1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/GlobalsModRef.h" 22 #include "llvm/Analysis/CFG.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LazyValueInfo.h" 29 #include "llvm/Analysis/Loads.h" 30 #include "llvm/Analysis/LoopInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/ValueHandle.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 44 #include "llvm/Transforms/Utils/Local.h" 45 #include "llvm/Transforms/Utils/SSAUpdater.h" 46 #include <algorithm> 47 #include <memory> 48 using namespace llvm; 49 50 #define DEBUG_TYPE "jump-threading" 51 52 STATISTIC(NumThreads, "Number of jumps threaded"); 53 STATISTIC(NumFolds, "Number of terminators folded"); 54 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 55 56 static cl::opt<unsigned> 57 BBDuplicateThreshold("jump-threading-threshold", 58 cl::desc("Max block size to duplicate for jump threading"), 59 cl::init(6), cl::Hidden); 60 61 static cl::opt<unsigned> 62 ImplicationSearchThreshold( 63 "jump-threading-implication-search-threshold", 64 cl::desc("The number of predecessors to search for a stronger " 65 "condition to use to thread over a weaker condition"), 66 cl::init(3), cl::Hidden); 67 68 namespace { 69 // These are at global scope so static functions can use them too. 70 typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo; 71 typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy; 72 73 // This is used to keep track of what kind of constant we're currently hoping 74 // to find. 75 enum ConstantPreference { 76 WantInteger, 77 WantBlockAddress 78 }; 79 80 /// This pass performs 'jump threading', which looks at blocks that have 81 /// multiple predecessors and multiple successors. If one or more of the 82 /// predecessors of the block can be proven to always jump to one of the 83 /// successors, we forward the edge from the predecessor to the successor by 84 /// duplicating the contents of this block. 85 /// 86 /// An example of when this can occur is code like this: 87 /// 88 /// if () { ... 89 /// X = 4; 90 /// } 91 /// if (X < 3) { 92 /// 93 /// In this case, the unconditional branch at the end of the first if can be 94 /// revectored to the false side of the second if. 95 /// 96 class JumpThreading : public FunctionPass { 97 TargetLibraryInfo *TLI; 98 LazyValueInfo *LVI; 99 std::unique_ptr<BlockFrequencyInfo> BFI; 100 std::unique_ptr<BranchProbabilityInfo> BPI; 101 bool HasProfileData; 102 #ifdef NDEBUG 103 SmallPtrSet<const BasicBlock *, 16> LoopHeaders; 104 #else 105 SmallSet<AssertingVH<const BasicBlock>, 16> LoopHeaders; 106 #endif 107 DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet; 108 109 unsigned BBDupThreshold; 110 111 // RAII helper for updating the recursion stack. 112 struct RecursionSetRemover { 113 DenseSet<std::pair<Value*, BasicBlock*> > &TheSet; 114 std::pair<Value*, BasicBlock*> ThePair; 115 116 RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S, 117 std::pair<Value*, BasicBlock*> P) 118 : TheSet(S), ThePair(P) { } 119 120 ~RecursionSetRemover() { 121 TheSet.erase(ThePair); 122 } 123 }; 124 public: 125 static char ID; // Pass identification 126 JumpThreading(int T = -1) : FunctionPass(ID) { 127 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 128 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 129 } 130 131 bool runOnFunction(Function &F) override; 132 133 void getAnalysisUsage(AnalysisUsage &AU) const override { 134 AU.addRequired<LazyValueInfo>(); 135 AU.addPreserved<LazyValueInfo>(); 136 AU.addPreserved<GlobalsAAWrapperPass>(); 137 AU.addRequired<TargetLibraryInfoWrapperPass>(); 138 } 139 140 void releaseMemory() override { 141 BFI.reset(); 142 BPI.reset(); 143 } 144 145 void FindLoopHeaders(Function &F); 146 bool ProcessBlock(BasicBlock *BB); 147 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 148 BasicBlock *SuccBB); 149 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 150 const SmallVectorImpl<BasicBlock *> &PredBBs); 151 152 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 153 PredValueInfo &Result, 154 ConstantPreference Preference, 155 Instruction *CxtI = nullptr); 156 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 157 ConstantPreference Preference, 158 Instruction *CxtI = nullptr); 159 160 bool ProcessBranchOnPHI(PHINode *PN); 161 bool ProcessBranchOnXOR(BinaryOperator *BO); 162 bool ProcessImpliedCondition(BasicBlock *BB); 163 164 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 165 bool TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB); 166 bool TryToUnfoldSelectInCurrBB(BasicBlock *BB); 167 168 private: 169 BasicBlock *SplitBlockPreds(BasicBlock *BB, ArrayRef<BasicBlock *> Preds, 170 const char *Suffix); 171 void UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, BasicBlock *BB, 172 BasicBlock *NewBB, BasicBlock *SuccBB); 173 }; 174 } 175 176 char JumpThreading::ID = 0; 177 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 178 "Jump Threading", false, false) 179 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo) 180 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 181 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 182 "Jump Threading", false, false) 183 184 // Public interface to the Jump Threading pass 185 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); } 186 187 /// runOnFunction - Top level algorithm. 188 /// 189 bool JumpThreading::runOnFunction(Function &F) { 190 if (skipOptnoneFunction(F)) 191 return false; 192 193 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 194 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 195 LVI = &getAnalysis<LazyValueInfo>(); 196 BFI.reset(); 197 BPI.reset(); 198 // When profile data is available, we need to update edge weights after 199 // successful jump threading, which requires both BPI and BFI being available. 200 HasProfileData = F.getEntryCount().hasValue(); 201 if (HasProfileData) { 202 LoopInfo LI{DominatorTree(F)}; 203 BPI.reset(new BranchProbabilityInfo(F, LI)); 204 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 205 } 206 207 // Remove unreachable blocks from function as they may result in infinite 208 // loop. We do threading if we found something profitable. Jump threading a 209 // branch can create other opportunities. If these opportunities form a cycle 210 // i.e. if any jump threading is undoing previous threading in the path, then 211 // we will loop forever. We take care of this issue by not jump threading for 212 // back edges. This works for normal cases but not for unreachable blocks as 213 // they may have cycle with no back edge. 214 bool EverChanged = false; 215 EverChanged |= removeUnreachableBlocks(F, LVI); 216 217 FindLoopHeaders(F); 218 219 bool Changed; 220 do { 221 Changed = false; 222 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 223 BasicBlock *BB = &*I; 224 // Thread all of the branches we can over this block. 225 while (ProcessBlock(BB)) 226 Changed = true; 227 228 ++I; 229 230 // If the block is trivially dead, zap it. This eliminates the successor 231 // edges which simplifies the CFG. 232 if (pred_empty(BB) && 233 BB != &BB->getParent()->getEntryBlock()) { 234 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 235 << "' with terminator: " << *BB->getTerminator() << '\n'); 236 LoopHeaders.erase(BB); 237 LVI->eraseBlock(BB); 238 DeleteDeadBlock(BB); 239 Changed = true; 240 continue; 241 } 242 243 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 244 245 // Can't thread an unconditional jump, but if the block is "almost 246 // empty", we can replace uses of it with uses of the successor and make 247 // this dead. 248 if (BI && BI->isUnconditional() && 249 BB != &BB->getParent()->getEntryBlock() && 250 // If the terminator is the only non-phi instruction, try to nuke it. 251 BB->getFirstNonPHIOrDbg()->isTerminator()) { 252 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 253 // block, we have to make sure it isn't in the LoopHeaders set. We 254 // reinsert afterward if needed. 255 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 256 BasicBlock *Succ = BI->getSuccessor(0); 257 258 // FIXME: It is always conservatively correct to drop the info 259 // for a block even if it doesn't get erased. This isn't totally 260 // awesome, but it allows us to use AssertingVH to prevent nasty 261 // dangling pointer issues within LazyValueInfo. 262 LVI->eraseBlock(BB); 263 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { 264 Changed = true; 265 // If we deleted BB and BB was the header of a loop, then the 266 // successor is now the header of the loop. 267 BB = Succ; 268 } 269 270 if (ErasedFromLoopHeaders) 271 LoopHeaders.insert(BB); 272 } 273 } 274 EverChanged |= Changed; 275 } while (Changed); 276 277 LoopHeaders.clear(); 278 return EverChanged; 279 } 280 281 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 282 /// thread across it. Stop scanning the block when passing the threshold. 283 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB, 284 unsigned Threshold) { 285 /// Ignore PHI nodes, these will be flattened when duplication happens. 