1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "jump-threading" 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/IntrinsicInst.h" 17 #include "llvm/LLVMContext.h" 18 #include "llvm/Pass.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LazyValueInfo.h" 21 #include "llvm/Analysis/Loads.h" 22 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 23 #include "llvm/Transforms/Utils/Local.h" 24 #include "llvm/Transforms/Utils/SSAUpdater.h" 25 #include "llvm/Target/TargetData.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ValueHandle.h" 34 #include "llvm/Support/raw_ostream.h" 35 using namespace llvm; 36 37 STATISTIC(NumThreads, "Number of jumps threaded"); 38 STATISTIC(NumFolds, "Number of terminators folded"); 39 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 40 41 static cl::opt<unsigned> 42 Threshold("jump-threading-threshold", 43 cl::desc("Max block size to duplicate for jump threading"), 44 cl::init(6), cl::Hidden); 45 46 // Turn on use of LazyValueInfo. 47 static cl::opt<bool> 48 EnableLVI("enable-jump-threading-lvi", cl::ReallyHidden); 49 50 51 52 namespace { 53 /// This pass performs 'jump threading', which looks at blocks that have 54 /// multiple predecessors and multiple successors. If one or more of the 55 /// predecessors of the block can be proven to always jump to one of the 56 /// successors, we forward the edge from the predecessor to the successor by 57 /// duplicating the contents of this block. 58 /// 59 /// An example of when this can occur is code like this: 60 /// 61 /// if () { ... 62 /// X = 4; 63 /// } 64 /// if (X < 3) { 65 /// 66 /// In this case, the unconditional branch at the end of the first if can be 67 /// revectored to the false side of the second if. 68 /// 69 class JumpThreading : public FunctionPass { 70 TargetData *TD; 71 LazyValueInfo *LVI; 72 #ifdef NDEBUG 73 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 74 #else 75 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 76 #endif 77 public: 78 static char ID; // Pass identification 79 JumpThreading() : FunctionPass(&ID) {} 80 81 bool runOnFunction(Function &F); 82 83 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 84 if (EnableLVI) 85 AU.addRequired<LazyValueInfo>(); 86 } 87 88 void FindLoopHeaders(Function &F); 89 bool ProcessBlock(BasicBlock *BB); 90 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 91 BasicBlock *SuccBB); 92 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 93 const SmallVectorImpl<BasicBlock *> &PredBBs); 94 95 typedef SmallVectorImpl<std::pair<ConstantInt*, 96 BasicBlock*> > PredValueInfo; 97 98 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 99 PredValueInfo &Result); 100 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB); 101 102 103 bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 104 bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 105 106 bool ProcessBranchOnPHI(PHINode *PN); 107 bool ProcessBranchOnXOR(BinaryOperator *BO); 108 109 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 110 }; 111 } 112 113 char JumpThreading::ID = 0; 114 static RegisterPass<JumpThreading> 115 X("jump-threading", "Jump Threading"); 116 117 // Public interface to the Jump Threading pass 118 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); } 119 120 /// runOnFunction - Top level algorithm. 121 /// 122 bool JumpThreading::runOnFunction(Function &F) { 123 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 124 TD = getAnalysisIfAvailable<TargetData>(); 125 LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0; 126 127 FindLoopHeaders(F); 128 129 bool Changed, EverChanged = false; 130 do { 131 Changed = false; 132 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 133 BasicBlock *BB = I; 134 // Thread all of the branches we can over this block. 135 while (ProcessBlock(BB)) 136 Changed = true; 137 138 ++I; 139 140 // If the block is trivially dead, zap it. This eliminates the successor 141 // edges which simplifies the CFG. 142 if (pred_begin(BB) == pred_end(BB) && 143 BB != &BB->getParent()->getEntryBlock()) { 144 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 145 << "' with terminator: " << *BB->getTerminator() << '\n'); 146 LoopHeaders.erase(BB); 147 DeleteDeadBlock(BB); 148 Changed = true; 149 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 150 // Can't thread an unconditional jump, but if the block is "almost 151 // empty", we can replace uses of it with uses of the successor and make 152 // this dead. 153 if (BI->isUnconditional() && 154 BB != &BB->getParent()->getEntryBlock()) { 155 BasicBlock::iterator BBI = BB->getFirstNonPHI(); 156 // Ignore dbg intrinsics. 157 while (isa<DbgInfoIntrinsic>(BBI)) 158 ++BBI; 159 // If the terminator is the only non-phi instruction, try to nuke it. 160 if (BBI->isTerminator()) { 161 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 162 // block, we have to make sure it isn't in the LoopHeaders set. We 163 // reinsert afterward if needed. 164 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 165 BasicBlock *Succ = BI->getSuccessor(0); 166 167 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { 168 Changed = true; 169 // If we deleted BB and BB was the header of a loop, then the 170 // successor is now the header of the loop. 171 BB = Succ; 172 } 173 174 if (ErasedFromLoopHeaders) 175 LoopHeaders.insert(BB); 176 } 177 } 178 } 179 } 180 EverChanged |= Changed; 181 } while (Changed); 182 183 LoopHeaders.clear(); 184 return EverChanged; 185 } 186 187 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 188 /// thread across it. 189 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) { 190 /// Ignore PHI nodes, these will be flattened when duplication happens. 191 BasicBlock::const_iterator I = BB->getFirstNonPHI(); 192 193 // FIXME: THREADING will delete values that are just used to compute the 194 // branch, so they shouldn't count against the duplication cost. 195 196 197 // Sum up the cost of each instruction until we get to the terminator. Don't 198 // include the terminator because the copy won't include it. 199 unsigned Size = 0; 200 for (; !isa<TerminatorInst>(I); ++I) { 201 // Debugger intrinsics don't incur code size. 202 if (isa<DbgInfoIntrinsic>(I)) continue; 203 204 // If this is a pointer->pointer bitcast, it is free. 205 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 206 continue; 207 208 // All other instructions count for at least one unit. 209 ++Size; 210 211 // Calls are more expensive. If they are non-intrinsic calls, we model them 212 // as having cost of 4. If they are a non-vector intrinsic, we model them 213 // as having cost of 2 total, and if they are a vector intrinsic, we model 214 // them as having cost 1. 215 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 216 if (!isa<IntrinsicInst>(CI)) 217 Size += 3; 218 else if (!CI->getType()->isVectorTy()) 219 Size += 1; 220 } 221 } 222 223 // Threading through a switch statement is particularly profitable. If this 224 // block ends in a switch, decrease its cost to make it more likely to happen. 