xref: /llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp (revision ba4561695890335ae7f089f7872a4d2d09236aed)
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "jump-threading"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/IntrinsicInst.h"
17 #include "llvm/LLVMContext.h"
18 #include "llvm/Pass.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LazyValueInfo.h"
21 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
22 #include "llvm/Transforms/Utils/Local.h"
23 #include "llvm/Transforms/Utils/SSAUpdater.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 using namespace llvm;
34 
35 STATISTIC(NumThreads, "Number of jumps threaded");
36 STATISTIC(NumFolds,   "Number of terminators folded");
37 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
38 
39 static cl::opt<unsigned>
40 Threshold("jump-threading-threshold",
41           cl::desc("Max block size to duplicate for jump threading"),
42           cl::init(6), cl::Hidden);
43 
44 // Turn on use of LazyValueInfo.
45 static cl::opt<bool>
46 EnableLVI("enable-jump-threading-lvi", cl::ReallyHidden);
47 
48 
49 
50 namespace {
51   /// This pass performs 'jump threading', which looks at blocks that have
52   /// multiple predecessors and multiple successors.  If one or more of the
53   /// predecessors of the block can be proven to always jump to one of the
54   /// successors, we forward the edge from the predecessor to the successor by
55   /// duplicating the contents of this block.
56   ///
57   /// An example of when this can occur is code like this:
58   ///
59   ///   if () { ...
60   ///     X = 4;
61   ///   }
62   ///   if (X < 3) {
63   ///
64   /// In this case, the unconditional branch at the end of the first if can be
65   /// revectored to the false side of the second if.
66   ///
67   class JumpThreading : public FunctionPass {
68     TargetData *TD;
69     LazyValueInfo *LVI;
70 #ifdef NDEBUG
71     SmallPtrSet<BasicBlock*, 16> LoopHeaders;
72 #else
73     SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
74 #endif
75   public:
76     static char ID; // Pass identification
77     JumpThreading() : FunctionPass(&ID) {}
78 
79     bool runOnFunction(Function &F);
80 
81     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
82       if (EnableLVI)
83         AU.addRequired<LazyValueInfo>();
84     }
85 
86     void FindLoopHeaders(Function &F);
87     bool ProcessBlock(BasicBlock *BB);
88     bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
89                     BasicBlock *SuccBB);
90     bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
91                                           BasicBlock *PredBB);
92 
93     typedef SmallVectorImpl<std::pair<ConstantInt*,
94                                       BasicBlock*> > PredValueInfo;
95 
96     bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
97                                          PredValueInfo &Result);
98     bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB);
99 
100 
101     bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
102     bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
103 
104     bool ProcessJumpOnPHI(PHINode *PN);
105 
106     bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
107   };
108 }
109 
110 char JumpThreading::ID = 0;
111 static RegisterPass<JumpThreading>
112 X("jump-threading", "Jump Threading");
113 
114 // Public interface to the Jump Threading pass
115 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
116 
117 /// runOnFunction - Top level algorithm.
118 ///
119 bool JumpThreading::runOnFunction(Function &F) {
120   DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n");
121   TD = getAnalysisIfAvailable<TargetData>();
122   LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0;
123 
124   FindLoopHeaders(F);
125 
126   bool AnotherIteration = true, EverChanged = false;
127   while (AnotherIteration) {
128     AnotherIteration = false;
129     bool Changed = false;
130     for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
131       BasicBlock *BB = I;
132       // Thread all of the branches we can over this block.
133       while (ProcessBlock(BB))
134         Changed = true;
135 
136       ++I;
137 
138       // If the block is trivially dead, zap it.  This eliminates the successor
139       // edges which simplifies the CFG.
140       if (pred_begin(BB) == pred_end(BB) &&
141           BB != &BB->getParent()->getEntryBlock()) {
142         DEBUG(errs() << "  JT: Deleting dead block '" << BB->getName()
143               << "' with terminator: " << *BB->getTerminator() << '\n');
144         LoopHeaders.erase(BB);
145         DeleteDeadBlock(BB);
146         Changed = true;
147       } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
148         // Can't thread an unconditional jump, but if the block is "almost
149         // empty", we can replace uses of it with uses of the successor and make
150         // this dead.
151         if (BI->isUnconditional() &&
152             BB != &BB->getParent()->getEntryBlock()) {
153           BasicBlock::iterator BBI = BB->getFirstNonPHI();
154           // Ignore dbg intrinsics.
155           while (isa<DbgInfoIntrinsic>(BBI))
156             ++BBI;
157           // If the terminator is the only non-phi instruction, try to nuke it.
