GuardUtils.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/LazyValueInfo.h"
30 #include "llvm/Analysis/Loads.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/PostDominators.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DebugInfo.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/PassManager.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/IR/ProfDataUtils.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/Use.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/Support/BlockFrequency.h"
62 #include "llvm/Support/BranchProbability.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
68 #include "llvm/Transforms/Utils/Cloning.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include "llvm/Transforms/Utils/SSAUpdater.h"
71 #include "llvm/Transforms/Utils/ValueMapper.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <iterator>
76 #include <memory>
77 #include <utility>
78 
79 using namespace llvm;
80 using namespace jumpthreading;
81 
82 #define DEBUG_TYPE "jump-threading"
83 
84 STATISTIC(NumThreads, "Number of jumps threaded");
85 STATISTIC(NumFolds,   "Number of terminators folded");
86 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
87 
88 static cl::opt<unsigned>
89 BBDuplicateThreshold("jump-threading-threshold",
90           cl::desc("Max block size to duplicate for jump threading"),
91           cl::init(6), cl::Hidden);
92 
93 static cl::opt<unsigned>
94 ImplicationSearchThreshold(
95   "jump-threading-implication-search-threshold",
96   cl::desc("The number of predecessors to search for a stronger "
97            "condition to use to thread over a weaker condition"),
98   cl::init(3), cl::Hidden);
99 
100 static cl::opt<unsigned> PhiDuplicateThreshold(
101     "jump-threading-phi-threshold",
102     cl::desc("Max PHIs in BB to duplicate for jump threading"), cl::init(76),
103     cl::Hidden);
104 
105 static cl::opt<bool> ThreadAcrossLoopHeaders(
106     "jump-threading-across-loop-headers",
107     cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
108     cl::init(false), cl::Hidden);
109 
110 JumpThreadingPass::JumpThreadingPass(int T) {
111   DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
112 }
113 
114 // Update branch probability information according to conditional
115 // branch probability. This is usually made possible for cloned branches
116 // in inline instances by the context specific profile in the caller.
117 // For instance,
118 //
119 //  [Block PredBB]
120 //  [Branch PredBr]
121 //  if (t) {
122 //     Block A;
123 //  } else {
124 //     Block B;
125 //  }
126 //
127 //  [Block BB]
128 //  cond = PN([true, %A], [..., %B]); // PHI node
129 //  [Branch CondBr]
130 //  if (cond) {
131 //    ...  // P(cond == true) = 1%
132 //  }
133 //
134 //  Here we know that when block A is taken, cond must be true, which means
135 //      P(cond == true | A) = 1
136 //
137 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
138 //                               P(cond == true | B) * P(B)
139 //  we get:
140 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
141 //
142 //  which gives us:
143 //     P(A) is less than P(cond == true), i.e.
144 //     P(t == true) <= P(cond == true)
145 //
146 //  In other words, if we know P(cond == true) is unlikely, we know
147 //  that P(t == true) is also unlikely.
148 //
149 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
150   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
151   if (!CondBr)
152     return;
153 
154   uint64_t TrueWeight, FalseWeight;
155   if (!extractBranchWeights(*CondBr, TrueWeight, FalseWeight))
156     return;
157 
158   if (TrueWeight + FalseWeight == 0)
159     // Zero branch_weights do not give a hint for getting branch probabilities.
160     // Technically it would result in division by zero denominator, which is
161     // TrueWeight + FalseWeight.
162     return;
163 
164   // Returns the outgoing edge of the dominating predecessor block
165   // that leads to the PhiNode's incoming block:
166   auto GetPredOutEdge =
167       [](BasicBlock *IncomingBB,
168          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
169     auto *PredBB = IncomingBB;
170     auto *SuccBB = PhiBB;
171     SmallPtrSet<BasicBlock *, 16> Visited;
172     while (true) {
173       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
174       if (PredBr && PredBr->isConditional())
175         return {PredBB, SuccBB};
176       Visited.insert(PredBB);
177       auto *SinglePredBB = PredBB->getSinglePredecessor();
178       if (!SinglePredBB)
179         return {nullptr, nullptr};
180 
181       // Stop searching when SinglePredBB has been visited. It means we see
182       // an unreachable loop.
183       if (Visited.count(SinglePredBB))
184         return {nullptr, nullptr};
185 
186       SuccBB = PredBB;
187       PredBB = SinglePredBB;
188     }
189   };
190 
191   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
192     Value *PhiOpnd = PN->getIncomingValue(i);
193     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
194 
195     if (!CI || !CI->getType()->isIntegerTy(1))
196       continue;
197 
198     BranchProbability BP =
199         (CI->isOne() ? BranchProbability::getBranchProbability(
200                            TrueWeight, TrueWeight + FalseWeight)
201                      : BranchProbability::getBranchProbability(
202                            FalseWeight, TrueWeight + FalseWeight));
203 
204     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
205     if (!PredOutEdge.first)
206       return;
207 
208     BasicBlock *PredBB = PredOutEdge.first;
209     BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
210     if (!PredBr)
211       return;
212 
213     uint64_t PredTrueWeight, PredFalseWeight;
214     // FIXME: We currently only set the profile data when it is missing.
215     // With PGO, this can be used to refine even existing profile data with
216     // context information. This needs to be done after more performance
217     // testing.
218     if (extractBranchWeights(*PredBr, PredTrueWeight, PredFalseWeight))
219       continue;
220 
221     // We can not infer anything useful when BP >= 50%, because BP is the
222     // upper bound probability value.
223     if (BP >= BranchProbability(50, 100))
224       continue;
225 
226     uint32_t Weights[2];
227     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
228       Weights[0] = BP.getNumerator();
229       Weights[1] = BP.getCompl().getNumerator();
230     } else {
231       Weights[0] = BP.getCompl().getNumerator();
232       Weights[1] = BP.getNumerator();
233     }
234     setBranchWeights(*PredBr, Weights, hasBranchWeightOrigin(*PredBr));
235   }
236 }
237 
238 PreservedAnalyses JumpThreadingPass::run(Function &F,
239                                          FunctionAnalysisManager &AM) {
240   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
241   // Jump Threading has no sense for the targets with divergent CF
242   if (TTI.hasBranchDivergence(&F))
243     return PreservedAnalyses::all();
244   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
245   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
246   auto &AA = AM.getResult<AAManager>(F);
247   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
248 
249   bool Changed =
250       runImpl(F, &AM, &TLI, &TTI, &LVI, &AA,
251               std::make_unique<DomTreeUpdater>(
252                   &DT, nullptr, DomTreeUpdater::UpdateStrategy::Lazy),
253               std::nullopt, std::nullopt);
254 
255   if (!Changed)
256     return PreservedAnalyses::all();
257 
258 
259   getDomTreeUpdater()->flush();
260 
261 #if defined(EXPENSIVE_CHECKS)
262   assert(getDomTreeUpdater()->getDomTree().verify(
263              DominatorTree::VerificationLevel::Full) &&
264          "DT broken after JumpThreading");
265   assert((!getDomTreeUpdater()->hasPostDomTree() ||
266           getDomTreeUpdater()->getPostDomTree().verify(
267               PostDominatorTree::VerificationLevel::Full)) &&
268          "PDT broken after JumpThreading");
269 #else
270   assert(getDomTreeUpdater()->getDomTree().verify(
271              DominatorTree::VerificationLevel::Fast) &&
272          "DT broken after JumpThreading");
273   assert((!getDomTreeUpdater()->hasPostDomTree() ||
274           getDomTreeUpdater()->getPostDomTree().verify(
275               PostDominatorTree::VerificationLevel::Fast)) &&
276          "PDT broken after JumpThreading");
277 #endif
278 
279   return getPreservedAnalysis();
280 }
281 
282 bool JumpThreadingPass::runImpl(Function &F_, FunctionAnalysisManager *FAM_,
283                                 TargetLibraryInfo *TLI_,
284                                 TargetTransformInfo *TTI_, LazyValueInfo *LVI_,
285                                 AliasAnalysis *AA_,
286                                 std::unique_ptr<DomTreeUpdater> DTU_,
287                                 std::optional<BlockFrequencyInfo *> BFI_,
288                                 std::optional<BranchProbabilityInfo *> BPI_) {
289   LLVM_DEBUG(dbgs() << "Jump threading on function '" << F_.getName() << "'\n");
290   F = &F_;
291   FAM = FAM_;
292   TLI = TLI_;
293   TTI = TTI_;
294   LVI = LVI_;
295   AA = AA_;
296   DTU = std::move(DTU_);
297   BFI = BFI_;
298   BPI = BPI_;
299   auto *GuardDecl = F->getParent()->getFunction(
300       Intrinsic::getName(Intrinsic::experimental_guard));
301   HasGuards = GuardDecl && !GuardDecl->use_empty();
302 
303   // Reduce the number of instructions duplicated when optimizing strictly for
304   // size.
305   if (BBDuplicateThreshold.getNumOccurrences())
306     BBDupThreshold = BBDuplicateThreshold;
307   else if (F->hasFnAttribute(Attribute::MinSize))
308     BBDupThreshold = 3;
309   else
310     BBDupThreshold = DefaultBBDupThreshold;
311 
312   // JumpThreading must not processes blocks unreachable from entry. It's a
313   // waste of compute time and can potentially lead to hangs.
314   SmallPtrSet<BasicBlock *, 16> Unreachable;
315   assert(DTU && "DTU isn't passed into JumpThreading before using it.");
316   assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
317   DominatorTree &DT = DTU->getDomTree();
318   for (auto &BB : *F)
319     if (!DT.isReachableFromEntry(&BB))
320       Unreachable.insert(&BB);
321 
322   if (!ThreadAcrossLoopHeaders)
323     findLoopHeaders(*F);
324 
325   bool EverChanged = false;
326   bool Changed;
327   do {
328     Changed = false;
329     for (auto &BB : *F) {
330       if (Unreachable.count(&BB))
331         continue;
332       while (processBlock(&BB)) // Thread all of the branches we can over BB.
333         Changed = ChangedSinceLastAnalysisUpdate = true;
334 
335       // Jump threading may have introduced redundant debug values into BB
336       // which should be removed.
337       if (Changed)
338         RemoveRedundantDbgInstrs(&BB);
339 
340       // Stop processing BB if it's the entry or is now deleted. The following
341       // routines attempt to eliminate BB and locating a suitable replacement
342       // for the entry is non-trivial.
343       if (&BB == &F->getEntryBlock() || DTU->isBBPendingDeletion(&BB))
344         continue;
345 
346       if (pred_empty(&BB)) {
347         // When processBlock makes BB unreachable it doesn't bother to fix up
348         // the instructions in it. We must remove BB to prevent invalid IR.
349         LLVM_DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
350                           << "' with terminator: " << *BB.getTerminator()
351                           << '\n');
352         LoopHeaders.erase(&BB);
353         LVI->eraseBlock(&BB);
354         DeleteDeadBlock(&BB, DTU.get());
355         Changed = ChangedSinceLastAnalysisUpdate = true;
356         continue;
357       }
358 
359       // processBlock doesn't thread BBs with unconditional TIs. However, if BB
360       // is "almost empty", we attempt to merge BB with its sole successor.
361       auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
362       if (BI && BI->isUnconditional()) {
363         BasicBlock *Succ = BI->getSuccessor(0);
364         if (
365             // The terminator must be the only non-phi instruction in BB.
366             BB.getFirstNonPHIOrDbg(true)->isTerminator() &&
367             // Don't alter Loop headers and latches to ensure another pass can
368             // detect and transform nested loops later.
369             !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) &&
370             TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU.get())) {
371           RemoveRedundantDbgInstrs(Succ);
372           // BB is valid for cleanup here because we passed in DTU. F remains
373           // BB's parent until a DTU->getDomTree() event.
374           LVI->eraseBlock(&BB);
375           Changed = ChangedSinceLastAnalysisUpdate = true;
376         }
377       }
378     }
379     EverChanged |= Changed;
380   } while (Changed);
381 
382   LoopHeaders.clear();
383   return EverChanged;
384 }
385 
386 // Replace uses of Cond with ToVal when safe to do so. If all uses are
387 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
388 // because we may incorrectly replace uses when guards/assumes are uses of
389 // of `Cond` and we used the guards/assume to reason about the `Cond` value
390 // at the end of block. RAUW unconditionally replaces all uses
391 // including the guards/assumes themselves and the uses before the
392 // guard/assume.
393 static bool replaceFoldableUses(Instruction *Cond, Value *ToVal,
394                                 BasicBlock *KnownAtEndOfBB) {
395   bool Changed = false;
396   assert(Cond->getType() == ToVal->getType());
397   // We can unconditionally replace all uses in non-local blocks (i.e. uses
398   // strictly dominated by BB), since LVI information is true from the
399   // terminator of BB.
400   if (Cond->getParent() == KnownAtEndOfBB)
401     Changed |= replaceNonLocalUsesWith(Cond, ToVal);
402   for (Instruction &I : reverse(*KnownAtEndOfBB)) {
403     // Replace any debug-info record users of Cond with ToVal.
404     for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange()))
405       DVR.replaceVariableLocationOp(Cond, ToVal, true);
406 
407     // Reached the Cond whose uses we are trying to replace, so there are no
408     // more uses.
409     if (&I == Cond)
410       break;
411     // We only replace uses in instructions that are guaranteed to reach the end
412     // of BB, where we know Cond is ToVal.
413     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
414       break;
415     Changed |= I.replaceUsesOfWith(Cond, ToVal);
416   }
417   if (Cond->use_empty() && !Cond->mayHaveSideEffects()) {
418     Cond->eraseFromParent();
419     Changed = true;
420   }
421   return Changed;
422 }
423 
424 /// Return the cost of duplicating a piece of this block from first non-phi
425 /// and before StopAt instruction to thread across it. Stop scanning the block
426 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
427 static unsigned getJumpThreadDuplicationCost(const TargetTransformInfo *TTI,
428                                              BasicBlock *BB,
429                                              Instruction *StopAt,
430                                              unsigned Threshold) {
431   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
432 
433   // Do not duplicate the BB if it has a lot of PHI nodes.
434   // If a threadable chain is too long then the number of PHI nodes can add up,
435   // leading to a substantial increase in compile time when rewriting the SSA.
436   unsigned PhiCount = 0;
437   Instruction *FirstNonPHI = nullptr;
438   for (Instruction &I : *BB) {
439     if (!isa<PHINode>(&I)) {
440       FirstNonPHI = &I;
441       break;
442     }
443     if (++PhiCount > PhiDuplicateThreshold)
444       return ~0U;
445   }
446 
447   /// Ignore PHI nodes, these will be flattened when duplication happens.
448   BasicBlock::const_iterator I(FirstNonPHI);
449 
450   // FIXME: THREADING will delete values that are just used to compute the
451   // branch, so they shouldn't count against the duplication cost.
452 
453   unsigned Bonus = 0;
454   if (BB->getTerminator() == StopAt) {
455     // Threading through a switch statement is particularly profitable.  If this
456     // block ends in a switch, decrease its cost to make it more likely to
457     // happen.