286 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 287 288 // FIXME: THREADING will delete values that are just used to compute the 289 // branch, so they shouldn't count against the duplication cost. 290 291 unsigned Bonus = 0; 292 const TerminatorInst *BBTerm = BB->getTerminator(); 293 // Threading through a switch statement is particularly profitable. If this 294 // block ends in a switch, decrease its cost to make it more likely to happen. 295 if (isa<SwitchInst>(BBTerm)) 296 Bonus = 6; 297 298 // The same holds for indirect branches, but slightly more so. 299 if (isa<IndirectBrInst>(BBTerm)) 300 Bonus = 8; 301 302 // Bump the threshold up so the early exit from the loop doesn't skip the 303 // terminator-based Size adjustment at the end. 304 Threshold += Bonus; 305 306 // Sum up the cost of each instruction until we get to the terminator. Don't 307 // include the terminator because the copy won't include it. 308 unsigned Size = 0; 309 for (; !isa<TerminatorInst>(I); ++I) { 310 311 // Stop scanning the block if we've reached the threshold. 312 if (Size > Threshold) 313 return Size; 314 315 // Debugger intrinsics don't incur code size. 316 if (isa<DbgInfoIntrinsic>(I)) continue; 317 318 // If this is a pointer->pointer bitcast, it is free. 319 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 320 continue; 321 322 // Bail out if this instruction gives back a token type, it is not possible 323 // to duplicate it if it is used outside this BB. 324 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 325 return ~0U; 326 327 // All other instructions count for at least one unit. 328 ++Size; 329 330 // Calls are more expensive. If they are non-intrinsic calls, we model them 331 // as having cost of 4. If they are a non-vector intrinsic, we model them 332 // as having cost of 2 total, and if they are a vector intrinsic, we model 333 // them as having cost 1. 334 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 335 if (CI->cannotDuplicate() || CI->isConvergent()) 336 // Blocks with NoDuplicate are modelled as having infinite cost, so they 337 // are never duplicated. 338 return ~0U; 339 else if (!isa<IntrinsicInst>(CI)) 340 Size += 3; 341 else if (!CI->getType()->isVectorTy()) 342 Size += 1; 343 } 344 } 345 346 return Size > Bonus ? Size - Bonus : 0; 347 } 348 349 /// FindLoopHeaders - We do not want jump threading to turn proper loop 350 /// structures into irreducible loops. Doing this breaks up the loop nesting 351 /// hierarchy and pessimizes later transformations. To prevent this from 352 /// happening, we first have to find the loop headers. Here we approximate this 353 /// by finding targets of backedges in the CFG. 354 /// 355 /// Note that there definitely are cases when we want to allow threading of 356 /// edges across a loop header. For example, threading a jump from outside the 357 /// loop (the preheader) to an exit block of the loop is definitely profitable. 358 /// It is also almost always profitable to thread backedges from within the loop 359 /// to exit blocks, and is often profitable to thread backedges to other blocks 360 /// within the loop (forming a nested loop). This simple analysis is not rich 361 /// enough to track all of these properties and keep it up-to-date as the CFG 362 /// mutates, so we don't allow any of these transformations. 363 /// 364 void JumpThreading::FindLoopHeaders(Function &F) { 365 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 366 FindFunctionBackedges(F, Edges); 367 368 for (const auto &Edge : Edges) 369 LoopHeaders.insert(Edge.second); 370 } 371 372 /// getKnownConstant - Helper method to determine if we can thread over a 373 /// terminator with the given value as its condition, and if so what value to 374 /// use for that. What kind of value this is depends on whether we want an 375 /// integer or a block address, but an undef is always accepted. 376 /// Returns null if Val is null or not an appropriate constant. 377 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 378 if (!Val) 379 return nullptr; 380 381 // Undef is "known" enough. 382 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 383 return U; 384 385 if (Preference == WantBlockAddress) 386 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 387 388 return dyn_cast<ConstantInt>(Val); 389 } 390 391 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 392 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 393 /// in any of our predecessors. If so, return the known list of value and pred 394 /// BB in the result vector. 395 /// 396 /// This returns true if there were any known values. 397 /// 398 bool JumpThreading:: 399 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result, 400 ConstantPreference Preference, 401 Instruction *CxtI) { 402 // This method walks up use-def chains recursively. Because of this, we could 403 // get into an infinite loop going around loops in the use-def chain. To 404 // prevent this, keep track of what (value, block) pairs we've already visited 405 // and terminate the search if we loop back to them 406 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 407 return false; 408 409 // An RAII help to remove this pair from the recursion set once the recursion 410 // stack pops back out again. 411 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 412 413 // If V is a constant, then it is known in all predecessors. 414 if (Constant *KC = getKnownConstant(V, Preference)) { 415 for (BasicBlock *Pred : predecessors(BB)) 416 Result.push_back(std::make_pair(KC, Pred)); 417 418 return !Result.empty(); 419 } 420 421 // If V is a non-instruction value, or an instruction in a different block, 422 // then it can't be derived from a PHI. 423 Instruction *I = dyn_cast<Instruction>(V); 424 if (!I || I->getParent() != BB) { 425 426 // Okay, if this is a live-in value, see if it has a known value at the end 427 // of any of our predecessors. 428 // 429 // FIXME: This should be an edge property, not a block end property. 430 /// TODO: Per PR2563, we could infer value range information about a 431 /// predecessor based on its terminator. 432 // 433 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 434 // "I" is a non-local compare-with-a-constant instruction. This would be 435 // able to handle value inequalities better, for example if the compare is 436 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 437 // Perhaps getConstantOnEdge should be smart enough to do this? 438 439 for (BasicBlock *P : predecessors(BB)) { 440 // If the value is known by LazyValueInfo to be a constant in a 441 // predecessor, use that information to try to thread this block. 442 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 443 if (Constant *KC = getKnownConstant(PredCst, Preference)) 444 Result.push_back(std::make_pair(KC, P)); 445 } 446 447 return !Result.empty(); 448 } 449 450 /// If I is a PHI node, then we know the incoming values for any constants. 451 if (PHINode *PN = dyn_cast<PHINode>(I)) { 452 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 453 Value *InVal = PN->getIncomingValue(i); 454 if (Constant *KC = getKnownConstant(InVal, Preference)) { 455 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 456 } else { 457 Constant *CI = LVI->getConstantOnEdge(InVal, 458 PN->getIncomingBlock(i), 459 BB, CxtI); 460 if (Constant *KC = getKnownConstant(CI, Preference)) 461 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 462 } 463 } 464 465 return !Result.empty(); 466 } 467 468 // Handle Cast instructions. Only see through Cast when the source operand is 469 // PHI or Cmp and the source type is i1 to save the compilation time. 470 if (CastInst *CI = dyn_cast<CastInst>(I)) { 471 Value *Source = CI->getOperand(0); 472 if (!Source->getType()->isIntegerTy(1)) 473 return false; 474 if (!isa<PHINode>(Source) && !isa<CmpInst>(Source)) 475 return false; 476 ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI); 477 if (Result.empty()) 478 return false; 479 480 // Convert the known values. 481 for (auto &R : Result) 482 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 483 484 return true; 485 } 486 487 PredValueInfoTy LHSVals, RHSVals; 488 489 // Handle some boolean conditions. 490 if (I->getType()->getPrimitiveSizeInBits() == 1) { 491 assert(Preference == WantInteger && "One-bit non-integer type?"); 492 // X | true -> true 493 // X & false -> false 494 if (I->getOpcode() == Instruction::Or || 495 I->getOpcode() == Instruction::And) { 496 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 497 WantInteger, CxtI); 498 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 499 WantInteger, CxtI); 500 501 if (LHSVals.empty() && RHSVals.empty()) 502 return false; 503 504 ConstantInt *InterestingVal; 505 if (I->getOpcode() == Instruction::Or) 506 InterestingVal = ConstantInt::getTrue(I->getContext()); 507 else 508 InterestingVal = ConstantInt::getFalse(I->getContext()); 509 510 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 511 512 // Scan for the sentinel. If we find an undef, force it to the 513 // interesting value: x|undef -> true and x&undef -> false. 