xref: /llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp (revision c1f19071f8631fe617a5e1a6ac07670db5c31008)
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "jump-threading"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/IntrinsicInst.h"
17 #include "llvm/LLVMContext.h"
18 #include "llvm/Pass.h"
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
22 #include "llvm/Transforms/Utils/Local.h"
23 #include "llvm/Transforms/Utils/SSAUpdater.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 using namespace llvm;
34 
35 STATISTIC(NumThreads, "Number of jumps threaded");
36 STATISTIC(NumFolds,   "Number of terminators folded");
37 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
38 
39 static cl::opt<unsigned>
40 Threshold("jump-threading-threshold",
41           cl::desc("Max block size to duplicate for jump threading"),
42           cl::init(6), cl::Hidden);
43 
44 namespace {
45   /// This pass performs 'jump threading', which looks at blocks that have
46   /// multiple predecessors and multiple successors.  If one or more of the
47   /// predecessors of the block can be proven to always jump to one of the
48   /// successors, we forward the edge from the predecessor to the successor by
49   /// duplicating the contents of this block.
50   ///
51   /// An example of when this can occur is code like this:
52   ///
53   ///   if () { ...
54   ///     X = 4;
55   ///   }
56   ///   if (X < 3) {
57   ///
58   /// In this case, the unconditional branch at the end of the first if can be
59   /// revectored to the false side of the second if.
60   ///
61   class JumpThreading : public FunctionPass {
62     TargetData *TD;
63 #ifdef NDEBUG
64     SmallPtrSet<BasicBlock*, 16> LoopHeaders;
65 #else
66     SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
67 #endif
68   public:
69     static char ID; // Pass identification
70     JumpThreading() : FunctionPass(&ID) {}
71 
72     bool runOnFunction(Function &F);
73     void FindLoopHeaders(Function &F);
74 
75     bool ProcessBlock(BasicBlock *BB);
76     bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
77                     BasicBlock *SuccBB);
78     bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
79                                           BasicBlock *PredBB);
80 
81     typedef SmallVectorImpl<std::pair<ConstantInt*,
82                                       BasicBlock*> > PredValueInfo;
83 
84     bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
85                                          PredValueInfo &Result);
86     bool ProcessThreadableEdges(Instruction *CondInst, BasicBlock *BB);
87 
88 
89     bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
90     bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
91 
92     bool ProcessJumpOnPHI(PHINode *PN);
93 
94     bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
95   };
96 }
97 
98 char JumpThreading::ID = 0;
99 static RegisterPass<JumpThreading>
100 X("jump-threading", "Jump Threading");
101 
102 // Public interface to the Jump Threading pass
103 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
104 
105 /// runOnFunction - Top level algorithm.
106 ///
107 bool JumpThreading::runOnFunction(Function &F) {
108   DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n");
109   TD = getAnalysisIfAvailable<TargetData>();
110 
111   FindLoopHeaders(F);
112 
113   bool AnotherIteration = true, EverChanged = false;
114   while (AnotherIteration) {
115     AnotherIteration = false;
116     bool Changed = false;
117     for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
118       BasicBlock *BB = I;
119       while (ProcessBlock(BB))
120         Changed = true;
121 
122       ++I;
123 
124       // If the block is trivially dead, zap it.  This eliminates the successor
125       // edges which simplifies the CFG.
126       if (pred_begin(BB) == pred_end(BB) &&
127           BB != &BB->getParent()->getEntryBlock()) {
128         DEBUG(errs() << "  JT: Deleting dead block '" << BB->getName()
129               << "' with terminator: " << *BB->getTerminator() << '\n');
130         LoopHeaders.erase(BB);
131         DeleteDeadBlock(BB);
132         Changed = true;
133       }
134     }
135     AnotherIteration = Changed;
136     EverChanged |= Changed;
137   }
138 
139   LoopHeaders.clear();
140   return EverChanged;
141 }
142 
143 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
144 /// thread across it.
145 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
146   /// Ignore PHI nodes, these will be flattened when duplication happens.
147   BasicBlock::const_iterator I = BB->getFirstNonPHI();
148 
149   // Sum up the cost of each instruction until we get to the terminator.  Don't
150   // include the terminator because the copy won't include it.
151   unsigned Size = 0;
152   for (; !isa<TerminatorInst>(I); ++I) {
153     // Debugger intrinsics don't incur code size.
154     if (isa<DbgInfoIntrinsic>(I)) continue;
155 
156     // If this is a pointer->pointer bitcast, it is free.
157     if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
158       continue;
159 
160     // All other instructions count for at least one unit.
161     ++Size;
162 
163     // Calls are more expensive.  If they are non-intrinsic calls, we model them
164     // as having cost of 4.  If they are a non-vector intrinsic, we model them
165     // as having cost of 2 total, and if they are a vector intrinsic, we model
166     // them as having cost 1.
167     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
168       if (!isa<IntrinsicInst>(CI))
169         Size += 3;
170       else if (!isa<VectorType>(CI->getType()))
171         Size += 1;
172     }
173   }
174 
175   // Threading through a switch statement is particularly profitable.  If this
176   // block ends in a switch, decrease its cost to make it more likely to happen.
177   if (isa<SwitchInst>(I))
178     Size = Size > 6 ? Size-6 : 0;
179 
180   return Size;
181 }
182 
183 
184 //===----------------------------------------------------------------------===//
185 
186 
187 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
188 /// method is called when we're about to delete Pred as a predecessor of BB.  If
189 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
190 ///
191 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
192 /// nodes that collapse into identity values.  For example, if we have:
193 ///   x = phi(1, 0, 0, 0)
194 ///   y = and x, z
195 ///
196 /// .. and delete the predecessor corresponding to the '1', this will attempt to
197 /// recursively fold the and to 0.
