xref: /llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp (revision ba85781f5846d156ff867340a203856aa1957dd6)
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/GlobalsModRef.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LazyValueInfo.h"
29 #include "llvm/Analysis/Loads.h"
30 #include "llvm/Analysis/LoopInfo.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/ValueHandle.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
44 #include "llvm/Transforms/Utils/Local.h"
45 #include "llvm/Transforms/Utils/SSAUpdater.h"
46 #include <algorithm>
47 #include <memory>
48 using namespace llvm;
49 
50 #define DEBUG_TYPE "jump-threading"
51 
52 STATISTIC(NumThreads, "Number of jumps threaded");
53 STATISTIC(NumFolds,   "Number of terminators folded");
54 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
55 
56 static cl::opt<unsigned>
57 BBDuplicateThreshold("jump-threading-threshold",
58           cl::desc("Max block size to duplicate for jump threading"),
59           cl::init(6), cl::Hidden);
60 
61 static cl::opt<unsigned>
62 ImplicationSearchThreshold(
63   "jump-threading-implication-search-threshold",
64   cl::desc("The number of predecessors to search for a stronger "
65            "condition to use to thread over a weaker condition"),
66   cl::init(3), cl::Hidden);
67 
68 namespace {
69   // These are at global scope so static functions can use them too.
70   typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo;
71   typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy;
72 
73   // This is used to keep track of what kind of constant we're currently hoping
74   // to find.
75   enum ConstantPreference {
76     WantInteger,
77     WantBlockAddress
78   };
79 
80   /// This pass performs 'jump threading', which looks at blocks that have
81   /// multiple predecessors and multiple successors.  If one or more of the
82   /// predecessors of the block can be proven to always jump to one of the
83   /// successors, we forward the edge from the predecessor to the successor by
84   /// duplicating the contents of this block.
85   ///
86   /// An example of when this can occur is code like this:
87   ///
88   ///   if () { ...
89   ///     X = 4;
90   ///   }
91   ///   if (X < 3) {
92   ///
93   /// In this case, the unconditional branch at the end of the first if can be
94   /// revectored to the false side of the second if.
95   ///
96   class JumpThreading : public FunctionPass {
97     TargetLibraryInfo *TLI;
98     LazyValueInfo *LVI;
99     std::unique_ptr<BlockFrequencyInfo> BFI;
100     std::unique_ptr<BranchProbabilityInfo> BPI;
101     bool HasProfileData;
102 #ifdef NDEBUG
103     SmallPtrSet<const BasicBlock *, 16> LoopHeaders;
104 #else
105     SmallSet<AssertingVH<const BasicBlock>, 16> LoopHeaders;
106 #endif
107     DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet;
108 
109     unsigned BBDupThreshold;
110 
111     // RAII helper for updating the recursion stack.
112     struct RecursionSetRemover {
113       DenseSet<std::pair<Value*, BasicBlock*> > &TheSet;
114       std::pair<Value*, BasicBlock*> ThePair;
115 
116       RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S,
117                           std::pair<Value*, BasicBlock*> P)
118         : TheSet(S), ThePair(P) { }
119 
120       ~RecursionSetRemover() {
121         TheSet.erase(ThePair);
122       }
123     };
124   public:
125     static char ID; // Pass identification
126     JumpThreading(int T = -1) : FunctionPass(ID) {
127       BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
128       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
129     }
130 
131     bool runOnFunction(Function &F) override;
132 
133     void getAnalysisUsage(AnalysisUsage &AU) const override {
134       AU.addRequired<LazyValueInfo>();
135       AU.addPreserved<LazyValueInfo>();
136       AU.addPreserved<GlobalsAAWrapperPass>();
137       AU.addRequired<TargetLibraryInfoWrapperPass>();
138     }
139 
140     void releaseMemory() override {
141       BFI.reset();
142       BPI.reset();
143     }
144 
145     void FindLoopHeaders(Function &F);
146     bool ProcessBlock(BasicBlock *BB);
147     bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
148                     BasicBlock *SuccBB);
149     bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
150                                   const SmallVectorImpl<BasicBlock *> &PredBBs);
151 
152     bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
153                                          PredValueInfo &Result,
154                                          ConstantPreference Preference,
155                                          Instruction *CxtI = nullptr);
156     bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
157                                 ConstantPreference Preference,
158                                 Instruction *CxtI = nullptr);
159 
160     bool ProcessBranchOnPHI(PHINode *PN);
161     bool ProcessBranchOnXOR(BinaryOperator *BO);
162     bool ProcessImpliedCondition(BasicBlock *BB);
163 
164     bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
165     bool TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB);
166     bool TryToUnfoldSelectInCurrBB(BasicBlock *BB);
167 
168   private:
169     BasicBlock *SplitBlockPreds(BasicBlock *BB, ArrayRef<BasicBlock *> Preds,
170                                 const char *Suffix);
171     void UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, BasicBlock *BB,
172                                       BasicBlock *NewBB, BasicBlock *SuccBB);
173   };
174 }
175 
176 char JumpThreading::ID = 0;
177 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
178                 "Jump Threading", false, false)
179 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo)
180 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
181 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
182                 "Jump Threading", false, false)
183 
184 // Public interface to the Jump Threading pass
185 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); }
186 
187 /// runOnFunction - Top level algorithm.
188 ///
189 bool JumpThreading::runOnFunction(Function &F) {
190   if (skipOptnoneFunction(F))
191     return false;
192 
193   DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
194   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
195   LVI = &getAnalysis<LazyValueInfo>();
196   BFI.reset();
197   BPI.reset();
198   // When profile data is available, we need to update edge weights after
199   // successful jump threading, which requires both BPI and BFI being available.
200   HasProfileData = F.getEntryCount().hasValue();
201   if (HasProfileData) {
202     LoopInfo LI{DominatorTree(F)};
203     BPI.reset(new BranchProbabilityInfo(F, LI));
204     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
205   }
206 
207   // Remove unreachable blocks from function as they may result in infinite
208   // loop. We do threading if we found something profitable. Jump threading a
209   // branch can create other opportunities. If these opportunities form a cycle
210   // i.e. if any jump threading is undoing previous threading in the path, then
211   // we will loop forever. We take care of this issue by not jump threading for
212   // back edges. This works for normal cases but not for unreachable blocks as
213   // they may have cycle with no back edge.
214   bool EverChanged = false;
215   EverChanged |= removeUnreachableBlocks(F, LVI);
216 
217   FindLoopHeaders(F);
218 
219   bool Changed;
220   do {
221     Changed = false;
222     for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
223       BasicBlock *BB = &*I;
224       // Thread all of the branches we can over this block.
225       while (ProcessBlock(BB))
226         Changed = true;
227 
228       ++I;
229 
230       // If the block is trivially dead, zap it.  This eliminates the successor
231       // edges which simplifies the CFG.
232       if (pred_empty(BB) &&
233           BB != &BB->getParent()->getEntryBlock()) {
234         DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
235               << "' with terminator: " << *BB->getTerminator() << '\n');
236         LoopHeaders.erase(BB);
237         LVI->eraseBlock(BB);
238         DeleteDeadBlock(BB);
239         Changed = true;
240         continue;
241       }
242 
243       BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
244 
245       // Can't thread an unconditional jump, but if the block is "almost
246       // empty", we can replace uses of it with uses of the successor and make
247       // this dead.
248       if (BI && BI->isUnconditional() &&
249           BB != &BB->getParent()->getEntryBlock() &&
250           // If the terminator is the only non-phi instruction, try to nuke it.
251           BB->getFirstNonPHIOrDbg()->isTerminator()) {
252         // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
253         // block, we have to make sure it isn't in the LoopHeaders set.  We
254         // reinsert afterward if needed.
255         bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
256         BasicBlock *Succ = BI->getSuccessor(0);
257 
258         // FIXME: It is always conservatively correct to drop the info
259         // for a block even if it doesn't get erased.  This isn't totally
260         // awesome, but it allows us to use AssertingVH to prevent nasty
261         // dangling pointer issues within LazyValueInfo.
262         LVI->eraseBlock(BB);
263         if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
264           Changed = true;
265           // If we deleted BB and BB was the header of a loop, then the
266           // successor is now the header of the loop.
267           BB = Succ;
268         }
269 
270         if (ErasedFromLoopHeaders)
271           LoopHeaders.insert(BB);
272       }
273     }
274     EverChanged |= Changed;
275   } while (Changed);
276 
277   LoopHeaders.clear();
278   return EverChanged;
279 }
280 
281 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
282 /// thread across it. Stop scanning the block when passing the threshold.