514 for (const auto &LHSVal : LHSVals) 515 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 516 Result.emplace_back(InterestingVal, LHSVal.second); 517 LHSKnownBBs.insert(LHSVal.second); 518 } 519 for (const auto &RHSVal : RHSVals) 520 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 521 // If we already inferred a value for this block on the LHS, don't 522 // re-add it. 523 if (!LHSKnownBBs.count(RHSVal.second)) 524 Result.emplace_back(InterestingVal, RHSVal.second); 525 } 526 527 return !Result.empty(); 528 } 529 530 // Handle the NOT form of XOR. 531 if (I->getOpcode() == Instruction::Xor && 532 isa<ConstantInt>(I->getOperand(1)) && 533 cast<ConstantInt>(I->getOperand(1))->isOne()) { 534 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 535 WantInteger, CxtI); 536 if (Result.empty()) 537 return false; 538 539 // Invert the known values. 540 for (auto &R : Result) 541 R.first = ConstantExpr::getNot(R.first); 542 543 return true; 544 } 545 546 // Try to simplify some other binary operator values. 547 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 548 assert(Preference != WantBlockAddress 549 && "A binary operator creating a block address?"); 550 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 551 PredValueInfoTy LHSVals; 552 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 553 WantInteger, CxtI); 554 555 // Try to use constant folding to simplify the binary operator. 556 for (const auto &LHSVal : LHSVals) { 557 Constant *V = LHSVal.first; 558 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 559 560 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 561 Result.push_back(std::make_pair(KC, LHSVal.second)); 562 } 563 } 564 565 return !Result.empty(); 566 } 567 568 // Handle compare with phi operand, where the PHI is defined in this block. 569 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 570 assert(Preference == WantInteger && "Compares only produce integers"); 571 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 572 if (PN && PN->getParent() == BB) { 573 const DataLayout &DL = PN->getModule()->getDataLayout(); 574 // We can do this simplification if any comparisons fold to true or false. 575 // See if any do. 576 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 577 BasicBlock *PredBB = PN->getIncomingBlock(i); 578 Value *LHS = PN->getIncomingValue(i); 579 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 580 581 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL); 582 if (!Res) { 583 if (!isa<Constant>(RHS)) 584 continue; 585 586 LazyValueInfo::Tristate 587 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 588 cast<Constant>(RHS), PredBB, BB, 589 CxtI ? CxtI : Cmp); 590 if (ResT == LazyValueInfo::Unknown) 591 continue; 592 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 593 } 594 595 if (Constant *KC = getKnownConstant(Res, WantInteger)) 596 Result.push_back(std::make_pair(KC, PredBB)); 597 } 598 599 return !Result.empty(); 600 } 601 602 // If comparing a live-in value against a constant, see if we know the 603 // live-in value on any predecessors. 604 if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) { 605 if (!isa<Instruction>(Cmp->getOperand(0)) || 606 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) { 607 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 608 609 for (BasicBlock *P : predecessors(BB)) { 610 // If the value is known by LazyValueInfo to be a constant in a 611 // predecessor, use that information to try to thread this block. 612 LazyValueInfo::Tristate Res = 613 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 614 RHSCst, P, BB, CxtI ? CxtI : Cmp); 615 if (Res == LazyValueInfo::Unknown) 616 continue; 617 618 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 619 Result.push_back(std::make_pair(ResC, P)); 620 } 621 622 return !Result.empty(); 623 } 624 625 // Try to find a constant value for the LHS of a comparison, 626 // and evaluate it statically if we can. 627 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) { 628 PredValueInfoTy LHSVals; 629 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 630 WantInteger, CxtI); 631 632 for (const auto &LHSVal : LHSVals) { 633 Constant *V = LHSVal.first; 634 Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(), 635 V, CmpConst); 636 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 637 Result.push_back(std::make_pair(KC, LHSVal.second)); 638 } 639 640 return !Result.empty(); 641 } 642 } 643 } 644 645 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 646 // Handle select instructions where at least one operand is a known constant 647 // and we can figure out the condition value for any predecessor block. 648 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 649 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 650 PredValueInfoTy Conds; 651 if ((TrueVal || FalseVal) && 652 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 653 WantInteger, CxtI)) { 654 for (auto &C : Conds) { 655 Constant *Cond = C.first; 656 657 // Figure out what value to use for the condition. 658 bool KnownCond; 659 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 660 // A known boolean. 661 KnownCond = CI->isOne(); 662 } else { 663 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 664 // Either operand will do, so be sure to pick the one that's a known 665 // constant. 666 // FIXME: Do this more cleverly if both values are known constants? 667 KnownCond = (TrueVal != nullptr); 668 } 669 670 // See if the select has a known constant value for this predecessor. 671 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 672 Result.push_back(std::make_pair(Val, C.second)); 673 } 674 675 return !Result.empty(); 676 } 677 } 678 679 // If all else fails, see if LVI can figure out a constant value for us. 680 Constant *CI = LVI->getConstant(V, BB, CxtI); 681 if (Constant *KC = getKnownConstant(CI, Preference)) { 682 for (BasicBlock *Pred : predecessors(BB)) 683 Result.push_back(std::make_pair(KC, Pred)); 684 } 685 686 return !Result.empty(); 687 } 688 689 690 691 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 692 /// in an undefined jump, decide which block is best to revector to. 693 /// 694 /// Since we can pick an arbitrary destination, we pick the successor with the 695 /// fewest predecessors. This should reduce the in-degree of the others. 696 /// 697 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 698 TerminatorInst *BBTerm = BB->getTerminator(); 699 unsigned MinSucc = 0; 700 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 701 // Compute the successor with the minimum number of predecessors. 702 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 703 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 704 TestBB = BBTerm->getSuccessor(i); 705 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 706 if (NumPreds < MinNumPreds) { 707 MinSucc = i; 708 MinNumPreds = NumPreds; 709 } 710 } 711 712 return MinSucc; 713 } 714 715 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 716 if (!BB->hasAddressTaken()) return false; 717 718 // If the block has its address taken, it may be a tree of dead constants 719 // hanging off of it. These shouldn't keep the block alive. 720 BlockAddress *BA = BlockAddress::get(BB); 721 BA->removeDeadConstantUsers(); 722 return !BA->use_empty(); 723 } 724 725 /// ProcessBlock - If there are any predecessors whose control can be threaded 726 /// through to a successor, transform them now. 727 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 728 // If the block is trivially dead, just return and let the caller nuke it. 729 // This simplifies other transformations. 730 if (pred_empty(BB) && 731 BB != &BB->getParent()->getEntryBlock()) 732 return false; 733 734 // If this block has a single predecessor, and if that pred has a single 735 // successor, merge the blocks. This encourages recursive jump threading 736 // because now the condition in this block can be threaded through 737 // predecessors of our predecessor block. 738 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 739 const TerminatorInst *TI = SinglePred->getTerminator(); 740 if (!TI->isExceptional() && TI->getNumSuccessors() == 1 && 741 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 742 // If SinglePred was a loop header, BB becomes one. 743 if (LoopHeaders.erase(SinglePred)) 744 LoopHeaders.insert(BB); 745 746 LVI->eraseBlock(SinglePred); 747 MergeBasicBlockIntoOnlyPred(BB); 748 749 return true; 750 } 751 } 752 753 if (TryToUnfoldSelectInCurrBB(BB)) 754 return true; 755 756 // What kind of constant we're looking for. 757 ConstantPreference Preference = WantInteger; 758 759 // Look to see if the terminator is a conditional branch, switch or indirect 760 // branch, if not we can't thread it. 761 Value *Condition; 762 Instruction *Terminator = BB->getTerminator(); 763 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 764 // Can't thread an unconditional jump. 765 if (BI->isUnconditional()) return false; 766 Condition = BI->getCondition(); 767 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 768 Condition = SI->getCondition(); 769 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 770 // Can't thread indirect branch with no successors. 771 if (IB->getNumSuccessors() == 0) return false; 772 Condition = IB->getAddress()->stripPointerCasts(); 773 Preference = WantBlockAddress; 774 } else { 775 return false; // Must be an invoke. 