458     if (isa<SwitchInst>(StopAt))
459       Bonus = 6;
460 
461     // The same holds for indirect branches, but slightly more so.
462     if (isa<IndirectBrInst>(StopAt))
463       Bonus = 8;
464   }
465 
466   // Bump the threshold up so the early exit from the loop doesn't skip the
467   // terminator-based Size adjustment at the end.
468   Threshold += Bonus;
469 
470   // Sum up the cost of each instruction until we get to the terminator.  Don't
471   // include the terminator because the copy won't include it.
472   unsigned Size = 0;
473   for (; &*I != StopAt; ++I) {
474 
475     // Stop scanning the block if we've reached the threshold.
476     if (Size > Threshold)
477       return Size;
478 
479     // Bail out if this instruction gives back a token type, it is not possible
480     // to duplicate it if it is used outside this BB.
481     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
482       return ~0U;
483 
484     // Blocks with NoDuplicate are modelled as having infinite cost, so they
485     // are never duplicated.
486     if (const CallInst *CI = dyn_cast<CallInst>(I))
487       if (CI->cannotDuplicate() || CI->isConvergent())
488         return ~0U;
489 
490     if (TTI->getInstructionCost(&*I, TargetTransformInfo::TCK_SizeAndLatency) ==
491         TargetTransformInfo::TCC_Free)
492       continue;
493 
494     // All other instructions count for at least one unit.
495     ++Size;
496 
497     // Calls are more expensive.  If they are non-intrinsic calls, we model them
498     // as having cost of 4.  If they are a non-vector intrinsic, we model them
499     // as having cost of 2 total, and if they are a vector intrinsic, we model
500     // them as having cost 1.
501     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
502       if (!isa<IntrinsicInst>(CI))
503         Size += 3;
504       else if (!CI->getType()->isVectorTy())
505         Size += 1;
506     }
507   }
508 
509   return Size > Bonus ? Size - Bonus : 0;
510 }
511 
512 /// findLoopHeaders - We do not want jump threading to turn proper loop
513 /// structures into irreducible loops.  Doing this breaks up the loop nesting
514 /// hierarchy and pessimizes later transformations.  To prevent this from
515 /// happening, we first have to find the loop headers.  Here we approximate this
516 /// by finding targets of backedges in the CFG.
517 ///
518 /// Note that there definitely are cases when we want to allow threading of
519 /// edges across a loop header.  For example, threading a jump from outside the
520 /// loop (the preheader) to an exit block of the loop is definitely profitable.
521 /// It is also almost always profitable to thread backedges from within the loop
522 /// to exit blocks, and is often profitable to thread backedges to other blocks
523 /// within the loop (forming a nested loop).  This simple analysis is not rich
524 /// enough to track all of these properties and keep it up-to-date as the CFG
525 /// mutates, so we don't allow any of these transformations.
526 void JumpThreadingPass::findLoopHeaders(Function &F) {
527   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
528   FindFunctionBackedges(F, Edges);
529 
530   for (const auto &Edge : Edges)
531     LoopHeaders.insert(Edge.second);
532 }
533 
534 /// getKnownConstant - Helper method to determine if we can thread over a
535 /// terminator with the given value as its condition, and if so what value to
536 /// use for that. What kind of value this is depends on whether we want an
537 /// integer or a block address, but an undef is always accepted.
538 /// Returns null if Val is null or not an appropriate constant.
539 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
540   if (!Val)
541     return nullptr;
542 
543   // Undef is "known" enough.
544   if (UndefValue *U = dyn_cast<UndefValue>(Val))
545     return U;
546 
547   if (Preference == WantBlockAddress)
548     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
549 
550   return dyn_cast<ConstantInt>(Val);
551 }
552 
553 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see
554 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
555 /// in any of our predecessors.  If so, return the known list of value and pred
556 /// BB in the result vector.
557 ///
558 /// This returns true if there were any known values.
559 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl(
560     Value *V, BasicBlock *BB, PredValueInfo &Result,
561     ConstantPreference Preference, DenseSet<Value *> &RecursionSet,
562     Instruction *CxtI) {
563   const DataLayout &DL = BB->getModule()->getDataLayout();
564 
565   // This method walks up use-def chains recursively.  Because of this, we could
566   // get into an infinite loop going around loops in the use-def chain.  To
567   // prevent this, keep track of what (value, block) pairs we've already visited
568   // and terminate the search if we loop back to them
569   if (!RecursionSet.insert(V).second)
570     return false;
571 
572   // If V is a constant, then it is known in all predecessors.
573   if (Constant *KC = getKnownConstant(V, Preference)) {
574     for (BasicBlock *Pred : predecessors(BB))
575       Result.emplace_back(KC, Pred);
576 
577     return !Result.empty();
578   }
579 
580   // If V is a non-instruction value, or an instruction in a different block,
581   // then it can't be derived from a PHI.
582   Instruction *I = dyn_cast<Instruction>(V);
583   if (!I || I->getParent() != BB) {
584 
585     // Okay, if this is a live-in value, see if it has a known value at the any
586     // edge from our predecessors.
587     for (BasicBlock *P : predecessors(BB)) {
588       using namespace PatternMatch;
589       // If the value is known by LazyValueInfo to be a constant in a
590       // predecessor, use that information to try to thread this block.
591       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
592       // If I is a non-local compare-with-constant instruction, use more-rich
593       // 'getPredicateOnEdge' method. This would be able to handle value
594       // inequalities better, for example if the compare is "X < 4" and "X < 3"
595       // is known true but "X < 4" itself is not available.
596       CmpInst::Predicate Pred;
597       Value *Val;
598       Constant *Cst;
599       if (!PredCst && match(V, m_Cmp(Pred, m_Value(Val), m_Constant(Cst)))) {
600         auto Res = LVI->getPredicateOnEdge(Pred, Val, Cst, P, BB, CxtI);
601         if (Res != LazyValueInfo::Unknown)
602           PredCst = ConstantInt::getBool(V->getContext(), Res);
603       }
604       if (Constant *KC = getKnownConstant(PredCst, Preference))
605         Result.emplace_back(KC, P);
606     }
607 
608     return !Result.empty();
609   }
610 
611   /// If I is a PHI node, then we know the incoming values for any constants.
612   if (PHINode *PN = dyn_cast<PHINode>(I)) {
613     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
614       Value *InVal = PN->getIncomingValue(i);
615       if (Constant *KC = getKnownConstant(InVal, Preference)) {
616         Result.emplace_back(KC, PN->getIncomingBlock(i));
617       } else {
618         Constant *CI = LVI->getConstantOnEdge(InVal,
619                                               PN->getIncomingBlock(i),
620                                               BB, CxtI);
621         if (Constant *KC = getKnownConstant(CI, Preference))
622           Result.emplace_back(KC, PN->getIncomingBlock(i));
623       }
624     }
625 
626     return !Result.empty();
627   }
628 
629   // Handle Cast instructions.
630   if (CastInst *CI = dyn_cast<CastInst>(I)) {
631     Value *Source = CI->getOperand(0);
632     PredValueInfoTy Vals;
633     computeValueKnownInPredecessorsImpl(Source, BB, Vals, Preference,
634                                         RecursionSet, CxtI);
635     if (Vals.empty())
636       return false;
637 
638     // Convert the known values.
639     for (auto &Val : Vals)
640       if (Constant *Folded = ConstantFoldCastOperand(CI->getOpcode(), Val.first,
641                                                      CI->getType(), DL))
642         Result.emplace_back(Folded, Val.second);
643 
644     return !Result.empty();
645   }
646 
647   if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
648     Value *Source = FI->getOperand(0);
649     computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
650                                         RecursionSet, CxtI);
651 
652     erase_if(Result, [](auto &Pair) {
653       return !isGuaranteedNotToBeUndefOrPoison(Pair.first);
654     });
655 
656     return !Result.empty();
657   }
658 
659   // Handle some boolean conditions.
660   if (I->getType()->getPrimitiveSizeInBits() == 1) {
661     using namespace PatternMatch;
662     if (Preference != WantInteger)
663       return false;
664     // X | true -> true
665     // X & false -> false
666     Value *Op0, *Op1;
667     if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
668         match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
669       PredValueInfoTy LHSVals, RHSVals;
670 
671       computeValueKnownInPredecessorsImpl(Op0, BB, LHSVals, WantInteger,
672                                           RecursionSet, CxtI);
673       computeValueKnownInPredecessorsImpl(Op1, BB, RHSVals, WantInteger,
674                                           RecursionSet, CxtI);
675 
676       if (LHSVals.empty() && RHSVals.empty())
677         return false;
678 
679       ConstantInt *InterestingVal;
680       if (match(I, m_LogicalOr()))
681         InterestingVal = ConstantInt::getTrue(I->getContext());
682       else
683         InterestingVal = ConstantInt::getFalse(I->getContext());
684 
685       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
686 
687       // Scan for the sentinel.  If we find an undef, force it to the
688       // interesting value: x|undef -> true and x&undef -> false.
689       for (const auto &LHSVal : LHSVals)
690         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
691           Result.emplace_back(InterestingVal, LHSVal.second);
692           LHSKnownBBs.insert(LHSVal.second);
693         }
694       for (const auto &RHSVal : RHSVals)
695         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
696           // If we already inferred a value for this block on the LHS, don't
697           // re-add it.
698           if (!LHSKnownBBs.count(RHSVal.second))
699             Result.emplace_back(InterestingVal, RHSVal.second);
700         }
701 
702       return !Result.empty();
703     }
704 
705     // Handle the NOT form of XOR.
706     if (I->getOpcode() == Instruction::Xor &&
707         isa<ConstantInt>(I->getOperand(1)) &&
708         cast<ConstantInt>(I->getOperand(1))->isOne()) {
709       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
710                                           WantInteger, RecursionSet, CxtI);
711       if (Result.empty())
712         return false;
713 
714       // Invert the known values.
715       for (auto &R : Result)
716         R.first = ConstantExpr::getNot(R.first);
717 
718       return true;
719     }
720 
721   // Try to simplify some other binary operator values.
722   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
723     if (Preference != WantInteger)
724       return false;
725     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
726       PredValueInfoTy LHSVals;
727       computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
728                                           WantInteger, RecursionSet, CxtI);
729 
730       // Try to use constant folding to simplify the binary operator.
731       for (const auto &LHSVal : LHSVals) {
732         Constant *V = LHSVal.first;
733         Constant *Folded =
734             ConstantFoldBinaryOpOperands(BO->getOpcode(), V, CI, DL);
735 
736         if (Constant *KC = getKnownConstant(Folded, WantInteger))
737           Result.emplace_back(KC, LHSVal.second);
738       }
739     }
740 
741     return !Result.empty();
742   }
743 
744   // Handle compare with phi operand, where the PHI is defined in this block.
745   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
746     if (Preference != WantInteger)
747       return false;
748     Type *CmpType = Cmp->getType();
749     Value *CmpLHS = Cmp->getOperand(0);
750     Value *CmpRHS = Cmp->getOperand(1);
751     CmpInst::Predicate Pred = Cmp->getPredicate();
752 
753     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
754     if (!PN)
755       PN = dyn_cast<PHINode>(CmpRHS);
756     // Do not perform phi translation across a loop header phi, because this
757     // may result in comparison of values from two different loop iterations.
758     // FIXME: This check is broken if LoopHeaders is not populated.
759     if (PN && PN->getParent() == BB && !LoopHeaders.contains(BB)) {
760       const DataLayout &DL = PN->getModule()->getDataLayout();
761       // We can do this simplification if any comparisons fold to true or false.
762       // See if any do.
763       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
764         BasicBlock *PredBB = PN->getIncomingBlock(i);
765         Value *LHS, *RHS;
766         if (PN == CmpLHS) {
767           LHS = PN->getIncomingValue(i);
768           RHS = CmpRHS->DoPHITranslation(BB, PredBB);
769         } else {
770           LHS = CmpLHS->DoPHITranslation(BB, PredBB);
771           RHS = PN->getIncomingValue(i);
772         }
773         Value *Res = simplifyCmpInst(Pred, LHS, RHS, {DL});
774         if (!Res) {
775           if (!isa<Constant>(RHS))
776             continue;
777 
778           // getPredicateOnEdge call will make no sense if LHS is defined in BB.
779           auto LHSInst = dyn_cast<Instruction>(LHS);
780           if (LHSInst && LHSInst->getParent() == BB)
781             continue;
782 
783           LazyValueInfo::Tristate
784             ResT = LVI->getPredicateOnEdge(Pred, LHS,
785                                            cast<Constant>(RHS), PredBB, BB,
786                                            CxtI ? CxtI : Cmp);
787           if (ResT == LazyValueInfo::Unknown)
788             continue;
789           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
790         }
791 
792         if (Constant *KC = getKnownConstant(Res, WantInteger))
793           Result.emplace_back(KC, PredBB);
794       }
795 
796       return !Result.empty();
797     }
798 
799     // If comparing a live-in value against a constant, see if we know the
800     // live-in value on any predecessors.
801     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
802       Constant *CmpConst = cast<Constant>(CmpRHS);
803 
804       if (!isa<Instruction>(CmpLHS) ||
805           cast<Instruction>(CmpLHS)->getParent() != BB) {
806         for (BasicBlock *P : predecessors(BB)) {
807           // If the value is known by LazyValueInfo to be a constant in a
808           // predecessor, use that information to try to thread this block.
809           LazyValueInfo::Tristate Res =
810             LVI->getPredicateOnEdge(Pred, CmpLHS,
811                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
812           if (Res == LazyValueInfo::Unknown)
813             continue;
814 
815           Constant *ResC = ConstantInt::get(CmpType, Res);
816           Result.emplace_back(ResC, P);
817         }
818 
819         return !Result.empty();
820       }
821 
822       // InstCombine can fold some forms of constant range checks into
823       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
824       // x as a live-in.
825       {
826         using namespace PatternMatch;
827 
828         Value *AddLHS;
829         ConstantInt *AddConst;
830         if (isa<ConstantInt>(CmpConst) &&
831             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
832           if (!isa<Instruction>(AddLHS) ||
833               cast<Instruction>(AddLHS)->getParent() != BB) {
834             for (BasicBlock *P : predecessors(BB)) {
835               // If the value is known by LazyValueInfo to be a ConstantRange in
836               // a predecessor, use that information to try to thread this
837               // block.
838               ConstantRange CR = LVI->getConstantRangeOnEdge(
839                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
840               // Propagate the range through the addition.
841               CR = CR.add(AddConst->getValue());
842 
843               // Get the range where the compare returns true.
844               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
845                   Pred, cast<ConstantInt>(CmpConst)->getValue());
846 
847               Constant *ResC;
848               if (CmpRange.contains(CR))
849                 ResC = ConstantInt::getTrue(CmpType);
850               else if (CmpRange.inverse().contains(CR))
851                 ResC = ConstantInt::getFalse(CmpType);
852               else
853                 continue;
854 
855               Result.emplace_back(ResC, P);
856             }
857 
858             return !Result.empty();
859           }
860         }
861       }
862 
863       // Try to find a constant value for the LHS of a comparison,
864       // and evaluate it statically if we can.
