1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "jump-threading" 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/IntrinsicInst.h" 17 #include "llvm/LLVMContext.h" 18 #include "llvm/Pass.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 22 #include "llvm/Transforms/Utils/Local.h" 23 #include "llvm/Transforms/Utils/SSAUpdater.h" 24 #include "llvm/Target/TargetData.h" 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 using namespace llvm; 34 35 STATISTIC(NumThreads, "Number of jumps threaded"); 36 STATISTIC(NumFolds, "Number of terminators folded"); 37 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 38 39 static cl::opt<unsigned> 40 Threshold("jump-threading-threshold", 41 cl::desc("Max block size to duplicate for jump threading"), 42 cl::init(6), cl::Hidden); 43 44 namespace { 45 /// This pass performs 'jump threading', which looks at blocks that have 46 /// multiple predecessors and multiple successors. If one or more of the 47 /// predecessors of the block can be proven to always jump to one of the 48 /// successors, we forward the edge from the predecessor to the successor by 49 /// duplicating the contents of this block. 50 /// 51 /// An example of when this can occur is code like this: 52 /// 53 /// if () { ... 54 /// X = 4; 55 /// } 56 /// if (X < 3) { 57 /// 58 /// In this case, the unconditional branch at the end of the first if can be 59 /// revectored to the false side of the second if. 60 /// 61 class JumpThreading : public FunctionPass { 62 TargetData *TD; 63 #ifdef NDEBUG 64 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 65 #else 66 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 67 #endif 68 public: 69 static char ID; // Pass identification 70 JumpThreading() : FunctionPass(&ID) {} 71 72 bool runOnFunction(Function &F); 73 void FindLoopHeaders(Function &F); 74 75 bool ProcessBlock(BasicBlock *BB); 76 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 77 BasicBlock *SuccBB); 78 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 79 BasicBlock *PredBB); 80 81 typedef SmallVectorImpl<std::pair<ConstantInt*, 82 BasicBlock*> > PredValueInfo; 83 84 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 85 PredValueInfo &Result); 86 bool ProcessThreadableEdges(Instruction *CondInst, BasicBlock *BB); 87 88 89 bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 90 bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 91 92 bool ProcessJumpOnPHI(PHINode *PN); 93 94 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 95 }; 96 } 97 98 char JumpThreading::ID = 0; 99 static RegisterPass<JumpThreading> 100 X("jump-threading", "Jump Threading"); 101 102 // Public interface to the Jump Threading pass 103 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); } 104 105 /// runOnFunction - Top level algorithm. 106 /// 107 bool JumpThreading::runOnFunction(Function &F) { 108 DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n"); 109 TD = getAnalysisIfAvailable<TargetData>(); 110 111 FindLoopHeaders(F); 112 113 bool AnotherIteration = true, EverChanged = false; 114 while (AnotherIteration) { 115 AnotherIteration = false; 116 bool Changed = false; 117 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 118 BasicBlock *BB = I; 119 while (ProcessBlock(BB)) 120 Changed = true; 121 122 ++I; 123 124 // If the block is trivially dead, zap it. This eliminates the successor 125 // edges which simplifies the CFG. 126 if (pred_begin(BB) == pred_end(BB) && 127 BB != &BB->getParent()->getEntryBlock()) { 128 DEBUG(errs() << " JT: Deleting dead block '" << BB->getName() 129 << "' with terminator: " << *BB->getTerminator() << '\n'); 130 LoopHeaders.erase(BB); 131 DeleteDeadBlock(BB); 132 Changed = true; 133 } 134 } 135 AnotherIteration = Changed; 136 EverChanged |= Changed; 137 } 138 139 LoopHeaders.clear(); 140 return EverChanged; 141 } 142 143 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 144 /// thread across it. 145 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) { 146 /// Ignore PHI nodes, these will be flattened when duplication happens. 147 BasicBlock::const_iterator I = BB->getFirstNonPHI(); 148 149 // Sum up the cost of each instruction until we get to the terminator. Don't 150 // include the terminator because the copy won't include it. 151 unsigned Size = 0; 152 for (; !isa<TerminatorInst>(I); ++I) { 153 // Debugger intrinsics don't incur code size. 154 if (isa<DbgInfoIntrinsic>(I)) continue; 155 156 // If this is a pointer->pointer bitcast, it is free. 157 if (isa<BitCastInst>(I) && isa<PointerType>(I->getType())) 158 continue; 159 160 // All other instructions count for at least one unit. 161 ++Size; 162 163 // Calls are more expensive. If they are non-intrinsic calls, we model them 164 // as having cost of 4. If they are a non-vector intrinsic, we model them 165 // as having cost of 2 total, and if they are a vector intrinsic, we model 166 // them as having cost 1. 167 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 168 if (!isa<IntrinsicInst>(CI)) 169 Size += 3; 170 else if (!isa<VectorType>(CI->getType())) 171 Size += 1; 172 } 173 } 174 175 // Threading through a switch statement is particularly profitable. If this 176 // block ends in a switch, decrease its cost to make it more likely to happen. 177 if (isa<SwitchInst>(I)) 178 Size = Size > 6 ? Size-6 : 0; 179 180 return Size; 181 } 182 183 184 //===----------------------------------------------------------------------===// 185 186 187 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 188 /// method is called when we're about to delete Pred as a predecessor of BB. If 189 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 190 /// 191 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 192 /// nodes that collapse into identity values. For example, if we have: 193 /// x = phi(1, 0, 0, 0) 194 /// y = and x, z 195 /// 196 /// .. and delete the predecessor corresponding to the '1', this will attempt to 197 /// recursively fold the and to 0. 198 static void RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, 199 TargetData *TD) { 200 // This only adjusts blocks with PHI nodes. 201 if (!isa<PHINode>(BB->begin())) 202 return; 203 204 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 205 // them down. This will leave us with single entry phi nodes and other phis 206 // that can be removed. 