283 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB,
284                                              unsigned Threshold) {
285   /// Ignore PHI nodes, these will be flattened when duplication happens.
286   BasicBlock::const_iterator I(BB->getFirstNonPHI());
287 
288   // FIXME: THREADING will delete values that are just used to compute the
289   // branch, so they shouldn't count against the duplication cost.
290 
291   unsigned Bonus = 0;
292   const TerminatorInst *BBTerm = BB->getTerminator();
293   // Threading through a switch statement is particularly profitable.  If this
294   // block ends in a switch, decrease its cost to make it more likely to happen.
295   if (isa<SwitchInst>(BBTerm))
296     Bonus = 6;
297 
298   // The same holds for indirect branches, but slightly more so.
299   if (isa<IndirectBrInst>(BBTerm))
300     Bonus = 8;
301 
302   // Bump the threshold up so the early exit from the loop doesn't skip the
303   // terminator-based Size adjustment at the end.
304   Threshold += Bonus;
305 
306   // Sum up the cost of each instruction until we get to the terminator.  Don't
307   // include the terminator because the copy won't include it.
308   unsigned Size = 0;
309   for (; !isa<TerminatorInst>(I); ++I) {
310 
311     // Stop scanning the block if we've reached the threshold.
312     if (Size > Threshold)
313       return Size;
314 
315     // Debugger intrinsics don't incur code size.
316     if (isa<DbgInfoIntrinsic>(I)) continue;
317 
318     // If this is a pointer->pointer bitcast, it is free.
319     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
320       continue;
321 
322     // Bail out if this instruction gives back a token type, it is not possible
323     // to duplicate it if it is used outside this BB.
324     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
325       return ~0U;
326 
327     // All other instructions count for at least one unit.
328     ++Size;
329 
330     // Calls are more expensive.  If they are non-intrinsic calls, we model them
331     // as having cost of 4.  If they are a non-vector intrinsic, we model them
332     // as having cost of 2 total, and if they are a vector intrinsic, we model
333     // them as having cost 1.
334     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
335       if (CI->cannotDuplicate() || CI->isConvergent())
336         // Blocks with NoDuplicate are modelled as having infinite cost, so they
337         // are never duplicated.
338         return ~0U;
339       else if (!isa<IntrinsicInst>(CI))
340         Size += 3;
341       else if (!CI->getType()->isVectorTy())
342         Size += 1;
343     }
344   }
345 
346   return Size > Bonus ? Size - Bonus : 0;
347 }
348 
349 /// FindLoopHeaders - We do not want jump threading to turn proper loop
350 /// structures into irreducible loops.  Doing this breaks up the loop nesting
351 /// hierarchy and pessimizes later transformations.  To prevent this from
352 /// happening, we first have to find the loop headers.  Here we approximate this
353 /// by finding targets of backedges in the CFG.
354 ///
355 /// Note that there definitely are cases when we want to allow threading of
356 /// edges across a loop header.  For example, threading a jump from outside the
357 /// loop (the preheader) to an exit block of the loop is definitely profitable.
358 /// It is also almost always profitable to thread backedges from within the loop
359 /// to exit blocks, and is often profitable to thread backedges to other blocks
360 /// within the loop (forming a nested loop).  This simple analysis is not rich
361 /// enough to track all of these properties and keep it up-to-date as the CFG
362 /// mutates, so we don't allow any of these transformations.
363 ///
364 void JumpThreading::FindLoopHeaders(Function &F) {
365   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
366   FindFunctionBackedges(F, Edges);
367 
368   for (const auto &Edge : Edges)
369     LoopHeaders.insert(Edge.second);
370 }
371 
372 /// getKnownConstant - Helper method to determine if we can thread over a
373 /// terminator with the given value as its condition, and if so what value to
374 /// use for that. What kind of value this is depends on whether we want an
375 /// integer or a block address, but an undef is always accepted.
376 /// Returns null if Val is null or not an appropriate constant.
377 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
378   if (!Val)
379     return nullptr;
380 
381   // Undef is "known" enough.
382   if (UndefValue *U = dyn_cast<UndefValue>(Val))
383     return U;
384 
385   if (Preference == WantBlockAddress)
386     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
387 
388   return dyn_cast<ConstantInt>(Val);
389 }
390 
391 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
392 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
393 /// in any of our predecessors.  If so, return the known list of value and pred
394 /// BB in the result vector.
395 ///
396 /// This returns true if there were any known values.
397 ///
398 bool JumpThreading::
399 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
400                                 ConstantPreference Preference,
401                                 Instruction *CxtI) {
402   // This method walks up use-def chains recursively.  Because of this, we could
403   // get into an infinite loop going around loops in the use-def chain.  To
404   // prevent this, keep track of what (value, block) pairs we've already visited
405   // and terminate the search if we loop back to them
406   if (!RecursionSet.insert(std::make_pair(V, BB)).second)
407     return false;
408 
409   // An RAII help to remove this pair from the recursion set once the recursion
410   // stack pops back out again.
411   RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
412 
413   // If V is a constant, then it is known in all predecessors.
414   if (Constant *KC = getKnownConstant(V, Preference)) {
415     for (BasicBlock *Pred : predecessors(BB))
416       Result.push_back(std::make_pair(KC, Pred));
417 
418     return !Result.empty();
419   }
420 
421   // If V is a non-instruction value, or an instruction in a different block,
422   // then it can't be derived from a PHI.
423   Instruction *I = dyn_cast<Instruction>(V);
424   if (!I || I->getParent() != BB) {
425 
426     // Okay, if this is a live-in value, see if it has a known value at the end
427     // of any of our predecessors.
428     //
429     // FIXME: This should be an edge property, not a block end property.
430     /// TODO: Per PR2563, we could infer value range information about a
431     /// predecessor based on its terminator.
432     //
433     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
434     // "I" is a non-local compare-with-a-constant instruction.  This would be
435     // able to handle value inequalities better, for example if the compare is
436     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
437     // Perhaps getConstantOnEdge should be smart enough to do this?
438 
439     for (BasicBlock *P : predecessors(BB)) {
440       // If the value is known by LazyValueInfo to be a constant in a
441       // predecessor, use that information to try to thread this block.
442       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
443       if (Constant *KC = getKnownConstant(PredCst, Preference))
444         Result.push_back(std::make_pair(KC, P));
445     }
446 
447     return !Result.empty();
448   }
449 
450   /// If I is a PHI node, then we know the incoming values for any constants.
451   if (PHINode *PN = dyn_cast<PHINode>(I)) {
452     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
453       Value *InVal = PN->getIncomingValue(i);
454       if (Constant *KC = getKnownConstant(InVal, Preference)) {
455         Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
456       } else {
457         Constant *CI = LVI->getConstantOnEdge(InVal,
458                                               PN->getIncomingBlock(i),
459                                               BB, CxtI);
460         if (Constant *KC = getKnownConstant(CI, Preference))
461           Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
462       }
463     }
464 
465     return !Result.empty();
466   }
467 
468   // Handle Cast instructions.  Only see through Cast when the source operand is
469   // PHI or Cmp and the source type is i1 to save the compilation time.
470   if (CastInst *CI = dyn_cast<CastInst>(I)) {
471     Value *Source = CI->getOperand(0);
472     if (!Source->getType()->isIntegerTy(1))
473       return false;
474     if (!isa<PHINode>(Source) && !isa<CmpInst>(Source))
475       return false;
476     ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI);
477     if (Result.empty())
478       return false;
479 
480     // Convert the known values.
481     for (auto &R : Result)
482       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
483 
484     return true;
485   }
486 
487   PredValueInfoTy LHSVals, RHSVals;
488 
489   // Handle some boolean conditions.
490   if (I->getType()->getPrimitiveSizeInBits() == 1) {
491     assert(Preference == WantInteger && "One-bit non-integer type?");
492     // X | true -> true
493     // X & false -> false
494     if (I->getOpcode() == Instruction::Or ||
495         I->getOpcode() == Instruction::And) {
496       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
497                                       WantInteger, CxtI);
498       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
499                                       WantInteger, CxtI);
500 
501       if (LHSVals.empty() && RHSVals.empty())
502         return false;
503 
504       ConstantInt *InterestingVal;
505       if (I->getOpcode() == Instruction::Or)
506         InterestingVal = ConstantInt::getTrue(I->getContext());
507       else
508         InterestingVal = ConstantInt::getFalse(I->getContext());
509 
510       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
511 
512       // Scan for the sentinel.  If we find an undef, force it to the
513       // interesting value: x|undef -> true and x&undef -> false.