865       PredValueInfoTy LHSVals;
866       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
867                                           WantInteger, RecursionSet, CxtI);
868 
869       for (const auto &LHSVal : LHSVals) {
870         Constant *V = LHSVal.first;
871         Constant *Folded =
872             ConstantFoldCompareInstOperands(Pred, V, CmpConst, DL);
873         if (Constant *KC = getKnownConstant(Folded, WantInteger))
874           Result.emplace_back(KC, LHSVal.second);
875       }
876 
877       return !Result.empty();
878     }
879   }
880 
881   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
882     // Handle select instructions where at least one operand is a known constant
883     // and we can figure out the condition value for any predecessor block.
884     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
885     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
886     PredValueInfoTy Conds;
887     if ((TrueVal || FalseVal) &&
888         computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
889                                             WantInteger, RecursionSet, CxtI)) {
890       for (auto &C : Conds) {
891         Constant *Cond = C.first;
892 
893         // Figure out what value to use for the condition.
894         bool KnownCond;
895         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
896           // A known boolean.
897           KnownCond = CI->isOne();
898         } else {
899           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
900           // Either operand will do, so be sure to pick the one that's a known
901           // constant.
902           // FIXME: Do this more cleverly if both values are known constants?
903           KnownCond = (TrueVal != nullptr);
904         }
905 
906         // See if the select has a known constant value for this predecessor.
907         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
908           Result.emplace_back(Val, C.second);
909       }
910 
911       return !Result.empty();
912     }
913   }
914 
915   // If all else fails, see if LVI can figure out a constant value for us.
916   assert(CxtI->getParent() == BB && "CxtI should be in BB");
917   Constant *CI = LVI->getConstant(V, CxtI);
918   if (Constant *KC = getKnownConstant(CI, Preference)) {
919     for (BasicBlock *Pred : predecessors(BB))
920       Result.emplace_back(KC, Pred);
921   }
922 
923   return !Result.empty();
924 }
925 
926 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
927 /// in an undefined jump, decide which block is best to revector to.
928 ///
929 /// Since we can pick an arbitrary destination, we pick the successor with the
930 /// fewest predecessors.  This should reduce the in-degree of the others.
931 static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) {
932   Instruction *BBTerm = BB->getTerminator();
933   unsigned MinSucc = 0;
934   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
935   // Compute the successor with the minimum number of predecessors.
936   unsigned MinNumPreds = pred_size(TestBB);
937   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
938     TestBB = BBTerm->getSuccessor(i);
939     unsigned NumPreds = pred_size(TestBB);
940     if (NumPreds < MinNumPreds) {
941       MinSucc = i;
942       MinNumPreds = NumPreds;
943     }
944   }
945 
946   return MinSucc;
947 }
948 
949 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
950   if (!BB->hasAddressTaken()) return false;
951 
952   // If the block has its address taken, it may be a tree of dead constants
953   // hanging off of it.  These shouldn't keep the block alive.
954   BlockAddress *BA = BlockAddress::get(BB);
955   BA->removeDeadConstantUsers();
956   return !BA->use_empty();
957 }
958 
959 /// processBlock - If there are any predecessors whose control can be threaded
960 /// through to a successor, transform them now.
961 bool JumpThreadingPass::processBlock(BasicBlock *BB) {
962   // If the block is trivially dead, just return and let the caller nuke it.
963   // This simplifies other transformations.
964   if (DTU->isBBPendingDeletion(BB) ||
965       (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
966     return false;
967 
968   // If this block has a single predecessor, and if that pred has a single
969   // successor, merge the blocks.  This encourages recursive jump threading
970   // because now the condition in this block can be threaded through
971   // predecessors of our predecessor block.
972   if (maybeMergeBasicBlockIntoOnlyPred(BB))
973     return true;
974 
975   if (tryToUnfoldSelectInCurrBB(BB))
976     return true;
977 
978   // Look if we can propagate guards to predecessors.
979   if (HasGuards && processGuards(BB))
980     return true;
981 
982   // What kind of constant we're looking for.
983   ConstantPreference Preference = WantInteger;
984 
985   // Look to see if the terminator is a conditional branch, switch or indirect
986   // branch, if not we can't thread it.
987   Value *Condition;
988   Instruction *Terminator = BB->getTerminator();
989   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
990     // Can't thread an unconditional jump.
991     if (BI->isUnconditional()) return false;
992     Condition = BI->getCondition();
993   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
994     Condition = SI->getCondition();
995   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
996     // Can't thread indirect branch with no successors.
997     if (IB->getNumSuccessors() == 0) return false;
998     Condition = IB->getAddress()->stripPointerCasts();
999     Preference = WantBlockAddress;
1000   } else {
1001     return false; // Must be an invoke or callbr.
1002   }
1003 
1004   // Keep track if we constant folded the condition in this invocation.
1005   bool ConstantFolded = false;
1006 
1007   // Run constant folding to see if we can reduce the condition to a simple
1008   // constant.
1009   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1010     Value *SimpleVal =
1011         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1012     if (SimpleVal) {
1013       I->replaceAllUsesWith(SimpleVal);
1014       if (isInstructionTriviallyDead(I, TLI))
1015         I->eraseFromParent();
1016       Condition = SimpleVal;
1017       ConstantFolded = true;
1018     }
1019   }
1020 
1021   // If the terminator is branching on an undef or freeze undef, we can pick any
1022   // of the successors to branch to.  Let getBestDestForJumpOnUndef decide.
1023   auto *FI = dyn_cast<FreezeInst>(Condition);
1024   if (isa<UndefValue>(Condition) ||
1025       (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) {
1026     unsigned BestSucc = getBestDestForJumpOnUndef(BB);
1027     std::vector<DominatorTree::UpdateType> Updates;
1028 
1029     // Fold the branch/switch.
1030     Instruction *BBTerm = BB->getTerminator();
1031     Updates.reserve(BBTerm->getNumSuccessors());
1032     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1033       if (i == BestSucc) continue;
1034       BasicBlock *Succ = BBTerm->getSuccessor(i);
1035       Succ->removePredecessor(BB, true);
1036       Updates.push_back({DominatorTree::Delete, BB, Succ});
1037     }
1038 
1039     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1040                       << "' folding undef terminator: " << *BBTerm << '\n');
1041     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm->getIterator());
1042     ++NumFolds;
1043     BBTerm->eraseFromParent();
1044     DTU->applyUpdatesPermissive(Updates);
1045     if (FI)
1046       FI->eraseFromParent();
1047     return true;
1048   }
1049 
1050   // If the terminator of this block is branching on a constant, simplify the
1051   // terminator to an unconditional branch.  This can occur due to threading in
1052   // other blocks.
1053   if (getKnownConstant(Condition, Preference)) {
1054     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1055                       << "' folding terminator: " << *BB->getTerminator()
1056                       << '\n');
1057     ++NumFolds;
1058     ConstantFoldTerminator(BB, true, nullptr, DTU.get());
1059     if (auto *BPI = getBPI())
1060       BPI->eraseBlock(BB);
1061     return true;
1062   }
1063 
1064   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1065 
1066   // All the rest of our checks depend on the condition being an instruction.
1067   if (!CondInst) {
1068     // FIXME: Unify this with code below.
1069     if (processThreadableEdges(Condition, BB, Preference, Terminator))
1070       return true;
1071     return ConstantFolded;
1072   }
1073 
1074   // Some of the following optimization can safely work on the unfrozen cond.
1075   Value *CondWithoutFreeze = CondInst;
1076   if (auto *FI = dyn_cast<FreezeInst>(CondInst))
1077     CondWithoutFreeze = FI->getOperand(0);
1078 
1079   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondWithoutFreeze)) {
1080     // If we're branching on a conditional, LVI might be able to determine
1081     // it's value at the branch instruction.  We only handle comparisons
1082     // against a constant at this time.
1083     if (Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1))) {
1084       LazyValueInfo::Tristate Ret =
1085           LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1086                               CondConst, BB->getTerminator(),
1087                               /*UseBlockValue=*/false);
1088       if (Ret != LazyValueInfo::Unknown) {
1089         // We can safely replace *some* uses of the CondInst if it has
1090         // exactly one value as returned by LVI. RAUW is incorrect in the
1091         // presence of guards and assumes, that have the `Cond` as the use. This
1092         // is because we use the guards/assume to reason about the `Cond` value
1093         // at the end of block, but RAUW unconditionally replaces all uses
1094         // including the guards/assumes themselves and the uses before the
1095         // guard/assume.
1096         auto *CI = Ret == LazyValueInfo::True ?
1097           ConstantInt::getTrue(CondCmp->getType()) :
1098           ConstantInt::getFalse(CondCmp->getType());
1099         if (replaceFoldableUses(CondCmp, CI, BB))
1100           return true;
1101       }
1102 
1103       // We did not manage to simplify this branch, try to see whether
1104       // CondCmp depends on a known phi-select pattern.
1105       if (tryToUnfoldSelect(CondCmp, BB))
1106         return true;
1107     }
1108   }
1109 
1110   if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1111     if (tryToUnfoldSelect(SI, BB))
1112       return true;
1113 
1114   // Check for some cases that are worth simplifying.  Right now we want to look
1115   // for loads that are used by a switch or by the condition for the branch.  If
1116   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1117   // which can then be used to thread the values.
1118   Value *SimplifyValue = CondWithoutFreeze;
1119 
1120   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1121     if (isa<Constant>(CondCmp->getOperand(1)))
1122       SimplifyValue = CondCmp->getOperand(0);
1123 
1124   // TODO: There are other places where load PRE would be profitable, such as
1125   // more complex comparisons.
1126   if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1127     if (simplifyPartiallyRedundantLoad(LoadI))
1128       return true;
1129 
1130   // Before threading, try to propagate profile data backwards:
1131   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1132     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1133       updatePredecessorProfileMetadata(PN, BB);
1134 
1135   // Handle a variety of cases where we are branching on something derived from
1136   // a PHI node in the current block.  If we can prove that any predecessors
1137   // compute a predictable value based on a PHI node, thread those predecessors.
1138   if (processThreadableEdges(CondInst, BB, Preference, Terminator))
1139     return true;
1140 
1141   // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in
1142   // the current block, see if we can simplify.
1143   PHINode *PN = dyn_cast<PHINode>(CondWithoutFreeze);
1144   if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1145     return processBranchOnPHI(PN);
1146 
1147   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1148   if (CondInst->getOpcode() == Instruction::Xor &&
1149       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1150     return processBranchOnXOR(cast<BinaryOperator>(CondInst));
1151 
1152   // Search for a stronger dominating condition that can be used to simplify a
1153   // conditional branch leaving BB.
1154   if (processImpliedCondition(BB))
1155     return true;
1156 
1157   return false;
1158 }
1159 
1160 bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) {
1161   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1162   if (!BI || !BI->isConditional())
1163     return false;
1164 
1165   Value *Cond = BI->getCondition();
1166   // Assuming that predecessor's branch was taken, if pred's branch condition
1167   // (V) implies Cond, Cond can be either true, undef, or poison. In this case,
1168   // freeze(Cond) is either true or a nondeterministic value.
1169   // If freeze(Cond) has only one use, we can freely fold freeze(Cond) to true
1170   // without affecting other instructions.
1171   auto *FICond = dyn_cast<FreezeInst>(Cond);
1172   if (FICond && FICond->hasOneUse())
1173     Cond = FICond->getOperand(0);
1174   else
1175     FICond = nullptr;
1176 
1177   BasicBlock *CurrentBB = BB;
1178   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1179   unsigned Iter = 0;
1180 
1181   auto &DL = BB->getModule()->getDataLayout();
1182 
1183   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1184     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1185     if (!PBI || !PBI->isConditional())
1186       return false;
1187     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1188       return false;
1189 
1190     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1191     std::optional<bool> Implication =
1192         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1193 
1194     // If the branch condition of BB (which is Cond) and CurrentPred are
1195     // exactly the same freeze instruction, Cond can be folded into CondIsTrue.
1196     if (!Implication && FICond && isa<FreezeInst>(PBI->getCondition())) {
1197       if (cast<FreezeInst>(PBI->getCondition())->getOperand(0) ==
1198           FICond->getOperand(0))
1199         Implication = CondIsTrue;
1200     }
1201 
1202     if (Implication) {
1203       BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1204       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1205       RemoveSucc->removePredecessor(BB);
1206       BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI->getIterator());
1207       UncondBI->setDebugLoc(BI->getDebugLoc());
1208       ++NumFolds;
1209       BI->eraseFromParent();
1210       if (FICond)
1211         FICond->eraseFromParent();
1212 
1213       DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}});
1214       if (auto *BPI = getBPI())
1215         BPI->eraseBlock(BB);
1216       return true;
1217     }
1218     CurrentBB = CurrentPred;
1219     CurrentPred = CurrentBB->getSinglePredecessor();
1220   }
1221 
1222   return false;
1223 }
1224 
1225 /// Return true if Op is an instruction defined in the given block.
1226 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1227   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1228     if (OpInst->getParent() == BB)
1229       return true;
1230   return false;
1231 }
1232 
1233 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1234 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1235 /// This is an important optimization that encourages jump threading, and needs
1236 /// to be run interlaced with other jump threading tasks.
1237 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1238   // Don't hack volatile and ordered loads.
1239   if (!LoadI->isUnordered()) return false;
1240 
1241   // If the load is defined in a block with exactly one predecessor, it can't be
1242   // partially redundant.
1243   BasicBlock *LoadBB = LoadI->getParent();
1244   if (LoadBB->getSinglePredecessor())
1245     return false;
1246 
1247   // If the load is defined in an EH pad, it can't be partially redundant,
1248   // because the edges between the invoke and the EH pad cannot have other
1249   // instructions between them.
1250   if (LoadBB->isEHPad())
1251     return false;
1252 
1253   Value *LoadedPtr = LoadI->getOperand(0);
1254 
1255   // If the loaded operand is defined in the LoadBB and its not a phi,
1256   // it can't be available in predecessors.
1257   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1258     return false;
1259 
1260   // Scan a few instructions up from the load, to see if it is obviously live at
1261   // the entry to its block.
1262   BasicBlock::iterator BBIt(LoadI);
1263   bool IsLoadCSE;
1264   BatchAAResults BatchAA(*AA);
1265   // The dominator tree is updated lazily and may not be valid at this point.
1266   BatchAA.disableDominatorTree();
1267   if (Value *AvailableVal = FindAvailableLoadedValue(
1268           LoadI, LoadBB, BBIt, DefMaxInstsToScan, &BatchAA, &IsLoadCSE)) {
1269     // If the value of the load is locally available within the block, just use
1270     // it.  This frequently occurs for reg2mem'd allocas.
1271 
1272     if (IsLoadCSE) {
1273       LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1274       combineMetadataForCSE(NLoadI, LoadI, false);
1275       LVI->forgetValue(NLoadI);
1276     };
1277 
1278     // If the returned value is the load itself, replace with poison. This can
1279     // only happen in dead loops.