158           if (BBI->isTerminator()) {
159             // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
160             // block, we have to make sure it isn't in the LoopHeaders set.  We
161             // reinsert afterward in the rare case when the block isn't deleted.
162             bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
163 
164             if (TryToSimplifyUncondBranchFromEmptyBlock(BB))
165               Changed = true;
166             else if (ErasedFromLoopHeaders)
167               LoopHeaders.insert(BB);
168           }
169         }
170       }
171     }
172     AnotherIteration = Changed;
173     EverChanged |= Changed;
174   }
175 
176   LoopHeaders.clear();
177   return EverChanged;
178 }
179 
180 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
181 /// thread across it.
182 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
183   /// Ignore PHI nodes, these will be flattened when duplication happens.
184   BasicBlock::const_iterator I = BB->getFirstNonPHI();
185 
186   // FIXME: THREADING will delete values that are just used to compute the
187   // branch, so they shouldn't count against the duplication cost.
188 
189 
190   // Sum up the cost of each instruction until we get to the terminator.  Don't
191   // include the terminator because the copy won't include it.
192   unsigned Size = 0;
193   for (; !isa<TerminatorInst>(I); ++I) {
194     // Debugger intrinsics don't incur code size.
195     if (isa<DbgInfoIntrinsic>(I)) continue;
196 
197     // If this is a pointer->pointer bitcast, it is free.
198     if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
199       continue;
200 
201     // All other instructions count for at least one unit.
202     ++Size;
203 
204     // Calls are more expensive.  If they are non-intrinsic calls, we model them
205     // as having cost of 4.  If they are a non-vector intrinsic, we model them
206     // as having cost of 2 total, and if they are a vector intrinsic, we model
207     // them as having cost 1.
208     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
209       if (!isa<IntrinsicInst>(CI))
210         Size += 3;
211       else if (!isa<VectorType>(CI->getType()))
212         Size += 1;
213     }
214   }
215 
216   // Threading through a switch statement is particularly profitable.  If this
217   // block ends in a switch, decrease its cost to make it more likely to happen.
218   if (isa<SwitchInst>(I))
219     Size = Size > 6 ? Size-6 : 0;
220 
221   return Size;
222 }
223 
224 /// FindLoopHeaders - We do not want jump threading to turn proper loop
225 /// structures into irreducible loops.  Doing this breaks up the loop nesting
226 /// hierarchy and pessimizes later transformations.  To prevent this from
227 /// happening, we first have to find the loop headers.  Here we approximate this
228 /// by finding targets of backedges in the CFG.
229 ///
230 /// Note that there definitely are cases when we want to allow threading of
231 /// edges across a loop header.  For example, threading a jump from outside the
232 /// loop (the preheader) to an exit block of the loop is definitely profitable.
233 /// It is also almost always profitable to thread backedges from within the loop
234 /// to exit blocks, and is often profitable to thread backedges to other blocks
235 /// within the loop (forming a nested loop).  This simple analysis is not rich
236 /// enough to track all of these properties and keep it up-to-date as the CFG
237 /// mutates, so we don't allow any of these transformations.
238 ///
239 void JumpThreading::FindLoopHeaders(Function &F) {
240   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
241   FindFunctionBackedges(F, Edges);
242 
243   for (unsigned i = 0, e = Edges.size(); i != e; ++i)
244     LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
245 }
246 
247 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
248 /// if we can infer that the value is a known ConstantInt in any of our
249 /// predecessors.  If so, return the known list of value and pred BB in the
250 /// result vector.  If a value is known to be undef, it is returned as null.
251 ///
252 /// This returns true if there were any known values.
253 ///
254 bool JumpThreading::
255 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
256   // If V is a constantint, then it is known in all predecessors.
257   if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
258     ConstantInt *CI = dyn_cast<ConstantInt>(V);
259 
260     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
261       Result.push_back(std::make_pair(CI, *PI));
262     return true;
263   }
264 
265   // If V is a non-instruction value, or an instruction in a different block,
266   // then it can't be derived from a PHI.
267   Instruction *I = dyn_cast<Instruction>(V);
268   if (I == 0 || I->getParent() != BB) {
269 
270     // Okay, if this is a live-in value, see if it has a known value at the end
271     // of any of our predecessors.
272     //
273     // FIXME: This should be an edge property, not a block end property.
274     /// TODO: Per PR2563, we could infer value range information about a
275     /// predecessor based on its terminator.
276     //
277     if (LVI) {
278       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
279         // If the value is known by LazyValueInfo to be a constant in a
280         // predecessor, use that information to try to thread this block.