514       for (const auto &LHSVal : LHSVals)
515         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
516           Result.emplace_back(InterestingVal, LHSVal.second);
517           LHSKnownBBs.insert(LHSVal.second);
518         }
519       for (const auto &RHSVal : RHSVals)
520         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
521           // If we already inferred a value for this block on the LHS, don't
522           // re-add it.
523           if (!LHSKnownBBs.count(RHSVal.second))
524             Result.emplace_back(InterestingVal, RHSVal.second);
525         }
526 
527       return !Result.empty();
528     }
529 
530     // Handle the NOT form of XOR.
531     if (I->getOpcode() == Instruction::Xor &&
532         isa<ConstantInt>(I->getOperand(1)) &&
533         cast<ConstantInt>(I->getOperand(1))->isOne()) {
534       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
535                                       WantInteger, CxtI);
536       if (Result.empty())
537         return false;
538 
539       // Invert the known values.
540       for (auto &R : Result)
541         R.first = ConstantExpr::getNot(R.first);
542 
543       return true;
544     }
545 
546   // Try to simplify some other binary operator values.
547   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
548     assert(Preference != WantBlockAddress
549             && "A binary operator creating a block address?");
550     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
551       PredValueInfoTy LHSVals;
552       ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
553                                       WantInteger, CxtI);
554 
555       // Try to use constant folding to simplify the binary operator.
556       for (const auto &LHSVal : LHSVals) {
557         Constant *V = LHSVal.first;
558         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
559 
560         if (Constant *KC = getKnownConstant(Folded, WantInteger))
561           Result.push_back(std::make_pair(KC, LHSVal.second));
562       }
563     }
564 
565     return !Result.empty();
566   }
567 
568   // Handle compare with phi operand, where the PHI is defined in this block.
569   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
570     assert(Preference == WantInteger && "Compares only produce integers");
571     PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
572     if (PN && PN->getParent() == BB) {
573       const DataLayout &DL = PN->getModule()->getDataLayout();
574       // We can do this simplification if any comparisons fold to true or false.
575       // See if any do.
576       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
577         BasicBlock *PredBB = PN->getIncomingBlock(i);
578         Value *LHS = PN->getIncomingValue(i);
579         Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
580 
581         Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL);
582         if (!Res) {
583           if (!isa<Constant>(RHS))
584             continue;
585 
586           LazyValueInfo::Tristate
587             ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
588                                            cast<Constant>(RHS), PredBB, BB,
589                                            CxtI ? CxtI : Cmp);
590           if (ResT == LazyValueInfo::Unknown)
591             continue;
592           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
593         }
594 
595         if (Constant *KC = getKnownConstant(Res, WantInteger))
596           Result.push_back(std::make_pair(KC, PredBB));
597       }
598 
599       return !Result.empty();
600     }
601 
602     // If comparing a live-in value against a constant, see if we know the
603     // live-in value on any predecessors.
604     if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
605       if (!isa<Instruction>(Cmp->getOperand(0)) ||
606           cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
607         Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
608 
609         for (BasicBlock *P : predecessors(BB)) {
610           // If the value is known by LazyValueInfo to be a constant in a
611           // predecessor, use that information to try to thread this block.
612           LazyValueInfo::Tristate Res =
613             LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
614                                     RHSCst, P, BB, CxtI ? CxtI : Cmp);
615           if (Res == LazyValueInfo::Unknown)
616             continue;
617 
618           Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
619           Result.push_back(std::make_pair(ResC, P));
620         }
621 
622         return !Result.empty();
623       }
624 
625       // Try to find a constant value for the LHS of a comparison,
626       // and evaluate it statically if we can.
627       if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
628         PredValueInfoTy LHSVals;
629         ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
630                                         WantInteger, CxtI);
631 
632         for (const auto &LHSVal : LHSVals) {
633           Constant *V = LHSVal.first;
634           Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
635                                                       V, CmpConst);
636           if (Constant *KC = getKnownConstant(Folded, WantInteger))
637             Result.push_back(std::make_pair(KC, LHSVal.second));
638         }
639 
640         return !Result.empty();
641       }
642     }
643   }
644 
645   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
646     // Handle select instructions where at least one operand is a known constant
647     // and we can figure out the condition value for any predecessor block.
648     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
649     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
650     PredValueInfoTy Conds;
651     if ((TrueVal || FalseVal) &&
652         ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
653                                         WantInteger, CxtI)) {
654       for (auto &C : Conds) {
655         Constant *Cond = C.first;
656 
657         // Figure out what value to use for the condition.
658         bool KnownCond;
659         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
660           // A known boolean.
661           KnownCond = CI->isOne();
662         } else {
663           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
664           // Either operand will do, so be sure to pick the one that's a known
665           // constant.
666           // FIXME: Do this more cleverly if both values are known constants?
667           KnownCond = (TrueVal != nullptr);
668         }
669 
670         // See if the select has a known constant value for this predecessor.
671         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
672           Result.push_back(std::make_pair(Val, C.second));
673       }
674 
675       return !Result.empty();
676     }
677   }
678 
679   // If all else fails, see if LVI can figure out a constant value for us.
680   Constant *CI = LVI->getConstant(V, BB, CxtI);
681   if (Constant *KC = getKnownConstant(CI, Preference)) {
682     for (BasicBlock *Pred : predecessors(BB))
683       Result.push_back(std::make_pair(KC, Pred));
684   }
685 
686   return !Result.empty();
687 }
688 
689 
690 
691 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
692 /// in an undefined jump, decide which block is best to revector to.
693 ///
694 /// Since we can pick an arbitrary destination, we pick the successor with the
695 /// fewest predecessors.  This should reduce the in-degree of the others.
696 ///
697 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
698   TerminatorInst *BBTerm = BB->getTerminator();
699   unsigned MinSucc = 0;
700   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
701   // Compute the successor with the minimum number of predecessors.
702   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
703   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
704     TestBB = BBTerm->getSuccessor(i);
705     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
706     if (NumPreds < MinNumPreds) {
707       MinSucc = i;
708       MinNumPreds = NumPreds;
709     }
710   }
711 
712   return MinSucc;
713 }
714 
715 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
716   if (!BB->hasAddressTaken()) return false;
717 
718   // If the block has its address taken, it may be a tree of dead constants
719   // hanging off of it.  These shouldn't keep the block alive.
720   BlockAddress *BA = BlockAddress::get(BB);
721   BA->removeDeadConstantUsers();
722   return !BA->use_empty();
723 }
724 
725 /// ProcessBlock - If there are any predecessors whose control can be threaded
726 /// through to a successor, transform them now.
727 bool JumpThreading::ProcessBlock(BasicBlock *BB) {
728   // If the block is trivially dead, just return and let the caller nuke it.
729   // This simplifies other transformations.
730   if (pred_empty(BB) &&
731       BB != &BB->getParent()->getEntryBlock())
732     return false;
733 
734   // If this block has a single predecessor, and if that pred has a single
735   // successor, merge the blocks.  This encourages recursive jump threading
736   // because now the condition in this block can be threaded through
737   // predecessors of our predecessor block.
738   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
739     const TerminatorInst *TI = SinglePred->getTerminator();
740     if (!TI->isExceptional() && TI->getNumSuccessors() == 1 &&
741         SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
742       // If SinglePred was a loop header, BB becomes one.
743       if (LoopHeaders.erase(SinglePred))
744         LoopHeaders.insert(BB);
745 
746       LVI->eraseBlock(SinglePred);
747       MergeBasicBlockIntoOnlyPred(BB);
748 
749       return true;
750     }
751   }
752 
753   if (TryToUnfoldSelectInCurrBB(BB))
754     return true;
755 
756   // What kind of constant we're looking for.
757   ConstantPreference Preference = WantInteger;
758 
759   // Look to see if the terminator is a conditional branch, switch or indirect
760   // branch, if not we can't thread it.
761   Value *Condition;
762   Instruction *Terminator = BB->getTerminator();
763   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
764     // Can't thread an unconditional jump.
765     if (BI->isUnconditional()) return false;
766     Condition = BI->getCondition();
767   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
768     Condition = SI->getCondition();
769   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
770     // Can't thread indirect branch with no successors.