198 static void RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
199                                          TargetData *TD) {
200   // This only adjusts blocks with PHI nodes.
201   if (!isa<PHINode>(BB->begin()))
202     return;
203 
204   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
205   // them down.  This will leave us with single entry phi nodes and other phis
206   // that can be removed.
207   BB->removePredecessor(Pred, true);
208 
209   WeakVH PhiIt = &BB->front();
210   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
211     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
212 
213     Value *PNV = PN->hasConstantValue();
214     if (PNV == 0) continue;
215 
216     assert(PNV != PN && "hasConstantValue broken");
217 
218     // If we're able to simplify the phi to a constant, simplify it into its
219     // uses.
220     while (!PN->use_empty()) {
221       // Update the instruction to use the new value.
222       Use &U = PN->use_begin().getUse();
223       Instruction *User = cast<Instruction>(U.getUser());
224       U = PNV;
225 
226       // See if we can simplify it (constant folding).
227       if (Constant *C = ConstantFoldInstruction(User, TD)) {
228         User->replaceAllUsesWith(C);
229         User->eraseFromParent();
230       }
231     }
232 
233     PN->replaceAllUsesWith(PNV);
234     PN->eraseFromParent();
235 
236     // If recursive simplification ended up deleting the next PHI node we would
237     // iterate to, then our iterator is invalid, restart scanning from the top
238     // of the block.
239     if (PhiIt == 0) PhiIt = &BB->front();
240   }
241 }
242 
243 //===----------------------------------------------------------------------===//
244 
245 
246 /// FindLoopHeaders - We do not want jump threading to turn proper loop
247 /// structures into irreducible loops.  Doing this breaks up the loop nesting
248 /// hierarchy and pessimizes later transformations.  To prevent this from
249 /// happening, we first have to find the loop headers.  Here we approximate this
250 /// by finding targets of backedges in the CFG.
251 ///
252 /// Note that there definitely are cases when we want to allow threading of
253 /// edges across a loop header.  For example, threading a jump from outside the
254 /// loop (the preheader) to an exit block of the loop is definitely profitable.
255 /// It is also almost always profitable to thread backedges from within the loop
256 /// to exit blocks, and is often profitable to thread backedges to other blocks
257 /// within the loop (forming a nested loop).  This simple analysis is not rich
258 /// enough to track all of these properties and keep it up-to-date as the CFG
259 /// mutates, so we don't allow any of these transformations.
260 ///
261 void JumpThreading::FindLoopHeaders(Function &F) {
262   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
263   FindFunctionBackedges(F, Edges);
264 
265   for (unsigned i = 0, e = Edges.size(); i != e; ++i)
266     LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
267 }
268 
269 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
270 /// if we can infer that the value is a known ConstantInt in any of our
271 /// predecessors.  If so, return the known list of value and pred BB in the
272 /// result vector.  If a value is known to be undef, it is returned as null.
273 ///
274 /// The BB basic block is known to start with a PHI node.
275 ///
276 /// This returns true if there were any known values.
277 ///
278 ///
279 /// TODO: Per PR2563, we could infer value range information about a predecessor
280 /// based on its terminator.
281 bool JumpThreading::
282 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
283   PHINode *TheFirstPHI = cast<PHINode>(BB->begin());
284 
285   // If V is a constantint, then it is known in all predecessors.
286   if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
287     ConstantInt *CI = dyn_cast<ConstantInt>(V);
288     Result.resize(TheFirstPHI->getNumIncomingValues());
289     for (unsigned i = 0, e = Result.size(); i != e; ++i)
290       Result[i] = std::make_pair(CI, TheFirstPHI->getIncomingBlock(i));
291     return true;
292   }
293 
294   // If V is a non-instruction value, or an instruction in a different block,
295   // then it can't be derived from a PHI.
296   Instruction *I = dyn_cast<Instruction>(V);
297   if (I == 0 || I->getParent() != BB)
298     return false;
299 
300   /// If I is a PHI node, then we know the incoming values for any constants.
301   if (PHINode *PN = dyn_cast<PHINode>(I)) {
302     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
303       Value *InVal = PN->getIncomingValue(i);
304       if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
305         ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
306         Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
307       }
308     }
309     return !Result.empty();
310   }
311 
312   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
313 
314   // Handle some boolean conditions.
315   if (I->getType()->getPrimitiveSizeInBits() == 1) {
316     // X | true -> true
317     // X & false -> false
318     if (I->getOpcode() == Instruction::Or ||
319         I->getOpcode() == Instruction::And) {
320       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
321       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
322 
323       if (LHSVals.empty() && RHSVals.empty())
324         return false;
325 
326       ConstantInt *InterestingVal;
327       if (I->getOpcode() == Instruction::Or)
328         InterestingVal = ConstantInt::getTrue(I->getContext());
329       else
330         InterestingVal = ConstantInt::getFalse(I->getContext());
331 
332       // Scan for the sentinel.
333       for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
334         if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0)
335           Result.push_back(LHSVals[i]);
336       for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
337         if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0)
338           Result.push_back(RHSVals[i]);
339       return !Result.empty();
340     }
341 
342     // TODO: Should handle the NOT form of XOR.
343 
344   }
345 
346   // Handle compare with phi operand, where the PHI is defined in this block.
347   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
348     PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
349     if (PN && PN->getParent() == BB) {
350       // We can do this simplification if any comparisons fold to true or false.
351       // See if any do.