225 if (isa<SwitchInst>(I)) 226 Size = Size > 6 ? Size-6 : 0; 227 228 return Size; 229 } 230 231 /// FindLoopHeaders - We do not want jump threading to turn proper loop 232 /// structures into irreducible loops. Doing this breaks up the loop nesting 233 /// hierarchy and pessimizes later transformations. To prevent this from 234 /// happening, we first have to find the loop headers. Here we approximate this 235 /// by finding targets of backedges in the CFG. 236 /// 237 /// Note that there definitely are cases when we want to allow threading of 238 /// edges across a loop header. For example, threading a jump from outside the 239 /// loop (the preheader) to an exit block of the loop is definitely profitable. 240 /// It is also almost always profitable to thread backedges from within the loop 241 /// to exit blocks, and is often profitable to thread backedges to other blocks 242 /// within the loop (forming a nested loop). This simple analysis is not rich 243 /// enough to track all of these properties and keep it up-to-date as the CFG 244 /// mutates, so we don't allow any of these transformations. 245 /// 246 void JumpThreading::FindLoopHeaders(Function &F) { 247 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 248 FindFunctionBackedges(F, Edges); 249 250 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 251 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 252 } 253 254 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 255 /// if we can infer that the value is a known ConstantInt in any of our 256 /// predecessors. If so, return the known list of value and pred BB in the 257 /// result vector. If a value is known to be undef, it is returned as null. 258 /// 259 /// This returns true if there were any known values. 260 /// 261 bool JumpThreading:: 262 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){ 263 // If V is a constantint, then it is known in all predecessors. 264 if (isa<ConstantInt>(V) || isa<UndefValue>(V)) { 265 ConstantInt *CI = dyn_cast<ConstantInt>(V); 266 267 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 268 Result.push_back(std::make_pair(CI, *PI)); 269 return true; 270 } 271 272 // If V is a non-instruction value, or an instruction in a different block, 273 // then it can't be derived from a PHI. 274 Instruction *I = dyn_cast<Instruction>(V); 275 if (I == 0 || I->getParent() != BB) { 276 277 // Okay, if this is a live-in value, see if it has a known value at the end 278 // of any of our predecessors. 279 // 280 // FIXME: This should be an edge property, not a block end property. 281 /// TODO: Per PR2563, we could infer value range information about a 282 /// predecessor based on its terminator. 283 // 284 if (LVI) { 285 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 286 // "I" is a non-local compare-with-a-constant instruction. This would be 287 // able to handle value inequalities better, for example if the compare is 288 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 289 // Perhaps getConstantOnEdge should be smart enough to do this? 290 291 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 292 // If the value is known by LazyValueInfo to be a constant in a 293 // predecessor, use that information to try to thread this block. 294 Constant *PredCst = LVI->getConstantOnEdge(V, *PI, BB); 295 if (PredCst == 0 || 296 (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst))) 297 continue; 298 299 Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), *PI)); 300 } 301 302 return !Result.empty(); 303 } 304 305 return false; 306 } 307 308 /// If I is a PHI node, then we know the incoming values for any constants. 309 if (PHINode *PN = dyn_cast<PHINode>(I)) { 310 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 311 Value *InVal = PN->getIncomingValue(i); 312 if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) { 313 ConstantInt *CI = dyn_cast<ConstantInt>(InVal); 314 Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i))); 315 } 316 } 317 return !Result.empty(); 318 } 319 320 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals; 321 322 // Handle some boolean conditions. 323 if (I->getType()->getPrimitiveSizeInBits() == 1) { 324 // X | true -> true 325 // X & false -> false 326 if (I->getOpcode() == Instruction::Or || 327 I->getOpcode() == Instruction::And) { 328 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals); 329 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals); 330 331 if (LHSVals.empty() && RHSVals.empty()) 332 return false; 333 334 ConstantInt *InterestingVal; 335 if (I->getOpcode() == Instruction::Or) 336 InterestingVal = ConstantInt::getTrue(I->getContext()); 337 else 338 InterestingVal = ConstantInt::getFalse(I->getContext()); 339 340 // Scan for the sentinel. If we find an undef, force it to the 341 // interesting value: x|undef -> true and x&undef -> false. 342 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 343 if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) { 344 Result.push_back(LHSVals[i]); 345 Result.back().first = InterestingVal; 346 } 347 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 348 if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) { 349 // If we already inferred a value for this block on the LHS, don't 350 // re-add it. 351 bool HasValue = false; 352 for (unsigned r = 0, e = Result.size(); r != e; ++r) 353 if (Result[r].second == RHSVals[i].second) { 354 HasValue = true; 355 break; 356 } 357 358 if (!HasValue) { 359 Result.push_back(RHSVals[i]); 360 Result.back().first = InterestingVal; 361 } 362 } 363 return !Result.empty(); 364 } 365 366 // Handle the NOT form of XOR. 367 if (I->getOpcode() == Instruction::Xor && 368 isa<ConstantInt>(I->getOperand(1)) && 369 cast<ConstantInt>(I->getOperand(1))->isOne()) { 370 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result); 371 if (Result.empty()) 372 return false; 373 374 // Invert the known values. 375 for (unsigned i = 0, e = Result.size(); i != e; ++i) 376 if (Result[i].first) 377 Result[i].first = 378 cast<ConstantInt>(ConstantExpr::getNot(Result[i].first)); 379 return true; 380 } 381 } 382 383 // Handle compare with phi operand, where the PHI is defined in this block. 384 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 385 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 386 if (PN && PN->getParent() == BB) { 387 // We can do this simplification if any comparisons fold to true or false. 388 // See if any do. 389 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 390 BasicBlock *PredBB = PN->getIncomingBlock(i); 391 Value *LHS = PN->getIncomingValue(i); 392 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 393 394 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD); 395 if (Res == 0) { 396 if (!LVI || !isa<Constant>(RHS)) 397 continue; 398 399 LazyValueInfo::Tristate 400 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 401 cast<Constant>(RHS), PredBB, BB); 402 if (ResT == LazyValueInfo::Unknown) 403 continue; 404 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 405 } 406 407 if (isa<UndefValue>(Res)) 408 Result.push_back(std::make_pair((ConstantInt*)0, PredBB)); 409 else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res)) 410 Result.push_back(std::make_pair(CI, PredBB)); 411 } 412 413 return !Result.empty(); 414 } 415 416 417 // If comparing a live-in value against a constant, see if we know the 418 // live-in value on any predecessors. 