207 BB->removePredecessor(Pred, true); 208 209 WeakVH PhiIt = &BB->front(); 210 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 211 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 212 213 Value *PNV = PN->hasConstantValue(); 214 if (PNV == 0) continue; 215 216 assert(PNV != PN && "hasConstantValue broken"); 217 218 // If we're able to simplify the phi to a constant, simplify it into its 219 // uses. 220 while (!PN->use_empty()) { 221 // Update the instruction to use the new value. 222 Use &U = PN->use_begin().getUse(); 223 Instruction *User = cast<Instruction>(U.getUser()); 224 U = PNV; 225 226 // See if we can simplify it (constant folding). 227 if (Constant *C = ConstantFoldInstruction(User, TD)) { 228 User->replaceAllUsesWith(C); 229 User->eraseFromParent(); 230 } 231 } 232 233 PN->replaceAllUsesWith(PNV); 234 PN->eraseFromParent(); 235 236 // If recursive simplification ended up deleting the next PHI node we would 237 // iterate to, then our iterator is invalid, restart scanning from the top 238 // of the block. 239 if (PhiIt == 0) PhiIt = &BB->front(); 240 } 241 } 242 243 //===----------------------------------------------------------------------===// 244 245 246 /// FindLoopHeaders - We do not want jump threading to turn proper loop 247 /// structures into irreducible loops. Doing this breaks up the loop nesting 248 /// hierarchy and pessimizes later transformations. To prevent this from 249 /// happening, we first have to find the loop headers. Here we approximate this 250 /// by finding targets of backedges in the CFG. 251 /// 252 /// Note that there definitely are cases when we want to allow threading of 253 /// edges across a loop header. For example, threading a jump from outside the 254 /// loop (the preheader) to an exit block of the loop is definitely profitable. 255 /// It is also almost always profitable to thread backedges from within the loop 256 /// to exit blocks, and is often profitable to thread backedges to other blocks 257 /// within the loop (forming a nested loop). This simple analysis is not rich 258 /// enough to track all of these properties and keep it up-to-date as the CFG 259 /// mutates, so we don't allow any of these transformations. 260 /// 261 void JumpThreading::FindLoopHeaders(Function &F) { 262 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 263 FindFunctionBackedges(F, Edges); 264 265 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 266 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 267 } 268 269 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 270 /// if we can infer that the value is a known ConstantInt in any of our 271 /// predecessors. If so, return the known list of value and pred BB in the 272 /// result vector. If a value is known to be undef, it is returned as null. 273 /// 274 /// The BB basic block is known to start with a PHI node. 275 /// 276 /// This returns true if there were any known values. 277 /// 278 /// 279 /// TODO: Per PR2563, we could infer value range information about a predecessor 280 /// based on its terminator. 281 bool JumpThreading:: 282 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){ 283 PHINode *TheFirstPHI = cast<PHINode>(BB->begin()); 284 285 // If V is a constantint, then it is known in all predecessors. 286 if (isa<ConstantInt>(V) || isa<UndefValue>(V)) { 287 ConstantInt *CI = dyn_cast<ConstantInt>(V); 288 Result.resize(TheFirstPHI->getNumIncomingValues()); 289 for (unsigned i = 0, e = Result.size(); i != e; ++i) 290 Result[i] = std::make_pair(CI, TheFirstPHI->getIncomingBlock(i)); 291 return true; 292 } 293 294 // If V is a non-instruction value, or an instruction in a different block, 295 // then it can't be derived from a PHI. 296 Instruction *I = dyn_cast<Instruction>(V); 297 if (I == 0 || I->getParent() != BB) 298 return false; 299 300 /// If I is a PHI node, then we know the incoming values for any constants. 301 if (PHINode *PN = dyn_cast<PHINode>(I)) { 302 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 303 Value *InVal = PN->getIncomingValue(i); 304 if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) { 305 ConstantInt *CI = dyn_cast<ConstantInt>(InVal); 306 Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i))); 307 } 308 } 309 return !Result.empty(); 310 } 311 312 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals; 313 314 // Handle some boolean conditions. 315 if (I->getType()->getPrimitiveSizeInBits() == 1) { 316 // X | true -> true 317 // X & false -> false 318 if (I->getOpcode() == Instruction::Or || 319 I->getOpcode() == Instruction::And) { 320 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals); 321 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals); 322 323 if (LHSVals.empty() && RHSVals.empty()) 324 return false; 325 326 ConstantInt *InterestingVal; 327 if (I->getOpcode() == Instruction::Or) 328 InterestingVal = ConstantInt::getTrue(I->getContext()); 329 else 330 InterestingVal = ConstantInt::getFalse(I->getContext()); 331 332 // Scan for the sentinel. 333 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 334 if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) 335 Result.push_back(LHSVals[i]); 336 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 337 if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) 338 Result.push_back(RHSVals[i]); 339 return !Result.empty(); 340 } 341 342 // TODO: Should handle the NOT form of XOR. 343 344 } 345 346 // Handle compare with phi operand, where the PHI is defined in this block. 347 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 348 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 349 if (PN && PN->getParent() == BB) { 350 // We can do this simplification if any comparisons fold to true or false. 