352       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
353         BasicBlock *PredBB = PN->getIncomingBlock(i);
354         Value *LHS = PN->getIncomingValue(i);
355         Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
356 
357         Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS);
358         if (Res == 0) continue;
359 
360         if (isa<UndefValue>(Res))
361           Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
362         else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
363           Result.push_back(std::make_pair(CI, PredBB));
364       }
365 
366       return !Result.empty();
367     }
368 
369     // TODO: We could also recurse to see if we can determine constants another
370     // way.
371   }
372   return false;
373 }
374 
375 
376 
377 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
378 /// in an undefined jump, decide which block is best to revector to.
379 ///
380 /// Since we can pick an arbitrary destination, we pick the successor with the
381 /// fewest predecessors.  This should reduce the in-degree of the others.
382 ///
383 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
384   TerminatorInst *BBTerm = BB->getTerminator();
385   unsigned MinSucc = 0;
386   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
387   // Compute the successor with the minimum number of predecessors.
388   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
389   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
390     TestBB = BBTerm->getSuccessor(i);
391     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
392     if (NumPreds < MinNumPreds)
393       MinSucc = i;
394   }
395 
396   return MinSucc;
397 }
398 
399 /// ProcessBlock - If there are any predecessors whose control can be threaded
400 /// through to a successor, transform them now.
401 bool JumpThreading::ProcessBlock(BasicBlock *BB) {
402   // If this block has a single predecessor, and if that pred has a single
403   // successor, merge the blocks.  This encourages recursive jump threading
404   // because now the condition in this block can be threaded through
405   // predecessors of our predecessor block.
406   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
407     if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
408         SinglePred != BB) {
409       // If SinglePred was a loop header, BB becomes one.
410       if (LoopHeaders.erase(SinglePred))
411         LoopHeaders.insert(BB);
412 
413       // Remember if SinglePred was the entry block of the function.  If so, we
414       // will need to move BB back to the entry position.
415       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
416       MergeBasicBlockIntoOnlyPred(BB);
417 
418       if (isEntry && BB != &BB->getParent()->getEntryBlock())
419         BB->moveBefore(&BB->getParent()->getEntryBlock());
420       return true;
421     }
422   }
423 
424   // Look to see if the terminator is a branch of switch, if not we can't thread
425   // it.
426   Value *Condition;
427   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
428     // Can't thread an unconditional jump.
429     if (BI->isUnconditional()) return false;
430     Condition = BI->getCondition();
431   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
432     Condition = SI->getCondition();
433   else
434     return false; // Must be an invoke.
435 
436   // If the terminator of this block is branching on a constant, simplify the
437   // terminator to an unconditional branch.  This can occur due to threading in
438   // other blocks.
439   if (isa<ConstantInt>(Condition)) {
440     DEBUG(errs() << "  In block '" << BB->getName()
441           << "' folding terminator: " << *BB->getTerminator() << '\n');
442     ++NumFolds;
443     ConstantFoldTerminator(BB);
444     return true;
445   }
446 
447   // If the terminator is branching on an undef, we can pick any of the
448   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
449   if (isa<UndefValue>(Condition)) {
450     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
451 
452     // Fold the branch/switch.
453     TerminatorInst *BBTerm = BB->getTerminator();
454     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
455       if (i == BestSucc) continue;
456       RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
457     }
458 
459     DEBUG(errs() << "  In block '" << BB->getName()
460           << "' folding undef terminator: " << *BBTerm << '\n');
461     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
462     BBTerm->eraseFromParent();
463     return true;
464   }
465 
466   Instruction *CondInst = dyn_cast<Instruction>(Condition);
467 
468   // If the condition is an instruction defined in another block, see if a
469   // predecessor has the same condition:
470   //     br COND, BBX, BBY
471   //  BBX:
472   //     br COND, BBZ, BBW
473   if (!Condition->hasOneUse() && // Multiple uses.
474       (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
475     pred_iterator PI = pred_begin(BB), E = pred_end(BB);
476     if (isa<BranchInst>(BB->getTerminator())) {
477       for (; PI != E; ++PI)
478         if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
479           if (PBI->isConditional() && PBI->getCondition() == Condition &&
480               ProcessBranchOnDuplicateCond(*PI, BB))
481             return true;
482     } else {
483       assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
484       for (; PI != E; ++PI)
485         if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
486           if (PSI->getCondition() == Condition &&
487               ProcessSwitchOnDuplicateCond(*PI, BB))
488             return true;
489     }
490   }
491 
492   // All the rest of our checks depend on the condition being an instruction.
493   if (CondInst == 0)
494     return false;
495 
496   // See if this is a phi node in the current block.
497   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
498     if (PN->getParent() == BB)
499       return ProcessJumpOnPHI(PN);
500 
501   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
502     if (!isa<PHINode>(CondCmp->getOperand(0)) ||
503         cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB) {
504       // If we have a comparison, loop over the predecessors to see if there is
505       // a condition with a lexically identical value.
506       pred_iterator PI = pred_begin(BB), E = pred_end(BB);
507       for (; PI != E; ++PI)
508         if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
509           if (PBI->isConditional() && *PI != BB) {
510             if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
511               if (CI->getOperand(0) == CondCmp->getOperand(0) &&
512                   CI->getOperand(1) == CondCmp->getOperand(1) &&
513                   CI->getPredicate() == CondCmp->getPredicate()) {
514                 // TODO: Could handle things like (x != 4) --> (x == 17)
515                 if (ProcessBranchOnDuplicateCond(*PI, BB))
516                   return true;
517               }
518             }
519           }
520     }
521   }
522 
523   // Check for some cases that are worth simplifying.  Right now we want to look
524   // for loads that are used by a switch or by the condition for the branch.  If
525   // we see one, check to see if it's partially redundant.  If so, insert a PHI
526   // which can then be used to thread the values.