771     if (IB->getNumSuccessors() == 0) return false;
772     Condition = IB->getAddress()->stripPointerCasts();
773     Preference = WantBlockAddress;
774   } else {
775     return false; // Must be an invoke.
776   }
777 
778   // Run constant folding to see if we can reduce the condition to a simple
779   // constant.
780   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
781     Value *SimpleVal =
782         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
783     if (SimpleVal) {
784       I->replaceAllUsesWith(SimpleVal);
785       I->eraseFromParent();
786       Condition = SimpleVal;
787     }
788   }
789 
790   // If the terminator is branching on an undef, we can pick any of the
791   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
792   if (isa<UndefValue>(Condition)) {
793     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
794 
795     // Fold the branch/switch.
796     TerminatorInst *BBTerm = BB->getTerminator();
797     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
798       if (i == BestSucc) continue;
799       BBTerm->getSuccessor(i)->removePredecessor(BB, true);
800     }
801 
802     DEBUG(dbgs() << "  In block '" << BB->getName()
803           << "' folding undef terminator: " << *BBTerm << '\n');
804     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
805     BBTerm->eraseFromParent();
806     return true;
807   }
808 
809   // If the terminator of this block is branching on a constant, simplify the
810   // terminator to an unconditional branch.  This can occur due to threading in
811   // other blocks.
812   if (getKnownConstant(Condition, Preference)) {
813     DEBUG(dbgs() << "  In block '" << BB->getName()
814           << "' folding terminator: " << *BB->getTerminator() << '\n');
815     ++NumFolds;
816     ConstantFoldTerminator(BB, true);
817     return true;
818   }
819 
820   Instruction *CondInst = dyn_cast<Instruction>(Condition);
821 
822   // All the rest of our checks depend on the condition being an instruction.
823   if (!CondInst) {
824     // FIXME: Unify this with code below.
825     if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
826       return true;
827     return false;
828   }
829 
830 
831   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
832     // If we're branching on a conditional, LVI might be able to determine
833     // it's value at the branch instruction.  We only handle comparisons
834     // against a constant at this time.
835     // TODO: This should be extended to handle switches as well.
836     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
837     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
838     if (CondBr && CondConst && CondBr->isConditional()) {
839       LazyValueInfo::Tristate Ret =
840         LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
841                             CondConst, CondBr);
842       if (Ret != LazyValueInfo::Unknown) {
843         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
844         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
845         CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
846         BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
847         CondBr->eraseFromParent();
848         if (CondCmp->use_empty())
849           CondCmp->eraseFromParent();
850         else if (CondCmp->getParent() == BB) {
851           // If the fact we just learned is true for all uses of the
852           // condition, replace it with a constant value
853           auto *CI = Ret == LazyValueInfo::True ?
854             ConstantInt::getTrue(CondCmp->getType()) :
855             ConstantInt::getFalse(CondCmp->getType());
856           CondCmp->replaceAllUsesWith(CI);
857           CondCmp->eraseFromParent();
858         }
859         return true;
860       }
861     }
862 
863     if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB))
864       return true;
865   }
866 
867   // Check for some cases that are worth simplifying.  Right now we want to look
868   // for loads that are used by a switch or by the condition for the branch.  If
869   // we see one, check to see if it's partially redundant.  If so, insert a PHI
870   // which can then be used to thread the values.
871   //
872   Value *SimplifyValue = CondInst;
873   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
874     if (isa<Constant>(CondCmp->getOperand(1)))
875       SimplifyValue = CondCmp->getOperand(0);
876 
877   // TODO: There are other places where load PRE would be profitable, such as
878   // more complex comparisons.
879   if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
880     if (SimplifyPartiallyRedundantLoad(LI))
881       return true;
882 
883 
884   // Handle a variety of cases where we are branching on something derived from
885   // a PHI node in the current block.  If we can prove that any predecessors
886   // compute a predictable value based on a PHI node, thread those predecessors.
887   //
888   if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
889     return true;
890 
891   // If this is an otherwise-unfoldable branch on a phi node in the current
892   // block, see if we can simplify.
893   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
894     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
895       return ProcessBranchOnPHI(PN);
896 
897 
898   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
899   if (CondInst->getOpcode() == Instruction::Xor &&
900       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
901     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
902 
903   // Search for a stronger dominating condition that can be used to simplify a
904   // conditional branch leaving BB.
905   if (ProcessImpliedCondition(BB))
906     return true;
907 
908   return false;
909 }
910 
911 bool JumpThreading::ProcessImpliedCondition(BasicBlock *BB) {
912   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
913   if (!BI || !BI->isConditional())
914     return false;
915 
916   Value *Cond = BI->getCondition();
917   BasicBlock *CurrentBB = BB;
918   BasicBlock *CurrentPred = BB->getSinglePredecessor();
919   unsigned Iter = 0;
920 
921   auto &DL = BB->getModule()->getDataLayout();
922 
923   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
924     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
925     if (!PBI || !PBI->isConditional() || PBI->getSuccessor(0) != CurrentBB)
926       return false;
927 
928     if (isImpliedCondition(PBI->getCondition(), Cond, DL)) {
929       BI->getSuccessor(1)->removePredecessor(BB);
930       BranchInst::Create(BI->getSuccessor(0), BI);
931       BI->eraseFromParent();
932       return true;
933     }
934     CurrentBB = CurrentPred;
935     CurrentPred = CurrentBB->getSinglePredecessor();
936   }
937 
938   return false;
939 }
940 
941 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
942 /// load instruction, eliminate it by replacing it with a PHI node.  This is an
943 /// important optimization that encourages jump threading, and needs to be run
944 /// interlaced with other jump threading tasks.
945 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
946   // Don't hack volatile/atomic loads.
947   if (!LI->isSimple()) return false;
948 
949   // If the load is defined in a block with exactly one predecessor, it can't be
950   // partially redundant.
951   BasicBlock *LoadBB = LI->getParent();
952   if (LoadBB->getSinglePredecessor())
953     return false;
954 
955   // If the load is defined in an EH pad, it can't be partially redundant,
956   // because the edges between the invoke and the EH pad cannot have other
957   // instructions between them.
958   if (LoadBB->isEHPad())
959     return false;
960 
961   Value *LoadedPtr = LI->getOperand(0);
962 
963   // If the loaded operand is defined in the LoadBB, it can't be available.
964   // TODO: Could do simple PHI translation, that would be fun :)
965   if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
966     if (PtrOp->getParent() == LoadBB)
967       return false;
968 
969   // Scan a few instructions up from the load, to see if it is obviously live at
970   // the entry to its block.
971   BasicBlock::iterator BBIt(LI);
972 
973   if (Value *AvailableVal =
974         FindAvailableLoadedValue(LI, LoadBB, BBIt, DefMaxInstsToScan)) {
975     // If the value of the load is locally available within the block, just use
976     // it.  This frequently occurs for reg2mem'd allocas.
977     //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
978 
979     // If the returned value is the load itself, replace with an undef. This can
980     // only happen in dead loops.
981     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
982     if (AvailableVal->getType() != LI->getType())
983       AvailableVal =
984           CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI);
985     LI->replaceAllUsesWith(AvailableVal);
986     LI->eraseFromParent();
987     return true;
988   }
989 
990   // Otherwise, if we scanned the whole block and got to the top of the block,
991   // we know the block is locally transparent to the load.  If not, something
992   // might clobber its value.
993   if (BBIt != LoadBB->begin())
994     return false;
995 
996   // If all of the loads and stores that feed the value have the same AA tags,
997   // then we can propagate them onto any newly inserted loads.
998   AAMDNodes AATags;
999   LI->getAAMetadata(AATags);
1000 
1001   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1002   typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
1003   AvailablePredsTy AvailablePreds;
1004   BasicBlock *OneUnavailablePred = nullptr;
1005 
1006   // If we got here, the loaded value is transparent through to the start of the
1007   // block.  Check to see if it is available in any of the predecessor blocks.
1008   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1009     // If we already scanned this predecessor, skip it.
1010     if (!PredsScanned.insert(PredBB).second)
1011       continue;
1012 
1013     // Scan the predecessor to see if the value is available in the pred.
1014     BBIt = PredBB->end();
1015     AAMDNodes ThisAATags;
1016     Value *PredAvailable = FindAvailableLoadedValue(LI, PredBB, BBIt,
1017                                                     DefMaxInstsToScan,
1018                                                     nullptr, &ThisAATags);
1019     if (!PredAvailable) {
1020       OneUnavailablePred = PredBB;
1021       continue;
1022     }
1023 
1024     // If AA tags disagree or are not present, forget about them.