281         Constant *PredCst = LVI->getConstantOnEdge(V, *PI, BB);
282         if (PredCst == 0 ||
283             (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst)))
284           continue;
285 
286         Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), *PI));
287       }
288 
289       return !Result.empty();
290     }
291 
292     return false;
293   }
294 
295   /// If I is a PHI node, then we know the incoming values for any constants.
296   if (PHINode *PN = dyn_cast<PHINode>(I)) {
297     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
298       Value *InVal = PN->getIncomingValue(i);
299       if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
300         ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
301         Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
302       }
303     }
304     return !Result.empty();
305   }
306 
307   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
308 
309   // Handle some boolean conditions.
310   if (I->getType()->getPrimitiveSizeInBits() == 1) {
311     // X | true -> true
312     // X & false -> false
313     if (I->getOpcode() == Instruction::Or ||
314         I->getOpcode() == Instruction::And) {
315       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
316       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
317 
318       if (LHSVals.empty() && RHSVals.empty())
319         return false;
320 
321       ConstantInt *InterestingVal;
322       if (I->getOpcode() == Instruction::Or)
323         InterestingVal = ConstantInt::getTrue(I->getContext());
324       else
325         InterestingVal = ConstantInt::getFalse(I->getContext());
326 
327       // Scan for the sentinel.
328       for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
329         if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0)
330           Result.push_back(LHSVals[i]);
331       for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
332         if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0)
333           Result.push_back(RHSVals[i]);
334       return !Result.empty();
335     }
336 
337     // Handle the NOT form of XOR.
338     if (I->getOpcode() == Instruction::Xor &&
339         isa<ConstantInt>(I->getOperand(1)) &&
340         cast<ConstantInt>(I->getOperand(1))->isOne()) {
341       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result);
342       if (Result.empty())
343         return false;
344 
345       // Invert the known values.
346       for (unsigned i = 0, e = Result.size(); i != e; ++i)
347         Result[i].first =
348           cast<ConstantInt>(ConstantExpr::getNot(Result[i].first));
349       return true;
350     }
351   }
352 
353   // Handle compare with phi operand, where the PHI is defined in this block.
354   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
355     PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
356     if (PN && PN->getParent() == BB) {
357       // We can do this simplification if any comparisons fold to true or false.
358       // See if any do.
359       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
360         BasicBlock *PredBB = PN->getIncomingBlock(i);
361         Value *LHS = PN->getIncomingValue(i);
362         Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
363 
364         Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
365         if (Res == 0) continue;
366 
367         if (isa<UndefValue>(Res))
368           Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
369         else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
370           Result.push_back(std::make_pair(CI, PredBB));
371       }
372 
373       return !Result.empty();
374     }
375 
376 
377     // If comparing a live-in value against a constant, see if we know the
378     // live-in value on any predecessors.
379     if (LVI && isa<Constant>(Cmp->getOperand(1)) &&
380         (!isa<Instruction>(Cmp->getOperand(0)) ||
381          cast<Instruction>(Cmp->getOperand(0))->getParent() != BB)) {
382       Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
383 
384       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
385         // If the value is known by LazyValueInfo to be a constant in a
386         // predecessor, use that information to try to thread this block.
387         Constant *PredCst = LVI->getConstantOnEdge(Cmp->getOperand(0), *PI, BB);
388         if (PredCst == 0)
389           continue;
390 
391         // Constant fold the compare.
392         Value *Res = SimplifyCmpInst(Cmp->getPredicate(), PredCst, RHSCst, TD);
393         if (isa<ConstantInt>(Res) || isa<UndefValue>(Res))
394           Result.push_back(std::make_pair(dyn_cast<ConstantInt>(Res), *PI));
395       }
396 
397       return !Result.empty();
398     }
399   }
400   return false;
401 }
402 
403 
404 
405 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
406 /// in an undefined jump, decide which block is best to revector to.
407 ///
408 /// Since we can pick an arbitrary destination, we pick the successor with the
409 /// fewest predecessors.  This should reduce the in-degree of the others.
410 ///
411 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
412   TerminatorInst *BBTerm = BB->getTerminator();
413   unsigned MinSucc = 0;
414   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
415   // Compute the successor with the minimum number of predecessors.
416   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
417   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
418     TestBB = BBTerm->getSuccessor(i);
419     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
420     if (NumPreds < MinNumPreds)
421       MinSucc = i;
422   }
423 
424   return MinSucc;
425 }
426 
427 /// ProcessBlock - If there are any predecessors whose control can be threaded
428 /// through to a successor, transform them now.
429 bool JumpThreading::ProcessBlock(BasicBlock *BB) {
430   // If this block has a single predecessor, and if that pred has a single
431   // successor, merge the blocks.  This encourages recursive jump threading
432   // because now the condition in this block can be threaded through
433   // predecessors of our predecessor block.