527   //
528   // This is particularly important because reg2mem inserts loads and stores all
529   // over the place, and this blocks jump threading if we don't zap them.
530   Value *SimplifyValue = CondInst;
531   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
532     if (isa<Constant>(CondCmp->getOperand(1)))
533       SimplifyValue = CondCmp->getOperand(0);
534 
535   if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
536     if (SimplifyPartiallyRedundantLoad(LI))
537       return true;
538 
539 
540   // Handle a variety of cases where we are branching on something derived from
541   // a PHI node in the current block.  If we can prove that any predecessors
542   // compute a predictable value based on a PHI node, thread those predecessors.
543   //
544   // We only bother doing this if the current block has a PHI node and if the
545   // conditional instruction lives in the current block.  If either condition
546   // fails, this won't be a computable value anyway.
547   if (CondInst->getParent() == BB && isa<PHINode>(BB->front()))
548     if (ProcessThreadableEdges(CondInst, BB))
549       return true;
550 
551 
552   // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
553   // "(X == 4)" thread through this block.
554 
555   return false;
556 }
557 
558 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
559 /// block that jump on exactly the same condition.  This means that we almost
560 /// always know the direction of the edge in the DESTBB:
561 ///  PREDBB:
562 ///     br COND, DESTBB, BBY
563 ///  DESTBB:
564 ///     br COND, BBZ, BBW
565 ///
566 /// If DESTBB has multiple predecessors, we can't just constant fold the branch
567 /// in DESTBB, we have to thread over it.
568 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
569                                                  BasicBlock *BB) {
570   BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
571 
572   // If both successors of PredBB go to DESTBB, we don't know anything.  We can
573   // fold the branch to an unconditional one, which allows other recursive
574   // simplifications.
575   bool BranchDir;
576   if (PredBI->getSuccessor(1) != BB)
577     BranchDir = true;
578   else if (PredBI->getSuccessor(0) != BB)
579     BranchDir = false;
580   else {
581     DEBUG(errs() << "  In block '" << PredBB->getName()
582           << "' folding terminator: " << *PredBB->getTerminator() << '\n');
583     ++NumFolds;
584     ConstantFoldTerminator(PredBB);
585     return true;
586   }
587 
588   BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
589 
590   // If the dest block has one predecessor, just fix the branch condition to a
591   // constant and fold it.
592   if (BB->getSinglePredecessor()) {
593     DEBUG(errs() << "  In block '" << BB->getName()
594           << "' folding condition to '" << BranchDir << "': "
595           << *BB->getTerminator() << '\n');
596     ++NumFolds;
597     Value *OldCond = DestBI->getCondition();
598     DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
599                                           BranchDir));
600     ConstantFoldTerminator(BB);
601     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
602     return true;
603   }
604 
605 
606   // Next, figure out which successor we are threading to.
607   BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
608 
609   SmallVector<BasicBlock*, 2> Preds;
610   Preds.push_back(PredBB);
611 
612   // Ok, try to thread it!
613   return ThreadEdge(BB, Preds, SuccBB);
614 }
615 
616 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
617 /// block that switch on exactly the same condition.  This means that we almost
618 /// always know the direction of the edge in the DESTBB:
619 ///  PREDBB:
620 ///     switch COND [... DESTBB, BBY ... ]
621 ///  DESTBB:
622 ///     switch COND [... BBZ, BBW ]
623 ///
624 /// Optimizing switches like this is very important, because simplifycfg builds
625 /// switches out of repeated 'if' conditions.
626 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
627                                                  BasicBlock *DestBB) {
628   // Can't thread edge to self.
629   if (PredBB == DestBB)
630     return false;
631 
632   SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
633   SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
634 
635   // There are a variety of optimizations that we can potentially do on these
636   // blocks: we order them from most to least preferable.
637 
638   // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
639   // directly to their destination.  This does not introduce *any* code size
640   // growth.  Skip debug info first.
641   BasicBlock::iterator BBI = DestBB->begin();
642   while (isa<DbgInfoIntrinsic>(BBI))
643     BBI++;
644 
645   // FIXME: Thread if it just contains a PHI.
646   if (isa<SwitchInst>(BBI)) {
647     bool MadeChange = false;
648     // Ignore the default edge for now.
649     for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
650       ConstantInt *DestVal = DestSI->getCaseValue(i);
651       BasicBlock *DestSucc = DestSI->getSuccessor(i);
652 
653       // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
654       // PredSI has an explicit case for it.  If so, forward.  If it is covered
655       // by the default case, we can't update PredSI.
656       unsigned PredCase = PredSI->findCaseValue(DestVal);
657       if (PredCase == 0) continue;
658 
659       // If PredSI doesn't go to DestBB on this value, then it won't reach the
660       // case on this condition.
661       if (PredSI->getSuccessor(PredCase) != DestBB &&
662           DestSI->getSuccessor(i) != DestBB)
663         continue;
664 
665       // Otherwise, we're safe to make the change.  Make sure that the edge from
666       // DestSI to DestSucc is not critical and has no PHI nodes.
667       DEBUG(errs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
668       DEBUG(errs() << "THROUGH: " << *DestSI);
669 
670       // If the destination has PHI nodes, just split the edge for updating
671       // simplicity.
672       if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
673         SplitCriticalEdge(DestSI, i, this);
674         DestSucc = DestSI->getSuccessor(i);
675       }
676       FoldSingleEntryPHINodes(DestSucc);
677       PredSI->setSuccessor(PredCase, DestSucc);
678       MadeChange = true;
679     }
680 
681     if (MadeChange)
682       return true;
683   }
684 
685   return false;
686 }
687 
688 
689 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
690 /// load instruction, eliminate it by replacing it with a PHI node.  This is an
691 /// important optimization that encourages jump threading, and needs to be run
692 /// interlaced with other jump threading tasks.