419 if (LVI && isa<Constant>(Cmp->getOperand(1)) && 420 Cmp->getType()->isIntegerTy() && // Not vector compare. 421 (!isa<Instruction>(Cmp->getOperand(0)) || 422 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB)) { 423 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 424 425 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 426 // If the value is known by LazyValueInfo to be a constant in a 427 // predecessor, use that information to try to thread this block. 428 LazyValueInfo::Tristate 429 Res = LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 430 RHSCst, *PI, BB); 431 if (Res == LazyValueInfo::Unknown) 432 continue; 433 434 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 435 Result.push_back(std::make_pair(cast<ConstantInt>(ResC), *PI)); 436 } 437 438 return !Result.empty(); 439 } 440 } 441 return false; 442 } 443 444 445 446 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 447 /// in an undefined jump, decide which block is best to revector to. 448 /// 449 /// Since we can pick an arbitrary destination, we pick the successor with the 450 /// fewest predecessors. This should reduce the in-degree of the others. 451 /// 452 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 453 TerminatorInst *BBTerm = BB->getTerminator(); 454 unsigned MinSucc = 0; 455 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 456 // Compute the successor with the minimum number of predecessors. 457 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 458 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 459 TestBB = BBTerm->getSuccessor(i); 460 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 461 if (NumPreds < MinNumPreds) 462 MinSucc = i; 463 } 464 465 return MinSucc; 466 } 467 468 /// ProcessBlock - If there are any predecessors whose control can be threaded 469 /// through to a successor, transform them now. 470 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 471 // If the block is trivially dead, just return and let the caller nuke it. 472 // This simplifies other transformations. 473 if (pred_begin(BB) == pred_end(BB) && 474 BB != &BB->getParent()->getEntryBlock()) 475 return false; 476 477 // If this block has a single predecessor, and if that pred has a single 478 // successor, merge the blocks. This encourages recursive jump threading 479 // because now the condition in this block can be threaded through 480 // predecessors of our predecessor block. 481 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 482 if (SinglePred->getTerminator()->getNumSuccessors() == 1 && 483 SinglePred != BB) { 484 // If SinglePred was a loop header, BB becomes one. 485 if (LoopHeaders.erase(SinglePred)) 486 LoopHeaders.insert(BB); 487 488 // Remember if SinglePred was the entry block of the function. If so, we 489 // will need to move BB back to the entry position. 490 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 491 MergeBasicBlockIntoOnlyPred(BB); 492 493 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 494 BB->moveBefore(&BB->getParent()->getEntryBlock()); 495 return true; 496 } 497 } 498 499 // Look to see if the terminator is a branch of switch, if not we can't thread 500 // it. 501 Value *Condition; 502 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 503 // Can't thread an unconditional jump. 504 if (BI->isUnconditional()) return false; 505 Condition = BI->getCondition(); 506 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 507 Condition = SI->getCondition(); 508 else 509 return false; // Must be an invoke. 510 511 // If the terminator of this block is branching on a constant, simplify the 512 // terminator to an unconditional branch. This can occur due to threading in 513 // other blocks. 514 if (isa<ConstantInt>(Condition)) { 515 DEBUG(dbgs() << " In block '" << BB->getName() 516 << "' folding terminator: " << *BB->getTerminator() << '\n'); 517 ++NumFolds; 518 ConstantFoldTerminator(BB); 519 return true; 520 } 521 522 // If the terminator is branching on an undef, we can pick any of the 523 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 524 if (isa<UndefValue>(Condition)) { 525 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 526 527 // Fold the branch/switch. 528 TerminatorInst *BBTerm = BB->getTerminator(); 529 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 530 if (i == BestSucc) continue; 531 RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD); 532 } 533 534 DEBUG(dbgs() << " In block '" << BB->getName() 535 << "' folding undef terminator: " << *BBTerm << '\n'); 536 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 537 BBTerm->eraseFromParent(); 538 return true; 539 } 540 541 Instruction *CondInst = dyn_cast<Instruction>(Condition); 542 543 // If the condition is an instruction defined in another block, see if a 544 // predecessor has the same condition: 545 // br COND, BBX, BBY 546 // BBX: 547 // br COND, BBZ, BBW 548 if (!LVI && 549 !Condition->hasOneUse() && // Multiple uses. 550 (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition. 551 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 552 if (isa<BranchInst>(BB->getTerminator())) { 553 for (; PI != E; ++PI) 554 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 555 if (PBI->isConditional() && PBI->getCondition() == Condition && 556 ProcessBranchOnDuplicateCond(*PI, BB)) 557 return true; 558 } else { 559 assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator"); 560 for (; PI != E; ++PI) 561 if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator())) 562 if (PSI->getCondition() == Condition && 563 ProcessSwitchOnDuplicateCond(*PI, BB)) 564 return true; 565 } 566 } 567 568 // All the rest of our checks depend on the condition being an instruction. 569 if (CondInst == 0) { 570 // FIXME: Unify this with code below. 571 if (LVI && ProcessThreadableEdges(Condition, BB)) 572 return true; 573 return false; 574 } 575 576 577 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 578 if (!LVI && 579 (!isa<PHINode>(CondCmp->getOperand(0)) || 580 cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) { 581 // If we have a comparison, loop over the predecessors to see if there is 582 // a condition with a lexically identical value. 583 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 584 for (; PI != E; ++PI) 585 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 586 if (PBI->isConditional() && *PI != BB) { 587 if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) { 588 if (CI->getOperand(0) == CondCmp->getOperand(0) && 589 CI->getOperand(1) == CondCmp->getOperand(1) && 590 CI->getPredicate() == CondCmp->getPredicate()) { 591 // TODO: Could handle things like (x != 4) --> (x == 17) 592 if (ProcessBranchOnDuplicateCond(*PI, BB)) 593 return true; 594 } 595 } 596 } 597 } 598 } 599 600 // Check for some cases that are worth simplifying. Right now we want to look 601 // for loads that are used by a switch or by the condition for the branch. If 602 // we see one, check to see if it's partially redundant. If so, insert a PHI 603 // which can then be used to thread the values. 604 // 605 Value *SimplifyValue = CondInst; 606 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 607 if (isa<Constant>(CondCmp->getOperand(1))) 608 SimplifyValue = CondCmp->getOperand(0); 609 610 // TODO: There are other places where load PRE would be profitable, such as 611 // more complex comparisons. 