1280     if (AvailableVal == LoadI)
1281       AvailableVal = PoisonValue::get(LoadI->getType());
1282     if (AvailableVal->getType() != LoadI->getType()) {
1283       AvailableVal = CastInst::CreateBitOrPointerCast(
1284           AvailableVal, LoadI->getType(), "", LoadI->getIterator());
1285       cast<Instruction>(AvailableVal)->setDebugLoc(LoadI->getDebugLoc());
1286     }
1287     LoadI->replaceAllUsesWith(AvailableVal);
1288     LoadI->eraseFromParent();
1289     return true;
1290   }
1291 
1292   // Otherwise, if we scanned the whole block and got to the top of the block,
1293   // we know the block is locally transparent to the load.  If not, something
1294   // might clobber its value.
1295   if (BBIt != LoadBB->begin())
1296     return false;
1297 
1298   // If all of the loads and stores that feed the value have the same AA tags,
1299   // then we can propagate them onto any newly inserted loads.
1300   AAMDNodes AATags = LoadI->getAAMetadata();
1301 
1302   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1303 
1304   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1305 
1306   AvailablePredsTy AvailablePreds;
1307   BasicBlock *OneUnavailablePred = nullptr;
1308   SmallVector<LoadInst*, 8> CSELoads;
1309 
1310   // If we got here, the loaded value is transparent through to the start of the
1311   // block.  Check to see if it is available in any of the predecessor blocks.
1312   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1313     // If we already scanned this predecessor, skip it.
1314     if (!PredsScanned.insert(PredBB).second)
1315       continue;
1316 
1317     BBIt = PredBB->end();
1318     unsigned NumScanedInst = 0;
1319     Value *PredAvailable = nullptr;
1320     // NOTE: We don't CSE load that is volatile or anything stronger than
1321     // unordered, that should have been checked when we entered the function.
1322     assert(LoadI->isUnordered() &&
1323            "Attempting to CSE volatile or atomic loads");
1324     // If this is a load on a phi pointer, phi-translate it and search
1325     // for available load/store to the pointer in predecessors.
1326     Type *AccessTy = LoadI->getType();
1327     const auto &DL = LoadI->getModule()->getDataLayout();
1328     MemoryLocation Loc(LoadedPtr->DoPHITranslation(LoadBB, PredBB),
1329                        LocationSize::precise(DL.getTypeStoreSize(AccessTy)),
1330                        AATags);
1331     PredAvailable = findAvailablePtrLoadStore(
1332         Loc, AccessTy, LoadI->isAtomic(), PredBB, BBIt, DefMaxInstsToScan,
1333         &BatchAA, &IsLoadCSE, &NumScanedInst);
1334 
1335     // If PredBB has a single predecessor, continue scanning through the
1336     // single predecessor.
1337     BasicBlock *SinglePredBB = PredBB;
1338     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1339            NumScanedInst < DefMaxInstsToScan) {
1340       SinglePredBB = SinglePredBB->getSinglePredecessor();
1341       if (SinglePredBB) {
1342         BBIt = SinglePredBB->end();
1343         PredAvailable = findAvailablePtrLoadStore(
1344             Loc, AccessTy, LoadI->isAtomic(), SinglePredBB, BBIt,
1345             (DefMaxInstsToScan - NumScanedInst), &BatchAA, &IsLoadCSE,
1346             &NumScanedInst);
1347       }
1348     }
1349 
1350     if (!PredAvailable) {
1351       OneUnavailablePred = PredBB;
1352       continue;
1353     }
1354 
1355     if (IsLoadCSE)
1356       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1357 
1358     // If so, this load is partially redundant.  Remember this info so that we
1359     // can create a PHI node.
1360     AvailablePreds.emplace_back(PredBB, PredAvailable);
1361   }
1362 
1363   // If the loaded value isn't available in any predecessor, it isn't partially
1364   // redundant.
1365   if (AvailablePreds.empty()) return false;
1366 
1367   // Okay, the loaded value is available in at least one (and maybe all!)
1368   // predecessors.  If the value is unavailable in more than one unique
1369   // predecessor, we want to insert a merge block for those common predecessors.
1370   // This ensures that we only have to insert one reload, thus not increasing
1371   // code size.
1372   BasicBlock *UnavailablePred = nullptr;
1373 
1374   // If the value is unavailable in one of predecessors, we will end up
1375   // inserting a new instruction into them. It is only valid if all the
1376   // instructions before LoadI are guaranteed to pass execution to its
1377   // successor, or if LoadI is safe to speculate.
1378   // TODO: If this logic becomes more complex, and we will perform PRE insertion
1379   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1380   // It requires domination tree analysis, so for this simple case it is an
1381   // overkill.
1382   if (PredsScanned.size() != AvailablePreds.size() &&
1383       !isSafeToSpeculativelyExecute(LoadI))
1384     for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1385       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1386         return false;
1387 
1388   // If there is exactly one predecessor where the value is unavailable, the
1389   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1390   // unconditional branch, we know that it isn't a critical edge.
1391   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1392       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1393     UnavailablePred = OneUnavailablePred;
1394   } else if (PredsScanned.size() != AvailablePreds.size()) {
1395     // Otherwise, we had multiple unavailable predecessors or we had a critical
1396     // edge from the one.
1397     SmallVector<BasicBlock*, 8> PredsToSplit;
1398     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1399 
1400     for (const auto &AvailablePred : AvailablePreds)
1401       AvailablePredSet.insert(AvailablePred.first);
1402 
1403     // Add all the unavailable predecessors to the PredsToSplit list.
1404     for (BasicBlock *P : predecessors(LoadBB)) {
1405       // If the predecessor is an indirect goto, we can't split the edge.
1406       if (isa<IndirectBrInst>(P->getTerminator()))
1407         return false;
1408 
1409       if (!AvailablePredSet.count(P))
1410         PredsToSplit.push_back(P);
1411     }
1412 
1413     // Split them out to their own block.
1414     UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1415   }
1416 
1417   // If the value isn't available in all predecessors, then there will be
1418   // exactly one where it isn't available.  Insert a load on that edge and add
1419   // it to the AvailablePreds list.
1420   if (UnavailablePred) {
1421     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1422            "Can't handle critical edge here!");
1423     LoadInst *NewVal = new LoadInst(
1424         LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1425         LoadI->getName() + ".pr", false, LoadI->getAlign(),
1426         LoadI->getOrdering(), LoadI->getSyncScopeID(),
1427         UnavailablePred->getTerminator()->getIterator());
1428     NewVal->setDebugLoc(LoadI->getDebugLoc());
1429     if (AATags)
1430       NewVal->setAAMetadata(AATags);
1431 
1432     AvailablePreds.emplace_back(UnavailablePred, NewVal);
1433   }
1434 
1435   // Now we know that each predecessor of this block has a value in
1436   // AvailablePreds, sort them for efficient access as we're walking the preds.
1437   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1438 
1439   // Create a PHI node at the start of the block for the PRE'd load value.
1440   PHINode *PN = PHINode::Create(LoadI->getType(), pred_size(LoadBB), "");
1441   PN->insertBefore(LoadBB->begin());
1442   PN->takeName(LoadI);
1443   PN->setDebugLoc(LoadI->getDebugLoc());
1444 
1445   // Insert new entries into the PHI for each predecessor.  A single block may
1446   // have multiple entries here.
1447   for (BasicBlock *P : predecessors(LoadBB)) {
1448     AvailablePredsTy::iterator I =
1449         llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr));
1450 
1451     assert(I != AvailablePreds.end() && I->first == P &&
1452            "Didn't find entry for predecessor!");
1453 
1454     // If we have an available predecessor but it requires casting, insert the
1455     // cast in the predecessor and use the cast. Note that we have to update the
1456     // AvailablePreds vector as we go so that all of the PHI entries for this
1457     // predecessor use the same bitcast.
1458     Value *&PredV = I->second;
1459     if (PredV->getType() != LoadI->getType())
1460       PredV = CastInst::CreateBitOrPointerCast(
1461           PredV, LoadI->getType(), "", P->getTerminator()->getIterator());
1462 
1463     PN->addIncoming(PredV, I->first);
1464   }
1465 
1466   for (LoadInst *PredLoadI : CSELoads) {
1467     combineMetadataForCSE(PredLoadI, LoadI, true);
1468     LVI->forgetValue(PredLoadI);
1469   }
1470 
1471   LoadI->replaceAllUsesWith(PN);
1472   LoadI->eraseFromParent();
1473 
1474   return true;
1475 }
1476 
1477 /// findMostPopularDest - The specified list contains multiple possible
1478 /// threadable destinations.  Pick the one that occurs the most frequently in
1479 /// the list.
1480 static BasicBlock *
1481 findMostPopularDest(BasicBlock *BB,
1482                     const SmallVectorImpl<std::pair<BasicBlock *,
1483                                           BasicBlock *>> &PredToDestList) {
1484   assert(!PredToDestList.empty());
1485 
1486   // Determine popularity.  If there are multiple possible destinations, we
1487   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1488   // blocks with known and real destinations to threading undef.  We'll handle
1489   // them later if interesting.
1490   MapVector<BasicBlock *, unsigned> DestPopularity;
1491 
1492   // Populate DestPopularity with the successors in the order they appear in the
1493   // successor list.  This way, we ensure determinism by iterating it in the
1494   // same order in llvm::max_element below.  We map nullptr to 0 so that we can
1495   // return nullptr when PredToDestList contains nullptr only.
1496   DestPopularity[nullptr] = 0;
1497   for (auto *SuccBB : successors(BB))
1498     DestPopularity[SuccBB] = 0;
1499 
1500   for (const auto &PredToDest : PredToDestList)
1501     if (PredToDest.second)
1502       DestPopularity[PredToDest.second]++;
1503 
1504   // Find the most popular dest.
1505   auto MostPopular = llvm::max_element(DestPopularity, llvm::less_second());
1506 
1507   // Okay, we have finally picked the most popular destination.
1508   return MostPopular->first;
1509 }
1510 
1511 // Try to evaluate the value of V when the control flows from PredPredBB to
1512 // BB->getSinglePredecessor() and then on to BB.
1513 Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB,
1514                                                        BasicBlock *PredPredBB,
1515                                                        Value *V,
1516                                                        const DataLayout &DL) {
1517   BasicBlock *PredBB = BB->getSinglePredecessor();
1518   assert(PredBB && "Expected a single predecessor");
1519 
1520   if (Constant *Cst = dyn_cast<Constant>(V)) {
1521     return Cst;
1522   }
1523 
1524   // Consult LVI if V is not an instruction in BB or PredBB.
1525   Instruction *I = dyn_cast<Instruction>(V);
1526   if (!I || (I->getParent() != BB && I->getParent() != PredBB)) {
1527     return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr);
1528   }
1529 
1530   // Look into a PHI argument.
1531   if (PHINode *PHI = dyn_cast<PHINode>(V)) {
1532     if (PHI->getParent() == PredBB)
1533       return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB));
1534     return nullptr;
1535   }
1536 
1537   // If we have a CmpInst, try to fold it for each incoming edge into PredBB.
1538   if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) {
1539     if (CondCmp->getParent() == BB) {
1540       Constant *Op0 =
1541           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0), DL);
1542       Constant *Op1 =
1543           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1), DL);
1544       if (Op0 && Op1) {
1545         return ConstantFoldCompareInstOperands(CondCmp->getPredicate(), Op0,
1546                                                Op1, DL);
1547       }
1548     }
1549     return nullptr;
1550   }
1551 
1552   return nullptr;
1553 }
1554 
1555 bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB,
1556                                                ConstantPreference Preference,
1557                                                Instruction *CxtI) {
1558   // If threading this would thread across a loop header, don't even try to
1559   // thread the edge.
1560   if (LoopHeaders.count(BB))
1561     return false;
1562 
1563   PredValueInfoTy PredValues;
1564   if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference,
1565                                        CxtI)) {
1566     // We don't have known values in predecessors.  See if we can thread through
1567     // BB and its sole predecessor.
1568     return maybethreadThroughTwoBasicBlocks(BB, Cond);
1569   }
1570 
1571   assert(!PredValues.empty() &&
1572          "computeValueKnownInPredecessors returned true with no values");
1573 
1574   LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1575              for (const auto &PredValue : PredValues) {
1576                dbgs() << "  BB '" << BB->getName()
1577                       << "': FOUND condition = " << *PredValue.first
1578                       << " for pred '" << PredValue.second->getName() << "'.\n";
1579   });
1580 
1581   // Decide what we want to thread through.  Convert our list of known values to
1582   // a list of known destinations for each pred.  This also discards duplicate
1583   // predecessors and keeps track of the undefined inputs (which are represented
1584   // as a null dest in the PredToDestList).
1585   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1586   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1587 
1588   BasicBlock *OnlyDest = nullptr;
1589   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1590   Constant *OnlyVal = nullptr;
1591   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1592 
1593   for (const auto &PredValue : PredValues) {
1594     BasicBlock *Pred = PredValue.second;
1595     if (!SeenPreds.insert(Pred).second)
1596       continue;  // Duplicate predecessor entry.
1597 
1598     Constant *Val = PredValue.first;
1599 
1600     BasicBlock *DestBB;
1601     if (isa<UndefValue>(Val))
1602       DestBB = nullptr;
1603     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1604       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1605       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1606     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1607       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1608       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1609     } else {
1610       assert(isa<IndirectBrInst>(BB->getTerminator())
1611               && "Unexpected terminator");
1612       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1613       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1614     }
1615 
1616     // If we have exactly one destination, remember it for efficiency below.
1617     if (PredToDestList.empty()) {
1618       OnlyDest = DestBB;
1619       OnlyVal = Val;
1620     } else {
1621       if (OnlyDest != DestBB)
1622         OnlyDest = MultipleDestSentinel;
1623       // It possible we have same destination, but different value, e.g. default
1624       // case in switchinst.
1625       if (Val != OnlyVal)
1626         OnlyVal = MultipleVal;
1627     }
1628 
1629     // If the predecessor ends with an indirect goto, we can't change its
1630     // destination.
1631     if (isa<IndirectBrInst>(Pred->getTerminator()))
1632       continue;
1633 
1634     PredToDestList.emplace_back(Pred, DestBB);
1635   }
1636 
1637   // If all edges were unthreadable, we fail.
1638   if (PredToDestList.empty())
1639     return false;
1640 
1641   // If all the predecessors go to a single known successor, we want to fold,
1642   // not thread. By doing so, we do not need to duplicate the current block and
1643   // also miss potential opportunities in case we dont/cant duplicate.
1644   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1645     if (BB->hasNPredecessors(PredToDestList.size())) {
1646       bool SeenFirstBranchToOnlyDest = false;
1647       std::vector <DominatorTree::UpdateType> Updates;
1648       Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1649       for (BasicBlock *SuccBB : successors(BB)) {
1650         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1651           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1652         } else {
1653           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1654           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1655         }
1656       }
1657 
1658       // Finally update the terminator.
1659       Instruction *Term = BB->getTerminator();
1660       BranchInst::Create(OnlyDest, Term->getIterator());
1661       ++NumFolds;
1662       Term->eraseFromParent();
1663       DTU->applyUpdatesPermissive(Updates);
1664       if (auto *BPI = getBPI())
1665         BPI->eraseBlock(BB);
1666 
1667       // If the condition is now dead due to the removal of the old terminator,
1668       // erase it.