434   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
435     if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
436         SinglePred != BB) {
437       // If SinglePred was a loop header, BB becomes one.
438       if (LoopHeaders.erase(SinglePred))
439         LoopHeaders.insert(BB);
440 
441       // Remember if SinglePred was the entry block of the function.  If so, we
442       // will need to move BB back to the entry position.
443       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
444       MergeBasicBlockIntoOnlyPred(BB);
445 
446       if (isEntry && BB != &BB->getParent()->getEntryBlock())
447         BB->moveBefore(&BB->getParent()->getEntryBlock());
448       return true;
449     }
450   }
451 
452   // Look to see if the terminator is a branch of switch, if not we can't thread
453   // it.
454   Value *Condition;
455   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
456     // Can't thread an unconditional jump.
457     if (BI->isUnconditional()) return false;
458     Condition = BI->getCondition();
459   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
460     Condition = SI->getCondition();
461   else
462     return false; // Must be an invoke.
463 
464   // If the terminator of this block is branching on a constant, simplify the
465   // terminator to an unconditional branch.  This can occur due to threading in
466   // other blocks.
467   if (isa<ConstantInt>(Condition)) {
468     DEBUG(errs() << "  In block '" << BB->getName()
469           << "' folding terminator: " << *BB->getTerminator() << '\n');
470     ++NumFolds;
471     ConstantFoldTerminator(BB);
472     return true;
473   }
474 
475   // If the terminator is branching on an undef, we can pick any of the
476   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
477   if (isa<UndefValue>(Condition)) {
478     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
479 
480     // Fold the branch/switch.
481     TerminatorInst *BBTerm = BB->getTerminator();
482     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
483       if (i == BestSucc) continue;
484       RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
485     }
486 
487     DEBUG(errs() << "  In block '" << BB->getName()
488           << "' folding undef terminator: " << *BBTerm << '\n');
489     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
490     BBTerm->eraseFromParent();
491     return true;
492   }
493 
494   Instruction *CondInst = dyn_cast<Instruction>(Condition);
495 
496   // If the condition is an instruction defined in another block, see if a
497   // predecessor has the same condition:
498   //     br COND, BBX, BBY
499   //  BBX:
500   //     br COND, BBZ, BBW
501   if (!Condition->hasOneUse() && // Multiple uses.
502       (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
503     pred_iterator PI = pred_begin(BB), E = pred_end(BB);
504     if (isa<BranchInst>(BB->getTerminator())) {
505       for (; PI != E; ++PI)
506         if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
507           if (PBI->isConditional() && PBI->getCondition() == Condition &&
508               ProcessBranchOnDuplicateCond(*PI, BB))
509             return true;
510     } else {
511       assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
512       for (; PI != E; ++PI)
513         if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
514           if (PSI->getCondition() == Condition &&
515               ProcessSwitchOnDuplicateCond(*PI, BB))
516             return true;
517     }
518   }
519 
520   // All the rest of our checks depend on the condition being an instruction.
521   if (CondInst == 0) {
522     // FIXME: Unify this with code below.
523     if (LVI && ProcessThreadableEdges(Condition, BB))
524       return true;
525     return false;
526   }
527 
528 
529   // See if this is a phi node in the current block.
530   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
531     if (PN->getParent() == BB)
532       return ProcessJumpOnPHI(PN);
533 
534   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
535     if (!isa<PHINode>(CondCmp->getOperand(0)) ||
536         cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB) {
537       // If we have a comparison, loop over the predecessors to see if there is
538       // a condition with a lexically identical value.
539       pred_iterator PI = pred_begin(BB), E = pred_end(BB);
540       for (; PI != E; ++PI)
541         if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
542           if (PBI->isConditional() && *PI != BB) {
543             if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
544               if (CI->getOperand(0) == CondCmp->getOperand(0) &&
545                   CI->getOperand(1) == CondCmp->getOperand(1) &&
546                   CI->getPredicate() == CondCmp->getPredicate()) {
547                 // TODO: Could handle things like (x != 4) --> (x == 17)
548                 if (ProcessBranchOnDuplicateCond(*PI, BB))
549                   return true;
550               }
551             }
552           }
553     }
554   }
555 
556   // Check for some cases that are worth simplifying.  Right now we want to look
557   // for loads that are used by a switch or by the condition for the branch.  If
558   // we see one, check to see if it's partially redundant.  If so, insert a PHI
559   // which can then be used to thread the values.
560   //
561   // This is particularly important because reg2mem inserts loads and stores all
562   // over the place, and this blocks jump threading if we don't zap them.