612 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 613 if (SimplifyPartiallyRedundantLoad(LI)) 614 return true; 615 616 617 // Handle a variety of cases where we are branching on something derived from 618 // a PHI node in the current block. If we can prove that any predecessors 619 // compute a predictable value based on a PHI node, thread those predecessors. 620 // 621 if (ProcessThreadableEdges(CondInst, BB)) 622 return true; 623 624 // If this is an otherwise-unfoldable branch on a phi node in the current 625 // block, see if we can simplify. 626 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 627 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 628 return ProcessBranchOnPHI(PN); 629 630 631 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 632 if (CondInst->getOpcode() == Instruction::Xor && 633 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 634 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 635 636 637 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 638 // "(X == 4)", thread through this block. 639 640 return false; 641 } 642 643 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that 644 /// block that jump on exactly the same condition. This means that we almost 645 /// always know the direction of the edge in the DESTBB: 646 /// PREDBB: 647 /// br COND, DESTBB, BBY 648 /// DESTBB: 649 /// br COND, BBZ, BBW 650 /// 651 /// If DESTBB has multiple predecessors, we can't just constant fold the branch 652 /// in DESTBB, we have to thread over it. 653 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB, 654 BasicBlock *BB) { 655 BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator()); 656 657 // If both successors of PredBB go to DESTBB, we don't know anything. We can 658 // fold the branch to an unconditional one, which allows other recursive 659 // simplifications. 660 bool BranchDir; 661 if (PredBI->getSuccessor(1) != BB) 662 BranchDir = true; 663 else if (PredBI->getSuccessor(0) != BB) 664 BranchDir = false; 665 else { 666 DEBUG(dbgs() << " In block '" << PredBB->getName() 667 << "' folding terminator: " << *PredBB->getTerminator() << '\n'); 668 ++NumFolds; 669 ConstantFoldTerminator(PredBB); 670 return true; 671 } 672 673 BranchInst *DestBI = cast<BranchInst>(BB->getTerminator()); 674 675 // If the dest block has one predecessor, just fix the branch condition to a 676 // constant and fold it. 677 if (BB->getSinglePredecessor()) { 678 DEBUG(dbgs() << " In block '" << BB->getName() 679 << "' folding condition to '" << BranchDir << "': " 680 << *BB->getTerminator() << '\n'); 681 ++NumFolds; 682 Value *OldCond = DestBI->getCondition(); 683 DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 684 BranchDir)); 685 // Delete dead instructions before we fold the branch. Folding the branch 686 // can eliminate edges from the CFG which can end up deleting OldCond. 687 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 688 ConstantFoldTerminator(BB); 689 return true; 690 } 691 692 693 // Next, figure out which successor we are threading to. 694 BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir); 695 696 SmallVector<BasicBlock*, 2> Preds; 697 Preds.push_back(PredBB); 698 699 // Ok, try to thread it! 700 return ThreadEdge(BB, Preds, SuccBB); 701 } 702 703 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that 704 /// block that switch on exactly the same condition. This means that we almost 705 /// always know the direction of the edge in the DESTBB: 706 /// PREDBB: 707 /// switch COND [... DESTBB, BBY ... ] 708 /// DESTBB: 709 /// switch COND [... BBZ, BBW ] 710 /// 711 /// Optimizing switches like this is very important, because simplifycfg builds 712 /// switches out of repeated 'if' conditions. 713 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, 714 BasicBlock *DestBB) { 715 // Can't thread edge to self. 716 if (PredBB == DestBB) 717 return false; 718 719 SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator()); 720 SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator()); 721 722 // There are a variety of optimizations that we can potentially do on these 723 // blocks: we order them from most to least preferable. 724 725 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB 726 // directly to their destination. This does not introduce *any* code size 727 // growth. Skip debug info first. 728 BasicBlock::iterator BBI = DestBB->begin(); 729 while (isa<DbgInfoIntrinsic>(BBI)) 730 BBI++; 731 732 // FIXME: Thread if it just contains a PHI. 733 if (isa<SwitchInst>(BBI)) { 734 bool MadeChange = false; 735 // Ignore the default edge for now. 736 for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) { 737 ConstantInt *DestVal = DestSI->getCaseValue(i); 738 BasicBlock *DestSucc = DestSI->getSuccessor(i); 739 740 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if 741 // PredSI has an explicit case for it. If so, forward. If it is covered 742 // by the default case, we can't update PredSI. 743 unsigned PredCase = PredSI->findCaseValue(DestVal); 744 if (PredCase == 0) continue; 745 746 // If PredSI doesn't go to DestBB on this value, then it won't reach the 747 // case on this condition. 748 if (PredSI->getSuccessor(PredCase) != DestBB && 749 DestSI->getSuccessor(i) != DestBB) 750 continue; 751 752 // Do not forward this if it already goes to this destination, this would 753 // be an infinite loop. 754 if (PredSI->getSuccessor(PredCase) == DestSucc) 755 continue; 756 757 // Otherwise, we're safe to make the change. Make sure that the edge from 758 // DestSI to DestSucc is not critical and has no PHI nodes. 759 DEBUG(dbgs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI); 760 DEBUG(dbgs() << "THROUGH: " << *DestSI); 761 762 // If the destination has PHI nodes, just split the edge for updating 763 // simplicity. 764 if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){ 765 SplitCriticalEdge(DestSI, i, this); 766 DestSucc = DestSI->getSuccessor(i); 767 } 768 FoldSingleEntryPHINodes(DestSucc); 769 PredSI->setSuccessor(PredCase, DestSucc); 770 MadeChange = true; 771 } 772 773 if (MadeChange) 774 return true; 775 } 776 777 return false; 778 } 779 780 781 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 782 /// load instruction, eliminate it by replacing it with a PHI node. This is an 783 /// important optimization that encourages jump threading, and needs to be run 784 /// interlaced with other jump threading tasks. 785 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 786 // Don't hack volatile loads. 787 if (LI->isVolatile()) return false; 788 789 // If the load is defined in a block with exactly one predecessor, it can't be 790 // partially redundant. 791 BasicBlock *LoadBB = LI->getParent(); 792 if (LoadBB->getSinglePredecessor()) 793 return false; 794 795 Value *LoadedPtr = LI->getOperand(0); 796 797 // If the loaded operand is defined in the LoadBB, it can't be available. 798 // TODO: Could do simple PHI translation, that would be fun :) 799 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 800 if (PtrOp->getParent() == LoadBB) 801 return false; 802 803 // Scan a few instructions up from the load, to see if it is obviously live at 804 // the entry to its block. 