1669       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1670         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1671           CondInst->eraseFromParent();
1672         // We can safely replace *some* uses of the CondInst if it has
1673         // exactly one value as returned by LVI. RAUW is incorrect in the
1674         // presence of guards and assumes, that have the `Cond` as the use. This
1675         // is because we use the guards/assume to reason about the `Cond` value
1676         // at the end of block, but RAUW unconditionally replaces all uses
1677         // including the guards/assumes themselves and the uses before the
1678         // guard/assume.
1679         else if (OnlyVal && OnlyVal != MultipleVal)
1680           replaceFoldableUses(CondInst, OnlyVal, BB);
1681       }
1682       return true;
1683     }
1684   }
1685 
1686   // Determine which is the most common successor.  If we have many inputs and
1687   // this block is a switch, we want to start by threading the batch that goes
1688   // to the most popular destination first.  If we only know about one
1689   // threadable destination (the common case) we can avoid this.
1690   BasicBlock *MostPopularDest = OnlyDest;
1691 
1692   if (MostPopularDest == MultipleDestSentinel) {
1693     // Remove any loop headers from the Dest list, threadEdge conservatively
1694     // won't process them, but we might have other destination that are eligible
1695     // and we still want to process.
1696     erase_if(PredToDestList,
1697              [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1698                return LoopHeaders.contains(PredToDest.second);
1699              });
1700 
1701     if (PredToDestList.empty())
1702       return false;
1703 
1704     MostPopularDest = findMostPopularDest(BB, PredToDestList);
1705   }
1706 
1707   // Now that we know what the most popular destination is, factor all
1708   // predecessors that will jump to it into a single predecessor.
1709   SmallVector<BasicBlock*, 16> PredsToFactor;
1710   for (const auto &PredToDest : PredToDestList)
1711     if (PredToDest.second == MostPopularDest) {
1712       BasicBlock *Pred = PredToDest.first;
1713 
1714       // This predecessor may be a switch or something else that has multiple
1715       // edges to the block.  Factor each of these edges by listing them
1716       // according to # occurrences in PredsToFactor.
1717       for (BasicBlock *Succ : successors(Pred))
1718         if (Succ == BB)
1719           PredsToFactor.push_back(Pred);
1720     }
1721 
1722   // If the threadable edges are branching on an undefined value, we get to pick
1723   // the destination that these predecessors should get to.
1724   if (!MostPopularDest)
1725     MostPopularDest = BB->getTerminator()->
1726                             getSuccessor(getBestDestForJumpOnUndef(BB));
1727 
1728   // Ok, try to thread it!
1729   return tryThreadEdge(BB, PredsToFactor, MostPopularDest);
1730 }
1731 
1732 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on
1733 /// a PHI node (or freeze PHI) in the current block.  See if there are any
1734 /// simplifications we can do based on inputs to the phi node.
1735 bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) {
1736   BasicBlock *BB = PN->getParent();
1737 
1738   // TODO: We could make use of this to do it once for blocks with common PHI
1739   // values.
1740   SmallVector<BasicBlock*, 1> PredBBs;
1741   PredBBs.resize(1);
1742 
1743   // If any of the predecessor blocks end in an unconditional branch, we can
1744   // *duplicate* the conditional branch into that block in order to further
1745   // encourage jump threading and to eliminate cases where we have branch on a
1746   // phi of an icmp (branch on icmp is much better).
1747   // This is still beneficial when a frozen phi is used as the branch condition
1748   // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp))
1749   // to br(icmp(freeze ...)).
1750   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1751     BasicBlock *PredBB = PN->getIncomingBlock(i);
1752     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1753       if (PredBr->isUnconditional()) {
1754         PredBBs[0] = PredBB;
1755         // Try to duplicate BB into PredBB.
1756         if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1757           return true;
1758       }
1759   }
1760 
1761   return false;
1762 }
1763 
1764 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on
1765 /// a xor instruction in the current block.  See if there are any
1766 /// simplifications we can do based on inputs to the xor.
1767 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) {
1768   BasicBlock *BB = BO->getParent();
1769 
1770   // If either the LHS or RHS of the xor is a constant, don't do this
1771   // optimization.
1772   if (isa<ConstantInt>(BO->getOperand(0)) ||
1773       isa<ConstantInt>(BO->getOperand(1)))
1774     return false;
1775 
1776   // If the first instruction in BB isn't a phi, we won't be able to infer
1777   // anything special about any particular predecessor.
1778   if (!isa<PHINode>(BB->front()))
1779     return false;
1780 
1781   // If this BB is a landing pad, we won't be able to split the edge into it.
1782   if (BB->isEHPad())
1783     return false;
1784 
1785   // If we have a xor as the branch input to this block, and we know that the
1786   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1787   // the condition into the predecessor and fix that value to true, saving some
1788   // logical ops on that path and encouraging other paths to simplify.
1789   //
1790   // This copies something like this:
1791   //
1792   //  BB:
1793   //    %X = phi i1 [1],  [%X']
1794   //    %Y = icmp eq i32 %A, %B
1795   //    %Z = xor i1 %X, %Y
1796   //    br i1 %Z, ...
1797   //
1798   // Into:
1799   //  BB':
1800   //    %Y = icmp ne i32 %A, %B
1801   //    br i1 %Y, ...
1802 
1803   PredValueInfoTy XorOpValues;
1804   bool isLHS = true;
1805   if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1806                                        WantInteger, BO)) {
1807     assert(XorOpValues.empty());
1808     if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1809                                          WantInteger, BO))
1810       return false;
1811     isLHS = false;
1812   }
1813 
1814   assert(!XorOpValues.empty() &&
1815          "computeValueKnownInPredecessors returned true with no values");
1816 
1817   // Scan the information to see which is most popular: true or false.  The
1818   // predecessors can be of the set true, false, or undef.
1819   unsigned NumTrue = 0, NumFalse = 0;
1820   for (const auto &XorOpValue : XorOpValues) {
1821     if (isa<UndefValue>(XorOpValue.first))
1822       // Ignore undefs for the count.
1823       continue;
1824     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1825       ++NumFalse;
1826     else
1827       ++NumTrue;
1828   }
1829 
1830   // Determine which value to split on, true, false, or undef if neither.
1831   ConstantInt *SplitVal = nullptr;
1832   if (NumTrue > NumFalse)
1833     SplitVal = ConstantInt::getTrue(BB->getContext());
1834   else if (NumTrue != 0 || NumFalse != 0)
1835     SplitVal = ConstantInt::getFalse(BB->getContext());
1836 
1837   // Collect all of the blocks that this can be folded into so that we can
1838   // factor this once and clone it once.
1839   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1840   for (const auto &XorOpValue : XorOpValues) {
1841     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1842       continue;
1843 
1844     BlocksToFoldInto.push_back(XorOpValue.second);
1845   }
1846 
1847   // If we inferred a value for all of the predecessors, then duplication won't
1848   // help us.  However, we can just replace the LHS or RHS with the constant.
1849   if (BlocksToFoldInto.size() ==
1850       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1851     if (!SplitVal) {
1852       // If all preds provide undef, just nuke the xor, because it is undef too.
1853       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1854       BO->eraseFromParent();
1855     } else if (SplitVal->isZero() && BO != BO->getOperand(isLHS)) {
1856       // If all preds provide 0, replace the xor with the other input.
1857       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1858       BO->eraseFromParent();
1859     } else {
1860       // If all preds provide 1, set the computed value to 1.
1861       BO->setOperand(!isLHS, SplitVal);
1862     }
1863 
1864     return true;
1865   }
1866 
1867   // If any of predecessors end with an indirect goto, we can't change its
1868   // destination.
1869   if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) {
1870         return isa<IndirectBrInst>(Pred->getTerminator());
1871       }))
1872     return false;
1873 
1874   // Try to duplicate BB into PredBB.
1875   return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1876 }
1877 
1878 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1879 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1880 /// NewPred using the entries from OldPred (suitably mapped).
1881 static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1882                                             BasicBlock *OldPred,
1883                                             BasicBlock *NewPred,
1884                                             ValueToValueMapTy &ValueMap) {
1885   for (PHINode &PN : PHIBB->phis()) {
1886     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1887     // DestBlock.
1888     Value *IV = PN.getIncomingValueForBlock(OldPred);
1889 
1890     // Remap the value if necessary.
1891     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1892       ValueToValueMapTy::iterator I = ValueMap.find(Inst);
1893       if (I != ValueMap.end())
1894         IV = I->second;
1895     }
1896 
1897     PN.addIncoming(IV, NewPred);
1898   }
1899 }
1900 
1901 /// Merge basic block BB into its sole predecessor if possible.
1902 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) {
1903   BasicBlock *SinglePred = BB->getSinglePredecessor();
1904   if (!SinglePred)
1905     return false;
1906 
1907   const Instruction *TI = SinglePred->getTerminator();
1908   if (TI->isSpecialTerminator() || TI->getNumSuccessors() != 1 ||
1909       SinglePred == BB || hasAddressTakenAndUsed(BB))
1910     return false;
1911 
1912   // If SinglePred was a loop header, BB becomes one.
1913   if (LoopHeaders.erase(SinglePred))
1914     LoopHeaders.insert(BB);
1915 
1916   LVI->eraseBlock(SinglePred);
1917   MergeBasicBlockIntoOnlyPred(BB, DTU.get());
1918 
1919   // Now that BB is merged into SinglePred (i.e. SinglePred code followed by
1920   // BB code within one basic block `BB`), we need to invalidate the LVI
1921   // information associated with BB, because the LVI information need not be
1922   // true for all of BB after the merge. For example,
1923   // Before the merge, LVI info and code is as follows:
1924   // SinglePred: <LVI info1 for %p val>
1925   // %y = use of %p
1926   // call @exit() // need not transfer execution to successor.
1927   // assume(%p) // from this point on %p is true
1928   // br label %BB
1929   // BB: <LVI info2 for %p val, i.e. %p is true>
1930   // %x = use of %p
1931   // br label exit
1932   //
1933   // Note that this LVI info for blocks BB and SinglPred is correct for %p
1934   // (info2 and info1 respectively). After the merge and the deletion of the
1935   // LVI info1 for SinglePred. We have the following code:
1936   // BB: <LVI info2 for %p val>
1937   // %y = use of %p
1938   // call @exit()
1939   // assume(%p)
1940   // %x = use of %p <-- LVI info2 is correct from here onwards.
1941   // br label exit
1942   // LVI info2 for BB is incorrect at the beginning of BB.
1943 
1944   // Invalidate LVI information for BB if the LVI is not provably true for
1945   // all of BB.
1946   if (!isGuaranteedToTransferExecutionToSuccessor(BB))
1947     LVI->eraseBlock(BB);
1948   return true;
1949 }
1950 
1951 /// Update the SSA form.  NewBB contains instructions that are copied from BB.
1952 /// ValueMapping maps old values in BB to new ones in NewBB.
1953 void JumpThreadingPass::updateSSA(BasicBlock *BB, BasicBlock *NewBB,
1954                                   ValueToValueMapTy &ValueMapping) {
1955   // If there were values defined in BB that are used outside the block, then we
1956   // now have to update all uses of the value to use either the original value,
1957   // the cloned value, or some PHI derived value.  This can require arbitrary
1958   // PHI insertion, of which we are prepared to do, clean these up now.
1959   SSAUpdater SSAUpdate;
1960   SmallVector<Use *, 16> UsesToRename;
1961   SmallVector<DbgValueInst *, 4> DbgValues;
1962   SmallVector<DbgVariableRecord *, 4> DbgVariableRecords;
1963 
1964   for (Instruction &I : *BB) {
1965     // Scan all uses of this instruction to see if it is used outside of its
1966     // block, and if so, record them in UsesToRename.
1967     for (Use &U : I.uses()) {
1968       Instruction *User = cast<Instruction>(U.getUser());
1969       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1970         if (UserPN->getIncomingBlock(U) == BB)
1971           continue;
1972       } else if (User->getParent() == BB)
1973         continue;
1974 
1975       UsesToRename.push_back(&U);
1976     }
1977 
1978     // Find debug values outside of the block
1979     findDbgValues(DbgValues, &I, &DbgVariableRecords);
1980     llvm::erase_if(DbgValues, [&](const DbgValueInst *DbgVal) {
1981       return DbgVal->getParent() == BB;
1982     });
1983     llvm::erase_if(DbgVariableRecords, [&](const DbgVariableRecord *DbgVarRec) {
1984       return DbgVarRec->getParent() == BB;
1985     });
1986 
1987     // If there are no uses outside the block, we're done with this instruction.
1988     if (UsesToRename.empty() && DbgValues.empty() && DbgVariableRecords.empty())
1989       continue;
1990     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
1991 
1992     // We found a use of I outside of BB.  Rename all uses of I that are outside
1993     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1994     // with the two values we know.
1995     SSAUpdate.Initialize(I.getType(), I.getName());
1996     SSAUpdate.AddAvailableValue(BB, &I);
1997     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
1998 
1999     while (!UsesToRename.empty())
2000       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2001     if (!DbgValues.empty() || !DbgVariableRecords.empty()) {
2002       SSAUpdate.UpdateDebugValues(&I, DbgValues);
2003       SSAUpdate.UpdateDebugValues(&I, DbgVariableRecords);
2004       DbgValues.clear();
2005       DbgVariableRecords.clear();
2006     }
2007 
2008     LLVM_DEBUG(dbgs() << "\n");
2009   }
2010 }
2011 
2012 /// Clone instructions in range [BI, BE) to NewBB.  For PHI nodes, we only clone
2013 /// arguments that come from PredBB.  Return the map from the variables in the
2014 /// source basic block to the variables in the newly created basic block.
2015 
2016 void JumpThreadingPass::cloneInstructions(ValueToValueMapTy &ValueMapping,
2017                                           BasicBlock::iterator BI,
2018                                           BasicBlock::iterator BE,
2019                                           BasicBlock *NewBB,
2020                                           BasicBlock *PredBB) {
2021   // We are going to have to map operands from the source basic block to the new
2022   // copy of the block 'NewBB'.  If there are PHI nodes in the source basic
2023   // block, evaluate them to account for entry from PredBB.
2024 
2025   // Retargets llvm.dbg.value to any renamed variables.
2026   auto RetargetDbgValueIfPossible = [&](Instruction *NewInst) -> bool {
2027     auto DbgInstruction = dyn_cast<DbgValueInst>(NewInst);
2028     if (!DbgInstruction)
2029       return false;
2030 
2031     SmallSet<std::pair<Value *, Value *>, 16> OperandsToRemap;
2032     for (auto DbgOperand : DbgInstruction->location_ops()) {
2033       auto DbgOperandInstruction = dyn_cast<Instruction>(DbgOperand);
2034       if (!DbgOperandInstruction)
2035         continue;
2036 
2037       auto I = ValueMapping.find(DbgOperandInstruction);
2038       if (I != ValueMapping.end()) {
2039         OperandsToRemap.insert(
2040             std::pair<Value *, Value *>(DbgOperand, I->second));
2041       }
2042     }
2043 
2044     for (auto &[OldOp, MappedOp] : OperandsToRemap)
2045       DbgInstruction->replaceVariableLocationOp(OldOp, MappedOp);
2046     return true;
2047   };
2048 
2049   // Duplicate implementation of the above dbg.value code, using
2050   // DbgVariableRecords instead.