1025     if (AATags != ThisAATags) AATags = AAMDNodes();
1026 
1027     // If so, this load is partially redundant.  Remember this info so that we
1028     // can create a PHI node.
1029     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
1030   }
1031 
1032   // If the loaded value isn't available in any predecessor, it isn't partially
1033   // redundant.
1034   if (AvailablePreds.empty()) return false;
1035 
1036   // Okay, the loaded value is available in at least one (and maybe all!)
1037   // predecessors.  If the value is unavailable in more than one unique
1038   // predecessor, we want to insert a merge block for those common predecessors.
1039   // This ensures that we only have to insert one reload, thus not increasing
1040   // code size.
1041   BasicBlock *UnavailablePred = nullptr;
1042 
1043   // If there is exactly one predecessor where the value is unavailable, the
1044   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1045   // unconditional branch, we know that it isn't a critical edge.
1046   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1047       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1048     UnavailablePred = OneUnavailablePred;
1049   } else if (PredsScanned.size() != AvailablePreds.size()) {
1050     // Otherwise, we had multiple unavailable predecessors or we had a critical
1051     // edge from the one.
1052     SmallVector<BasicBlock*, 8> PredsToSplit;
1053     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1054 
1055     for (const auto &AvailablePred : AvailablePreds)
1056       AvailablePredSet.insert(AvailablePred.first);
1057 
1058     // Add all the unavailable predecessors to the PredsToSplit list.
1059     for (BasicBlock *P : predecessors(LoadBB)) {
1060       // If the predecessor is an indirect goto, we can't split the edge.
1061       if (isa<IndirectBrInst>(P->getTerminator()))
1062         return false;
1063 
1064       if (!AvailablePredSet.count(P))
1065         PredsToSplit.push_back(P);
1066     }
1067 
1068     // Split them out to their own block.
1069     UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1070   }
1071 
1072   // If the value isn't available in all predecessors, then there will be
1073   // exactly one where it isn't available.  Insert a load on that edge and add
1074   // it to the AvailablePreds list.
1075   if (UnavailablePred) {
1076     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1077            "Can't handle critical edge here!");
1078     LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
1079                                  LI->getAlignment(),
1080                                  UnavailablePred->getTerminator());
1081     NewVal->setDebugLoc(LI->getDebugLoc());
1082     if (AATags)
1083       NewVal->setAAMetadata(AATags);
1084 
1085     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
1086   }
1087 
1088   // Now we know that each predecessor of this block has a value in
1089   // AvailablePreds, sort them for efficient access as we're walking the preds.
1090   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1091 
1092   // Create a PHI node at the start of the block for the PRE'd load value.
1093   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1094   PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "",
1095                                 &LoadBB->front());
1096   PN->takeName(LI);
1097   PN->setDebugLoc(LI->getDebugLoc());
1098 
1099   // Insert new entries into the PHI for each predecessor.  A single block may
1100   // have multiple entries here.
1101   for (pred_iterator PI = PB; PI != PE; ++PI) {
1102     BasicBlock *P = *PI;
1103     AvailablePredsTy::iterator I =
1104       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
1105                        std::make_pair(P, (Value*)nullptr));
1106 
1107     assert(I != AvailablePreds.end() && I->first == P &&
1108            "Didn't find entry for predecessor!");
1109 
1110     // If we have an available predecessor but it requires casting, insert the
1111     // cast in the predecessor and use the cast. Note that we have to update the
1112     // AvailablePreds vector as we go so that all of the PHI entries for this
1113     // predecessor use the same bitcast.
1114     Value *&PredV = I->second;
1115     if (PredV->getType() != LI->getType())
1116       PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "",
1117                                                P->getTerminator());
1118 
1119     PN->addIncoming(PredV, I->first);
1120   }
1121 
1122   //cerr << "PRE: " << *LI << *PN << "\n";
1123 
1124   LI->replaceAllUsesWith(PN);
1125   LI->eraseFromParent();
1126 
1127   return true;
1128 }
1129 
1130 /// FindMostPopularDest - The specified list contains multiple possible
1131 /// threadable destinations.  Pick the one that occurs the most frequently in
1132 /// the list.
1133 static BasicBlock *
1134 FindMostPopularDest(BasicBlock *BB,
1135                     const SmallVectorImpl<std::pair<BasicBlock*,
1136                                   BasicBlock*> > &PredToDestList) {
1137   assert(!PredToDestList.empty());
1138 
1139   // Determine popularity.  If there are multiple possible destinations, we
1140   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1141   // blocks with known and real destinations to threading undef.  We'll handle
1142   // them later if interesting.
1143   DenseMap<BasicBlock*, unsigned> DestPopularity;
1144   for (const auto &PredToDest : PredToDestList)
1145     if (PredToDest.second)
1146       DestPopularity[PredToDest.second]++;
1147 
1148   // Find the most popular dest.
1149   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1150   BasicBlock *MostPopularDest = DPI->first;
1151   unsigned Popularity = DPI->second;
1152   SmallVector<BasicBlock*, 4> SamePopularity;
1153 
1154   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1155     // If the popularity of this entry isn't higher than the popularity we've
1156     // seen so far, ignore it.
1157     if (DPI->second < Popularity)
1158       ; // ignore.
1159     else if (DPI->second == Popularity) {
1160       // If it is the same as what we've seen so far, keep track of it.
1161       SamePopularity.push_back(DPI->first);
1162     } else {
1163       // If it is more popular, remember it.
1164       SamePopularity.clear();
1165       MostPopularDest = DPI->first;
1166       Popularity = DPI->second;
1167     }
1168   }
1169 
1170   // Okay, now we know the most popular destination.  If there is more than one
1171   // destination, we need to determine one.  This is arbitrary, but we need
1172   // to make a deterministic decision.  Pick the first one that appears in the
1173   // successor list.
1174   if (!SamePopularity.empty()) {
1175     SamePopularity.push_back(MostPopularDest);
1176     TerminatorInst *TI = BB->getTerminator();
1177     for (unsigned i = 0; ; ++i) {
1178       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1179 
1180       if (std::find(SamePopularity.begin(), SamePopularity.end(),
1181                     TI->getSuccessor(i)) == SamePopularity.end())
1182         continue;
1183 
1184       MostPopularDest = TI->getSuccessor(i);
1185       break;
1186     }
1187   }
1188 
1189   // Okay, we have finally picked the most popular destination.
1190   return MostPopularDest;
1191 }
1192 
1193 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1194                                            ConstantPreference Preference,
1195                                            Instruction *CxtI) {
1196   // If threading this would thread across a loop header, don't even try to
1197   // thread the edge.
1198   if (LoopHeaders.count(BB))
1199     return false;
1200 
1201   PredValueInfoTy PredValues;
1202   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
1203     return false;
1204 
1205   assert(!PredValues.empty() &&
1206          "ComputeValueKnownInPredecessors returned true with no values");
1207 
1208   DEBUG(dbgs() << "IN BB: " << *BB;
1209         for (const auto &PredValue : PredValues) {
1210           dbgs() << "  BB '" << BB->getName() << "': FOUND condition = "
1211             << *PredValue.first
1212             << " for pred '" << PredValue.second->getName() << "'.\n";
1213         });
1214 
1215   // Decide what we want to thread through.  Convert our list of known values to
1216   // a list of known destinations for each pred.  This also discards duplicate
1217   // predecessors and keeps track of the undefined inputs (which are represented
1218   // as a null dest in the PredToDestList).
1219   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1220   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1221 
1222   BasicBlock *OnlyDest = nullptr;
1223   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1224 
1225   for (const auto &PredValue : PredValues) {
1226     BasicBlock *Pred = PredValue.second;
1227     if (!SeenPreds.insert(Pred).second)
1228       continue;  // Duplicate predecessor entry.
1229 
1230     // If the predecessor ends with an indirect goto, we can't change its
1231     // destination.
1232     if (isa<IndirectBrInst>(Pred->getTerminator()))
1233       continue;
1234 
1235     Constant *Val = PredValue.first;
1236 
1237     BasicBlock *DestBB;
1238     if (isa<UndefValue>(Val))
1239       DestBB = nullptr;
1240     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1241       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1242     else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1243       DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor();
1244     } else {
1245       assert(isa<IndirectBrInst>(BB->getTerminator())
1246               && "Unexpected terminator");
1247       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1248     }
1249 
1250     // If we have exactly one destination, remember it for efficiency below.