805 BasicBlock::iterator BBIt = LI; 806 807 if (Value *AvailableVal = 808 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) { 809 // If the value if the load is locally available within the block, just use 810 // it. This frequently occurs for reg2mem'd allocas. 811 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 812 813 // If the returned value is the load itself, replace with an undef. This can 814 // only happen in dead loops. 815 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 816 LI->replaceAllUsesWith(AvailableVal); 817 LI->eraseFromParent(); 818 return true; 819 } 820 821 // Otherwise, if we scanned the whole block and got to the top of the block, 822 // we know the block is locally transparent to the load. If not, something 823 // might clobber its value. 824 if (BBIt != LoadBB->begin()) 825 return false; 826 827 828 SmallPtrSet<BasicBlock*, 8> PredsScanned; 829 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 830 AvailablePredsTy AvailablePreds; 831 BasicBlock *OneUnavailablePred = 0; 832 833 // If we got here, the loaded value is transparent through to the start of the 834 // block. Check to see if it is available in any of the predecessor blocks. 835 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 836 PI != PE; ++PI) { 837 BasicBlock *PredBB = *PI; 838 839 // If we already scanned this predecessor, skip it. 840 if (!PredsScanned.insert(PredBB)) 841 continue; 842 843 // Scan the predecessor to see if the value is available in the pred. 844 BBIt = PredBB->end(); 845 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6); 846 if (!PredAvailable) { 847 OneUnavailablePred = PredBB; 848 continue; 849 } 850 851 // If so, this load is partially redundant. Remember this info so that we 852 // can create a PHI node. 853 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 854 } 855 856 // If the loaded value isn't available in any predecessor, it isn't partially 857 // redundant. 858 if (AvailablePreds.empty()) return false; 859 860 // Okay, the loaded value is available in at least one (and maybe all!) 861 // predecessors. If the value is unavailable in more than one unique 862 // predecessor, we want to insert a merge block for those common predecessors. 863 // This ensures that we only have to insert one reload, thus not increasing 864 // code size. 865 BasicBlock *UnavailablePred = 0; 866 867 // If there is exactly one predecessor where the value is unavailable, the 868 // already computed 'OneUnavailablePred' block is it. If it ends in an 869 // unconditional branch, we know that it isn't a critical edge. 870 if (PredsScanned.size() == AvailablePreds.size()+1 && 871 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 872 UnavailablePred = OneUnavailablePred; 873 } else if (PredsScanned.size() != AvailablePreds.size()) { 874 // Otherwise, we had multiple unavailable predecessors or we had a critical 875 // edge from the one. 876 SmallVector<BasicBlock*, 8> PredsToSplit; 877 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 878 879 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 880 AvailablePredSet.insert(AvailablePreds[i].first); 881 882 // Add all the unavailable predecessors to the PredsToSplit list. 883 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 884 PI != PE; ++PI) { 885 // If the predecessor is an indirect goto, we can't split the edge. 886 if (isa<IndirectBrInst>((*PI)->getTerminator())) 887 return false; 888 889 if (!AvailablePredSet.count(*PI)) 890 PredsToSplit.push_back(*PI); 891 } 892 893 // Split them out to their own block. 894 UnavailablePred = 895 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(), 896 "thread-pre-split", this); 897 } 898 899 // If the value isn't available in all predecessors, then there will be 900 // exactly one where it isn't available. Insert a load on that edge and add 901 // it to the AvailablePreds list. 902 if (UnavailablePred) { 903 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 904 "Can't handle critical edge here!"); 905 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, 906 LI->getAlignment(), 907 UnavailablePred->getTerminator()); 908 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 909 } 910 911 // Now we know that each predecessor of this block has a value in 912 // AvailablePreds, sort them for efficient access as we're walking the preds. 913 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 914 915 // Create a PHI node at the start of the block for the PRE'd load value. 916 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin()); 917 PN->takeName(LI); 918 919 // Insert new entries into the PHI for each predecessor. A single block may 920 // have multiple entries here. 921 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E; 922 ++PI) { 923 AvailablePredsTy::iterator I = 924 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 925 std::make_pair(*PI, (Value*)0)); 926 927 assert(I != AvailablePreds.end() && I->first == *PI && 928 "Didn't find entry for predecessor!"); 929 930 PN->addIncoming(I->second, I->first); 931 } 932 933 //cerr << "PRE: " << *LI << *PN << "\n"; 934 935 LI->replaceAllUsesWith(PN); 936 LI->eraseFromParent(); 937 938 return true; 939 } 940 941 /// FindMostPopularDest - The specified list contains multiple possible 942 /// threadable destinations. Pick the one that occurs the most frequently in 943 /// the list. 944 static BasicBlock * 945 FindMostPopularDest(BasicBlock *BB, 946 const SmallVectorImpl<std::pair<BasicBlock*, 947 BasicBlock*> > &PredToDestList) { 948 assert(!PredToDestList.empty()); 949 950 // Determine popularity. If there are multiple possible destinations, we 951 // explicitly choose to ignore 'undef' destinations. We prefer to thread 952 // blocks with known and real destinations to threading undef. We'll handle 953 // them later if interesting. 954 DenseMap<BasicBlock*, unsigned> DestPopularity; 955 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 956 if (PredToDestList[i].second) 957 DestPopularity[PredToDestList[i].second]++; 958 959 // Find the most popular dest. 960 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 961 BasicBlock *MostPopularDest = DPI->first; 962 unsigned Popularity = DPI->second; 963 SmallVector<BasicBlock*, 4> SamePopularity; 964 965 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 966 // If the popularity of this entry isn't higher than the popularity we've 967 // seen so far, ignore it. 968 if (DPI->second < Popularity) 969 ; // ignore. 970 else if (DPI->second == Popularity) { 971 // If it is the same as what we've seen so far, keep track of it. 972 SamePopularity.push_back(DPI->first); 973 } else { 974 // If it is more popular, remember it. 975 SamePopularity.clear(); 976 MostPopularDest = DPI->first; 977 Popularity = DPI->second; 978 } 979 } 980 981 // Okay, now we know the most popular destination. If there is more than 982 // destination, we need to determine one. This is arbitrary, but we need 983 // to make a deterministic decision. Pick the first one that appears in the 984 // successor list. 985 if (!SamePopularity.empty()) { 986 SamePopularity.push_back(MostPopularDest); 987 TerminatorInst *TI = BB->getTerminator(); 988 for (unsigned i = 0; ; ++i) { 989 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 990 991 if (std::find(SamePopularity.begin(), SamePopularity.end(), 992 TI->getSuccessor(i)) == SamePopularity.end()) 993 continue; 994 995 MostPopularDest = TI->getSuccessor(i); 996 break; 997 } 998 } 999 1000 // Okay, we have finally picked the most popular destination. 