693 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
694   // Don't hack volatile loads.
695   if (LI->isVolatile()) return false;
696 
697   // If the load is defined in a block with exactly one predecessor, it can't be
698   // partially redundant.
699   BasicBlock *LoadBB = LI->getParent();
700   if (LoadBB->getSinglePredecessor())
701     return false;
702 
703   Value *LoadedPtr = LI->getOperand(0);
704 
705   // If the loaded operand is defined in the LoadBB, it can't be available.
706   // FIXME: Could do PHI translation, that would be fun :)
707   if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
708     if (PtrOp->getParent() == LoadBB)
709       return false;
710 
711   // Scan a few instructions up from the load, to see if it is obviously live at
712   // the entry to its block.
713   BasicBlock::iterator BBIt = LI;
714 
715   if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB,
716                                                      BBIt, 6)) {
717     // If the value if the load is locally available within the block, just use
718     // it.  This frequently occurs for reg2mem'd allocas.
719     //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
720 
721     // If the returned value is the load itself, replace with an undef. This can
722     // only happen in dead loops.
723     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
724     LI->replaceAllUsesWith(AvailableVal);
725     LI->eraseFromParent();
726     return true;
727   }
728 
729   // Otherwise, if we scanned the whole block and got to the top of the block,
730   // we know the block is locally transparent to the load.  If not, something
731   // might clobber its value.
732   if (BBIt != LoadBB->begin())
733     return false;
734 
735 
736   SmallPtrSet<BasicBlock*, 8> PredsScanned;
737   typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
738   AvailablePredsTy AvailablePreds;
739   BasicBlock *OneUnavailablePred = 0;
740 
741   // If we got here, the loaded value is transparent through to the start of the
742   // block.  Check to see if it is available in any of the predecessor blocks.
743   for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
744        PI != PE; ++PI) {
745     BasicBlock *PredBB = *PI;
746 
747     // If we already scanned this predecessor, skip it.
748     if (!PredsScanned.insert(PredBB))
749       continue;
750 
751     // Scan the predecessor to see if the value is available in the pred.
752     BBIt = PredBB->end();
753     Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
754     if (!PredAvailable) {
755       OneUnavailablePred = PredBB;
756       continue;
757     }
758 
759     // If so, this load is partially redundant.  Remember this info so that we
760     // can create a PHI node.
761     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
762   }
763 
764   // If the loaded value isn't available in any predecessor, it isn't partially
765   // redundant.
766   if (AvailablePreds.empty()) return false;
767 
768   // Okay, the loaded value is available in at least one (and maybe all!)
769   // predecessors.  If the value is unavailable in more than one unique
770   // predecessor, we want to insert a merge block for those common predecessors.
771   // This ensures that we only have to insert one reload, thus not increasing
772   // code size.
773   BasicBlock *UnavailablePred = 0;
774 
775   // If there is exactly one predecessor where the value is unavailable, the
776   // already computed 'OneUnavailablePred' block is it.  If it ends in an
777   // unconditional branch, we know that it isn't a critical edge.
778   if (PredsScanned.size() == AvailablePreds.size()+1 &&
779       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
780     UnavailablePred = OneUnavailablePred;
781   } else if (PredsScanned.size() != AvailablePreds.size()) {
782     // Otherwise, we had multiple unavailable predecessors or we had a critical
783     // edge from the one.
784     SmallVector<BasicBlock*, 8> PredsToSplit;
785     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
786 
787     for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
788       AvailablePredSet.insert(AvailablePreds[i].first);
789 
790     // Add all the unavailable predecessors to the PredsToSplit list.
791     for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
792          PI != PE; ++PI)
793       if (!AvailablePredSet.count(*PI))
794         PredsToSplit.push_back(*PI);
795 
796     // Split them out to their own block.
797     UnavailablePred =
798       SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
799                              "thread-split", this);
800   }
801 
802   // If the value isn't available in all predecessors, then there will be
803   // exactly one where it isn't available.  Insert a load on that edge and add
804   // it to the AvailablePreds list.
805   if (UnavailablePred) {
806     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
807            "Can't handle critical edge here!");
808     Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr",
809                                  UnavailablePred->getTerminator());
810     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
811   }
812 
813   // Now we know that each predecessor of this block has a value in
814   // AvailablePreds, sort them for efficient access as we're walking the preds.
815   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
816 
817   // Create a PHI node at the start of the block for the PRE'd load value.
818   PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
819   PN->takeName(LI);
820 
821   // Insert new entries into the PHI for each predecessor.  A single block may
822   // have multiple entries here.
823   for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
824        ++PI) {
825     AvailablePredsTy::iterator I =
826       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
827                        std::make_pair(*PI, (Value*)0));
828 
829     assert(I != AvailablePreds.end() && I->first == *PI &&
830            "Didn't find entry for predecessor!");
831 
832     PN->addIncoming(I->second, I->first);
833   }
834 
835   //cerr << "PRE: " << *LI << *PN << "\n";
836 
837   LI->replaceAllUsesWith(PN);
838   LI->eraseFromParent();
839 
840   return true;
841 }
842 
843 /// FindMostPopularDest - The specified list contains multiple possible
844 /// threadable destinations.  Pick the one that occurs the most frequently in
845 /// the list.
846 static BasicBlock *
847 FindMostPopularDest(BasicBlock *BB,
848                     const SmallVectorImpl<std::pair<BasicBlock*,
849                                   BasicBlock*> > &PredToDestList) {
850   assert(!PredToDestList.empty());
851 
852   // Determine popularity.  If there are multiple possible destinations, we
853   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
854   // blocks with known and real destinations to threading undef.  We'll handle
855   // them later if interesting.