563   Value *SimplifyValue = CondInst;
564   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
565     if (isa<Constant>(CondCmp->getOperand(1)))
566       SimplifyValue = CondCmp->getOperand(0);
567 
568   if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
569     if (SimplifyPartiallyRedundantLoad(LI))
570       return true;
571 
572 
573   // Handle a variety of cases where we are branching on something derived from
574   // a PHI node in the current block.  If we can prove that any predecessors
575   // compute a predictable value based on a PHI node, thread those predecessors.
576   //
577   if (ProcessThreadableEdges(CondInst, BB))
578     return true;
579 
580 
581   // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
582   // "(X == 4)" thread through this block.
583 
584   return false;
585 }
586 
587 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
588 /// block that jump on exactly the same condition.  This means that we almost
589 /// always know the direction of the edge in the DESTBB:
590 ///  PREDBB:
591 ///     br COND, DESTBB, BBY
592 ///  DESTBB:
593 ///     br COND, BBZ, BBW
594 ///
595 /// If DESTBB has multiple predecessors, we can't just constant fold the branch
596 /// in DESTBB, we have to thread over it.
597 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
598                                                  BasicBlock *BB) {
599   BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
600 
601   // If both successors of PredBB go to DESTBB, we don't know anything.  We can
602   // fold the branch to an unconditional one, which allows other recursive
603   // simplifications.
604   bool BranchDir;
605   if (PredBI->getSuccessor(1) != BB)
606     BranchDir = true;
607   else if (PredBI->getSuccessor(0) != BB)
608     BranchDir = false;
609   else {
610     DEBUG(errs() << "  In block '" << PredBB->getName()
611           << "' folding terminator: " << *PredBB->getTerminator() << '\n');
612     ++NumFolds;
613     ConstantFoldTerminator(PredBB);
614     return true;
615   }
616 
617   BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
618 
619   // If the dest block has one predecessor, just fix the branch condition to a
620   // constant and fold it.
621   if (BB->getSinglePredecessor()) {
622     DEBUG(errs() << "  In block '" << BB->getName()
623           << "' folding condition to '" << BranchDir << "': "
624           << *BB->getTerminator() << '\n');
625     ++NumFolds;
626     Value *OldCond = DestBI->getCondition();
627     DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
628                                           BranchDir));
629     ConstantFoldTerminator(BB);
630     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
631     return true;
632   }
633 
634 
635   // Next, figure out which successor we are threading to.
636   BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
637 
638   SmallVector<BasicBlock*, 2> Preds;
639   Preds.push_back(PredBB);
640 
641   // Ok, try to thread it!
642   return ThreadEdge(BB, Preds, SuccBB);
643 }
644 
645 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
646 /// block that switch on exactly the same condition.  This means that we almost
647 /// always know the direction of the edge in the DESTBB:
648 ///  PREDBB:
649 ///     switch COND [... DESTBB, BBY ... ]
650 ///  DESTBB:
651 ///     switch COND [... BBZ, BBW ]
652 ///
653 /// Optimizing switches like this is very important, because simplifycfg builds
654 /// switches out of repeated 'if' conditions.
655 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
656                                                  BasicBlock *DestBB) {
657   // Can't thread edge to self.
658   if (PredBB == DestBB)
659     return false;
660 
661   SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
662   SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
663 
664   // There are a variety of optimizations that we can potentially do on these
665   // blocks: we order them from most to least preferable.
666 
667   // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
668   // directly to their destination.  This does not introduce *any* code size
669   // growth.  Skip debug info first.
670   BasicBlock::iterator BBI = DestBB->begin();
671   while (isa<DbgInfoIntrinsic>(BBI))
672     BBI++;
673 
674   // FIXME: Thread if it just contains a PHI.
675   if (isa<SwitchInst>(BBI)) {
676     bool MadeChange = false;
677     // Ignore the default edge for now.
678     for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
679       ConstantInt *DestVal = DestSI->getCaseValue(i);
680       BasicBlock *DestSucc = DestSI->getSuccessor(i);
681 
682       // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
683       // PredSI has an explicit case for it.  If so, forward.  If it is covered
684       // by the default case, we can't update PredSI.
685       unsigned PredCase = PredSI->findCaseValue(DestVal);
686       if (PredCase == 0) continue;
687 
688       // If PredSI doesn't go to DestBB on this value, then it won't reach the
689       // case on this condition.
690       if (PredSI->getSuccessor(PredCase) != DestBB &&
691           DestSI->getSuccessor(i) != DestBB)
692         continue;
693 
694       // Otherwise, we're safe to make the change.  Make sure that the edge from
695       // DestSI to DestSucc is not critical and has no PHI nodes.