1001 return MostPopularDest; 1002 } 1003 1004 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) { 1005 // If threading this would thread across a loop header, don't even try to 1006 // thread the edge. 1007 if (LoopHeaders.count(BB)) 1008 return false; 1009 1010 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues; 1011 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues)) 1012 return false; 1013 assert(!PredValues.empty() && 1014 "ComputeValueKnownInPredecessors returned true with no values"); 1015 1016 DEBUG(dbgs() << "IN BB: " << *BB; 1017 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1018 dbgs() << " BB '" << BB->getName() << "': FOUND condition = "; 1019 if (PredValues[i].first) 1020 dbgs() << *PredValues[i].first; 1021 else 1022 dbgs() << "UNDEF"; 1023 dbgs() << " for pred '" << PredValues[i].second->getName() 1024 << "'.\n"; 1025 }); 1026 1027 // Decide what we want to thread through. Convert our list of known values to 1028 // a list of known destinations for each pred. This also discards duplicate 1029 // predecessors and keeps track of the undefined inputs (which are represented 1030 // as a null dest in the PredToDestList). 1031 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1032 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1033 1034 BasicBlock *OnlyDest = 0; 1035 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1036 1037 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1038 BasicBlock *Pred = PredValues[i].second; 1039 if (!SeenPreds.insert(Pred)) 1040 continue; // Duplicate predecessor entry. 1041 1042 // If the predecessor ends with an indirect goto, we can't change its 1043 // destination. 1044 if (isa<IndirectBrInst>(Pred->getTerminator())) 1045 continue; 1046 1047 ConstantInt *Val = PredValues[i].first; 1048 1049 BasicBlock *DestBB; 1050 if (Val == 0) // Undef. 1051 DestBB = 0; 1052 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1053 DestBB = BI->getSuccessor(Val->isZero()); 1054 else { 1055 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator()); 1056 DestBB = SI->getSuccessor(SI->findCaseValue(Val)); 1057 } 1058 1059 // If we have exactly one destination, remember it for efficiency below. 1060 if (i == 0) 1061 OnlyDest = DestBB; 1062 else if (OnlyDest != DestBB) 1063 OnlyDest = MultipleDestSentinel; 1064 1065 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1066 } 1067 1068 // If all edges were unthreadable, we fail. 1069 if (PredToDestList.empty()) 1070 return false; 1071 1072 // Determine which is the most common successor. If we have many inputs and 1073 // this block is a switch, we want to start by threading the batch that goes 1074 // to the most popular destination first. If we only know about one 1075 // threadable destination (the common case) we can avoid this. 1076 BasicBlock *MostPopularDest = OnlyDest; 1077 1078 if (MostPopularDest == MultipleDestSentinel) 1079 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1080 1081 // Now that we know what the most popular destination is, factor all 1082 // predecessors that will jump to it into a single predecessor. 1083 SmallVector<BasicBlock*, 16> PredsToFactor; 1084 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1085 if (PredToDestList[i].second == MostPopularDest) { 1086 BasicBlock *Pred = PredToDestList[i].first; 1087 1088 // This predecessor may be a switch or something else that has multiple 1089 // edges to the block. Factor each of these edges by listing them 1090 // according to # occurrences in PredsToFactor. 1091 TerminatorInst *PredTI = Pred->getTerminator(); 1092 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 1093 if (PredTI->getSuccessor(i) == BB) 1094 PredsToFactor.push_back(Pred); 1095 } 1096 1097 // If the threadable edges are branching on an undefined value, we get to pick 1098 // the destination that these predecessors should get to. 1099 if (MostPopularDest == 0) 1100 MostPopularDest = BB->getTerminator()-> 1101 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1102 1103 // Ok, try to thread it! 1104 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1105 } 1106 1107 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1108 /// a PHI node in the current block. See if there are any simplifications we 1109 /// can do based on inputs to the phi node. 1110 /// 1111 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) { 1112 BasicBlock *BB = PN->getParent(); 1113 1114 // TODO: We could make use of this to do it once for blocks with common PHI 1115 // values. 1116 SmallVector<BasicBlock*, 1> PredBBs; 1117 PredBBs.resize(1); 1118 1119 // If any of the predecessor blocks end in an unconditional branch, we can 1120 // *duplicate* the conditional branch into that block in order to further 1121 // encourage jump threading and to eliminate cases where we have branch on a 1122 // phi of an icmp (branch on icmp is much better). 1123 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1124 BasicBlock *PredBB = PN->getIncomingBlock(i); 1125 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1126 if (PredBr->isUnconditional()) { 1127 PredBBs[0] = PredBB; 1128 // Try to duplicate BB into PredBB. 1129 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1130 return true; 1131 } 1132 } 1133 1134 return false; 1135 } 1136 1137 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1138 /// a xor instruction in the current block. See if there are any 1139 /// simplifications we can do based on inputs to the xor. 1140 /// 1141 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) { 1142 BasicBlock *BB = BO->getParent(); 1143 1144 // If either the LHS or RHS of the xor is a constant, don't do this 1145 // optimization. 1146 if (isa<ConstantInt>(BO->getOperand(0)) || 1147 isa<ConstantInt>(BO->getOperand(1))) 1148 return false; 1149 1150 // If the first instruction in BB isn't a phi, we won't be able to infer 1151 // anything special about any particular predecessor. 1152 if (!isa<PHINode>(BB->front())) 1153 return false; 1154 1155 // If we have a xor as the branch input to this block, and we know that the 1156 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1157 // the condition into the predecessor and fix that value to true, saving some 1158 // logical ops on that path and encouraging other paths to simplify. 1159 // 1160 // This copies something like this: 1161 // 1162 // BB: 1163 // %X = phi i1 [1], [%X'] 1164 // %Y = icmp eq i32 %A, %B 1165 // %Z = xor i1 %X, %Y 1166 // br i1 %Z, ... 1167 // 1168 // Into: 1169 // BB': 1170 // %Y = icmp ne i32 %A, %B 1171 // br i1 %Z, ... 1172 1173 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> XorOpValues; 1174 bool isLHS = true; 1175 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues)) { 1176 assert(XorOpValues.empty()); 1177 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues)) 1178 return false; 1179 isLHS = false; 1180 } 1181 1182 assert(!XorOpValues.empty() && 1183 "ComputeValueKnownInPredecessors returned true with no values"); 1184 1185 // Scan the information to see which is most popular: true or false. The 1186 // predecessors can be of the set true, false, or undef. 