351 // See if any do. 352 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 353 BasicBlock *PredBB = PN->getIncomingBlock(i); 354 Value *LHS = PN->getIncomingValue(i); 355 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 356 357 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS); 358 if (Res == 0) continue; 359 360 if (isa<UndefValue>(Res)) 361 Result.push_back(std::make_pair((ConstantInt*)0, PredBB)); 362 else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res)) 363 Result.push_back(std::make_pair(CI, PredBB)); 364 } 365 366 return !Result.empty(); 367 } 368 369 // TODO: We could also recurse to see if we can determine constants another 370 // way. 371 } 372 return false; 373 } 374 375 376 377 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 378 /// in an undefined jump, decide which block is best to revector to. 379 /// 380 /// Since we can pick an arbitrary destination, we pick the successor with the 381 /// fewest predecessors. This should reduce the in-degree of the others. 382 /// 383 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 384 TerminatorInst *BBTerm = BB->getTerminator(); 385 unsigned MinSucc = 0; 386 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 387 // Compute the successor with the minimum number of predecessors. 388 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 389 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 390 TestBB = BBTerm->getSuccessor(i); 391 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 392 if (NumPreds < MinNumPreds) 393 MinSucc = i; 394 } 395 396 return MinSucc; 397 } 398 399 /// ProcessBlock - If there are any predecessors whose control can be threaded 400 /// through to a successor, transform them now. 401 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 402 // If this block has a single predecessor, and if that pred has a single 403 // successor, merge the blocks. This encourages recursive jump threading 404 // because now the condition in this block can be threaded through 405 // predecessors of our predecessor block. 406 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 407 if (SinglePred->getTerminator()->getNumSuccessors() == 1 && 408 SinglePred != BB) { 409 // If SinglePred was a loop header, BB becomes one. 410 if (LoopHeaders.erase(SinglePred)) 411 LoopHeaders.insert(BB); 412 413 // Remember if SinglePred was the entry block of the function. If so, we 414 // will need to move BB back to the entry position. 415 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 416 MergeBasicBlockIntoOnlyPred(BB); 417 418 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 419 BB->moveBefore(&BB->getParent()->getEntryBlock()); 420 return true; 421 } 422 } 423 424 // Look to see if the terminator is a branch of switch, if not we can't thread 425 // it. 426 Value *Condition; 427 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 428 // Can't thread an unconditional jump. 429 if (BI->isUnconditional()) return false; 430 Condition = BI->getCondition(); 431 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 432 Condition = SI->getCondition(); 433 else 434 return false; // Must be an invoke. 435 436 // If the terminator of this block is branching on a constant, simplify the 437 // terminator to an unconditional branch. This can occur due to threading in 438 // other blocks. 439 if (isa<ConstantInt>(Condition)) { 440 DEBUG(errs() << " In block '" << BB->getName() 441 << "' folding terminator: " << *BB->getTerminator() << '\n'); 442 ++NumFolds; 443 ConstantFoldTerminator(BB); 444 return true; 445 } 446 447 // If the terminator is branching on an undef, we can pick any of the 448 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 449 if (isa<UndefValue>(Condition)) { 450 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 451 452 // Fold the branch/switch. 453 TerminatorInst *BBTerm = BB->getTerminator(); 454 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 455 if (i == BestSucc) continue; 456 RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD); 457 } 458 459 DEBUG(errs() << " In block '" << BB->getName() 460 << "' folding undef terminator: " << *BBTerm << '\n'); 461 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 462 BBTerm->eraseFromParent(); 463 return true; 464 } 465 466 Instruction *CondInst = dyn_cast<Instruction>(Condition); 467 468 // If the condition is an instruction defined in another block, see if a 469 // predecessor has the same condition: 470 // br COND, BBX, BBY 471 // BBX: 472 // br COND, BBZ, BBW 473 if (!Condition->hasOneUse() && // Multiple uses. 474 (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition. 475 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 476 if (isa<BranchInst>(BB->getTerminator())) { 477 for (; PI != E; ++PI) 478 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 479 if (PBI->isConditional() && PBI->getCondition() == Condition && 480 ProcessBranchOnDuplicateCond(*PI, BB)) 481 return true; 482 } else { 483 assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator"); 484 for (; PI != E; ++PI) 485 if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator())) 486 if (PSI->getCondition() == Condition && 487 ProcessSwitchOnDuplicateCond(*PI, BB)) 488 return true; 489 } 490 } 491 492 // All the rest of our checks depend on the condition being an instruction. 493 if (CondInst == 0) 494 return false; 495 496 // See if this is a phi node in the current block. 497 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 498 if (PN->getParent() == BB) 499 return ProcessJumpOnPHI(PN); 500 501 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 502 if (!isa<PHINode>(CondCmp->getOperand(0)) || 503 cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB) { 504 // If we have a comparison, loop over the predecessors to see if there is 505 // a condition with a lexically identical value. 506 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 507 for (; PI != E; ++PI) 508 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 509 if (PBI->isConditional() && *PI != BB) { 510 if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) { 511 if (CI->getOperand(0) == CondCmp->getOperand(0) && 512 CI->getOperand(1) == CondCmp->getOperand(1) && 513 CI->getPredicate() == CondCmp->getPredicate()) { 514 // TODO: Could handle things like (x != 4) --> (x == 17) 515 if (ProcessBranchOnDuplicateCond(*PI, BB)) 516 return true; 517 } 518 } 519 } 520 } 521 } 522 523 // Check for some cases that are worth simplifying. Right now we want to look 524 // for loads that are used by a switch or by the condition for the branch. If 525 // we see one, check to see if it's partially redundant. If so, insert a PHI 526 // which can then be used to thread the values. 