696       DEBUG(errs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
697       DEBUG(errs() << "THROUGH: " << *DestSI);
698 
699       // If the destination has PHI nodes, just split the edge for updating
700       // simplicity.
701       if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
702         SplitCriticalEdge(DestSI, i, this);
703         DestSucc = DestSI->getSuccessor(i);
704       }
705       FoldSingleEntryPHINodes(DestSucc);
706       PredSI->setSuccessor(PredCase, DestSucc);
707       MadeChange = true;
708     }
709 
710     if (MadeChange)
711       return true;
712   }
713 
714   return false;
715 }
716 
717 
718 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
719 /// load instruction, eliminate it by replacing it with a PHI node.  This is an
720 /// important optimization that encourages jump threading, and needs to be run
721 /// interlaced with other jump threading tasks.
722 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
723   // Don't hack volatile loads.
724   if (LI->isVolatile()) return false;
725 
726   // If the load is defined in a block with exactly one predecessor, it can't be
727   // partially redundant.
728   BasicBlock *LoadBB = LI->getParent();
729   if (LoadBB->getSinglePredecessor())
730     return false;
731 
732   Value *LoadedPtr = LI->getOperand(0);
733 
734   // If the loaded operand is defined in the LoadBB, it can't be available.
735   // FIXME: Could do PHI translation, that would be fun :)
736   if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
737     if (PtrOp->getParent() == LoadBB)
738       return false;
739 
740   // Scan a few instructions up from the load, to see if it is obviously live at
741   // the entry to its block.
742   BasicBlock::iterator BBIt = LI;
743 
744   if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB,
745                                                      BBIt, 6)) {
746     // If the value if the load is locally available within the block, just use
747     // it.  This frequently occurs for reg2mem'd allocas.
748     //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
749 
750     // If the returned value is the load itself, replace with an undef. This can
751     // only happen in dead loops.
752     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
753     LI->replaceAllUsesWith(AvailableVal);
754     LI->eraseFromParent();
755     return true;
756   }
757 
758   // Otherwise, if we scanned the whole block and got to the top of the block,
759   // we know the block is locally transparent to the load.  If not, something
760   // might clobber its value.
761   if (BBIt != LoadBB->begin())
762     return false;
763 
764 
765   SmallPtrSet<BasicBlock*, 8> PredsScanned;
766   typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
767   AvailablePredsTy AvailablePreds;
768   BasicBlock *OneUnavailablePred = 0;
769 
770   // If we got here, the loaded value is transparent through to the start of the
771   // block.  Check to see if it is available in any of the predecessor blocks.
772   for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
773        PI != PE; ++PI) {
774     BasicBlock *PredBB = *PI;
775 
776     // If we already scanned this predecessor, skip it.
777     if (!PredsScanned.insert(PredBB))
778       continue;
779 
780     // Scan the predecessor to see if the value is available in the pred.
781     BBIt = PredBB->end();
782     Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
783     if (!PredAvailable) {
784       OneUnavailablePred = PredBB;
785       continue;
786     }
787 
788     // If so, this load is partially redundant.  Remember this info so that we
789     // can create a PHI node.
790     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
791   }
792 
793   // If the loaded value isn't available in any predecessor, it isn't partially
794   // redundant.
795   if (AvailablePreds.empty()) return false;
796 
797   // Okay, the loaded value is available in at least one (and maybe all!)
798   // predecessors.  If the value is unavailable in more than one unique
799   // predecessor, we want to insert a merge block for those common predecessors.
800   // This ensures that we only have to insert one reload, thus not increasing
801   // code size.
802   BasicBlock *UnavailablePred = 0;
803 
804   // If there is exactly one predecessor where the value is unavailable, the
805   // already computed 'OneUnavailablePred' block is it.  If it ends in an
806   // unconditional branch, we know that it isn't a critical edge.
807   if (PredsScanned.size() == AvailablePreds.size()+1 &&
808       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
809     UnavailablePred = OneUnavailablePred;
810   } else if (PredsScanned.size() != AvailablePreds.size()) {
811     // Otherwise, we had multiple unavailable predecessors or we had a critical
812     // edge from the one.
813     SmallVector<BasicBlock*, 8> PredsToSplit;
814     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
815 
816     for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
817       AvailablePredSet.insert(AvailablePreds[i].first);
818 
819     // Add all the unavailable predecessors to the PredsToSplit list.
820     for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
821          PI != PE; ++PI)
822       if (!AvailablePredSet.count(*PI))
823         PredsToSplit.push_back(*PI);
824 
825     // Split them out to their own block.