1187 unsigned NumTrue = 0, NumFalse = 0; 1188 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1189 if (!XorOpValues[i].first) continue; // Ignore undefs for the count. 1190 if (XorOpValues[i].first->isZero()) 1191 ++NumFalse; 1192 else 1193 ++NumTrue; 1194 } 1195 1196 // Determine which value to split on, true, false, or undef if neither. 1197 ConstantInt *SplitVal = 0; 1198 if (NumTrue > NumFalse) 1199 SplitVal = ConstantInt::getTrue(BB->getContext()); 1200 else if (NumTrue != 0 || NumFalse != 0) 1201 SplitVal = ConstantInt::getFalse(BB->getContext()); 1202 1203 // Collect all of the blocks that this can be folded into so that we can 1204 // factor this once and clone it once. 1205 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1206 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1207 if (XorOpValues[i].first != SplitVal && XorOpValues[i].first != 0) continue; 1208 1209 BlocksToFoldInto.push_back(XorOpValues[i].second); 1210 } 1211 1212 // If we inferred a value for all of the predecessors, then duplication won't 1213 // help us. However, we can just replace the LHS or RHS with the constant. 1214 if (BlocksToFoldInto.size() == 1215 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1216 if (SplitVal == 0) { 1217 // If all preds provide undef, just nuke the xor, because it is undef too. 1218 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1219 BO->eraseFromParent(); 1220 } else if (SplitVal->isZero()) { 1221 // If all preds provide 0, replace the xor with the other input. 1222 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1223 BO->eraseFromParent(); 1224 } else { 1225 // If all preds provide 1, set the computed value to 1. 1226 BO->setOperand(!isLHS, SplitVal); 1227 } 1228 1229 return true; 1230 } 1231 1232 // Try to duplicate BB into PredBB. 1233 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1234 } 1235 1236 1237 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1238 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1239 /// NewPred using the entries from OldPred (suitably mapped). 1240 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1241 BasicBlock *OldPred, 1242 BasicBlock *NewPred, 1243 DenseMap<Instruction*, Value*> &ValueMap) { 1244 for (BasicBlock::iterator PNI = PHIBB->begin(); 1245 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1246 // Ok, we have a PHI node. Figure out what the incoming value was for the 1247 // DestBlock. 1248 Value *IV = PN->getIncomingValueForBlock(OldPred); 1249 1250 // Remap the value if necessary. 1251 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1252 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1253 if (I != ValueMap.end()) 1254 IV = I->second; 1255 } 1256 1257 PN->addIncoming(IV, NewPred); 1258 } 1259 } 1260 1261 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1262 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1263 /// across BB. Transform the IR to reflect this change. 1264 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1265 const SmallVectorImpl<BasicBlock*> &PredBBs, 1266 BasicBlock *SuccBB) { 1267 // If threading to the same block as we come from, we would infinite loop. 1268 if (SuccBB == BB) { 1269 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1270 << "' - would thread to self!\n"); 1271 return false; 1272 } 1273 1274 // If threading this would thread across a loop header, don't thread the edge. 1275 // See the comments above FindLoopHeaders for justifications and caveats. 1276 if (LoopHeaders.count(BB)) { 1277 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1278 << "' to dest BB '" << SuccBB->getName() 1279 << "' - it might create an irreducible loop!\n"); 1280 return false; 1281 } 1282 1283 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB); 1284 if (JumpThreadCost > Threshold) { 1285 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1286 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1287 return false; 1288 } 1289 1290 // And finally, do it! Start by factoring the predecessors is needed. 1291 BasicBlock *PredBB; 1292 if (PredBBs.size() == 1) 1293 PredBB = PredBBs[0]; 1294 else { 1295 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1296 << " common predecessors.\n"); 1297 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), 1298 ".thr_comm", this); 1299 } 1300 1301 // And finally, do it! 1302 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1303 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1304 << ", across block:\n " 1305 << *BB << "\n"); 1306 1307 // We are going to have to map operands from the original BB block to the new 1308 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1309 // account for entry from PredBB. 1310 DenseMap<Instruction*, Value*> ValueMapping; 1311 1312 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1313 BB->getName()+".thread", 1314 BB->getParent(), BB); 1315 NewBB->moveAfter(PredBB); 1316 1317 BasicBlock::iterator BI = BB->begin(); 1318 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1319 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1320 1321 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1322 // mapping and using it to remap operands in the cloned instructions. 1323 for (; !isa<TerminatorInst>(BI); ++BI) { 1324 Instruction *New = BI->clone(); 1325 New->setName(BI->getName()); 1326 NewBB->getInstList().push_back(New); 1327 ValueMapping[BI] = New; 1328 1329 // Remap operands to patch up intra-block references. 1330 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1331 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1332 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1333 if (I != ValueMapping.end()) 1334 New->setOperand(i, I->second); 1335 } 1336 } 1337 1338 // We didn't copy the terminator from BB over to NewBB, because there is now 1339 // an unconditional jump to SuccBB. Insert the unconditional jump. 1340 BranchInst::Create(SuccBB, NewBB); 1341 1342 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1343 // PHI nodes for NewBB now. 1344 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1345 1346 // If there were values defined in BB that are used outside the block, then we 1347 // now have to update all uses of the value to use either the original value, 1348 // the cloned value, or some PHI derived value. This can require arbitrary 1349 // PHI insertion, of which we are prepared to do, clean these up now. 1350 SSAUpdater SSAUpdate; 1351 SmallVector<Use*, 16> UsesToRename; 1352 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1353 // Scan all uses of this instruction to see if it is used outside of its 1354 // block, and if so, record them in UsesToRename. 1355 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1356 ++UI) { 1357 Instruction *User = cast<Instruction>(*UI); 1358 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1359 if (UserPN->getIncomingBlock(UI) == BB) 1360 continue; 1361 } else if (User->getParent() == BB) 1362 continue; 1363 1364 UsesToRename.push_back(&UI.getUse()); 1365 } 1366 1367 // If there are no uses outside the block, we're done with this instruction. 