527 // 528 // This is particularly important because reg2mem inserts loads and stores all 529 // over the place, and this blocks jump threading if we don't zap them. 530 Value *SimplifyValue = CondInst; 531 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 532 if (isa<Constant>(CondCmp->getOperand(1))) 533 SimplifyValue = CondCmp->getOperand(0); 534 535 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 536 if (SimplifyPartiallyRedundantLoad(LI)) 537 return true; 538 539 540 // Handle a variety of cases where we are branching on something derived from 541 // a PHI node in the current block. If we can prove that any predecessors 542 // compute a predictable value based on a PHI node, thread those predecessors. 543 // 544 // We only bother doing this if the current block has a PHI node and if the 545 // conditional instruction lives in the current block. If either condition 546 // fails, this won't be a computable value anyway. 547 if (CondInst->getParent() == BB && isa<PHINode>(BB->front())) 548 if (ProcessThreadableEdges(CondInst, BB)) 549 return true; 550 551 552 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 553 // "(X == 4)" thread through this block. 554 555 return false; 556 } 557 558 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that 559 /// block that jump on exactly the same condition. This means that we almost 560 /// always know the direction of the edge in the DESTBB: 561 /// PREDBB: 562 /// br COND, DESTBB, BBY 563 /// DESTBB: 564 /// br COND, BBZ, BBW 565 /// 566 /// If DESTBB has multiple predecessors, we can't just constant fold the branch 567 /// in DESTBB, we have to thread over it. 568 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB, 569 BasicBlock *BB) { 570 BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator()); 571 572 // If both successors of PredBB go to DESTBB, we don't know anything. We can 573 // fold the branch to an unconditional one, which allows other recursive 574 // simplifications. 575 bool BranchDir; 576 if (PredBI->getSuccessor(1) != BB) 577 BranchDir = true; 578 else if (PredBI->getSuccessor(0) != BB) 579 BranchDir = false; 580 else { 581 DEBUG(errs() << " In block '" << PredBB->getName() 582 << "' folding terminator: " << *PredBB->getTerminator() << '\n'); 583 ++NumFolds; 584 ConstantFoldTerminator(PredBB); 585 return true; 586 } 587 588 BranchInst *DestBI = cast<BranchInst>(BB->getTerminator()); 589 590 // If the dest block has one predecessor, just fix the branch condition to a 591 // constant and fold it. 592 if (BB->getSinglePredecessor()) { 593 DEBUG(errs() << " In block '" << BB->getName() 594 << "' folding condition to '" << BranchDir << "': " 595 << *BB->getTerminator() << '\n'); 596 ++NumFolds; 597 Value *OldCond = DestBI->getCondition(); 598 DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 599 BranchDir)); 600 ConstantFoldTerminator(BB); 601 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 602 return true; 603 } 604 605 606 // Next, figure out which successor we are threading to. 607 BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir); 608 609 SmallVector<BasicBlock*, 2> Preds; 610 Preds.push_back(PredBB); 611 612 // Ok, try to thread it! 613 return ThreadEdge(BB, Preds, SuccBB); 614 } 615 616 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that 617 /// block that switch on exactly the same condition. This means that we almost 618 /// always know the direction of the edge in the DESTBB: 619 /// PREDBB: 620 /// switch COND [... DESTBB, BBY ... ] 621 /// DESTBB: 622 /// switch COND [... BBZ, BBW ] 623 /// 624 /// Optimizing switches like this is very important, because simplifycfg builds 625 /// switches out of repeated 'if' conditions. 626 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, 627 BasicBlock *DestBB) { 628 // Can't thread edge to self. 629 if (PredBB == DestBB) 630 return false; 631 632 SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator()); 633 SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator()); 634 635 // There are a variety of optimizations that we can potentially do on these 636 // blocks: we order them from most to least preferable. 637 638 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB 639 // directly to their destination. This does not introduce *any* code size 640 // growth. Skip debug info first. 641 BasicBlock::iterator BBI = DestBB->begin(); 642 while (isa<DbgInfoIntrinsic>(BBI)) 643 BBI++; 644 645 // FIXME: Thread if it just contains a PHI. 646 if (isa<SwitchInst>(BBI)) { 647 bool MadeChange = false; 648 // Ignore the default edge for now. 649 for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) { 650 ConstantInt *DestVal = DestSI->getCaseValue(i); 651 BasicBlock *DestSucc = DestSI->getSuccessor(i); 652 653 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if 654 // PredSI has an explicit case for it. If so, forward. If it is covered 655 // by the default case, we can't update PredSI. 656 unsigned PredCase = PredSI->findCaseValue(DestVal); 657 if (PredCase == 0) continue; 658 659 // If PredSI doesn't go to DestBB on this value, then it won't reach the 660 // case on this condition. 661 if (PredSI->getSuccessor(PredCase) != DestBB && 662 DestSI->getSuccessor(i) != DestBB) 663 continue; 664 665 // Otherwise, we're safe to make the change. Make sure that the edge from 666 // DestSI to DestSucc is not critical and has no PHI nodes. 667 DEBUG(errs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI); 668 DEBUG(errs() << "THROUGH: " << *DestSI); 669 670 // If the destination has PHI nodes, just split the edge for updating 671 // simplicity. 672 if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){ 673 SplitCriticalEdge(DestSI, i, this); 674 DestSucc = DestSI->getSuccessor(i); 675 } 676 FoldSingleEntryPHINodes(DestSucc); 677 PredSI->setSuccessor(PredCase, DestSucc); 678 MadeChange = true; 679 } 680 681 if (MadeChange) 682 return true; 683 } 684 685 return false; 686 } 687 688 689 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 690 /// load instruction, eliminate it by replacing it with a PHI node. This is an 691 /// important optimization that encourages jump threading, and needs to be run 692 /// interlaced with other jump threading tasks. 