776 } 777 778 // Run constant folding to see if we can reduce the condition to a simple 779 // constant. 780 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 781 Value *SimpleVal = 782 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 783 if (SimpleVal) { 784 I->replaceAllUsesWith(SimpleVal); 785 I->eraseFromParent(); 786 Condition = SimpleVal; 787 } 788 } 789 790 // If the terminator is branching on an undef, we can pick any of the 791 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 792 if (isa<UndefValue>(Condition)) { 793 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 794 795 // Fold the branch/switch. 796 TerminatorInst *BBTerm = BB->getTerminator(); 797 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 798 if (i == BestSucc) continue; 799 BBTerm->getSuccessor(i)->removePredecessor(BB, true); 800 } 801 802 DEBUG(dbgs() << " In block '" << BB->getName() 803 << "' folding undef terminator: " << *BBTerm << '\n'); 804 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 805 BBTerm->eraseFromParent(); 806 return true; 807 } 808 809 // If the terminator of this block is branching on a constant, simplify the 810 // terminator to an unconditional branch. This can occur due to threading in 811 // other blocks. 812 if (getKnownConstant(Condition, Preference)) { 813 DEBUG(dbgs() << " In block '" << BB->getName() 814 << "' folding terminator: " << *BB->getTerminator() << '\n'); 815 ++NumFolds; 816 ConstantFoldTerminator(BB, true); 817 return true; 818 } 819 820 Instruction *CondInst = dyn_cast<Instruction>(Condition); 821 822 // All the rest of our checks depend on the condition being an instruction. 823 if (!CondInst) { 824 // FIXME: Unify this with code below. 825 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 826 return true; 827 return false; 828 } 829 830 831 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 832 // If we're branching on a conditional, LVI might be able to determine 833 // it's value at the branch instruction. We only handle comparisons 834 // against a constant at this time. 835 // TODO: This should be extended to handle switches as well. 836 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 837 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 838 if (CondBr && CondConst && CondBr->isConditional()) { 839 LazyValueInfo::Tristate Ret = 840 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 841 CondConst, CondBr); 842 if (Ret != LazyValueInfo::Unknown) { 843 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 844 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 845 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 846 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 847 CondBr->eraseFromParent(); 848 if (CondCmp->use_empty()) 849 CondCmp->eraseFromParent(); 850 else if (CondCmp->getParent() == BB) { 851 // If the fact we just learned is true for all uses of the 852 // condition, replace it with a constant value 853 auto *CI = Ret == LazyValueInfo::True ? 854 ConstantInt::getTrue(CondCmp->getType()) : 855 ConstantInt::getFalse(CondCmp->getType()); 856 CondCmp->replaceAllUsesWith(CI); 857 CondCmp->eraseFromParent(); 858 } 859 return true; 860 } 861 } 862 863 if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB)) 864 return true; 865 } 866 867 // Check for some cases that are worth simplifying. Right now we want to look 868 // for loads that are used by a switch or by the condition for the branch. If 869 // we see one, check to see if it's partially redundant. If so, insert a PHI 870 // which can then be used to thread the values. 871 // 872 Value *SimplifyValue = CondInst; 873 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 874 if (isa<Constant>(CondCmp->getOperand(1))) 875 SimplifyValue = CondCmp->getOperand(0); 876 877 // TODO: There are other places where load PRE would be profitable, such as 878 // more complex comparisons. 879 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 880 if (SimplifyPartiallyRedundantLoad(LI)) 881 return true; 882 883 884 // Handle a variety of cases where we are branching on something derived from 885 // a PHI node in the current block. If we can prove that any predecessors 886 // compute a predictable value based on a PHI node, thread those predecessors. 887 // 888 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 889 return true; 890 891 // If this is an otherwise-unfoldable branch on a phi node in the current 892 // block, see if we can simplify. 893 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 894 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 895 return ProcessBranchOnPHI(PN); 896 897 898 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 899 if (CondInst->getOpcode() == Instruction::Xor && 900 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 901 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 902 903 // Search for a stronger dominating condition that can be used to simplify a 904 // conditional branch leaving BB. 905 if (ProcessImpliedCondition(BB)) 906 return true; 907 908 return false; 909 } 910 911 bool JumpThreading::ProcessImpliedCondition(BasicBlock *BB) { 912 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 913 if (!BI || !BI->isConditional()) 914 return false; 915 916 Value *Cond = BI->getCondition(); 917 BasicBlock *CurrentBB = BB; 918 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 919 unsigned Iter = 0; 920 921 auto &DL = BB->getModule()->getDataLayout(); 922 923 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 924 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 925 if (!PBI || !PBI->isConditional() || PBI->getSuccessor(0) != CurrentBB) 926 return false; 927 928 if (isImpliedCondition(PBI->getCondition(), Cond, DL)) { 929 BI->getSuccessor(1)->removePredecessor(BB); 930 BranchInst::Create(BI->getSuccessor(0), BI); 931 BI->eraseFromParent(); 932 return true; 933 } 934 CurrentBB = CurrentPred; 935 CurrentPred = CurrentBB->getSinglePredecessor(); 936 } 937 938 return false; 939 } 940 941 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 942 /// load instruction, eliminate it by replacing it with a PHI node. This is an 943 /// important optimization that encourages jump threading, and needs to be run 944 /// interlaced with other jump threading tasks. 945 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 946 // Don't hack volatile/atomic loads. 947 if (!LI->isSimple()) return false; 948 949 // If the load is defined in a block with exactly one predecessor, it can't be 950 // partially redundant. 951 BasicBlock *LoadBB = LI->getParent(); 952 if (LoadBB->getSinglePredecessor()) 953 return false; 954 955 // If the load is defined in an EH pad, it can't be partially redundant, 956 // because the edges between the invoke and the EH pad cannot have other 957 // instructions between them. 958 if (LoadBB->isEHPad()) 959 return false; 960 961 Value *LoadedPtr = LI->getOperand(0); 962 963 // If the loaded operand is defined in the LoadBB, it can't be available. 964 // TODO: Could do simple PHI translation, that would be fun :) 965 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 966 if (PtrOp->getParent() == LoadBB) 967 return false; 968 969 // Scan a few instructions up from the load, to see if it is obviously live at 970 // the entry to its block. 971 BasicBlock::iterator BBIt(LI); 972 973 if (Value *AvailableVal = 974 FindAvailableLoadedValue(LI, LoadBB, BBIt, DefMaxInstsToScan)) { 975 // If the value of the load is locally available within the block, just use 976 // it. This frequently occurs for reg2mem'd allocas. 977 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 978 979 // If the returned value is the load itself, replace with an undef. This can 980 // only happen in dead loops. 981 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 982 if (AvailableVal->getType() != LI->getType()) 983 AvailableVal = 984 CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI); 985 LI->replaceAllUsesWith(AvailableVal); 986 LI->eraseFromParent(); 987 return true; 988 } 989 990 // Otherwise, if we scanned the whole block and got to the top of the block, 991 // we know the block is locally transparent to the load. If not, something 992 // might clobber its value. 993 if (BBIt != LoadBB->begin()) 994 return false; 995 996 // If all of the loads and stores that feed the value have the same AA tags, 997 // then we can propagate them onto any newly inserted loads. 998 AAMDNodes AATags; 999 LI->getAAMetadata(AATags); 1000 1001 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1002 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 1003 AvailablePredsTy AvailablePreds; 1004 BasicBlock *OneUnavailablePred = nullptr; 1005 1006 // If we got here, the loaded value is transparent through to the start of the 1007 // block. Check to see if it is available in any of the predecessor blocks. 