2051   auto RetargetDbgVariableRecordIfPossible = [&](DbgVariableRecord *DVR) {
2052     SmallSet<std::pair<Value *, Value *>, 16> OperandsToRemap;
2053     for (auto *Op : DVR->location_ops()) {
2054       Instruction *OpInst = dyn_cast<Instruction>(Op);
2055       if (!OpInst)
2056         continue;
2057 
2058       auto I = ValueMapping.find(OpInst);
2059       if (I != ValueMapping.end())
2060         OperandsToRemap.insert({OpInst, I->second});
2061     }
2062 
2063     for (auto &[OldOp, MappedOp] : OperandsToRemap)
2064       DVR->replaceVariableLocationOp(OldOp, MappedOp);
2065   };
2066 
2067   BasicBlock *RangeBB = BI->getParent();
2068 
2069   // Clone the phi nodes of the source basic block into NewBB.  The resulting
2070   // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater
2071   // might need to rewrite the operand of the cloned phi.
2072   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2073     PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB);
2074     NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB);
2075     ValueMapping[PN] = NewPN;
2076   }
2077 
2078   // Clone noalias scope declarations in the threaded block. When threading a
2079   // loop exit, we would otherwise end up with two idential scope declarations
2080   // visible at the same time.
2081   SmallVector<MDNode *> NoAliasScopes;
2082   DenseMap<MDNode *, MDNode *> ClonedScopes;
2083   LLVMContext &Context = PredBB->getContext();
2084   identifyNoAliasScopesToClone(BI, BE, NoAliasScopes);
2085   cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context);
2086 
2087   auto CloneAndRemapDbgInfo = [&](Instruction *NewInst, Instruction *From) {
2088     auto DVRRange = NewInst->cloneDebugInfoFrom(From);
2089     for (DbgVariableRecord &DVR : filterDbgVars(DVRRange))
2090       RetargetDbgVariableRecordIfPossible(&DVR);
2091   };
2092 
2093   // Clone the non-phi instructions of the source basic block into NewBB,
2094   // keeping track of the mapping and using it to remap operands in the cloned
2095   // instructions.
2096   for (; BI != BE; ++BI) {
2097     Instruction *New = BI->clone();
2098     New->setName(BI->getName());
2099     New->insertInto(NewBB, NewBB->end());
2100     ValueMapping[&*BI] = New;
2101     adaptNoAliasScopes(New, ClonedScopes, Context);
2102 
2103     CloneAndRemapDbgInfo(New, &*BI);
2104 
2105     if (RetargetDbgValueIfPossible(New))
2106       continue;
2107 
2108     // Remap operands to patch up intra-block references.
2109     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2110       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2111         ValueToValueMapTy::iterator I = ValueMapping.find(Inst);
2112         if (I != ValueMapping.end())
2113           New->setOperand(i, I->second);
2114       }
2115   }
2116 
2117   // There may be DbgVariableRecords on the terminator, clone directly from
2118   // marker to marker as there isn't an instruction there.
2119   if (BE != RangeBB->end() && BE->hasDbgRecords()) {
2120     // Dump them at the end.
2121     DbgMarker *Marker = RangeBB->getMarker(BE);
2122     DbgMarker *EndMarker = NewBB->createMarker(NewBB->end());
2123     auto DVRRange = EndMarker->cloneDebugInfoFrom(Marker, std::nullopt);
2124     for (DbgVariableRecord &DVR : filterDbgVars(DVRRange))
2125       RetargetDbgVariableRecordIfPossible(&DVR);
2126   }
2127 
2128   return;
2129 }
2130 
2131 /// Attempt to thread through two successive basic blocks.
2132 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB,
2133                                                          Value *Cond) {
2134   // Consider:
2135   //
2136   // PredBB:
2137   //   %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ]
2138   //   %tobool = icmp eq i32 %cond, 0
2139   //   br i1 %tobool, label %BB, label ...
2140   //
2141   // BB:
2142   //   %cmp = icmp eq i32* %var, null
2143   //   br i1 %cmp, label ..., label ...
2144   //
2145   // We don't know the value of %var at BB even if we know which incoming edge
2146   // we take to BB.  However, once we duplicate PredBB for each of its incoming
2147   // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of
2148   // PredBB.  Then we can thread edges PredBB1->BB and PredBB2->BB through BB.
2149 
2150   // Require that BB end with a Branch for simplicity.
2151   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2152   if (!CondBr)
2153     return false;
2154 
2155   // BB must have exactly one predecessor.
2156   BasicBlock *PredBB = BB->getSinglePredecessor();
2157   if (!PredBB)
2158     return false;
2159 
2160   // Require that PredBB end with a conditional Branch. If PredBB ends with an
2161   // unconditional branch, we should be merging PredBB and BB instead. For
2162   // simplicity, we don't deal with a switch.
2163   BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2164   if (!PredBBBranch || PredBBBranch->isUnconditional())
2165     return false;
2166 
2167   // If PredBB has exactly one incoming edge, we don't gain anything by copying
2168   // PredBB.
2169   if (PredBB->getSinglePredecessor())
2170     return false;
2171 
2172   // Don't thread through PredBB if it contains a successor edge to itself, in
2173   // which case we would infinite loop.  Suppose we are threading an edge from
2174   // PredPredBB through PredBB and BB to SuccBB with PredBB containing a
2175   // successor edge to itself.  If we allowed jump threading in this case, we
2176   // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread.  Since
2177   // PredBB.thread has a successor edge to PredBB, we would immediately come up
2178   // with another jump threading opportunity from PredBB.thread through PredBB
2179   // and BB to SuccBB.  This jump threading would repeatedly occur.  That is, we
2180   // would keep peeling one iteration from PredBB.
2181   if (llvm::is_contained(successors(PredBB), PredBB))
2182     return false;
2183 
2184   // Don't thread across a loop header.
2185   if (LoopHeaders.count(PredBB))
2186     return false;
2187 
2188   // Avoid complication with duplicating EH pads.
2189   if (PredBB->isEHPad())
2190     return false;
2191 
2192   // Find a predecessor that we can thread.  For simplicity, we only consider a
2193   // successor edge out of BB to which we thread exactly one incoming edge into
2194   // PredBB.
2195   unsigned ZeroCount = 0;
2196   unsigned OneCount = 0;
2197   BasicBlock *ZeroPred = nullptr;
2198   BasicBlock *OnePred = nullptr;
2199   const DataLayout &DL = BB->getModule()->getDataLayout();
2200   for (BasicBlock *P : predecessors(PredBB)) {
2201     // If PredPred ends with IndirectBrInst, we can't handle it.
2202     if (isa<IndirectBrInst>(P->getTerminator()))
2203       continue;
2204     if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(
2205             evaluateOnPredecessorEdge(BB, P, Cond, DL))) {
2206       if (CI->isZero()) {
2207         ZeroCount++;
2208         ZeroPred = P;
2209       } else if (CI->isOne()) {
2210         OneCount++;
2211         OnePred = P;
2212       }
2213     }
2214   }
2215 
2216   // Disregard complicated cases where we have to thread multiple edges.
2217   BasicBlock *PredPredBB;
2218   if (ZeroCount == 1) {
2219     PredPredBB = ZeroPred;
2220   } else if (OneCount == 1) {
2221     PredPredBB = OnePred;
2222   } else {
2223     return false;
2224   }
2225 
2226   BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred);
2227 
2228   // If threading to the same block as we come from, we would infinite loop.
2229   if (SuccBB == BB) {
2230     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2231                       << "' - would thread to self!\n");
2232     return false;
2233   }
2234 
2235   // If threading this would thread across a loop header, don't thread the edge.
2236   // See the comments above findLoopHeaders for justifications and caveats.
2237   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2238     LLVM_DEBUG({
2239       bool BBIsHeader = LoopHeaders.count(BB);
2240       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2241       dbgs() << "  Not threading across "
2242              << (BBIsHeader ? "loop header BB '" : "block BB '")
2243              << BB->getName() << "' to dest "
2244              << (SuccIsHeader ? "loop header BB '" : "block BB '")
2245              << SuccBB->getName()
2246              << "' - it might create an irreducible loop!\n";
2247     });
2248     return false;
2249   }
2250 
2251   // Compute the cost of duplicating BB and PredBB.
2252   unsigned BBCost = getJumpThreadDuplicationCost(
2253       TTI, BB, BB->getTerminator(), BBDupThreshold);
2254   unsigned PredBBCost = getJumpThreadDuplicationCost(
2255       TTI, PredBB, PredBB->getTerminator(), BBDupThreshold);
2256 
2257   // Give up if costs are too high.  We need to check BBCost and PredBBCost
2258   // individually before checking their sum because getJumpThreadDuplicationCost
2259   // return (unsigned)~0 for those basic blocks that cannot be duplicated.
2260   if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold ||
2261       BBCost + PredBBCost > BBDupThreshold) {
2262     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2263                       << "' - Cost is too high: " << PredBBCost
2264                       << " for PredBB, " << BBCost << "for BB\n");
2265     return false;
2266   }
2267 
2268   // Now we are ready to duplicate PredBB.
2269   threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB);
2270   return true;
2271 }
2272 
2273 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB,
2274                                                     BasicBlock *PredBB,
2275                                                     BasicBlock *BB,
2276                                                     BasicBlock *SuccBB) {
2277   LLVM_DEBUG(dbgs() << "  Threading through '" << PredBB->getName() << "' and '"
2278                     << BB->getName() << "'\n");
2279 
2280   // Build BPI/BFI before any changes are made to IR.
2281   bool HasProfile = doesBlockHaveProfileData(BB);
2282   auto *BFI = getOrCreateBFI(HasProfile);
2283   auto *BPI = getOrCreateBPI(BFI != nullptr);
2284 
2285   BranchInst *CondBr = cast<BranchInst>(BB->getTerminator());
2286   BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator());
2287 
2288   BasicBlock *NewBB =
2289       BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread",
2290                          PredBB->getParent(), PredBB);
2291   NewBB->moveAfter(PredBB);
2292 
2293   // Set the block frequency of NewBB.
2294   if (BFI) {
2295     assert(BPI && "It's expected BPI to exist along with BFI");
2296     auto NewBBFreq = BFI->getBlockFreq(PredPredBB) *
2297                      BPI->getEdgeProbability(PredPredBB, PredBB);
2298     BFI->setBlockFreq(NewBB, NewBBFreq);
2299   }
2300 
2301   // We are going to have to map operands from the original BB block to the new
2302   // copy of the block 'NewBB'.  If there are PHI nodes in PredBB, evaluate them
2303   // to account for entry from PredPredBB.
2304   ValueToValueMapTy ValueMapping;
2305   cloneInstructions(ValueMapping, PredBB->begin(), PredBB->end(), NewBB,
2306                     PredPredBB);
2307 
2308   // Copy the edge probabilities from PredBB to NewBB.
2309   if (BPI)
2310     BPI->copyEdgeProbabilities(PredBB, NewBB);
2311 
2312   // Update the terminator of PredPredBB to jump to NewBB instead of PredBB.
2313   // This eliminates predecessors from PredPredBB, which requires us to simplify
2314   // any PHI nodes in PredBB.
2315   Instruction *PredPredTerm = PredPredBB->getTerminator();
2316   for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i)
2317     if (PredPredTerm->getSuccessor(i) == PredBB) {
2318       PredBB->removePredecessor(PredPredBB, true);
2319       PredPredTerm->setSuccessor(i, NewBB);
2320     }
2321 
2322   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB,
2323                                   ValueMapping);
2324   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB,
2325                                   ValueMapping);
2326 
2327   DTU->applyUpdatesPermissive(
2328       {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)},
2329        {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)},
2330        {DominatorTree::Insert, PredPredBB, NewBB},
2331        {DominatorTree::Delete, PredPredBB, PredBB}});
2332 
2333   updateSSA(PredBB, NewBB, ValueMapping);
2334 
2335   // Clean up things like PHI nodes with single operands, dead instructions,
2336   // etc.
2337   SimplifyInstructionsInBlock(NewBB, TLI);
2338   SimplifyInstructionsInBlock(PredBB, TLI);
2339 
2340   SmallVector<BasicBlock *, 1> PredsToFactor;
2341   PredsToFactor.push_back(NewBB);
2342   threadEdge(BB, PredsToFactor, SuccBB);
2343 }
2344 
2345 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so.
2346 bool JumpThreadingPass::tryThreadEdge(
2347     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs,
2348     BasicBlock *SuccBB) {
2349   // If threading to the same block as we come from, we would infinite loop.
2350   if (SuccBB == BB) {
2351     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2352                       << "' - would thread to self!\n");
2353     return false;
2354   }
2355 
2356   // If threading this would thread across a loop header, don't thread the edge.
2357   // See the comments above findLoopHeaders for justifications and caveats.
2358   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2359     LLVM_DEBUG({
2360       bool BBIsHeader = LoopHeaders.count(BB);
2361       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2362       dbgs() << "  Not threading across "
2363           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
2364           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
2365           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
2366     });
2367     return false;
2368   }
2369 
2370   unsigned JumpThreadCost = getJumpThreadDuplicationCost(
2371       TTI, BB, BB->getTerminator(), BBDupThreshold);
2372   if (JumpThreadCost > BBDupThreshold) {
2373     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2374                       << "' - Cost is too high: " << JumpThreadCost << "\n");
2375     return false;
2376   }
2377 
2378   threadEdge(BB, PredBBs, SuccBB);
2379   return true;
2380 }
2381 
2382 /// threadEdge - We have decided that it is safe and profitable to factor the
2383 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
2384 /// across BB.  Transform the IR to reflect this change.
2385 void JumpThreadingPass::threadEdge(BasicBlock *BB,
2386                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
2387                                    BasicBlock *SuccBB) {
2388   assert(SuccBB != BB && "Don't create an infinite loop");
2389 
2390   assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) &&
2391          "Don't thread across loop headers");
2392 
2393   // Build BPI/BFI before any changes are made to IR.
2394   bool HasProfile = doesBlockHaveProfileData(BB);
2395   auto *BFI = getOrCreateBFI(HasProfile);
2396   auto *BPI = getOrCreateBPI(BFI != nullptr);
2397 
2398   // And finally, do it!  Start by factoring the predecessors if needed.
2399   BasicBlock *PredBB;
2400   if (PredBBs.size() == 1)
2401     PredBB = PredBBs[0];
2402   else {
2403     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2404                       << " common predecessors.\n");
2405     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2406   }
2407 
2408   // And finally, do it!
2409   LLVM_DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName()
2410                     << "' to '" << SuccBB->getName()
2411                     << ", across block:\n    " << *BB << "\n");
2412 
2413   LVI->threadEdge(PredBB, BB, SuccBB);
2414 
2415   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
2416                                          BB->getName()+".thread",
2417                                          BB->getParent(), BB);
2418   NewBB->moveAfter(PredBB);
2419 
2420   // Set the block frequency of NewBB.