693 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 694 // Don't hack volatile loads. 695 if (LI->isVolatile()) return false; 696 697 // If the load is defined in a block with exactly one predecessor, it can't be 698 // partially redundant. 699 BasicBlock *LoadBB = LI->getParent(); 700 if (LoadBB->getSinglePredecessor()) 701 return false; 702 703 Value *LoadedPtr = LI->getOperand(0); 704 705 // If the loaded operand is defined in the LoadBB, it can't be available. 706 // FIXME: Could do PHI translation, that would be fun :) 707 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 708 if (PtrOp->getParent() == LoadBB) 709 return false; 710 711 // Scan a few instructions up from the load, to see if it is obviously live at 712 // the entry to its block. 713 BasicBlock::iterator BBIt = LI; 714 715 if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB, 716 BBIt, 6)) { 717 // If the value if the load is locally available within the block, just use 718 // it. This frequently occurs for reg2mem'd allocas. 719 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 720 721 // If the returned value is the load itself, replace with an undef. This can 722 // only happen in dead loops. 723 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 724 LI->replaceAllUsesWith(AvailableVal); 725 LI->eraseFromParent(); 726 return true; 727 } 728 729 // Otherwise, if we scanned the whole block and got to the top of the block, 730 // we know the block is locally transparent to the load. If not, something 731 // might clobber its value. 732 if (BBIt != LoadBB->begin()) 733 return false; 734 735 736 SmallPtrSet<BasicBlock*, 8> PredsScanned; 737 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 738 AvailablePredsTy AvailablePreds; 739 BasicBlock *OneUnavailablePred = 0; 740 741 // If we got here, the loaded value is transparent through to the start of the 742 // block. Check to see if it is available in any of the predecessor blocks. 743 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 744 PI != PE; ++PI) { 745 BasicBlock *PredBB = *PI; 746 747 // If we already scanned this predecessor, skip it. 748 if (!PredsScanned.insert(PredBB)) 749 continue; 750 751 // Scan the predecessor to see if the value is available in the pred. 752 BBIt = PredBB->end(); 753 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6); 754 if (!PredAvailable) { 755 OneUnavailablePred = PredBB; 756 continue; 757 } 758 759 // If so, this load is partially redundant. Remember this info so that we 760 // can create a PHI node. 761 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 762 } 763 764 // If the loaded value isn't available in any predecessor, it isn't partially 765 // redundant. 766 if (AvailablePreds.empty()) return false; 767 768 // Okay, the loaded value is available in at least one (and maybe all!) 769 // predecessors. If the value is unavailable in more than one unique 770 // predecessor, we want to insert a merge block for those common predecessors. 771 // This ensures that we only have to insert one reload, thus not increasing 772 // code size. 773 BasicBlock *UnavailablePred = 0; 774 775 // If there is exactly one predecessor where the value is unavailable, the 776 // already computed 'OneUnavailablePred' block is it. If it ends in an 777 // unconditional branch, we know that it isn't a critical edge. 778 if (PredsScanned.size() == AvailablePreds.size()+1 && 779 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 780 UnavailablePred = OneUnavailablePred; 781 } else if (PredsScanned.size() != AvailablePreds.size()) { 782 // Otherwise, we had multiple unavailable predecessors or we had a critical 783 // edge from the one. 784 SmallVector<BasicBlock*, 8> PredsToSplit; 785 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 786 787 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 788 AvailablePredSet.insert(AvailablePreds[i].first); 789 790 // Add all the unavailable predecessors to the PredsToSplit list. 791 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 792 PI != PE; ++PI) 793 if (!AvailablePredSet.count(*PI)) 794 PredsToSplit.push_back(*PI); 795 796 // Split them out to their own block. 797 UnavailablePred = 798 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(), 799 "thread-split", this); 800 } 801 802 // If the value isn't available in all predecessors, then there will be 803 // exactly one where it isn't available. Insert a load on that edge and add 804 // it to the AvailablePreds list. 805 if (UnavailablePred) { 806 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 807 "Can't handle critical edge here!"); 808 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", 809 UnavailablePred->getTerminator()); 810 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 811 } 812 813 // Now we know that each predecessor of this block has a value in 814 // AvailablePreds, sort them for efficient access as we're walking the preds. 815 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 816 817 // Create a PHI node at the start of the block for the PRE'd load value. 818 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin()); 819 PN->takeName(LI); 820 821 // Insert new entries into the PHI for each predecessor. A single block may 822 // have multiple entries here. 823 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E; 824 ++PI) { 825 AvailablePredsTy::iterator I = 826 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 827 std::make_pair(*PI, (Value*)0)); 828 829 assert(I != AvailablePreds.end() && I->first == *PI && 830 "Didn't find entry for predecessor!"); 831 832 PN->addIncoming(I->second, I->first); 833 } 834 835 //cerr << "PRE: " << *LI << *PN << "\n"; 836 837 LI->replaceAllUsesWith(PN); 838 LI->eraseFromParent(); 839 840 return true; 841 } 842 843 /// FindMostPopularDest - The specified list contains multiple possible 844 /// threadable destinations. Pick the one that occurs the most frequently in 845 /// the list. 846 static BasicBlock * 847 FindMostPopularDest(BasicBlock *BB, 848 const SmallVectorImpl<std::pair<BasicBlock*, 849 BasicBlock*> > &PredToDestList) { 850 assert(!PredToDestList.empty()); 851 852 // Determine popularity. If there are multiple possible destinations, we 853 // explicitly choose to ignore 'undef' destinations. We prefer to thread 854 // blocks with known and real destinations to threading undef. We'll handle 855 // them later if interesting. 