856   DenseMap<BasicBlock*, unsigned> DestPopularity;
857   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
858     if (PredToDestList[i].second)
859       DestPopularity[PredToDestList[i].second]++;
860 
861   // Find the most popular dest.
862   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
863   BasicBlock *MostPopularDest = DPI->first;
864   unsigned Popularity = DPI->second;
865   SmallVector<BasicBlock*, 4> SamePopularity;
866 
867   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
868     // If the popularity of this entry isn't higher than the popularity we've
869     // seen so far, ignore it.
870     if (DPI->second < Popularity)
871       ; // ignore.
872     else if (DPI->second == Popularity) {
873       // If it is the same as what we've seen so far, keep track of it.
874       SamePopularity.push_back(DPI->first);
875     } else {
876       // If it is more popular, remember it.
877       SamePopularity.clear();
878       MostPopularDest = DPI->first;
879       Popularity = DPI->second;
880     }
881   }
882 
883   // Okay, now we know the most popular destination.  If there is more than
884   // destination, we need to determine one.  This is arbitrary, but we need
885   // to make a deterministic decision.  Pick the first one that appears in the
886   // successor list.
887   if (!SamePopularity.empty()) {
888     SamePopularity.push_back(MostPopularDest);
889     TerminatorInst *TI = BB->getTerminator();
890     for (unsigned i = 0; ; ++i) {
891       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
892 
893       if (std::find(SamePopularity.begin(), SamePopularity.end(),
894                     TI->getSuccessor(i)) == SamePopularity.end())
895         continue;
896 
897       MostPopularDest = TI->getSuccessor(i);
898       break;
899     }
900   }
901 
902   // Okay, we have finally picked the most popular destination.
903   return MostPopularDest;
904 }
905 
906 bool JumpThreading::ProcessThreadableEdges(Instruction *CondInst,
907                                            BasicBlock *BB) {
908   // If threading this would thread across a loop header, don't even try to
909   // thread the edge.
910   if (LoopHeaders.count(BB))
911     return false;
912 
913   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
914   if (!ComputeValueKnownInPredecessors(CondInst, BB, PredValues))
915     return false;
916   assert(!PredValues.empty() &&
917          "ComputeValueKnownInPredecessors returned true with no values");
918 
919   DEBUG(errs() << "IN BB: " << *BB;
920         for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
921           errs() << "  BB '" << BB->getName() << "': FOUND condition = ";
922           if (PredValues[i].first)
923             errs() << *PredValues[i].first;
924           else
925             errs() << "UNDEF";
926           errs() << " for pred '" << PredValues[i].second->getName()
927           << "'.\n";
928         });
929 
930   // Decide what we want to thread through.  Convert our list of known values to
931   // a list of known destinations for each pred.  This also discards duplicate
932   // predecessors and keeps track of the undefined inputs (which are represented
933   // as a null dest in the PredToDestList).
934   SmallPtrSet<BasicBlock*, 16> SeenPreds;
935   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
936 
937   BasicBlock *OnlyDest = 0;
938   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
939 
940   for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
941     BasicBlock *Pred = PredValues[i].second;
942     if (!SeenPreds.insert(Pred))
943       continue;  // Duplicate predecessor entry.
944 
945     // If the predecessor ends with an indirect goto, we can't change its
946     // destination.
947     if (isa<IndirectBrInst>(Pred->getTerminator()))
948       continue;
949 
950     ConstantInt *Val = PredValues[i].first;
951 
952     BasicBlock *DestBB;
953     if (Val == 0)      // Undef.
954       DestBB = 0;
955     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
956       DestBB = BI->getSuccessor(Val->isZero());
957     else {
958       SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
959       DestBB = SI->getSuccessor(SI->findCaseValue(Val));
960     }
961 
962     // If we have exactly one destination, remember it for efficiency below.
963     if (i == 0)
964       OnlyDest = DestBB;
965     else if (OnlyDest != DestBB)
966       OnlyDest = MultipleDestSentinel;
967 
968     PredToDestList.push_back(std::make_pair(Pred, DestBB));
969   }
970 
971   // If all edges were unthreadable, we fail.
972   if (PredToDestList.empty())
973     return false;
974 
975   // Determine which is the most common successor.  If we have many inputs and
976   // this block is a switch, we want to start by threading the batch that goes
977   // to the most popular destination first.  If we only know about one
978   // threadable destination (the common case) we can avoid this.
979   BasicBlock *MostPopularDest = OnlyDest;
980 
981   if (MostPopularDest == MultipleDestSentinel)
982     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
983 
984   // Now that we know what the most popular destination is, factor all
985   // predecessors that will jump to it into a single predecessor.
986   SmallVector<BasicBlock*, 16> PredsToFactor;
987   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
988     if (PredToDestList[i].second == MostPopularDest) {
989       BasicBlock *Pred = PredToDestList[i].first;
990 
991       // This predecessor may be a switch or something else that has multiple
992       // edges to the block.  Factor each of these edges by listing them
993       // according to # occurrences in PredsToFactor.
994       TerminatorInst *PredTI = Pred->getTerminator();
995       for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
996         if (PredTI->getSuccessor(i) == BB)
997           PredsToFactor.push_back(Pred);
998     }
999 
1000   // If the threadable edges are branching on an undefined value, we get to pick
1001   // the destination that these predecessors should get to.
1002   if (MostPopularDest == 0)
1003     MostPopularDest = BB->getTerminator()->
1004                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1005 
1006   // Ok, try to thread it!