2421   if (BFI) {
2422     assert(BPI && "It's expected BPI to exist along with BFI");
2423     auto NewBBFreq =
2424         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
2425     BFI->setBlockFreq(NewBB, NewBBFreq);
2426   }
2427 
2428   // Copy all the instructions from BB to NewBB except the terminator.
2429   ValueToValueMapTy ValueMapping;
2430   cloneInstructions(ValueMapping, BB->begin(), std::prev(BB->end()), NewBB,
2431                     PredBB);
2432 
2433   // We didn't copy the terminator from BB over to NewBB, because there is now
2434   // an unconditional jump to SuccBB.  Insert the unconditional jump.
2435   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
2436   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2437 
2438   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2439   // PHI nodes for NewBB now.
2440   addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2441 
2442   // Update the terminator of PredBB to jump to NewBB instead of BB.  This
2443   // eliminates predecessors from BB, which requires us to simplify any PHI
2444   // nodes in BB.
2445   Instruction *PredTerm = PredBB->getTerminator();
2446   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2447     if (PredTerm->getSuccessor(i) == BB) {
2448       BB->removePredecessor(PredBB, true);
2449       PredTerm->setSuccessor(i, NewBB);
2450     }
2451 
2452   // Enqueue required DT updates.
2453   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB},
2454                                {DominatorTree::Insert, PredBB, NewBB},
2455                                {DominatorTree::Delete, PredBB, BB}});
2456 
2457   updateSSA(BB, NewBB, ValueMapping);
2458 
2459   // At this point, the IR is fully up to date and consistent.  Do a quick scan
2460   // over the new instructions and zap any that are constants or dead.  This
2461   // frequently happens because of phi translation.
2462   SimplifyInstructionsInBlock(NewBB, TLI);
2463 
2464   // Update the edge weight from BB to SuccBB, which should be less than before.
2465   updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB, BFI, BPI, HasProfile);
2466 
2467   // Threaded an edge!
2468   ++NumThreads;
2469 }
2470 
2471 /// Create a new basic block that will be the predecessor of BB and successor of
2472 /// all blocks in Preds. When profile data is available, update the frequency of
2473 /// this new block.
2474 BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB,
2475                                                ArrayRef<BasicBlock *> Preds,
2476                                                const char *Suffix) {
2477   SmallVector<BasicBlock *, 2> NewBBs;
2478 
2479   // Collect the frequencies of all predecessors of BB, which will be used to
2480   // update the edge weight of the result of splitting predecessors.
2481   DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2482   auto *BFI = getBFI();
2483   if (BFI) {
2484     auto *BPI = getOrCreateBPI(true);
2485     for (auto *Pred : Preds)
2486       FreqMap.insert(std::make_pair(
2487           Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2488   }
2489 
2490   // In the case when BB is a LandingPad block we create 2 new predecessors
2491   // instead of just one.
2492   if (BB->isLandingPad()) {
2493     std::string NewName = std::string(Suffix) + ".split-lp";
2494     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2495   } else {
2496     NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2497   }
2498 
2499   std::vector<DominatorTree::UpdateType> Updates;
2500   Updates.reserve((2 * Preds.size()) + NewBBs.size());
2501   for (auto *NewBB : NewBBs) {
2502     BlockFrequency NewBBFreq(0);
2503     Updates.push_back({DominatorTree::Insert, NewBB, BB});
2504     for (auto *Pred : predecessors(NewBB)) {
2505       Updates.push_back({DominatorTree::Delete, Pred, BB});
2506       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2507       if (BFI) // Update frequencies between Pred -> NewBB.
2508         NewBBFreq += FreqMap.lookup(Pred);
2509     }
2510     if (BFI) // Apply the summed frequency to NewBB.
2511       BFI->setBlockFreq(NewBB, NewBBFreq);
2512   }
2513 
2514   DTU->applyUpdatesPermissive(Updates);
2515   return NewBBs[0];
2516 }
2517 
2518 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2519   const Instruction *TI = BB->getTerminator();
2520   if (!TI || TI->getNumSuccessors() < 2)
2521     return false;
2522 
2523   return hasValidBranchWeightMD(*TI);
2524 }
2525 
2526 /// Update the block frequency of BB and branch weight and the metadata on the
2527 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2528 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2529 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2530                                                      BasicBlock *BB,
2531                                                      BasicBlock *NewBB,
2532                                                      BasicBlock *SuccBB,
2533                                                      BlockFrequencyInfo *BFI,
2534                                                      BranchProbabilityInfo *BPI,
2535                                                      bool HasProfile) {
2536   assert(((BFI && BPI) || (!BFI && !BFI)) &&
2537          "Both BFI & BPI should either be set or unset");
2538 
2539   if (!BFI) {
2540     assert(!HasProfile &&
2541            "It's expected to have BFI/BPI when profile info exists");
2542     return;
2543   }
2544 
2545   // As the edge from PredBB to BB is deleted, we have to update the block
2546   // frequency of BB.
2547   auto BBOrigFreq = BFI->getBlockFreq(BB);
2548   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2549   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2550   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2551   BFI->setBlockFreq(BB, BBNewFreq);
2552 
2553   // Collect updated outgoing edges' frequencies from BB and use them to update
2554   // edge probabilities.
2555   SmallVector<uint64_t, 4> BBSuccFreq;
2556   for (BasicBlock *Succ : successors(BB)) {
2557     auto SuccFreq = (Succ == SuccBB)
2558                         ? BB2SuccBBFreq - NewBBFreq
2559                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2560     BBSuccFreq.push_back(SuccFreq.getFrequency());
2561   }
2562 
2563   uint64_t MaxBBSuccFreq = *llvm::max_element(BBSuccFreq);
2564 
2565   SmallVector<BranchProbability, 4> BBSuccProbs;
2566   if (MaxBBSuccFreq == 0)
2567     BBSuccProbs.assign(BBSuccFreq.size(),
2568                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2569   else {
2570     for (uint64_t Freq : BBSuccFreq)
2571       BBSuccProbs.push_back(
2572           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2573     // Normalize edge probabilities so that they sum up to one.
2574     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2575                                               BBSuccProbs.end());
2576   }
2577 
2578   // Update edge probabilities in BPI.
2579   BPI->setEdgeProbability(BB, BBSuccProbs);
2580 
2581   // Update the profile metadata as well.
2582   //
2583   // Don't do this if the profile of the transformed blocks was statically
2584   // estimated.  (This could occur despite the function having an entry
2585   // frequency in completely cold parts of the CFG.)
2586   //
2587   // In this case we don't want to suggest to subsequent passes that the
2588   // calculated weights are fully consistent.  Consider this graph:
2589   //
2590   //                 check_1
2591   //             50% /  |
2592   //             eq_1   | 50%
2593   //                 \  |
2594   //                 check_2
2595   //             50% /  |
2596   //             eq_2   | 50%
2597   //                 \  |
2598   //                 check_3
2599   //             50% /  |
2600   //             eq_3   | 50%
2601   //                 \  |
2602   //
2603   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2604   // the overall probabilities are inconsistent; the total probability that the
2605   // value is either 1, 2 or 3 is 150%.
2606   //
2607   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2608   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2609   // the loop exit edge.  Then based solely on static estimation we would assume
2610   // the loop was extremely hot.
2611   //
2612   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2613   // shouldn't make edges extremely likely or unlikely based solely on static
2614   // estimation.
2615   if (BBSuccProbs.size() >= 2 && HasProfile) {
2616     SmallVector<uint32_t, 4> Weights;
2617     for (auto Prob : BBSuccProbs)
2618       Weights.push_back(Prob.getNumerator());
2619 
2620     auto TI = BB->getTerminator();
2621     setBranchWeights(*TI, Weights, hasBranchWeightOrigin(*TI));
2622   }
2623 }
2624 
2625 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2626 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2627 /// If we can duplicate the contents of BB up into PredBB do so now, this
2628 /// improves the odds that the branch will be on an analyzable instruction like
2629 /// a compare.
2630 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred(
2631     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2632   assert(!PredBBs.empty() && "Can't handle an empty set");
2633 
2634   // If BB is a loop header, then duplicating this block outside the loop would
2635   // cause us to transform this into an irreducible loop, don't do this.
2636   // See the comments above findLoopHeaders for justifications and caveats.
2637   if (LoopHeaders.count(BB)) {
2638     LLVM_DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2639                       << "' into predecessor block '" << PredBBs[0]->getName()
2640                       << "' - it might create an irreducible loop!\n");
2641     return false;
2642   }
2643 
2644   unsigned DuplicationCost = getJumpThreadDuplicationCost(
2645       TTI, BB, BB->getTerminator(), BBDupThreshold);
2646   if (DuplicationCost > BBDupThreshold) {
2647     LLVM_DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2648                       << "' - Cost is too high: " << DuplicationCost << "\n");
2649     return false;
2650   }
2651 
2652   // And finally, do it!  Start by factoring the predecessors if needed.
2653   std::vector<DominatorTree::UpdateType> Updates;
2654   BasicBlock *PredBB;
2655   if (PredBBs.size() == 1)
2656     PredBB = PredBBs[0];
2657   else {
2658     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2659                       << " common predecessors.\n");
2660     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2661   }
2662   Updates.push_back({DominatorTree::Delete, PredBB, BB});
2663 
2664   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2665   // of PredBB.
2666   LLVM_DEBUG(dbgs() << "  Duplicating block '" << BB->getName()
2667                     << "' into end of '" << PredBB->getName()
2668                     << "' to eliminate branch on phi.  Cost: "
2669                     << DuplicationCost << " block is:" << *BB << "\n");
2670 
2671   // Unless PredBB ends with an unconditional branch, split the edge so that we
2672   // can just clone the bits from BB into the end of the new PredBB.
2673   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2674 
2675   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2676     BasicBlock *OldPredBB = PredBB;
2677     PredBB = SplitEdge(OldPredBB, BB);
2678     Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2679     Updates.push_back({DominatorTree::Insert, PredBB, BB});
2680     Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2681     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2682   }
2683 
2684   // We are going to have to map operands from the original BB block into the
2685   // PredBB block.  Evaluate PHI nodes in BB.
2686   ValueToValueMapTy ValueMapping;
2687 
2688   BasicBlock::iterator BI = BB->begin();
2689   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2690     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2691   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2692   // mapping and using it to remap operands in the cloned instructions.
2693   for (; BI != BB->end(); ++BI) {
2694     Instruction *New = BI->clone();
2695     New->insertInto(PredBB, OldPredBranch->getIterator());
2696 
2697     // Remap operands to patch up intra-block references.
2698     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2699       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2700         ValueToValueMapTy::iterator I = ValueMapping.find(Inst);
2701         if (I != ValueMapping.end())
2702           New->setOperand(i, I->second);
2703       }
2704 
2705     // Remap debug variable operands.
2706     remapDebugVariable(ValueMapping, New);
2707 
2708     // If this instruction can be simplified after the operands are updated,
2709     // just use the simplified value instead.  This frequently happens due to
2710     // phi translation.
2711     if (Value *IV = simplifyInstruction(
2712             New,
2713             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2714       ValueMapping[&*BI] = IV;
2715       if (!New->mayHaveSideEffects()) {
2716         New->eraseFromParent();
2717         New = nullptr;
2718         // Clone debug-info on the elided instruction to the destination
2719         // position.
2720         OldPredBranch->cloneDebugInfoFrom(&*BI, std::nullopt, true);
2721       }
2722     } else {
2723       ValueMapping[&*BI] = New;
2724     }
2725     if (New) {
2726       // Otherwise, insert the new instruction into the block.
2727       New->setName(BI->getName());
2728       // Clone across any debug-info attached to the old instruction.
2729       New->cloneDebugInfoFrom(&*BI);
2730       // Update Dominance from simplified New instruction operands.
2731       for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2732         if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2733           Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2734     }
2735   }
2736 
2737   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2738   // add entries to the PHI nodes for branch from PredBB now.
2739   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2740   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2741                                   ValueMapping);
2742   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2743                                   ValueMapping);
2744 
2745   updateSSA(BB, PredBB, ValueMapping);
2746 
2747   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2748   // that we nuked.
2749   BB->removePredecessor(PredBB, true);
2750 
2751   // Remove the unconditional branch at the end of the PredBB block.
2752   OldPredBranch->eraseFromParent();
2753   if (auto *BPI = getBPI())
2754     BPI->copyEdgeProbabilities(BB, PredBB);
2755   DTU->applyUpdatesPermissive(Updates);
2756 
2757   ++NumDupes;
2758   return true;
2759 }
2760 
2761 // Pred is a predecessor of BB with an unconditional branch to BB. SI is
2762 // a Select instruction in Pred. BB has other predecessors and SI is used in
2763 // a PHI node in BB. SI has no other use.
2764 // A new basic block, NewBB, is created and SI is converted to compare and
2765 // conditional branch. SI is erased from parent.
2766 void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
2767                                           SelectInst *SI, PHINode *SIUse,
2768                                           unsigned Idx) {
2769   // Expand the select.
2770   //
2771   // Pred --
2772   //  |    v
2773   //  |  NewBB
2774   //  |    |
2775   //  |-----
2776   //  v
2777   // BB
2778   BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator());
2779   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2780                                          BB->getParent(), BB);
2781   // Move the unconditional branch to NewBB.
2782   PredTerm->removeFromParent();
2783   PredTerm->insertInto(NewBB, NewBB->end());
2784   // Create a conditional branch and update PHI nodes.
2785   auto *BI = BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2786   BI->applyMergedLocation(PredTerm->getDebugLoc(), SI->getDebugLoc());
2787   BI->copyMetadata(*SI, {LLVMContext::MD_prof});
2788   SIUse->setIncomingValue(Idx, SI->getFalseValue());
2789   SIUse->addIncoming(SI->getTrueValue(), NewBB);
2790 
2791   uint64_t TrueWeight = 1;
2792   uint64_t FalseWeight = 1;
2793   // Copy probabilities from 'SI' to created conditional branch in 'Pred'.
2794   if (extractBranchWeights(*SI, TrueWeight, FalseWeight) &&
2795       (TrueWeight + FalseWeight) != 0) {
2796     SmallVector<BranchProbability, 2> BP;
2797     BP.emplace_back(BranchProbability::getBranchProbability(
2798         TrueWeight, TrueWeight + FalseWeight));
2799     BP.emplace_back(BranchProbability::getBranchProbability(
2800         FalseWeight, TrueWeight + FalseWeight));
2801     // Update BPI if exists.
2802     if (auto *BPI = getBPI())
2803       BPI->setEdgeProbability(Pred, BP);
2804   }
2805   // Set the block frequency of NewBB.
2806   if (auto *BFI = getBFI()) {
2807     if ((TrueWeight + FalseWeight) == 0) {
2808       TrueWeight = 1;
2809       FalseWeight = 1;
2810     }
2811     BranchProbability PredToNewBBProb = BranchProbability::getBranchProbability(
2812         TrueWeight, TrueWeight + FalseWeight);
2813     auto NewBBFreq = BFI->getBlockFreq(Pred) * PredToNewBBProb;
2814     BFI->setBlockFreq(NewBB, NewBBFreq);
2815   }
2816 
2817   // The select is now dead.