1251     if (PredToDestList.empty())
1252       OnlyDest = DestBB;
1253     else if (OnlyDest != DestBB)
1254       OnlyDest = MultipleDestSentinel;
1255 
1256     PredToDestList.push_back(std::make_pair(Pred, DestBB));
1257   }
1258 
1259   // If all edges were unthreadable, we fail.
1260   if (PredToDestList.empty())
1261     return false;
1262 
1263   // Determine which is the most common successor.  If we have many inputs and
1264   // this block is a switch, we want to start by threading the batch that goes
1265   // to the most popular destination first.  If we only know about one
1266   // threadable destination (the common case) we can avoid this.
1267   BasicBlock *MostPopularDest = OnlyDest;
1268 
1269   if (MostPopularDest == MultipleDestSentinel)
1270     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1271 
1272   // Now that we know what the most popular destination is, factor all
1273   // predecessors that will jump to it into a single predecessor.
1274   SmallVector<BasicBlock*, 16> PredsToFactor;
1275   for (const auto &PredToDest : PredToDestList)
1276     if (PredToDest.second == MostPopularDest) {
1277       BasicBlock *Pred = PredToDest.first;
1278 
1279       // This predecessor may be a switch or something else that has multiple
1280       // edges to the block.  Factor each of these edges by listing them
1281       // according to # occurrences in PredsToFactor.
1282       for (BasicBlock *Succ : successors(Pred))
1283         if (Succ == BB)
1284           PredsToFactor.push_back(Pred);
1285     }
1286 
1287   // If the threadable edges are branching on an undefined value, we get to pick
1288   // the destination that these predecessors should get to.
1289   if (!MostPopularDest)
1290     MostPopularDest = BB->getTerminator()->
1291                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1292 
1293   // Ok, try to thread it!
1294   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1295 }
1296 
1297 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1298 /// a PHI node in the current block.  See if there are any simplifications we
1299 /// can do based on inputs to the phi node.
1300 ///
1301 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
1302   BasicBlock *BB = PN->getParent();
1303 
1304   // TODO: We could make use of this to do it once for blocks with common PHI
1305   // values.
1306   SmallVector<BasicBlock*, 1> PredBBs;
1307   PredBBs.resize(1);
1308 
1309   // If any of the predecessor blocks end in an unconditional branch, we can
1310   // *duplicate* the conditional branch into that block in order to further
1311   // encourage jump threading and to eliminate cases where we have branch on a
1312   // phi of an icmp (branch on icmp is much better).
1313   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1314     BasicBlock *PredBB = PN->getIncomingBlock(i);
1315     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1316       if (PredBr->isUnconditional()) {
1317         PredBBs[0] = PredBB;
1318         // Try to duplicate BB into PredBB.
1319         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1320           return true;
1321       }
1322   }
1323 
1324   return false;
1325 }
1326 
1327 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1328 /// a xor instruction in the current block.  See if there are any
1329 /// simplifications we can do based on inputs to the xor.
1330 ///
1331 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
1332   BasicBlock *BB = BO->getParent();
1333 
1334   // If either the LHS or RHS of the xor is a constant, don't do this
1335   // optimization.
1336   if (isa<ConstantInt>(BO->getOperand(0)) ||
1337       isa<ConstantInt>(BO->getOperand(1)))
1338     return false;
1339 
1340   // If the first instruction in BB isn't a phi, we won't be able to infer
1341   // anything special about any particular predecessor.
1342   if (!isa<PHINode>(BB->front()))
1343     return false;
1344 
1345   // If we have a xor as the branch input to this block, and we know that the
1346   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1347   // the condition into the predecessor and fix that value to true, saving some
1348   // logical ops on that path and encouraging other paths to simplify.
1349   //
1350   // This copies something like this:
1351   //
1352   //  BB:
1353   //    %X = phi i1 [1],  [%X']
1354   //    %Y = icmp eq i32 %A, %B
1355   //    %Z = xor i1 %X, %Y
1356   //    br i1 %Z, ...
1357   //
1358   // Into:
1359   //  BB':
1360   //    %Y = icmp ne i32 %A, %B
1361   //    br i1 %Y, ...
1362 
1363   PredValueInfoTy XorOpValues;
1364   bool isLHS = true;
1365   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1366                                        WantInteger, BO)) {
1367     assert(XorOpValues.empty());
1368     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1369                                          WantInteger, BO))
1370       return false;
1371     isLHS = false;
1372   }
1373 
1374   assert(!XorOpValues.empty() &&
1375          "ComputeValueKnownInPredecessors returned true with no values");
1376 
1377   // Scan the information to see which is most popular: true or false.  The
1378   // predecessors can be of the set true, false, or undef.
1379   unsigned NumTrue = 0, NumFalse = 0;
1380   for (const auto &XorOpValue : XorOpValues) {
1381     if (isa<UndefValue>(XorOpValue.first))
1382       // Ignore undefs for the count.
1383       continue;
1384     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1385       ++NumFalse;
1386     else
1387       ++NumTrue;
1388   }
1389 
1390   // Determine which value to split on, true, false, or undef if neither.
1391   ConstantInt *SplitVal = nullptr;
1392   if (NumTrue > NumFalse)
1393     SplitVal = ConstantInt::getTrue(BB->getContext());
1394   else if (NumTrue != 0 || NumFalse != 0)
1395     SplitVal = ConstantInt::getFalse(BB->getContext());
1396 
1397   // Collect all of the blocks that this can be folded into so that we can
1398   // factor this once and clone it once.
1399   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1400   for (const auto &XorOpValue : XorOpValues) {
1401     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1402       continue;
1403 
1404     BlocksToFoldInto.push_back(XorOpValue.second);
1405   }
1406 
1407   // If we inferred a value for all of the predecessors, then duplication won't
1408   // help us.  However, we can just replace the LHS or RHS with the constant.
1409   if (BlocksToFoldInto.size() ==
1410       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1411     if (!SplitVal) {
1412       // If all preds provide undef, just nuke the xor, because it is undef too.
1413       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1414       BO->eraseFromParent();
1415     } else if (SplitVal->isZero()) {
1416       // If all preds provide 0, replace the xor with the other input.
1417       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1418       BO->eraseFromParent();
1419     } else {
1420       // If all preds provide 1, set the computed value to 1.
1421       BO->setOperand(!isLHS, SplitVal);
1422     }
1423 
1424     return true;
1425   }
1426 
1427   // Try to duplicate BB into PredBB.
1428   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1429 }
1430 
1431 
1432 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1433 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1434 /// NewPred using the entries from OldPred (suitably mapped).
1435 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1436                                             BasicBlock *OldPred,
1437                                             BasicBlock *NewPred,
1438                                      DenseMap<Instruction*, Value*> &ValueMap) {
1439   for (BasicBlock::iterator PNI = PHIBB->begin();
1440        PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1441     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1442     // DestBlock.
1443     Value *IV = PN->getIncomingValueForBlock(OldPred);
1444 
1445     // Remap the value if necessary.
1446     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1447       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1448       if (I != ValueMap.end())
1449         IV = I->second;
1450     }
1451 
1452     PN->addIncoming(IV, NewPred);
1453   }
1454 }
1455 
1456 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1457 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1458 /// across BB.  Transform the IR to reflect this change.
1459 bool JumpThreading::ThreadEdge(BasicBlock *BB,
1460                                const SmallVectorImpl<BasicBlock*> &PredBBs,
1461                                BasicBlock *SuccBB) {
1462   // If threading to the same block as we come from, we would infinite loop.
1463   if (SuccBB == BB) {
1464     DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1465           << "' - would thread to self!\n");
1466     return false;
1467   }
1468 
1469   // If threading this would thread across a loop header, don't thread the edge.
1470   // See the comments above FindLoopHeaders for justifications and caveats.
1471   if (LoopHeaders.count(BB)) {
1472     DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
1473           << "' to dest BB '" << SuccBB->getName()
1474           << "' - it might create an irreducible loop!\n");
1475     return false;
1476   }
1477 
1478   unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, BBDupThreshold);
1479   if (JumpThreadCost > BBDupThreshold) {
1480     DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1481           << "' - Cost is too high: " << JumpThreadCost << "\n");
1482     return false;
1483   }
1484 
1485   // And finally, do it!  Start by factoring the predecessors if needed.