1008 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1009 // If we already scanned this predecessor, skip it. 1010 if (!PredsScanned.insert(PredBB).second) 1011 continue; 1012 1013 // Scan the predecessor to see if the value is available in the pred. 1014 BBIt = PredBB->end(); 1015 AAMDNodes ThisAATags; 1016 Value *PredAvailable = FindAvailableLoadedValue(LI, PredBB, BBIt, 1017 DefMaxInstsToScan, 1018 nullptr, &ThisAATags); 1019 if (!PredAvailable) { 1020 OneUnavailablePred = PredBB; 1021 continue; 1022 } 1023 1024 // If AA tags disagree or are not present, forget about them. 1025 if (AATags != ThisAATags) AATags = AAMDNodes(); 1026 1027 // If so, this load is partially redundant. Remember this info so that we 1028 // can create a PHI node. 1029 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 1030 } 1031 1032 // If the loaded value isn't available in any predecessor, it isn't partially 1033 // redundant. 1034 if (AvailablePreds.empty()) return false; 1035 1036 // Okay, the loaded value is available in at least one (and maybe all!) 1037 // predecessors. If the value is unavailable in more than one unique 1038 // predecessor, we want to insert a merge block for those common predecessors. 1039 // This ensures that we only have to insert one reload, thus not increasing 1040 // code size. 1041 BasicBlock *UnavailablePred = nullptr; 1042 1043 // If there is exactly one predecessor where the value is unavailable, the 1044 // already computed 'OneUnavailablePred' block is it. If it ends in an 1045 // unconditional branch, we know that it isn't a critical edge. 1046 if (PredsScanned.size() == AvailablePreds.size()+1 && 1047 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1048 UnavailablePred = OneUnavailablePred; 1049 } else if (PredsScanned.size() != AvailablePreds.size()) { 1050 // Otherwise, we had multiple unavailable predecessors or we had a critical 1051 // edge from the one. 1052 SmallVector<BasicBlock*, 8> PredsToSplit; 1053 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1054 1055 for (const auto &AvailablePred : AvailablePreds) 1056 AvailablePredSet.insert(AvailablePred.first); 1057 1058 // Add all the unavailable predecessors to the PredsToSplit list. 1059 for (BasicBlock *P : predecessors(LoadBB)) { 1060 // If the predecessor is an indirect goto, we can't split the edge. 1061 if (isa<IndirectBrInst>(P->getTerminator())) 1062 return false; 1063 1064 if (!AvailablePredSet.count(P)) 1065 PredsToSplit.push_back(P); 1066 } 1067 1068 // Split them out to their own block. 1069 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1070 } 1071 1072 // If the value isn't available in all predecessors, then there will be 1073 // exactly one where it isn't available. Insert a load on that edge and add 1074 // it to the AvailablePreds list. 1075 if (UnavailablePred) { 1076 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1077 "Can't handle critical edge here!"); 1078 LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, 1079 LI->getAlignment(), 1080 UnavailablePred->getTerminator()); 1081 NewVal->setDebugLoc(LI->getDebugLoc()); 1082 if (AATags) 1083 NewVal->setAAMetadata(AATags); 1084 1085 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1086 } 1087 1088 // Now we know that each predecessor of this block has a value in 1089 // AvailablePreds, sort them for efficient access as we're walking the preds. 1090 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1091 1092 // Create a PHI node at the start of the block for the PRE'd load value. 1093 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1094 PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "", 1095 &LoadBB->front()); 1096 PN->takeName(LI); 1097 PN->setDebugLoc(LI->getDebugLoc()); 1098 1099 // Insert new entries into the PHI for each predecessor. A single block may 1100 // have multiple entries here. 1101 for (pred_iterator PI = PB; PI != PE; ++PI) { 1102 BasicBlock *P = *PI; 1103 AvailablePredsTy::iterator I = 1104 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1105 std::make_pair(P, (Value*)nullptr)); 1106 1107 assert(I != AvailablePreds.end() && I->first == P && 1108 "Didn't find entry for predecessor!"); 1109 1110 // If we have an available predecessor but it requires casting, insert the 1111 // cast in the predecessor and use the cast. Note that we have to update the 1112 // AvailablePreds vector as we go so that all of the PHI entries for this 1113 // predecessor use the same bitcast. 1114 Value *&PredV = I->second; 1115 if (PredV->getType() != LI->getType()) 1116 PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "", 1117 P->getTerminator()); 1118 1119 PN->addIncoming(PredV, I->first); 1120 } 1121 1122 //cerr << "PRE: " << *LI << *PN << "\n"; 1123 1124 LI->replaceAllUsesWith(PN); 1125 LI->eraseFromParent(); 1126 1127 return true; 1128 } 1129 1130 /// FindMostPopularDest - The specified list contains multiple possible 1131 /// threadable destinations. Pick the one that occurs the most frequently in 1132 /// the list. 1133 static BasicBlock * 1134 FindMostPopularDest(BasicBlock *BB, 1135 const SmallVectorImpl<std::pair<BasicBlock*, 1136 BasicBlock*> > &PredToDestList) { 1137 assert(!PredToDestList.empty()); 1138 1139 // Determine popularity. If there are multiple possible destinations, we 1140 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1141 // blocks with known and real destinations to threading undef. We'll handle 1142 // them later if interesting. 1143 DenseMap<BasicBlock*, unsigned> DestPopularity; 1144 for (const auto &PredToDest : PredToDestList) 1145 if (PredToDest.second) 1146 DestPopularity[PredToDest.second]++; 1147 1148 // Find the most popular dest. 1149 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1150 BasicBlock *MostPopularDest = DPI->first; 1151 unsigned Popularity = DPI->second; 1152 SmallVector<BasicBlock*, 4> SamePopularity; 1153 1154 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1155 // If the popularity of this entry isn't higher than the popularity we've 1156 // seen so far, ignore it. 1157 if (DPI->second < Popularity) 1158 ; // ignore. 1159 else if (DPI->second == Popularity) { 1160 // If it is the same as what we've seen so far, keep track of it. 1161 SamePopularity.push_back(DPI->first); 1162 } else { 1163 // If it is more popular, remember it. 1164 SamePopularity.clear(); 1165 MostPopularDest = DPI->first; 1166 Popularity = DPI->second; 1167 } 1168 } 1169 1170 // Okay, now we know the most popular destination. If there is more than one 1171 // destination, we need to determine one. This is arbitrary, but we need 1172 // to make a deterministic decision. Pick the first one that appears in the 1173 // successor list. 1174 if (!SamePopularity.empty()) { 1175 SamePopularity.push_back(MostPopularDest); 1176 TerminatorInst *TI = BB->getTerminator(); 1177 for (unsigned i = 0; ; ++i) { 1178 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1179 1180 if (std::find(SamePopularity.begin(), SamePopularity.end(), 1181 TI->getSuccessor(i)) == SamePopularity.end()) 1182 continue; 1183 1184 MostPopularDest = TI->getSuccessor(i); 1185 break; 1186 } 1187 } 1188 1189 // Okay, we have finally picked the most popular destination. 1190 return MostPopularDest; 1191 } 1192 1193 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1194 ConstantPreference Preference, 1195 Instruction *CxtI) { 1196 // If threading this would thread across a loop header, don't even try to 1197 // thread the edge. 1198 if (LoopHeaders.count(BB)) 1199 return false; 1200 1201 PredValueInfoTy PredValues; 1202 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1203 return false; 1204 1205 assert(!PredValues.empty() && 1206 "ComputeValueKnownInPredecessors returned true with no values"); 1207 1208 DEBUG(dbgs() << "IN BB: " << *BB; 1209 for (const auto &PredValue : PredValues) { 1210 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1211 << *PredValue.first 1212 << " for pred '" << PredValue.second->getName() << "'.\n"; 1213 }); 1214 1215 // Decide what we want to thread through. Convert our list of known values to 1216 // a list of known destinations for each pred. This also discards duplicate 1217 // predecessors and keeps track of the undefined inputs (which are represented 1218 // as a null dest in the PredToDestList). 1219 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1220 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1221 1222 BasicBlock *OnlyDest = nullptr; 1223 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1224 1225 for (const auto &PredValue : PredValues) { 1226 BasicBlock *Pred = PredValue.second; 1227 if (!SeenPreds.insert(Pred).second) 1228 continue; // Duplicate predecessor entry. 1229 1230 // If the predecessor ends with an indirect goto, we can't change its 1231 // destination. 1232 if (isa<IndirectBrInst>(Pred->getTerminator())) 1233 continue; 1234 1235 Constant *Val = PredValue.first; 1236 1237 BasicBlock *DestBB; 1238 if (isa<UndefValue>(Val)) 1239 DestBB = nullptr; 1240 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1241 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1242 else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1243 DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor(); 1244 } else { 1245 assert(isa<IndirectBrInst>(BB->getTerminator()) 1246 && "Unexpected terminator"); 1247 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1248 } 1249 1250 // If we have exactly one destination, remember it for efficiency below. 