2818   SI->eraseFromParent();
2819   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB},
2820                                {DominatorTree::Insert, Pred, NewBB}});
2821 
2822   // Update any other PHI nodes in BB.
2823   for (BasicBlock::iterator BI = BB->begin();
2824        PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2825     if (Phi != SIUse)
2826       Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2827 }
2828 
2829 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
2830   PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
2831 
2832   if (!CondPHI || CondPHI->getParent() != BB)
2833     return false;
2834 
2835   for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
2836     BasicBlock *Pred = CondPHI->getIncomingBlock(I);
2837     SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
2838 
2839     // The second and third condition can be potentially relaxed. Currently
2840     // the conditions help to simplify the code and allow us to reuse existing
2841     // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *)
2842     if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
2843       continue;
2844 
2845     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2846     if (!PredTerm || !PredTerm->isUnconditional())
2847       continue;
2848 
2849     unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
2850     return true;
2851   }
2852   return false;
2853 }
2854 
2855 /// tryToUnfoldSelect - Look for blocks of the form
2856 /// bb1:
2857 ///   %a = select
2858 ///   br bb2
2859 ///
2860 /// bb2:
2861 ///   %p = phi [%a, %bb1] ...
2862 ///   %c = icmp %p
2863 ///   br i1 %c
2864 ///
2865 /// And expand the select into a branch structure if one of its arms allows %c
2866 /// to be folded. This later enables threading from bb1 over bb2.
2867 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2868   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2869   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2870   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2871 
2872   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2873       CondLHS->getParent() != BB)
2874     return false;
2875 
2876   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2877     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2878     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2879 
2880     // Look if one of the incoming values is a select in the corresponding
2881     // predecessor.
2882     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2883       continue;
2884 
2885     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2886     if (!PredTerm || !PredTerm->isUnconditional())
2887       continue;
2888 
2889     // Now check if one of the select values would allow us to constant fold the
2890     // terminator in BB. We don't do the transform if both sides fold, those
2891     // cases will be threaded in any case.
2892     LazyValueInfo::Tristate LHSFolds =
2893         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2894                                 CondRHS, Pred, BB, CondCmp);
2895     LazyValueInfo::Tristate RHSFolds =
2896         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2897                                 CondRHS, Pred, BB, CondCmp);
2898     if ((LHSFolds != LazyValueInfo::Unknown ||
2899          RHSFolds != LazyValueInfo::Unknown) &&
2900         LHSFolds != RHSFolds) {
2901       unfoldSelectInstr(Pred, BB, SI, CondLHS, I);
2902       return true;
2903     }
2904   }
2905   return false;
2906 }
2907 
2908 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2909 /// same BB in the form
2910 /// bb:
2911 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2912 ///   %s = select %p, trueval, falseval
2913 ///
2914 /// or
2915 ///
2916 /// bb:
2917 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2918 ///   %c = cmp %p, 0
2919 ///   %s = select %c, trueval, falseval
2920 ///
2921 /// And expand the select into a branch structure. This later enables
2922 /// jump-threading over bb in this pass.
2923 ///
2924 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2925 /// select if the associated PHI has at least one constant.  If the unfolded
2926 /// select is not jump-threaded, it will be folded again in the later
2927 /// optimizations.
2928 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2929   // This transform would reduce the quality of msan diagnostics.
2930   // Disable this transform under MemorySanitizer.
2931   if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
2932     return false;
2933 
2934   // If threading this would thread across a loop header, don't thread the edge.
2935   // See the comments above findLoopHeaders for justifications and caveats.
2936   if (LoopHeaders.count(BB))
2937     return false;
2938 
2939   for (BasicBlock::iterator BI = BB->begin();
2940        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2941     // Look for a Phi having at least one constant incoming value.
2942     if (llvm::all_of(PN->incoming_values(),
2943                      [](Value *V) { return !isa<ConstantInt>(V); }))
2944       continue;
2945 
2946     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2947       using namespace PatternMatch;
2948 
2949       // Check if SI is in BB and use V as condition.
2950       if (SI->getParent() != BB)
2951         return false;
2952       Value *Cond = SI->getCondition();
2953       bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()));
2954       return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr;
2955     };
2956 
2957     SelectInst *SI = nullptr;
2958     for (Use &U : PN->uses()) {
2959       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2960         // Look for a ICmp in BB that compares PN with a constant and is the
2961         // condition of a Select.
2962         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2963             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2964           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2965             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2966               SI = SelectI;
2967               break;
2968             }
2969       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2970         // Look for a Select in BB that uses PN as condition.
2971         if (isUnfoldCandidate(SelectI, U.get())) {
2972           SI = SelectI;
2973           break;
2974         }
2975       }
2976     }
2977 
2978     if (!SI)
2979       continue;
2980     // Expand the select.
2981     Value *Cond = SI->getCondition();
2982     if (!isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI))
2983       Cond = new FreezeInst(Cond, "cond.fr", SI->getIterator());
2984     MDNode *BranchWeights = getBranchWeightMDNode(*SI);
2985     Instruction *Term =
2986         SplitBlockAndInsertIfThen(Cond, SI, false, BranchWeights);
2987     BasicBlock *SplitBB = SI->getParent();
2988     BasicBlock *NewBB = Term->getParent();
2989     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI->getIterator());
2990     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2991     NewPN->addIncoming(SI->getFalseValue(), BB);
2992     NewPN->setDebugLoc(SI->getDebugLoc());
2993     SI->replaceAllUsesWith(NewPN);
2994     SI->eraseFromParent();
2995     // NewBB and SplitBB are newly created blocks which require insertion.
2996     std::vector<DominatorTree::UpdateType> Updates;
2997     Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2998     Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2999     Updates.push_back({DominatorTree::Insert, BB, NewBB});
3000     Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
3001     // BB's successors were moved to SplitBB, update DTU accordingly.
3002     for (auto *Succ : successors(SplitBB)) {
3003       Updates.push_back({DominatorTree::Delete, BB, Succ});
3004       Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
3005     }
3006     DTU->applyUpdatesPermissive(Updates);
3007     return true;
3008   }
3009   return false;
3010 }
3011 
3012 /// Try to propagate a guard from the current BB into one of its predecessors
3013 /// in case if another branch of execution implies that the condition of this
3014 /// guard is always true. Currently we only process the simplest case that
3015 /// looks like:
3016 ///
3017 /// Start:
3018 ///   %cond = ...
3019 ///   br i1 %cond, label %T1, label %F1
3020 /// T1:
3021 ///   br label %Merge
3022 /// F1:
3023 ///   br label %Merge
3024 /// Merge:
3025 ///   %condGuard = ...
3026 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
3027 ///
3028 /// And cond either implies condGuard or !condGuard. In this case all the
3029 /// instructions before the guard can be duplicated in both branches, and the
3030 /// guard is then threaded to one of them.
3031 bool JumpThreadingPass::processGuards(BasicBlock *BB) {
3032   using namespace PatternMatch;
3033 
3034   // We only want to deal with two predecessors.
3035   BasicBlock *Pred1, *Pred2;
3036   auto PI = pred_begin(BB), PE = pred_end(BB);
3037   if (PI == PE)
3038     return false;
3039   Pred1 = *PI++;
3040   if (PI == PE)
3041     return false;
3042   Pred2 = *PI++;
3043   if (PI != PE)
3044     return false;
3045   if (Pred1 == Pred2)
3046     return false;
3047 
3048   // Try to thread one of the guards of the block.
3049   // TODO: Look up deeper than to immediate predecessor?
3050   auto *Parent = Pred1->getSinglePredecessor();
3051   if (!Parent || Parent != Pred2->getSinglePredecessor())
3052     return false;
3053 
3054   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
3055     for (auto &I : *BB)
3056       if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI))
3057         return true;
3058 
3059   return false;
3060 }
3061 
3062 /// Try to propagate the guard from BB which is the lower block of a diamond
3063 /// to one of its branches, in case if diamond's condition implies guard's
3064 /// condition.
3065 bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard,
3066                                     BranchInst *BI) {
3067   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
3068   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
3069   Value *GuardCond = Guard->getArgOperand(0);
3070   Value *BranchCond = BI->getCondition();
3071   BasicBlock *TrueDest = BI->getSuccessor(0);
3072   BasicBlock *FalseDest = BI->getSuccessor(1);
3073 
3074   auto &DL = BB->getModule()->getDataLayout();
3075   bool TrueDestIsSafe = false;
3076   bool FalseDestIsSafe = false;
3077 
3078   // True dest is safe if BranchCond => GuardCond.
3079   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
3080   if (Impl && *Impl)
3081     TrueDestIsSafe = true;
3082   else {
3083     // False dest is safe if !BranchCond => GuardCond.
3084     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
3085     if (Impl && *Impl)
3086       FalseDestIsSafe = true;
3087   }
3088 
3089   if (!TrueDestIsSafe && !FalseDestIsSafe)
3090     return false;
3091 
3092   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
3093   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
3094 
3095   ValueToValueMapTy UnguardedMapping, GuardedMapping;
3096   Instruction *AfterGuard = Guard->getNextNode();
3097   unsigned Cost =
3098       getJumpThreadDuplicationCost(TTI, BB, AfterGuard, BBDupThreshold);
3099   if (Cost > BBDupThreshold)
3100     return false;
3101   // Duplicate all instructions before the guard and the guard itself to the
3102   // branch where implication is not proved.
3103   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
3104       BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
3105   assert(GuardedBlock && "Could not create the guarded block?");
3106   // Duplicate all instructions before the guard in the unguarded branch.
3107   // Since we have successfully duplicated the guarded block and this block
3108   // has fewer instructions, we expect it to succeed.
3109   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
3110       BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
3111   assert(UnguardedBlock && "Could not create the unguarded block?");
3112   LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
3113                     << GuardedBlock->getName() << "\n");
3114   // Some instructions before the guard may still have uses. For them, we need
3115   // to create Phi nodes merging their copies in both guarded and unguarded
3116   // branches. Those instructions that have no uses can be just removed.
3117   SmallVector<Instruction *, 4> ToRemove;
3118   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
3119     if (!isa<PHINode>(&*BI))
3120       ToRemove.push_back(&*BI);
3121 
3122   BasicBlock::iterator InsertionPoint = BB->getFirstInsertionPt();
3123   assert(InsertionPoint != BB->end() && "Empty block?");
3124   // Substitute with Phis & remove.
3125   for (auto *Inst : reverse(ToRemove)) {
3126     if (!Inst->use_empty()) {
3127       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
3128       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
3129       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
3130       NewPN->setDebugLoc(Inst->getDebugLoc());
3131       NewPN->insertBefore(InsertionPoint);
3132       Inst->replaceAllUsesWith(NewPN);
3133     }
3134     Inst->dropDbgRecords();
3135     Inst->eraseFromParent();
3136   }
3137   return true;
3138 }
3139 
3140 PreservedAnalyses JumpThreadingPass::getPreservedAnalysis() const {
3141   PreservedAnalyses PA;
3142   PA.preserve<LazyValueAnalysis>();
3143   PA.preserve<DominatorTreeAnalysis>();
3144 
3145   // TODO: We would like to preserve BPI/BFI. Enable once all paths update them.
3146   // TODO: Would be nice to verify BPI/BFI consistency as well.
3147   return PA;
3148 }
3149 
3150 template <typename AnalysisT>
3151 typename AnalysisT::Result *JumpThreadingPass::runExternalAnalysis() {
3152   assert(FAM && "Can't run external analysis without FunctionAnalysisManager");
3153 
3154   // If there were no changes since last call to 'runExternalAnalysis' then all
3155   // analysis is either up to date or explicitly invalidated. Just go ahead and
3156   // run the "external" analysis.
3157   if (!ChangedSinceLastAnalysisUpdate) {
3158     assert(!DTU->hasPendingUpdates() &&
3159            "Lost update of 'ChangedSinceLastAnalysisUpdate'?");
3160     // Run the "external" analysis.
3161     return &FAM->getResult<AnalysisT>(*F);
3162   }
3163   ChangedSinceLastAnalysisUpdate = false;
3164 
3165   auto PA = getPreservedAnalysis();
3166   // TODO: This shouldn't be needed once 'getPreservedAnalysis' reports BPI/BFI
3167   // as preserved.
3168   PA.preserve<BranchProbabilityAnalysis>();
3169   PA.preserve<BlockFrequencyAnalysis>();
3170   // Report everything except explicitly preserved as invalid.
3171   FAM->invalidate(*F, PA);
3172   // Update DT/PDT.
3173   DTU->flush();
3174   // Make sure DT/PDT are valid before running "external" analysis.
3175   assert(DTU->getDomTree().verify(DominatorTree::VerificationLevel::Fast));
3176   assert((!DTU->hasPostDomTree() ||
3177           DTU->getPostDomTree().verify(
3178               PostDominatorTree::VerificationLevel::Fast)));
3179   // Run the "external" analysis.
3180   auto *Result = &FAM->getResult<AnalysisT>(*F);
3181   // Update analysis JumpThreading depends on and not explicitly preserved.
3182   TTI = &FAM->getResult<TargetIRAnalysis>(*F);
3183   TLI = &FAM->getResult<TargetLibraryAnalysis>(*F);
3184   AA = &FAM->getResult<AAManager>(*F);
3185 
3186   return Result;
3187 }
3188 
3189 BranchProbabilityInfo *JumpThreadingPass::getBPI() {
3190   if (!BPI) {
3191     assert(FAM && "Can't create BPI without FunctionAnalysisManager");
3192     BPI = FAM->getCachedResult<BranchProbabilityAnalysis>(*F);
3193   }
3194   return *BPI;
3195 }
3196 
3197 BlockFrequencyInfo *JumpThreadingPass::getBFI() {
3198   if (!BFI) {
3199     assert(FAM && "Can't create BFI without FunctionAnalysisManager");
3200     BFI = FAM->getCachedResult<BlockFrequencyAnalysis>(*F);
3201   }
3202   return *BFI;
3203 }
3204 
3205 // Important note on validity of BPI/BFI. JumpThreading tries to preserve
3206 // BPI/BFI as it goes. Thus if cached instance exists it will be updated.
3207 // Otherwise, new instance of BPI/BFI is created (up to date by definition).
3208 BranchProbabilityInfo *JumpThreadingPass::getOrCreateBPI(bool Force) {
3209   auto *Res = getBPI();
3210   if (Res)
3211     return Res;
3212 
3213   if (Force)
3214     BPI = runExternalAnalysis<BranchProbabilityAnalysis>();
3215 
3216   return *BPI;
3217 }
3218 
3219 BlockFrequencyInfo *JumpThreadingPass::getOrCreateBFI(bool Force) {
3220   auto *Res = getBFI();
3221   if (Res)
3222     return Res;
3223 
3224   if (Force)
3225     BFI = runExternalAnalysis<BlockFrequencyAnalysis>();
3226 
3227   return *BFI;
3228 }
3229