1486   BasicBlock *PredBB;
1487   if (PredBBs.size() == 1)
1488     PredBB = PredBBs[0];
1489   else {
1490     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1491           << " common predecessors.\n");
1492     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1493   }
1494 
1495   // And finally, do it!
1496   DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1497         << SuccBB->getName() << "' with cost: " << JumpThreadCost
1498         << ", across block:\n    "
1499         << *BB << "\n");
1500 
1501   LVI->threadEdge(PredBB, BB, SuccBB);
1502 
1503   // We are going to have to map operands from the original BB block to the new
1504   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1505   // account for entry from PredBB.
1506   DenseMap<Instruction*, Value*> ValueMapping;
1507 
1508   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1509                                          BB->getName()+".thread",
1510                                          BB->getParent(), BB);
1511   NewBB->moveAfter(PredBB);
1512 
1513   // Set the block frequency of NewBB.
1514   if (HasProfileData) {
1515     auto NewBBFreq =
1516         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
1517     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
1518   }
1519 
1520   BasicBlock::iterator BI = BB->begin();
1521   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1522     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1523 
1524   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1525   // mapping and using it to remap operands in the cloned instructions.
1526   for (; !isa<TerminatorInst>(BI); ++BI) {
1527     Instruction *New = BI->clone();
1528     New->setName(BI->getName());
1529     NewBB->getInstList().push_back(New);
1530     ValueMapping[&*BI] = New;
1531 
1532     // Remap operands to patch up intra-block references.
1533     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1534       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1535         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1536         if (I != ValueMapping.end())
1537           New->setOperand(i, I->second);
1538       }
1539   }
1540 
1541   // We didn't copy the terminator from BB over to NewBB, because there is now
1542   // an unconditional jump to SuccBB.  Insert the unconditional jump.
1543   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
1544   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
1545 
1546   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1547   // PHI nodes for NewBB now.
1548   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1549 
1550   // If there were values defined in BB that are used outside the block, then we
1551   // now have to update all uses of the value to use either the original value,
1552   // the cloned value, or some PHI derived value.  This can require arbitrary
1553   // PHI insertion, of which we are prepared to do, clean these up now.
1554   SSAUpdater SSAUpdate;
1555   SmallVector<Use*, 16> UsesToRename;
1556   for (Instruction &I : *BB) {
1557     // Scan all uses of this instruction to see if it is used outside of its
1558     // block, and if so, record them in UsesToRename.
1559     for (Use &U : I.uses()) {
1560       Instruction *User = cast<Instruction>(U.getUser());
1561       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1562         if (UserPN->getIncomingBlock(U) == BB)
1563           continue;
1564       } else if (User->getParent() == BB)
1565         continue;
1566 
1567       UsesToRename.push_back(&U);
1568     }
1569 
1570     // If there are no uses outside the block, we're done with this instruction.
1571     if (UsesToRename.empty())
1572       continue;
1573 
1574     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
1575 
1576     // We found a use of I outside of BB.  Rename all uses of I that are outside
1577     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1578     // with the two values we know.
1579     SSAUpdate.Initialize(I.getType(), I.getName());
1580     SSAUpdate.AddAvailableValue(BB, &I);
1581     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
1582 
1583     while (!UsesToRename.empty())
1584       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1585     DEBUG(dbgs() << "\n");
1586   }
1587 
1588 
1589   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1590   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1591   // us to simplify any PHI nodes in BB.
1592   TerminatorInst *PredTerm = PredBB->getTerminator();
1593   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1594     if (PredTerm->getSuccessor(i) == BB) {
1595       BB->removePredecessor(PredBB, true);
1596       PredTerm->setSuccessor(i, NewBB);
1597     }
1598 
1599   // At this point, the IR is fully up to date and consistent.  Do a quick scan
1600   // over the new instructions and zap any that are constants or dead.  This
1601   // frequently happens because of phi translation.
1602   SimplifyInstructionsInBlock(NewBB, TLI);
1603 
1604   // Update the edge weight from BB to SuccBB, which should be less than before.
1605   UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
1606 
1607   // Threaded an edge!
1608   ++NumThreads;
1609   return true;
1610 }
1611 
1612 /// Create a new basic block that will be the predecessor of BB and successor of
1613 /// all blocks in Preds. When profile data is availble, update the frequency of
1614 /// this new block.
1615 BasicBlock *JumpThreading::SplitBlockPreds(BasicBlock *BB,
1616                                            ArrayRef<BasicBlock *> Preds,
1617                                            const char *Suffix) {
1618   // Collect the frequencies of all predecessors of BB, which will be used to
1619   // update the edge weight on BB->SuccBB.
1620   BlockFrequency PredBBFreq(0);
1621   if (HasProfileData)
1622     for (auto Pred : Preds)
1623       PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB);
1624 
1625   BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix);
1626 
1627   // Set the block frequency of the newly created PredBB, which is the sum of
1628   // frequencies of Preds.
1629   if (HasProfileData)
1630     BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency());
1631   return PredBB;
1632 }
1633 
1634 /// Update the block frequency of BB and branch weight and the metadata on the
1635 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
1636 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
1637 void JumpThreading::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
1638                                                  BasicBlock *BB,
1639                                                  BasicBlock *NewBB,
1640                                                  BasicBlock *SuccBB) {
1641   if (!HasProfileData)
1642     return;
1643 
1644   assert(BFI && BPI && "BFI & BPI should have been created here");
1645 
1646   // As the edge from PredBB to BB is deleted, we have to update the block
1647   // frequency of BB.
1648   auto BBOrigFreq = BFI->getBlockFreq(BB);
1649   auto NewBBFreq = BFI->getBlockFreq(NewBB);
1650   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
1651   auto BBNewFreq = BBOrigFreq - NewBBFreq;
1652   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
1653 
1654   // Collect updated outgoing edges' frequencies from BB and use them to update
1655   // edge probabilities.
1656   SmallVector<uint64_t, 4> BBSuccFreq;
1657   for (BasicBlock *Succ : successors(BB)) {
1658     auto SuccFreq = (Succ == SuccBB)
1659                         ? BB2SuccBBFreq - NewBBFreq
1660                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
1661     BBSuccFreq.push_back(SuccFreq.getFrequency());
1662   }
1663 
1664   uint64_t MaxBBSuccFreq =
1665       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
1666 
1667   SmallVector<BranchProbability, 4> BBSuccProbs;
1668   if (MaxBBSuccFreq == 0)
1669     BBSuccProbs.assign(BBSuccFreq.size(),
1670                        {1, static_cast<unsigned>(BBSuccFreq.size())});
1671   else {
1672     for (uint64_t Freq : BBSuccFreq)
1673       BBSuccProbs.push_back(
1674           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
1675     // Normalize edge probabilities so that they sum up to one.
1676     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
1677                                               BBSuccProbs.end());
1678   }
1679 
1680   // Update edge probabilities in BPI.
1681   for (int I = 0, E = BBSuccProbs.size(); I < E; I++)
1682     BPI->setEdgeProbability(BB, I, BBSuccProbs[I]);
1683 
1684   if (BBSuccProbs.size() >= 2) {
1685     SmallVector<uint32_t, 4> Weights;
1686     for (auto Prob : BBSuccProbs)
1687       Weights.push_back(Prob.getNumerator());
1688 
1689     auto TI = BB->getTerminator();
1690     TI->setMetadata(
1691         LLVMContext::MD_prof,
1692         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
1693   }
1694 }
1695 
1696 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1697 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1698 /// If we can duplicate the contents of BB up into PredBB do so now, this
1699 /// improves the odds that the branch will be on an analyzable instruction like
1700 /// a compare.
1701 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1702                                  const SmallVectorImpl<BasicBlock *> &PredBBs) {
1703   assert(!PredBBs.empty() && "Can't handle an empty set");
1704 
1705   // If BB is a loop header, then duplicating this block outside the loop would
1706   // cause us to transform this into an irreducible loop, don't do this.
1707   // See the comments above FindLoopHeaders for justifications and caveats.
1708   if (LoopHeaders.count(BB)) {
1709     DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
1710           << "' into predecessor block '" << PredBBs[0]->getName()
1711           << "' - it might create an irreducible loop!\n");
1712     return false;
1713   }
1714 
1715   unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, BBDupThreshold);
1716   if (DuplicationCost > BBDupThreshold) {
1717     DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
1718           << "' - Cost is too high: " << DuplicationCost << "\n");
1719     return false;
1720   }
1721 
1722   // And finally, do it!  Start by factoring the predecessors if needed.