1007   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1008 }
1009 
1010 /// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
1011 /// the current block.  See if there are any simplifications we can do based on
1012 /// inputs to the phi node.
1013 ///
1014 bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
1015   BasicBlock *BB = PN->getParent();
1016 
1017   // If any of the predecessor blocks end in an unconditional branch, we can
1018   // *duplicate* the jump into that block in order to further encourage jump
1019   // threading and to eliminate cases where we have branch on a phi of an icmp
1020   // (branch on icmp is much better).
1021 
1022   // We don't want to do this tranformation for switches, because we don't
1023   // really want to duplicate a switch.
1024   if (isa<SwitchInst>(BB->getTerminator()))
1025     return false;
1026 
1027   // Look for unconditional branch predecessors.
1028   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1029     BasicBlock *PredBB = PN->getIncomingBlock(i);
1030     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1031       if (PredBr->isUnconditional() &&
1032           // Try to duplicate BB into PredBB.
1033           DuplicateCondBranchOnPHIIntoPred(BB, PredBB))
1034         return true;
1035   }
1036 
1037   return false;
1038 }
1039 
1040 
1041 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1042 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1043 /// NewPred using the entries from OldPred (suitably mapped).
1044 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1045                                             BasicBlock *OldPred,
1046                                             BasicBlock *NewPred,
1047                                      DenseMap<Instruction*, Value*> &ValueMap) {
1048   for (BasicBlock::iterator PNI = PHIBB->begin();
1049        PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1050     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1051     // DestBlock.
1052     Value *IV = PN->getIncomingValueForBlock(OldPred);
1053 
1054     // Remap the value if necessary.
1055     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1056       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1057       if (I != ValueMap.end())
1058         IV = I->second;
1059     }
1060 
1061     PN->addIncoming(IV, NewPred);
1062   }
1063 }
1064 
1065 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1066 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1067 /// across BB.  Transform the IR to reflect this change.
1068 bool JumpThreading::ThreadEdge(BasicBlock *BB,
1069                                const SmallVectorImpl<BasicBlock*> &PredBBs,
1070                                BasicBlock *SuccBB) {
1071   // If threading to the same block as we come from, we would infinite loop.
1072   if (SuccBB == BB) {
1073     DEBUG(errs() << "  Not threading across BB '" << BB->getName()
1074           << "' - would thread to self!\n");
1075     return false;
1076   }
1077 
1078   // If threading this would thread across a loop header, don't thread the edge.
1079   // See the comments above FindLoopHeaders for justifications and caveats.
1080   if (LoopHeaders.count(BB)) {
1081     DEBUG(errs() << "  Not threading across loop header BB '" << BB->getName()
1082           << "' to dest BB '" << SuccBB->getName()
1083           << "' - it might create an irreducible loop!\n");
1084     return false;
1085   }
1086 
1087   unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1088   if (JumpThreadCost > Threshold) {
1089     DEBUG(errs() << "  Not threading BB '" << BB->getName()
1090           << "' - Cost is too high: " << JumpThreadCost << "\n");
1091     return false;
1092   }
1093 
1094   // And finally, do it!  Start by factoring the predecessors is needed.
1095   BasicBlock *PredBB;
1096   if (PredBBs.size() == 1)
1097     PredBB = PredBBs[0];
1098   else {
1099     DEBUG(errs() << "  Factoring out " << PredBBs.size()
1100           << " common predecessors.\n");
1101     PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1102                                     ".thr_comm", this);
1103   }
1104 
1105   // And finally, do it!
1106   DEBUG(errs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1107         << SuccBB->getName() << "' with cost: " << JumpThreadCost
1108         << ", across block:\n    "
1109         << *BB << "\n");
1110 
1111   // We are going to have to map operands from the original BB block to the new
1112   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1113   // account for entry from PredBB.
1114   DenseMap<Instruction*, Value*> ValueMapping;
1115 
1116   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1117                                          BB->getName()+".thread",
1118                                          BB->getParent(), BB);
1119   NewBB->moveAfter(PredBB);
1120 
1121   BasicBlock::iterator BI = BB->begin();
1122   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1123     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1124 
1125   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1126   // mapping and using it to remap operands in the cloned instructions.
1127   for (; !isa<TerminatorInst>(BI); ++BI) {
1128     Instruction *New = BI->clone();
1129     New->setName(BI->getName());
1130     NewBB->getInstList().push_back(New);
1131     ValueMapping[BI] = New;
1132 
1133     // Remap operands to patch up intra-block references.
1134     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1135       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1136         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1137         if (I != ValueMapping.end())
1138           New->setOperand(i, I->second);
1139       }
1140   }
1141 
1142   // We didn't copy the terminator from BB over to NewBB, because there is now
1143   // an unconditional jump to SuccBB.  Insert the unconditional jump.
1144   BranchInst::Create(SuccBB, NewBB);
1145 
1146   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1147   // PHI nodes for NewBB now.
1148   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1149 
1150   // If there were values defined in BB that are used outside the block, then we
1151   // now have to update all uses of the value to use either the original value,
1152   // the cloned value, or some PHI derived value.  This can require arbitrary
1153   // PHI insertion, of which we are prepared to do, clean these up now.
1154   SSAUpdater SSAUpdate;
1155   SmallVector<Use*, 16> UsesToRename;
1156   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1157     // Scan all uses of this instruction to see if it is used outside of its
1158     // block, and if so, record them in UsesToRename.
1159     for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1160          ++UI) {
1161       Instruction *User = cast<Instruction>(*UI);
1162       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1163         if (UserPN->getIncomingBlock(UI) == BB)
1164           continue;
1165       } else if (User->getParent() == BB)
1166         continue;
1167 
1168       UsesToRename.push_back(&UI.getUse());
1169     }
1170 
1171     // If there are no uses outside the block, we're done with this instruction.