826     UnavailablePred =
827       SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
828                              "thread-split", this);
829   }
830 
831   // If the value isn't available in all predecessors, then there will be
832   // exactly one where it isn't available.  Insert a load on that edge and add
833   // it to the AvailablePreds list.
834   if (UnavailablePred) {
835     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
836            "Can't handle critical edge here!");
837     Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr",
838                                  UnavailablePred->getTerminator());
839     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
840   }
841 
842   // Now we know that each predecessor of this block has a value in
843   // AvailablePreds, sort them for efficient access as we're walking the preds.
844   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
845 
846   // Create a PHI node at the start of the block for the PRE'd load value.
847   PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
848   PN->takeName(LI);
849 
850   // Insert new entries into the PHI for each predecessor.  A single block may
851   // have multiple entries here.
852   for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
853        ++PI) {
854     AvailablePredsTy::iterator I =
855       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
856                        std::make_pair(*PI, (Value*)0));
857 
858     assert(I != AvailablePreds.end() && I->first == *PI &&
859            "Didn't find entry for predecessor!");
860 
861     PN->addIncoming(I->second, I->first);
862   }
863 
864   //cerr << "PRE: " << *LI << *PN << "\n";
865 
866   LI->replaceAllUsesWith(PN);
867   LI->eraseFromParent();
868 
869   return true;
870 }
871 
872 /// FindMostPopularDest - The specified list contains multiple possible
873 /// threadable destinations.  Pick the one that occurs the most frequently in
874 /// the list.
875 static BasicBlock *
876 FindMostPopularDest(BasicBlock *BB,
877                     const SmallVectorImpl<std::pair<BasicBlock*,
878                                   BasicBlock*> > &PredToDestList) {
879   assert(!PredToDestList.empty());
880 
881   // Determine popularity.  If there are multiple possible destinations, we
882   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
883   // blocks with known and real destinations to threading undef.  We'll handle
884   // them later if interesting.
885   DenseMap<BasicBlock*, unsigned> DestPopularity;
886   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
887     if (PredToDestList[i].second)
888       DestPopularity[PredToDestList[i].second]++;
889 
890   // Find the most popular dest.
891   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
892   BasicBlock *MostPopularDest = DPI->first;
893   unsigned Popularity = DPI->second;
894   SmallVector<BasicBlock*, 4> SamePopularity;
895 
896   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
897     // If the popularity of this entry isn't higher than the popularity we've
898     // seen so far, ignore it.
899     if (DPI->second < Popularity)
900       ; // ignore.
901     else if (DPI->second == Popularity) {
902       // If it is the same as what we've seen so far, keep track of it.
903       SamePopularity.push_back(DPI->first);
904     } else {
905       // If it is more popular, remember it.
906       SamePopularity.clear();
907       MostPopularDest = DPI->first;
908       Popularity = DPI->second;
909     }
910   }
911 
912   // Okay, now we know the most popular destination.  If there is more than
913   // destination, we need to determine one.  This is arbitrary, but we need
914   // to make a deterministic decision.  Pick the first one that appears in the
915   // successor list.
916   if (!SamePopularity.empty()) {
917     SamePopularity.push_back(MostPopularDest);
918     TerminatorInst *TI = BB->getTerminator();
919     for (unsigned i = 0; ; ++i) {
920       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
921 
922       if (std::find(SamePopularity.begin(), SamePopularity.end(),
923                     TI->getSuccessor(i)) == SamePopularity.end())
924         continue;
925 
926       MostPopularDest = TI->getSuccessor(i);
927       break;
928     }
929   }
930 
931   // Okay, we have finally picked the most popular destination.
932   return MostPopularDest;
933 }
934 
935 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) {
936   // If threading this would thread across a loop header, don't even try to
937   // thread the edge.
938   if (LoopHeaders.count(BB))
939     return false;
940 
941   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
942   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues))
943     return false;
944   assert(!PredValues.empty() &&
945          "ComputeValueKnownInPredecessors returned true with no values");
946 
947   DEBUG(errs() << "IN BB: " << *BB;
948         for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
949           errs() << "  BB '" << BB->getName() << "': FOUND condition = ";
950           if (PredValues[i].first)
951             errs() << *PredValues[i].first;
952           else
953             errs() << "UNDEF";
954           errs() << " for pred '" << PredValues[i].second->getName()
955           << "'.\n";
956         });
957 
958   // Decide what we want to thread through.  Convert our list of known values to
959   // a list of known destinations for each pred.  This also discards duplicate
960   // predecessors and keeps track of the undefined inputs (which are represented
961   // as a null dest in the PredToDestList).