856 DenseMap<BasicBlock*, unsigned> DestPopularity; 857 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 858 if (PredToDestList[i].second) 859 DestPopularity[PredToDestList[i].second]++; 860 861 // Find the most popular dest. 862 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 863 BasicBlock *MostPopularDest = DPI->first; 864 unsigned Popularity = DPI->second; 865 SmallVector<BasicBlock*, 4> SamePopularity; 866 867 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 868 // If the popularity of this entry isn't higher than the popularity we've 869 // seen so far, ignore it. 870 if (DPI->second < Popularity) 871 ; // ignore. 872 else if (DPI->second == Popularity) { 873 // If it is the same as what we've seen so far, keep track of it. 874 SamePopularity.push_back(DPI->first); 875 } else { 876 // If it is more popular, remember it. 877 SamePopularity.clear(); 878 MostPopularDest = DPI->first; 879 Popularity = DPI->second; 880 } 881 } 882 883 // Okay, now we know the most popular destination. If there is more than 884 // destination, we need to determine one. This is arbitrary, but we need 885 // to make a deterministic decision. Pick the first one that appears in the 886 // successor list. 887 if (!SamePopularity.empty()) { 888 SamePopularity.push_back(MostPopularDest); 889 TerminatorInst *TI = BB->getTerminator(); 890 for (unsigned i = 0; ; ++i) { 891 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 892 893 if (std::find(SamePopularity.begin(), SamePopularity.end(), 894 TI->getSuccessor(i)) == SamePopularity.end()) 895 continue; 896 897 MostPopularDest = TI->getSuccessor(i); 898 break; 899 } 900 } 901 902 // Okay, we have finally picked the most popular destination. 903 return MostPopularDest; 904 } 905 906 bool JumpThreading::ProcessThreadableEdges(Instruction *CondInst, 907 BasicBlock *BB) { 908 // If threading this would thread across a loop header, don't even try to 909 // thread the edge. 910 if (LoopHeaders.count(BB)) 911 return false; 912 913 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues; 914 if (!ComputeValueKnownInPredecessors(CondInst, BB, PredValues)) 915 return false; 916 assert(!PredValues.empty() && 917 "ComputeValueKnownInPredecessors returned true with no values"); 918 919 DEBUG(errs() << "IN BB: " << *BB; 920 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 921 errs() << " BB '" << BB->getName() << "': FOUND condition = "; 922 if (PredValues[i].first) 923 errs() << *PredValues[i].first; 924 else 925 errs() << "UNDEF"; 926 errs() << " for pred '" << PredValues[i].second->getName() 927 << "'.\n"; 928 }); 929 930 // Decide what we want to thread through. Convert our list of known values to 931 // a list of known destinations for each pred. This also discards duplicate 932 // predecessors and keeps track of the undefined inputs (which are represented 933 // as a null dest in the PredToDestList). 934 SmallPtrSet<BasicBlock*, 16> SeenPreds; 935 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 936 937 BasicBlock *OnlyDest = 0; 938 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 939 940 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 941 BasicBlock *Pred = PredValues[i].second; 942 if (!SeenPreds.insert(Pred)) 943 continue; // Duplicate predecessor entry. 944 945 // If the predecessor ends with an indirect goto, we can't change its 946 // destination. 947 if (isa<IndirectBrInst>(Pred->getTerminator())) 948 continue; 949 950 ConstantInt *Val = PredValues[i].first; 951 952 BasicBlock *DestBB; 953 if (Val == 0) // Undef. 954 DestBB = 0; 955 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 956 DestBB = BI->getSuccessor(Val->isZero()); 957 else { 958 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator()); 959 DestBB = SI->getSuccessor(SI->findCaseValue(Val)); 960 } 961 962 // If we have exactly one destination, remember it for efficiency below. 963 if (i == 0) 964 OnlyDest = DestBB; 965 else if (OnlyDest != DestBB) 966 OnlyDest = MultipleDestSentinel; 967 968 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 969 } 970 971 // If all edges were unthreadable, we fail. 972 if (PredToDestList.empty()) 973 return false; 974 975 // Determine which is the most common successor. If we have many inputs and 976 // this block is a switch, we want to start by threading the batch that goes 977 // to the most popular destination first. If we only know about one 978 // threadable destination (the common case) we can avoid this. 979 BasicBlock *MostPopularDest = OnlyDest; 980 981 if (MostPopularDest == MultipleDestSentinel) 982 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 983 984 // Now that we know what the most popular destination is, factor all 985 // predecessors that will jump to it into a single predecessor. 986 SmallVector<BasicBlock*, 16> PredsToFactor; 987 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 988 if (PredToDestList[i].second == MostPopularDest) { 989 BasicBlock *Pred = PredToDestList[i].first; 990 991 // This predecessor may be a switch or something else that has multiple 992 // edges to the block. Factor each of these edges by listing them 993 // according to # occurrences in PredsToFactor. 994 TerminatorInst *PredTI = Pred->getTerminator(); 995 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 996 if (PredTI->getSuccessor(i) == BB) 997 PredsToFactor.push_back(Pred); 998 } 999 1000 // If the threadable edges are branching on an undefined value, we get to pick 1001 // the destination that these predecessors should get to. 1002 if (MostPopularDest == 0) 1003 MostPopularDest = BB->getTerminator()-> 1004 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1005 1006 // Ok, try to thread it! 1007 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1008 } 1009 1010 /// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in 1011 /// the current block. See if there are any simplifications we can do based on 1012 /// inputs to the phi node. 1013 /// 1014 bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) { 1015 BasicBlock *BB = PN->getParent(); 1016 1017 // If any of the predecessor blocks end in an unconditional branch, we can 1018 // *duplicate* the jump into that block in order to further encourage jump 1019 // threading and to eliminate cases where we have branch on a phi of an icmp 1020 // (branch on icmp is much better). 