1251 if (PredToDestList.empty()) 1252 OnlyDest = DestBB; 1253 else if (OnlyDest != DestBB) 1254 OnlyDest = MultipleDestSentinel; 1255 1256 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1257 } 1258 1259 // If all edges were unthreadable, we fail. 1260 if (PredToDestList.empty()) 1261 return false; 1262 1263 // Determine which is the most common successor. If we have many inputs and 1264 // this block is a switch, we want to start by threading the batch that goes 1265 // to the most popular destination first. If we only know about one 1266 // threadable destination (the common case) we can avoid this. 1267 BasicBlock *MostPopularDest = OnlyDest; 1268 1269 if (MostPopularDest == MultipleDestSentinel) 1270 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1271 1272 // Now that we know what the most popular destination is, factor all 1273 // predecessors that will jump to it into a single predecessor. 1274 SmallVector<BasicBlock*, 16> PredsToFactor; 1275 for (const auto &PredToDest : PredToDestList) 1276 if (PredToDest.second == MostPopularDest) { 1277 BasicBlock *Pred = PredToDest.first; 1278 1279 // This predecessor may be a switch or something else that has multiple 1280 // edges to the block. Factor each of these edges by listing them 1281 // according to # occurrences in PredsToFactor. 1282 for (BasicBlock *Succ : successors(Pred)) 1283 if (Succ == BB) 1284 PredsToFactor.push_back(Pred); 1285 } 1286 1287 // If the threadable edges are branching on an undefined value, we get to pick 1288 // the destination that these predecessors should get to. 1289 if (!MostPopularDest) 1290 MostPopularDest = BB->getTerminator()-> 1291 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1292 1293 // Ok, try to thread it! 1294 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1295 } 1296 1297 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1298 /// a PHI node in the current block. See if there are any simplifications we 1299 /// can do based on inputs to the phi node. 1300 /// 1301 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) { 1302 BasicBlock *BB = PN->getParent(); 1303 1304 // TODO: We could make use of this to do it once for blocks with common PHI 1305 // values. 1306 SmallVector<BasicBlock*, 1> PredBBs; 1307 PredBBs.resize(1); 1308 1309 // If any of the predecessor blocks end in an unconditional branch, we can 1310 // *duplicate* the conditional branch into that block in order to further 1311 // encourage jump threading and to eliminate cases where we have branch on a 1312 // phi of an icmp (branch on icmp is much better). 1313 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1314 BasicBlock *PredBB = PN->getIncomingBlock(i); 1315 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1316 if (PredBr->isUnconditional()) { 1317 PredBBs[0] = PredBB; 1318 // Try to duplicate BB into PredBB. 1319 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1320 return true; 1321 } 1322 } 1323 1324 return false; 1325 } 1326 1327 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1328 /// a xor instruction in the current block. See if there are any 1329 /// simplifications we can do based on inputs to the xor. 1330 /// 1331 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) { 1332 BasicBlock *BB = BO->getParent(); 1333 1334 // If either the LHS or RHS of the xor is a constant, don't do this 1335 // optimization. 1336 if (isa<ConstantInt>(BO->getOperand(0)) || 1337 isa<ConstantInt>(BO->getOperand(1))) 1338 return false; 1339 1340 // If the first instruction in BB isn't a phi, we won't be able to infer 1341 // anything special about any particular predecessor. 1342 if (!isa<PHINode>(BB->front())) 1343 return false; 1344 1345 // If we have a xor as the branch input to this block, and we know that the 1346 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1347 // the condition into the predecessor and fix that value to true, saving some 1348 // logical ops on that path and encouraging other paths to simplify. 1349 // 1350 // This copies something like this: 1351 // 1352 // BB: 1353 // %X = phi i1 [1], [%X'] 1354 // %Y = icmp eq i32 %A, %B 1355 // %Z = xor i1 %X, %Y 1356 // br i1 %Z, ... 1357 // 1358 // Into: 1359 // BB': 1360 // %Y = icmp ne i32 %A, %B 1361 // br i1 %Y, ... 1362 1363 PredValueInfoTy XorOpValues; 1364 bool isLHS = true; 1365 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1366 WantInteger, BO)) { 1367 assert(XorOpValues.empty()); 1368 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1369 WantInteger, BO)) 1370 return false; 1371 isLHS = false; 1372 } 1373 1374 assert(!XorOpValues.empty() && 1375 "ComputeValueKnownInPredecessors returned true with no values"); 1376 1377 // Scan the information to see which is most popular: true or false. The 1378 // predecessors can be of the set true, false, or undef. 1379 unsigned NumTrue = 0, NumFalse = 0; 1380 for (const auto &XorOpValue : XorOpValues) { 1381 if (isa<UndefValue>(XorOpValue.first)) 1382 // Ignore undefs for the count. 1383 continue; 1384 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1385 ++NumFalse; 1386 else 1387 ++NumTrue; 1388 } 1389 1390 // Determine which value to split on, true, false, or undef if neither. 1391 ConstantInt *SplitVal = nullptr; 1392 if (NumTrue > NumFalse) 1393 SplitVal = ConstantInt::getTrue(BB->getContext()); 1394 else if (NumTrue != 0 || NumFalse != 0) 1395 SplitVal = ConstantInt::getFalse(BB->getContext()); 1396 1397 // Collect all of the blocks that this can be folded into so that we can 1398 // factor this once and clone it once. 1399 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1400 for (const auto &XorOpValue : XorOpValues) { 1401 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1402 continue; 1403 1404 BlocksToFoldInto.push_back(XorOpValue.second); 1405 } 1406 1407 // If we inferred a value for all of the predecessors, then duplication won't 1408 // help us. However, we can just replace the LHS or RHS with the constant. 1409 if (BlocksToFoldInto.size() == 1410 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1411 if (!SplitVal) { 1412 // If all preds provide undef, just nuke the xor, because it is undef too. 1413 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1414 BO->eraseFromParent(); 1415 } else if (SplitVal->isZero()) { 1416 // If all preds provide 0, replace the xor with the other input. 1417 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1418 BO->eraseFromParent(); 1419 } else { 1420 // If all preds provide 1, set the computed value to 1. 1421 BO->setOperand(!isLHS, SplitVal); 1422 } 1423 1424 return true; 1425 } 1426 1427 // Try to duplicate BB into PredBB. 1428 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1429 } 1430 1431 1432 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1433 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1434 /// NewPred using the entries from OldPred (suitably mapped). 1435 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1436 BasicBlock *OldPred, 1437 BasicBlock *NewPred, 1438 DenseMap<Instruction*, Value*> &ValueMap) { 1439 for (BasicBlock::iterator PNI = PHIBB->begin(); 1440 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1441 // Ok, we have a PHI node. Figure out what the incoming value was for the 1442 // DestBlock. 1443 Value *IV = PN->getIncomingValueForBlock(OldPred); 1444 1445 // Remap the value if necessary. 1446 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1447 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1448 if (I != ValueMap.end()) 1449 IV = I->second; 1450 } 1451 1452 PN->addIncoming(IV, NewPred); 1453 } 1454 } 1455 1456 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1457 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1458 /// across BB. Transform the IR to reflect this change. 1459 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1460 const SmallVectorImpl<BasicBlock*> &PredBBs, 1461 BasicBlock *SuccBB) { 1462 // If threading to the same block as we come from, we would infinite loop. 1463 if (SuccBB == BB) { 1464 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1465 << "' - would thread to self!\n"); 1466 return false; 1467 } 1468 1469 // If threading this would thread across a loop header, don't thread the edge. 1470 // See the comments above FindLoopHeaders for justifications and caveats. 1471 if (LoopHeaders.count(BB)) { 1472 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1473 << "' to dest BB '" << SuccBB->getName() 1474 << "' - it might create an irreducible loop!\n"); 1475 return false; 1476 } 1477 1478 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, BBDupThreshold); 1479 if (JumpThreadCost > BBDupThreshold) { 1480 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1481 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1482 return false; 1483 } 1484 1485 // And finally, do it! Start by factoring the predecessors if needed. 1486 BasicBlock *PredBB; 1487 if (PredBBs.size() == 1) 1488 PredBB = PredBBs[0]; 1489 else { 1490 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1491 << " common predecessors.