1172     if (UsesToRename.empty())
1173       continue;
1174 
1175     DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1176 
1177     // We found a use of I outside of BB.  Rename all uses of I that are outside
1178     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1179     // with the two values we know.
1180     SSAUpdate.Initialize(I);
1181     SSAUpdate.AddAvailableValue(BB, I);
1182     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1183 
1184     while (!UsesToRename.empty())
1185       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1186     DEBUG(errs() << "\n");
1187   }
1188 
1189 
1190   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1191   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1192   // us to simplify any PHI nodes in BB.
1193   TerminatorInst *PredTerm = PredBB->getTerminator();
1194   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1195     if (PredTerm->getSuccessor(i) == BB) {
1196       RemovePredecessorAndSimplify(BB, PredBB, TD);
1197       PredTerm->setSuccessor(i, NewBB);
1198     }
1199 
1200   // At this point, the IR is fully up to date and consistent.  Do a quick scan
1201   // over the new instructions and zap any that are constants or dead.  This
1202   // frequently happens because of phi translation.
1203   BI = NewBB->begin();
1204   for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
1205     Instruction *Inst = BI++;
1206     if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
1207       Inst->replaceAllUsesWith(C);
1208       Inst->eraseFromParent();
1209       continue;
1210     }
1211 
1212     RecursivelyDeleteTriviallyDeadInstructions(Inst);
1213   }
1214 
1215   // Threaded an edge!
1216   ++NumThreads;
1217   return true;
1218 }
1219 
1220 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1221 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1222 /// If we can duplicate the contents of BB up into PredBB do so now, this
1223 /// improves the odds that the branch will be on an analyzable instruction like
1224 /// a compare.
1225 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1226                                                      BasicBlock *PredBB) {
1227   // If BB is a loop header, then duplicating this block outside the loop would
1228   // cause us to transform this into an irreducible loop, don't do this.
1229   // See the comments above FindLoopHeaders for justifications and caveats.
1230   if (LoopHeaders.count(BB)) {
1231     DEBUG(errs() << "  Not duplicating loop header '" << BB->getName()
1232           << "' into predecessor block '" << PredBB->getName()
1233           << "' - it might create an irreducible loop!\n");
1234     return false;
1235   }
1236 
1237   unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1238   if (DuplicationCost > Threshold) {
1239     DEBUG(errs() << "  Not duplicating BB '" << BB->getName()
1240           << "' - Cost is too high: " << DuplicationCost << "\n");
1241     return false;
1242   }
1243 
1244   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1245   // of PredBB.
1246   DEBUG(errs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1247         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1248         << DuplicationCost << " block is:" << *BB << "\n");
1249 
1250   // We are going to have to map operands from the original BB block into the
1251   // PredBB block.  Evaluate PHI nodes in BB.
1252   DenseMap<Instruction*, Value*> ValueMapping;
1253 
1254   BasicBlock::iterator BI = BB->begin();
1255   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1256     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1257 
1258   BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1259 
1260   // Clone the non-phi instructions of BB into PredBB, keeping track of the
1261   // mapping and using it to remap operands in the cloned instructions.
1262   for (; BI != BB->end(); ++BI) {
1263     Instruction *New = BI->clone();
1264     New->setName(BI->getName());
1265     PredBB->getInstList().insert(OldPredBranch, New);
1266     ValueMapping[BI] = New;
1267 
1268     // Remap operands to patch up intra-block references.
1269     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1270       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1271         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1272         if (I != ValueMapping.end())
1273           New->setOperand(i, I->second);
1274       }
1275   }
1276 
1277   // Check to see if the targets of the branch had PHI nodes. If so, we need to
1278   // add entries to the PHI nodes for branch from PredBB now.
1279   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1280   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1281                                   ValueMapping);
1282   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1283                                   ValueMapping);
1284 
1285   // If there were values defined in BB that are used outside the block, then we
1286   // now have to update all uses of the value to use either the original value,
1287   // the cloned value, or some PHI derived value.  This can require arbitrary
1288   // PHI insertion, of which we are prepared to do, clean these up now.
1289   SSAUpdater SSAUpdate;
1290   SmallVector<Use*, 16> UsesToRename;
1291   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1292     // Scan all uses of this instruction to see if it is used outside of its
1293     // block, and if so, record them in UsesToRename.
1294     for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1295          ++UI) {
1296       Instruction *User = cast<Instruction>(*UI);
1297       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1298         if (UserPN->getIncomingBlock(UI) == BB)
1299           continue;
1300       } else if (User->getParent() == BB)
1301         continue;
1302 
1303       UsesToRename.push_back(&UI.getUse());
1304     }
1305 
1306     // If there are no uses outside the block, we're done with this instruction.
1307     if (UsesToRename.empty())
1308       continue;
1309 
1310     DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1311 
1312     // We found a use of I outside of BB.  Rename all uses of I that are outside
1313     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1314     // with the two values we know.
1315     SSAUpdate.Initialize(I);
1316     SSAUpdate.AddAvailableValue(BB, I);
1317     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1318 
1319     while (!UsesToRename.empty())
1320       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1321     DEBUG(errs() << "\n");
1322   }
1323 
1324   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1325   // that we nuked.
1326   RemovePredecessorAndSimplify(BB, PredBB, TD);
1327 
1328   // Remove the unconditional branch at the end of the PredBB block.
1329   OldPredBranch->eraseFromParent();
1330 
1331   ++NumDupes;
1332   return true;
1333 }
1334 
1335 
1336