1021 1022 // We don't want to do this tranformation for switches, because we don't 1023 // really want to duplicate a switch. 1024 if (isa<SwitchInst>(BB->getTerminator())) 1025 return false; 1026 1027 // Look for unconditional branch predecessors. 1028 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1029 BasicBlock *PredBB = PN->getIncomingBlock(i); 1030 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1031 if (PredBr->isUnconditional() && 1032 // Try to duplicate BB into PredBB. 1033 DuplicateCondBranchOnPHIIntoPred(BB, PredBB)) 1034 return true; 1035 } 1036 1037 return false; 1038 } 1039 1040 1041 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1042 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1043 /// NewPred using the entries from OldPred (suitably mapped). 1044 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1045 BasicBlock *OldPred, 1046 BasicBlock *NewPred, 1047 DenseMap<Instruction*, Value*> &ValueMap) { 1048 for (BasicBlock::iterator PNI = PHIBB->begin(); 1049 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1050 // Ok, we have a PHI node. Figure out what the incoming value was for the 1051 // DestBlock. 1052 Value *IV = PN->getIncomingValueForBlock(OldPred); 1053 1054 // Remap the value if necessary. 1055 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1056 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1057 if (I != ValueMap.end()) 1058 IV = I->second; 1059 } 1060 1061 PN->addIncoming(IV, NewPred); 1062 } 1063 } 1064 1065 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1066 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1067 /// across BB. Transform the IR to reflect this change. 1068 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1069 const SmallVectorImpl<BasicBlock*> &PredBBs, 1070 BasicBlock *SuccBB) { 1071 // If threading to the same block as we come from, we would infinite loop. 1072 if (SuccBB == BB) { 1073 DEBUG(errs() << " Not threading across BB '" << BB->getName() 1074 << "' - would thread to self!\n"); 1075 return false; 1076 } 1077 1078 // If threading this would thread across a loop header, don't thread the edge. 1079 // See the comments above FindLoopHeaders for justifications and caveats. 1080 if (LoopHeaders.count(BB)) { 1081 DEBUG(errs() << " Not threading across loop header BB '" << BB->getName() 1082 << "' to dest BB '" << SuccBB->getName() 1083 << "' - it might create an irreducible loop!\n"); 1084 return false; 1085 } 1086 1087 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB); 1088 if (JumpThreadCost > Threshold) { 1089 DEBUG(errs() << " Not threading BB '" << BB->getName() 1090 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1091 return false; 1092 } 1093 1094 // And finally, do it! Start by factoring the predecessors is needed. 1095 BasicBlock *PredBB; 1096 if (PredBBs.size() == 1) 1097 PredBB = PredBBs[0]; 1098 else { 1099 DEBUG(errs() << " Factoring out " << PredBBs.size() 1100 << " common predecessors.\n"); 1101 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), 1102 ".thr_comm", this); 1103 } 1104 1105 // And finally, do it! 1106 DEBUG(errs() << " Threading edge from '" << PredBB->getName() << "' to '" 1107 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1108 << ", across block:\n " 1109 << *BB << "\n"); 1110 1111 // We are going to have to map operands from the original BB block to the new 1112 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1113 // account for entry from PredBB. 1114 DenseMap<Instruction*, Value*> ValueMapping; 1115 1116 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1117 BB->getName()+".thread", 1118 BB->getParent(), BB); 1119 NewBB->moveAfter(PredBB); 1120 1121 BasicBlock::iterator BI = BB->begin(); 1122 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1123 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1124 1125 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1126 // mapping and using it to remap operands in the cloned instructions. 1127 for (; !isa<TerminatorInst>(BI); ++BI) { 1128 Instruction *New = BI->clone(); 1129 New->setName(BI->getName()); 1130 NewBB->getInstList().push_back(New); 1131 ValueMapping[BI] = New; 1132 1133 // Remap operands to patch up intra-block references. 1134 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1135 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1136 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1137 if (I != ValueMapping.end()) 1138 New->setOperand(i, I->second); 1139 } 1140 } 1141 1142 // We didn't copy the terminator from BB over to NewBB, because there is now 1143 // an unconditional jump to SuccBB. Insert the unconditional jump. 1144 BranchInst::Create(SuccBB, NewBB); 1145 1146 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1147 // PHI nodes for NewBB now. 1148 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1149 1150 // If there were values defined in BB that are used outside the block, then we 1151 // now have to update all uses of the value to use either the original value, 1152 // the cloned value, or some PHI derived value. This can require arbitrary 1153 // PHI insertion, of which we are prepared to do, clean these up now. 1154 SSAUpdater SSAUpdate; 1155 SmallVector<Use*, 16> UsesToRename; 1156 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1157 // Scan all uses of this instruction to see if it is used outside of its 1158 // block, and if so, record them in UsesToRename. 1159 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1160 ++UI) { 1161 Instruction *User = cast<Instruction>(*UI); 1162 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1163 if (UserPN->getIncomingBlock(UI) == BB) 1164 continue; 1165 } else if (User->getParent() == BB) 1166 continue; 1167 1168 UsesToRename.push_back(&UI.getUse()); 1169 } 1170 1171 // If there are no uses outside the block, we're done with this instruction. 