\n"); 1492 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1493 } 1494 1495 // And finally, do it! 1496 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1497 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1498 << ", across block:\n " 1499 << *BB << "\n"); 1500 1501 LVI->threadEdge(PredBB, BB, SuccBB); 1502 1503 // We are going to have to map operands from the original BB block to the new 1504 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1505 // account for entry from PredBB. 1506 DenseMap<Instruction*, Value*> ValueMapping; 1507 1508 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1509 BB->getName()+".thread", 1510 BB->getParent(), BB); 1511 NewBB->moveAfter(PredBB); 1512 1513 // Set the block frequency of NewBB. 1514 if (HasProfileData) { 1515 auto NewBBFreq = 1516 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 1517 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 1518 } 1519 1520 BasicBlock::iterator BI = BB->begin(); 1521 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1522 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1523 1524 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1525 // mapping and using it to remap operands in the cloned instructions. 1526 for (; !isa<TerminatorInst>(BI); ++BI) { 1527 Instruction *New = BI->clone(); 1528 New->setName(BI->getName()); 1529 NewBB->getInstList().push_back(New); 1530 ValueMapping[&*BI] = New; 1531 1532 // Remap operands to patch up intra-block references. 1533 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1534 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1535 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1536 if (I != ValueMapping.end()) 1537 New->setOperand(i, I->second); 1538 } 1539 } 1540 1541 // We didn't copy the terminator from BB over to NewBB, because there is now 1542 // an unconditional jump to SuccBB. Insert the unconditional jump. 1543 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 1544 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1545 1546 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1547 // PHI nodes for NewBB now. 1548 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1549 1550 // If there were values defined in BB that are used outside the block, then we 1551 // now have to update all uses of the value to use either the original value, 1552 // the cloned value, or some PHI derived value. This can require arbitrary 1553 // PHI insertion, of which we are prepared to do, clean these up now. 1554 SSAUpdater SSAUpdate; 1555 SmallVector<Use*, 16> UsesToRename; 1556 for (Instruction &I : *BB) { 1557 // Scan all uses of this instruction to see if it is used outside of its 1558 // block, and if so, record them in UsesToRename. 1559 for (Use &U : I.uses()) { 1560 Instruction *User = cast<Instruction>(U.getUser()); 1561 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1562 if (UserPN->getIncomingBlock(U) == BB) 1563 continue; 1564 } else if (User->getParent() == BB) 1565 continue; 1566 1567 UsesToRename.push_back(&U); 1568 } 1569 1570 // If there are no uses outside the block, we're done with this instruction. 1571 if (UsesToRename.empty()) 1572 continue; 1573 1574 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 1575 1576 // We found a use of I outside of BB. Rename all uses of I that are outside 1577 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1578 // with the two values we know. 1579 SSAUpdate.Initialize(I.getType(), I.getName()); 1580 SSAUpdate.AddAvailableValue(BB, &I); 1581 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 1582 1583 while (!UsesToRename.empty()) 1584 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1585 DEBUG(dbgs() << "\n"); 1586 } 1587 1588 1589 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1590 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1591 // us to simplify any PHI nodes in BB. 1592 TerminatorInst *PredTerm = PredBB->getTerminator(); 1593 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1594 if (PredTerm->getSuccessor(i) == BB) { 1595 BB->removePredecessor(PredBB, true); 1596 PredTerm->setSuccessor(i, NewBB); 1597 } 1598 1599 // At this point, the IR is fully up to date and consistent. Do a quick scan 1600 // over the new instructions and zap any that are constants or dead. This 1601 // frequently happens because of phi translation. 1602 SimplifyInstructionsInBlock(NewBB, TLI); 1603 1604 // Update the edge weight from BB to SuccBB, which should be less than before. 1605 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 1606 1607 // Threaded an edge! 1608 ++NumThreads; 1609 return true; 1610 } 1611 1612 /// Create a new basic block that will be the predecessor of BB and successor of 1613 /// all blocks in Preds. When profile data is availble, update the frequency of 1614 /// this new block. 1615 BasicBlock *JumpThreading::SplitBlockPreds(BasicBlock *BB, 1616 ArrayRef<BasicBlock *> Preds, 1617 const char *Suffix) { 1618 // Collect the frequencies of all predecessors of BB, which will be used to 1619 // update the edge weight on BB->SuccBB. 1620 BlockFrequency PredBBFreq(0); 1621 if (HasProfileData) 1622 for (auto Pred : Preds) 1623 PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB); 1624 1625 BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix); 1626 1627 // Set the block frequency of the newly created PredBB, which is the sum of 1628 // frequencies of Preds. 1629 if (HasProfileData) 1630 BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency()); 1631 return PredBB; 1632 } 1633 1634 /// Update the block frequency of BB and branch weight and the metadata on the 1635 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 1636 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 1637 void JumpThreading::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 1638 BasicBlock *BB, 1639 BasicBlock *NewBB, 1640 BasicBlock *SuccBB) { 1641 if (!HasProfileData) 1642 return; 1643 1644 assert(BFI && BPI && "BFI & BPI should have been created here"); 1645 1646 // As the edge from PredBB to BB is deleted, we have to update the block 1647 // frequency of BB. 1648 auto BBOrigFreq = BFI->getBlockFreq(BB); 1649 auto NewBBFreq = BFI->getBlockFreq(NewBB); 1650 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 1651 auto BBNewFreq = BBOrigFreq - NewBBFreq; 1652 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 1653 1654 // Collect updated outgoing edges' frequencies from BB and use them to update 1655 // edge probabilities. 1656 SmallVector<uint64_t, 4> BBSuccFreq; 1657 for (BasicBlock *Succ : successors(BB)) { 1658 auto SuccFreq = (Succ == SuccBB) 1659 ? BB2SuccBBFreq - NewBBFreq 1660 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 1661 BBSuccFreq.push_back(SuccFreq.getFrequency()); 1662 } 1663 1664 uint64_t MaxBBSuccFreq = 1665 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 1666 1667 SmallVector<BranchProbability, 4> BBSuccProbs; 1668 if (MaxBBSuccFreq == 0) 1669 BBSuccProbs.assign(BBSuccFreq.size(), 1670 {1, static_cast<unsigned>(BBSuccFreq.size())}); 1671 else { 1672 for (uint64_t Freq : BBSuccFreq) 1673 BBSuccProbs.push_back( 1674 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 1675 // Normalize edge probabilities so that they sum up to one. 1676 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 1677 BBSuccProbs.end()); 1678 } 1679 1680 // Update edge probabilities in BPI. 1681 for (int I = 0, E = BBSuccProbs.size(); I < E; I++) 1682 BPI->setEdgeProbability(BB, I, BBSuccProbs[I]); 1683 1684 if (BBSuccProbs.size() >= 2) { 1685 SmallVector<uint32_t, 4> Weights; 1686 for (auto Prob : BBSuccProbs) 1687 Weights.push_back(Prob.getNumerator()); 1688 1689 auto TI = BB->getTerminator(); 1690 TI->setMetadata( 1691 LLVMContext::MD_prof, 1692 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 1693 } 1694 } 1695 1696 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1697 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1698 /// If we can duplicate the contents of BB up into PredBB do so now, this 1699 /// improves the odds that the branch will be on an analyzable instruction like 1700 /// a compare. 1701 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1702 const SmallVectorImpl<BasicBlock *> &PredBBs) { 1703 assert(!PredBBs.empty() && "Can't handle an empty set"); 1704 1705 // If BB is a loop header, then duplicating this block outside the loop would 1706 // cause us to transform this into an irreducible loop, don't do this. 1707 // See the comments above FindLoopHeaders for justifications and caveats. 1708 if (LoopHeaders.count(BB)) { 1709 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1710 << "' into predecessor block '" << PredBBs[0]->getName() 1711 << "' - it might create an irreducible loop!\n"); 1712 return false; 1713 } 1714 1715 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, BBDupThreshold); 1716 if (DuplicationCost > BBDupThreshold) { 1717 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1718 << "' - Cost is too high: " << DuplicationCost << "\n"); 1719 return false; 1720 } 1721 1722 // And finally, do it! Start by factoring the predecessors if needed. 1723 BasicBlock *PredBB; 1724 if (PredBBs.size() == 1) 1725 PredBB = PredBBs[0]; 1726 else { 1727 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1728 << " common predecessors.