1723   BasicBlock *PredBB;
1724   if (PredBBs.size() == 1)
1725     PredBB = PredBBs[0];
1726   else {
1727     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1728           << " common predecessors.\n");
1729     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1730   }
1731 
1732   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1733   // of PredBB.
1734   DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1735         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1736         << DuplicationCost << " block is:" << *BB << "\n");
1737 
1738   // Unless PredBB ends with an unconditional branch, split the edge so that we
1739   // can just clone the bits from BB into the end of the new PredBB.
1740   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1741 
1742   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
1743     PredBB = SplitEdge(PredBB, BB);
1744     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1745   }
1746 
1747   // We are going to have to map operands from the original BB block into the
1748   // PredBB block.  Evaluate PHI nodes in BB.
1749   DenseMap<Instruction*, Value*> ValueMapping;
1750 
1751   BasicBlock::iterator BI = BB->begin();
1752   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1753     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1754   // Clone the non-phi instructions of BB into PredBB, keeping track of the
1755   // mapping and using it to remap operands in the cloned instructions.
1756   for (; BI != BB->end(); ++BI) {
1757     Instruction *New = BI->clone();
1758 
1759     // Remap operands to patch up intra-block references.
1760     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1761       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1762         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1763         if (I != ValueMapping.end())
1764           New->setOperand(i, I->second);
1765       }
1766 
1767     // If this instruction can be simplified after the operands are updated,
1768     // just use the simplified value instead.  This frequently happens due to
1769     // phi translation.
1770     if (Value *IV =
1771             SimplifyInstruction(New, BB->getModule()->getDataLayout())) {
1772       delete New;
1773       ValueMapping[&*BI] = IV;
1774     } else {
1775       // Otherwise, insert the new instruction into the block.
1776       New->setName(BI->getName());
1777       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
1778       ValueMapping[&*BI] = New;
1779     }
1780   }
1781 
1782   // Check to see if the targets of the branch had PHI nodes. If so, we need to
1783   // add entries to the PHI nodes for branch from PredBB now.
1784   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1785   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1786                                   ValueMapping);
1787   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1788                                   ValueMapping);
1789 
1790   // If there were values defined in BB that are used outside the block, then we
1791   // now have to update all uses of the value to use either the original value,
1792   // the cloned value, or some PHI derived value.  This can require arbitrary
1793   // PHI insertion, of which we are prepared to do, clean these up now.
1794   SSAUpdater SSAUpdate;
1795   SmallVector<Use*, 16> UsesToRename;
1796   for (Instruction &I : *BB) {
1797     // Scan all uses of this instruction to see if it is used outside of its
1798     // block, and if so, record them in UsesToRename.
1799     for (Use &U : I.uses()) {
1800       Instruction *User = cast<Instruction>(U.getUser());
1801       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1802         if (UserPN->getIncomingBlock(U) == BB)
1803           continue;
1804       } else if (User->getParent() == BB)
1805         continue;
1806 
1807       UsesToRename.push_back(&U);
1808     }
1809 
1810     // If there are no uses outside the block, we're done with this instruction.
1811     if (UsesToRename.empty())
1812       continue;
1813 
1814     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
1815 
1816     // We found a use of I outside of BB.  Rename all uses of I that are outside
1817     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1818     // with the two values we know.
1819     SSAUpdate.Initialize(I.getType(), I.getName());
1820     SSAUpdate.AddAvailableValue(BB, &I);
1821     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]);
1822 
1823     while (!UsesToRename.empty())
1824       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1825     DEBUG(dbgs() << "\n");
1826   }
1827 
1828   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1829   // that we nuked.
1830   BB->removePredecessor(PredBB, true);
1831 
1832   // Remove the unconditional branch at the end of the PredBB block.
1833   OldPredBranch->eraseFromParent();
1834 
1835   ++NumDupes;
1836   return true;
1837 }
1838 
1839 /// TryToUnfoldSelect - Look for blocks of the form
1840 /// bb1:
1841 ///   %a = select
1842 ///   br bb
1843 ///
1844 /// bb2:
1845 ///   %p = phi [%a, %bb] ...
1846 ///   %c = icmp %p
1847 ///   br i1 %c
1848 ///
1849 /// And expand the select into a branch structure if one of its arms allows %c
1850 /// to be folded. This later enables threading from bb1 over bb2.
1851 bool JumpThreading::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
1852   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1853   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
1854   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
1855 
1856   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
1857       CondLHS->getParent() != BB)
1858     return false;
1859 
1860   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
1861     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
1862     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
1863 
1864     // Look if one of the incoming values is a select in the corresponding
1865     // predecessor.
1866     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
1867       continue;
1868 
1869     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
1870     if (!PredTerm || !PredTerm->isUnconditional())
1871       continue;
1872 
1873     // Now check if one of the select values would allow us to constant fold the
1874     // terminator in BB. We don't do the transform if both sides fold, those
1875     // cases will be threaded in any case.
1876     LazyValueInfo::Tristate LHSFolds =
1877         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
1878                                 CondRHS, Pred, BB, CondCmp);
1879     LazyValueInfo::Tristate RHSFolds =
1880         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
1881                                 CondRHS, Pred, BB, CondCmp);
1882     if ((LHSFolds != LazyValueInfo::Unknown ||
1883          RHSFolds != LazyValueInfo::Unknown) &&
1884         LHSFolds != RHSFolds) {
1885       // Expand the select.
1886       //
1887       // Pred --
1888       //  |    v
1889       //  |  NewBB
1890       //  |    |
1891       //  |-----
1892       //  v
1893       // BB
1894       BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
1895                                              BB->getParent(), BB);
1896       // Move the unconditional branch to NewBB.
1897       PredTerm->removeFromParent();
1898       NewBB->getInstList().insert(NewBB->end(), PredTerm);
1899       // Create a conditional branch and update PHI nodes.
1900       BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
1901       CondLHS->setIncomingValue(I, SI->getFalseValue());
1902       CondLHS->addIncoming(SI->getTrueValue(), NewBB);
1903       // The select is now dead.
1904       SI->eraseFromParent();
1905 
1906       // Update any other PHI nodes in BB.
1907       for (BasicBlock::iterator BI = BB->begin();
1908            PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
1909         if (Phi != CondLHS)
1910           Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
1911       return true;
1912     }
1913   }
1914   return false;
1915 }
1916 
1917 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select in the same BB of the form
1918 /// bb:
1919 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
1920 ///   %s = select p, trueval, falseval
1921 ///
1922 /// And expand the select into a branch structure. This later enables
1923 /// jump-threading over bb in this pass.
1924 ///
1925 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
1926 /// select if the associated PHI has at least one constant.  If the unfolded
1927 /// select is not jump-threaded, it will be folded again in the later
1928 /// optimizations.
1929 bool JumpThreading::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
1930   // If threading this would thread across a loop header, don't thread the edge.
1931   // See the comments above FindLoopHeaders for justifications and caveats.
1932   if (LoopHeaders.count(BB))
1933     return false;
1934 
1935   // Look for a Phi/Select pair in the same basic block.  The Phi feeds the
1936   // condition of the Select and at least one of the incoming values is a
1937   // constant.
1938   for (BasicBlock::iterator BI = BB->begin();
1939        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
1940     unsigned NumPHIValues = PN->getNumIncomingValues();
1941     if (NumPHIValues == 0 || !PN->hasOneUse())
1942       continue;
1943 
1944     SelectInst *SI = dyn_cast<SelectInst>(PN->user_back());
1945     if (!SI || SI->getParent() != BB)
1946       continue;
1947 
1948     Value *Cond = SI->getCondition();
1949     if (!Cond || Cond != PN || !Cond->getType()->isIntegerTy(1))
1950       continue;
1951 
1952     bool HasConst = false;
1953     for (unsigned i = 0; i != NumPHIValues; ++i) {
1954       if (PN->getIncomingBlock(i) == BB)
1955         return false;
1956       if (isa<ConstantInt>(PN->getIncomingValue(i)))
1957         HasConst = true;
1958     }
1959 
1960     if (HasConst) {
1961       // Expand the select.
1962       TerminatorInst *Term =
1963           SplitBlockAndInsertIfThen(SI->getCondition(), SI, false);
1964       PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
1965       NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
1966       NewPN->addIncoming(SI->getFalseValue(), BB);
1967       SI->replaceAllUsesWith(NewPN);
1968       SI->eraseFromParent();
1969       return true;
1970     }
1971   }
1972 
1973   return false;
1974 }
1975