1172 if (UsesToRename.empty()) 1173 continue; 1174 1175 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1176 1177 // We found a use of I outside of BB. Rename all uses of I that are outside 1178 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1179 // with the two values we know. 1180 SSAUpdate.Initialize(I); 1181 SSAUpdate.AddAvailableValue(BB, I); 1182 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); 1183 1184 while (!UsesToRename.empty()) 1185 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1186 DEBUG(errs() << "\n"); 1187 } 1188 1189 1190 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1191 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1192 // us to simplify any PHI nodes in BB. 1193 TerminatorInst *PredTerm = PredBB->getTerminator(); 1194 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1195 if (PredTerm->getSuccessor(i) == BB) { 1196 RemovePredecessorAndSimplify(BB, PredBB, TD); 1197 PredTerm->setSuccessor(i, NewBB); 1198 } 1199 1200 // At this point, the IR is fully up to date and consistent. Do a quick scan 1201 // over the new instructions and zap any that are constants or dead. This 1202 // frequently happens because of phi translation. 1203 BI = NewBB->begin(); 1204 for (BasicBlock::iterator E = NewBB->end(); BI != E; ) { 1205 Instruction *Inst = BI++; 1206 if (Constant *C = ConstantFoldInstruction(Inst, TD)) { 1207 Inst->replaceAllUsesWith(C); 1208 Inst->eraseFromParent(); 1209 continue; 1210 } 1211 1212 RecursivelyDeleteTriviallyDeadInstructions(Inst); 1213 } 1214 1215 // Threaded an edge! 1216 ++NumThreads; 1217 return true; 1218 } 1219 1220 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1221 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1222 /// If we can duplicate the contents of BB up into PredBB do so now, this 1223 /// improves the odds that the branch will be on an analyzable instruction like 1224 /// a compare. 1225 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1226 BasicBlock *PredBB) { 1227 // If BB is a loop header, then duplicating this block outside the loop would 1228 // cause us to transform this into an irreducible loop, don't do this. 1229 // See the comments above FindLoopHeaders for justifications and caveats. 1230 if (LoopHeaders.count(BB)) { 1231 DEBUG(errs() << " Not duplicating loop header '" << BB->getName() 1232 << "' into predecessor block '" << PredBB->getName() 1233 << "' - it might create an irreducible loop!\n"); 1234 return false; 1235 } 1236 1237 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB); 1238 if (DuplicationCost > Threshold) { 1239 DEBUG(errs() << " Not duplicating BB '" << BB->getName() 1240 << "' - Cost is too high: " << DuplicationCost << "\n"); 1241 return false; 1242 } 1243 1244 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1245 // of PredBB. 1246 DEBUG(errs() << " Duplicating block '" << BB->getName() << "' into end of '" 1247 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1248 << DuplicationCost << " block is:" << *BB << "\n"); 1249 1250 // We are going to have to map operands from the original BB block into the 1251 // PredBB block. Evaluate PHI nodes in BB. 1252 DenseMap<Instruction*, Value*> ValueMapping; 1253 1254 BasicBlock::iterator BI = BB->begin(); 1255 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1256 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1257 1258 BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1259 1260 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1261 // mapping and using it to remap operands in the cloned instructions. 1262 for (; BI != BB->end(); ++BI) { 1263 Instruction *New = BI->clone(); 1264 New->setName(BI->getName()); 1265 PredBB->getInstList().insert(OldPredBranch, New); 1266 ValueMapping[BI] = New; 1267 1268 // Remap operands to patch up intra-block references. 1269 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1270 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1271 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1272 if (I != ValueMapping.end()) 1273 New->setOperand(i, I->second); 1274 } 1275 } 1276 1277 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1278 // add entries to the PHI nodes for branch from PredBB now. 1279 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1280 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1281 ValueMapping); 1282 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1283 ValueMapping); 1284 1285 // If there were values defined in BB that are used outside the block, then we 1286 // now have to update all uses of the value to use either the original value, 1287 // the cloned value, or some PHI derived value. This can require arbitrary 1288 // PHI insertion, of which we are prepared to do, clean these up now. 1289 SSAUpdater SSAUpdate; 1290 SmallVector<Use*, 16> UsesToRename; 1291 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1292 // Scan all uses of this instruction to see if it is used outside of its 1293 // block, and if so, record them in UsesToRename. 1294 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1295 ++UI) { 1296 Instruction *User = cast<Instruction>(*UI); 1297 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1298 if (UserPN->getIncomingBlock(UI) == BB) 1299 continue; 1300 } else if (User->getParent() == BB) 1301 continue; 1302 1303 UsesToRename.push_back(&UI.getUse()); 1304 } 1305 1306 // If there are no uses outside the block, we're done with this instruction. 1307 if (UsesToRename.empty()) 1308 continue; 1309 1310 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1311 1312 // We found a use of I outside of BB. Rename all uses of I that are outside 1313 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1314 // with the two values we know. 1315 SSAUpdate.Initialize(I); 1316 SSAUpdate.AddAvailableValue(BB, I); 1317 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); 1318 1319 while (!UsesToRename.empty()) 1320 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1321 DEBUG(errs() << "\n"); 1322 } 1323 1324 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1325 // that we nuked. 1326 RemovePredecessorAndSimplify(BB, PredBB, TD); 1327 1328 // Remove the unconditional branch at the end of the PredBB block. 1329 OldPredBranch->eraseFromParent(); 1330 1331 ++NumDupes; 1332 return true; 1333 } 1334 1335 1336