\n"); 1729 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1730 } 1731 1732 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1733 // of PredBB. 1734 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1735 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1736 << DuplicationCost << " block is:" << *BB << "\n"); 1737 1738 // Unless PredBB ends with an unconditional branch, split the edge so that we 1739 // can just clone the bits from BB into the end of the new PredBB. 1740 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 1741 1742 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 1743 PredBB = SplitEdge(PredBB, BB); 1744 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1745 } 1746 1747 // We are going to have to map operands from the original BB block into the 1748 // PredBB block. Evaluate PHI nodes in BB. 1749 DenseMap<Instruction*, Value*> ValueMapping; 1750 1751 BasicBlock::iterator BI = BB->begin(); 1752 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1753 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1754 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1755 // mapping and using it to remap operands in the cloned instructions. 1756 for (; BI != BB->end(); ++BI) { 1757 Instruction *New = BI->clone(); 1758 1759 // Remap operands to patch up intra-block references. 1760 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1761 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1762 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1763 if (I != ValueMapping.end()) 1764 New->setOperand(i, I->second); 1765 } 1766 1767 // If this instruction can be simplified after the operands are updated, 1768 // just use the simplified value instead. This frequently happens due to 1769 // phi translation. 1770 if (Value *IV = 1771 SimplifyInstruction(New, BB->getModule()->getDataLayout())) { 1772 delete New; 1773 ValueMapping[&*BI] = IV; 1774 } else { 1775 // Otherwise, insert the new instruction into the block. 1776 New->setName(BI->getName()); 1777 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 1778 ValueMapping[&*BI] = New; 1779 } 1780 } 1781 1782 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1783 // add entries to the PHI nodes for branch from PredBB now. 1784 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1785 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1786 ValueMapping); 1787 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1788 ValueMapping); 1789 1790 // If there were values defined in BB that are used outside the block, then we 1791 // now have to update all uses of the value to use either the original value, 1792 // the cloned value, or some PHI derived value. This can require arbitrary 1793 // PHI insertion, of which we are prepared to do, clean these up now. 1794 SSAUpdater SSAUpdate; 1795 SmallVector<Use*, 16> UsesToRename; 1796 for (Instruction &I : *BB) { 1797 // Scan all uses of this instruction to see if it is used outside of its 1798 // block, and if so, record them in UsesToRename. 1799 for (Use &U : I.uses()) { 1800 Instruction *User = cast<Instruction>(U.getUser()); 1801 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1802 if (UserPN->getIncomingBlock(U) == BB) 1803 continue; 1804 } else if (User->getParent() == BB) 1805 continue; 1806 1807 UsesToRename.push_back(&U); 1808 } 1809 1810 // If there are no uses outside the block, we're done with this instruction. 1811 if (UsesToRename.empty()) 1812 continue; 1813 1814 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 1815 1816 // We found a use of I outside of BB. Rename all uses of I that are outside 1817 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1818 // with the two values we know. 1819 SSAUpdate.Initialize(I.getType(), I.getName()); 1820 SSAUpdate.AddAvailableValue(BB, &I); 1821 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]); 1822 1823 while (!UsesToRename.empty()) 1824 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1825 DEBUG(dbgs() << "\n"); 1826 } 1827 1828 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1829 // that we nuked. 1830 BB->removePredecessor(PredBB, true); 1831 1832 // Remove the unconditional branch at the end of the PredBB block. 1833 OldPredBranch->eraseFromParent(); 1834 1835 ++NumDupes; 1836 return true; 1837 } 1838 1839 /// TryToUnfoldSelect - Look for blocks of the form 1840 /// bb1: 1841 /// %a = select 1842 /// br bb 1843 /// 1844 /// bb2: 1845 /// %p = phi [%a, %bb] ... 1846 /// %c = icmp %p 1847 /// br i1 %c 1848 /// 1849 /// And expand the select into a branch structure if one of its arms allows %c 1850 /// to be folded. This later enables threading from bb1 over bb2. 1851 bool JumpThreading::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 1852 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1853 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 1854 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 1855 1856 if (!CondBr || !CondBr->isConditional() || !CondLHS || 1857 CondLHS->getParent() != BB) 1858 return false; 1859 1860 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 1861 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 1862 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 1863 1864 // Look if one of the incoming values is a select in the corresponding 1865 // predecessor. 1866 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 1867 continue; 1868 1869 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 1870 if (!PredTerm || !PredTerm->isUnconditional()) 1871 continue; 1872 1873 // Now check if one of the select values would allow us to constant fold the 1874 // terminator in BB. We don't do the transform if both sides fold, those 1875 // cases will be threaded in any case. 1876 LazyValueInfo::Tristate LHSFolds = 1877 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 1878 CondRHS, Pred, BB, CondCmp); 1879 LazyValueInfo::Tristate RHSFolds = 1880 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 1881 CondRHS, Pred, BB, CondCmp); 1882 if ((LHSFolds != LazyValueInfo::Unknown || 1883 RHSFolds != LazyValueInfo::Unknown) && 1884 LHSFolds != RHSFolds) { 1885 // Expand the select. 1886 // 1887 // Pred -- 1888 // | v 1889 // | NewBB 1890 // | | 1891 // |----- 1892 // v 1893 // BB 1894 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 1895 BB->getParent(), BB); 1896 // Move the unconditional branch to NewBB. 1897 PredTerm->removeFromParent(); 1898 NewBB->getInstList().insert(NewBB->end(), PredTerm); 1899 // Create a conditional branch and update PHI nodes. 1900 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 1901 CondLHS->setIncomingValue(I, SI->getFalseValue()); 1902 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 1903 // The select is now dead. 1904 SI->eraseFromParent(); 1905 1906 // Update any other PHI nodes in BB. 1907 for (BasicBlock::iterator BI = BB->begin(); 1908 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 1909 if (Phi != CondLHS) 1910 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 1911 return true; 1912 } 1913 } 1914 return false; 1915 } 1916 1917 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select in the same BB of the form 1918 /// bb: 1919 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 1920 /// %s = select p, trueval, falseval 1921 /// 1922 /// And expand the select into a branch structure. This later enables 1923 /// jump-threading over bb in this pass. 1924 /// 1925 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 1926 /// select if the associated PHI has at least one constant. If the unfolded 1927 /// select is not jump-threaded, it will be folded again in the later 1928 /// optimizations. 1929 bool JumpThreading::TryToUnfoldSelectInCurrBB(BasicBlock *BB) { 1930 // If threading this would thread across a loop header, don't thread the edge. 1931 // See the comments above FindLoopHeaders for justifications and caveats. 1932 if (LoopHeaders.count(BB)) 1933 return false; 1934 1935 // Look for a Phi/Select pair in the same basic block. The Phi feeds the 1936 // condition of the Select and at least one of the incoming values is a 1937 // constant. 1938 for (BasicBlock::iterator BI = BB->begin(); 1939 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 1940 unsigned NumPHIValues = PN->getNumIncomingValues(); 1941 if (NumPHIValues == 0 || !PN->hasOneUse()) 1942 continue; 1943 1944 SelectInst *SI = dyn_cast<SelectInst>(PN->user_back()); 1945 if (!SI || SI->getParent() != BB) 1946 continue; 1947 1948 Value *Cond = SI->getCondition(); 1949 if (!Cond || Cond != PN || !Cond->getType()->isIntegerTy(1)) 1950 continue; 1951 1952 bool HasConst = false; 1953 for (unsigned i = 0; i != NumPHIValues; ++i) { 1954 if (PN->getIncomingBlock(i) == BB) 1955 return false; 1956 if (isa<ConstantInt>(PN->getIncomingValue(i))) 1957 HasConst = true; 1958 } 1959 1960 if (HasConst) { 1961 // Expand the select. 1962 TerminatorInst *Term = 1963 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false); 1964 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 1965 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 1966 NewPN->addIncoming(SI->getFalseValue(), BB); 1967 SI->replaceAllUsesWith(NewPN); 1968 SI->eraseFromParent(); 1969 return true; 1970 } 1971 } 1972 1973 return false; 1974 } 1975