1368 if (UsesToRename.empty()) 1369 continue; 1370 1371 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1372 1373 // We found a use of I outside of BB. Rename all uses of I that are outside 1374 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1375 // with the two values we know. 1376 SSAUpdate.Initialize(I); 1377 SSAUpdate.AddAvailableValue(BB, I); 1378 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); 1379 1380 while (!UsesToRename.empty()) 1381 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1382 DEBUG(dbgs() << "\n"); 1383 } 1384 1385 1386 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1387 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1388 // us to simplify any PHI nodes in BB. 1389 TerminatorInst *PredTerm = PredBB->getTerminator(); 1390 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1391 if (PredTerm->getSuccessor(i) == BB) { 1392 RemovePredecessorAndSimplify(BB, PredBB, TD); 1393 PredTerm->setSuccessor(i, NewBB); 1394 } 1395 1396 // At this point, the IR is fully up to date and consistent. Do a quick scan 1397 // over the new instructions and zap any that are constants or dead. This 1398 // frequently happens because of phi translation. 1399 SimplifyInstructionsInBlock(NewBB, TD); 1400 1401 // Threaded an edge! 1402 ++NumThreads; 1403 return true; 1404 } 1405 1406 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1407 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1408 /// If we can duplicate the contents of BB up into PredBB do so now, this 1409 /// improves the odds that the branch will be on an analyzable instruction like 1410 /// a compare. 1411 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1412 const SmallVectorImpl<BasicBlock *> &PredBBs) { 1413 assert(!PredBBs.empty() && "Can't handle an empty set"); 1414 1415 // If BB is a loop header, then duplicating this block outside the loop would 1416 // cause us to transform this into an irreducible loop, don't do this. 1417 // See the comments above FindLoopHeaders for justifications and caveats. 1418 if (LoopHeaders.count(BB)) { 1419 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1420 << "' into predecessor block '" << PredBBs[0]->getName() 1421 << "' - it might create an irreducible loop!\n"); 1422 return false; 1423 } 1424 1425 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB); 1426 if (DuplicationCost > Threshold) { 1427 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1428 << "' - Cost is too high: " << DuplicationCost << "\n"); 1429 return false; 1430 } 1431 1432 // And finally, do it! Start by factoring the predecessors is needed. 1433 BasicBlock *PredBB; 1434 if (PredBBs.size() == 1) 1435 PredBB = PredBBs[0]; 1436 else { 1437 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1438 << " common predecessors.\n"); 1439 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), 1440 ".thr_comm", this); 1441 } 1442 1443 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1444 // of PredBB. 1445 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1446 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1447 << DuplicationCost << " block is:" << *BB << "\n"); 1448 1449 // Unless PredBB ends with an unconditional branch, split the edge so that we 1450 // can just clone the bits from BB into the end of the new PredBB. 1451 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 1452 1453 if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) { 1454 PredBB = SplitEdge(PredBB, BB, this); 1455 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1456 } 1457 1458 // We are going to have to map operands from the original BB block into the 1459 // PredBB block. Evaluate PHI nodes in BB. 1460 DenseMap<Instruction*, Value*> ValueMapping; 1461 1462 BasicBlock::iterator BI = BB->begin(); 1463 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1464 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1465 1466 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1467 // mapping and using it to remap operands in the cloned instructions. 1468 for (; BI != BB->end(); ++BI) { 1469 Instruction *New = BI->clone(); 1470 1471 // Remap operands to patch up intra-block references. 1472 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1473 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1474 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1475 if (I != ValueMapping.end()) 1476 New->setOperand(i, I->second); 1477 } 1478 1479 // If this instruction can be simplified after the operands are updated, 1480 // just use the simplified value instead. This frequently happens due to 1481 // phi translation. 1482 if (Value *IV = SimplifyInstruction(New, TD)) { 1483 delete New; 1484 ValueMapping[BI] = IV; 1485 } else { 1486 // Otherwise, insert the new instruction into the block. 1487 New->setName(BI->getName()); 1488 PredBB->getInstList().insert(OldPredBranch, New); 1489 ValueMapping[BI] = New; 1490 } 1491 } 1492 1493 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1494 // add entries to the PHI nodes for branch from PredBB now. 1495 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1496 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1497 ValueMapping); 1498 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1499 ValueMapping); 1500 1501 // If there were values defined in BB that are used outside the block, then we 1502 // now have to update all uses of the value to use either the original value, 1503 // the cloned value, or some PHI derived value. This can require arbitrary 1504 // PHI insertion, of which we are prepared to do, clean these up now. 1505 SSAUpdater SSAUpdate; 1506 SmallVector<Use*, 16> UsesToRename; 1507 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1508 // Scan all uses of this instruction to see if it is used outside of its 1509 // block, and if so, record them in UsesToRename. 1510 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1511 ++UI) { 1512 Instruction *User = cast<Instruction>(*UI); 1513 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1514 if (UserPN->getIncomingBlock(UI) == BB) 1515 continue; 1516 } else if (User->getParent() == BB) 1517 continue; 1518 1519 UsesToRename.push_back(&UI.getUse()); 1520 } 1521 1522 // If there are no uses outside the block, we're done with this instruction. 1523 if (UsesToRename.empty()) 1524 continue; 1525 1526 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1527 1528 // We found a use of I outside of BB. Rename all uses of I that are outside 1529 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1530 // with the two values we know. 1531 SSAUpdate.Initialize(I); 1532 SSAUpdate.AddAvailableValue(BB, I); 1533 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); 1534 1535 while (!UsesToRename.empty()) 1536 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1537 DEBUG(dbgs() << "\n"); 1538 } 1539 1540 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1541 // that we nuked. 1542 RemovePredecessorAndSimplify(BB, PredBB, TD); 1543 1544 // Remove the unconditional branch at the end of the PredBB block. 1545 OldPredBranch->eraseFromParent(); 1546 1547 ++NumDupes; 1548 return true; 1549 } 1550 1551 1552