962   SmallPtrSet<BasicBlock*, 16> SeenPreds;
963   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
964 
965   BasicBlock *OnlyDest = 0;
966   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
967 
968   for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
969     BasicBlock *Pred = PredValues[i].second;
970     if (!SeenPreds.insert(Pred))
971       continue;  // Duplicate predecessor entry.
972 
973     // If the predecessor ends with an indirect goto, we can't change its
974     // destination.
975     if (isa<IndirectBrInst>(Pred->getTerminator()))
976       continue;
977 
978     ConstantInt *Val = PredValues[i].first;
979 
980     BasicBlock *DestBB;
981     if (Val == 0)      // Undef.
982       DestBB = 0;
983     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
984       DestBB = BI->getSuccessor(Val->isZero());
985     else {
986       SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
987       DestBB = SI->getSuccessor(SI->findCaseValue(Val));
988     }
989 
990     // If we have exactly one destination, remember it for efficiency below.
991     if (i == 0)
992       OnlyDest = DestBB;
993     else if (OnlyDest != DestBB)
994       OnlyDest = MultipleDestSentinel;
995 
996     PredToDestList.push_back(std::make_pair(Pred, DestBB));
997   }
998 
999   // If all edges were unthreadable, we fail.
1000   if (PredToDestList.empty())
1001     return false;
1002 
1003   // Determine which is the most common successor.  If we have many inputs and
1004   // this block is a switch, we want to start by threading the batch that goes
1005   // to the most popular destination first.  If we only know about one
1006   // threadable destination (the common case) we can avoid this.
1007   BasicBlock *MostPopularDest = OnlyDest;
1008 
1009   if (MostPopularDest == MultipleDestSentinel)
1010     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1011 
1012   // Now that we know what the most popular destination is, factor all
1013   // predecessors that will jump to it into a single predecessor.
1014   SmallVector<BasicBlock*, 16> PredsToFactor;
1015   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1016     if (PredToDestList[i].second == MostPopularDest) {
1017       BasicBlock *Pred = PredToDestList[i].first;
1018 
1019       // This predecessor may be a switch or something else that has multiple
1020       // edges to the block.  Factor each of these edges by listing them
1021       // according to # occurrences in PredsToFactor.
1022       TerminatorInst *PredTI = Pred->getTerminator();
1023       for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1024         if (PredTI->getSuccessor(i) == BB)
1025           PredsToFactor.push_back(Pred);
1026     }
1027 
1028   // If the threadable edges are branching on an undefined value, we get to pick
1029   // the destination that these predecessors should get to.
1030   if (MostPopularDest == 0)
1031     MostPopularDest = BB->getTerminator()->
1032                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1033 
1034   // Ok, try to thread it!
1035   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1036 }
1037 
1038 /// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
1039 /// the current block.  See if there are any simplifications we can do based on
1040 /// inputs to the phi node.
1041 ///
1042 bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
1043   BasicBlock *BB = PN->getParent();
1044 
1045   // If any of the predecessor blocks end in an unconditional branch, we can
1046   // *duplicate* the jump into that block in order to further encourage jump
1047   // threading and to eliminate cases where we have branch on a phi of an icmp
1048   // (branch on icmp is much better).
1049 
1050   // We don't want to do this tranformation for switches, because we don't
1051   // really want to duplicate a switch.
1052   if (isa<SwitchInst>(BB->getTerminator()))
1053     return false;
1054 
1055   // Look for unconditional branch predecessors.
1056   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1057     BasicBlock *PredBB = PN->getIncomingBlock(i);
1058     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1059       if (PredBr->isUnconditional() &&
1060           // Try to duplicate BB into PredBB.
1061           DuplicateCondBranchOnPHIIntoPred(BB, PredBB))
1062         return true;
1063   }
1064 
1065   return false;
1066 }
1067 
1068 
1069 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1070 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1071 /// NewPred using the entries from OldPred (suitably mapped).
1072 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1073                                             BasicBlock *OldPred,
1074                                             BasicBlock *NewPred,
1075                                      DenseMap<Instruction*, Value*> &ValueMap) {
1076   for (BasicBlock::iterator PNI = PHIBB->begin();
1077        PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1078     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1079     // DestBlock.
1080     Value *IV = PN->getIncomingValueForBlock(OldPred);
1081 
1082     // Remap the value if necessary.
1083     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1084       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1085       if (I != ValueMap.end())
1086         IV = I->second;
1087     }
1088 
1089     PN->addIncoming(IV, NewPred);
1090   }
1091 }
1092 
1093 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1094 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1095 /// across BB.  Transform the IR to reflect this change.
1096 bool JumpThreading::ThreadEdge(BasicBlock *BB,
1097                                const SmallVectorImpl<BasicBlock*> &PredBBs,
1098                                BasicBlock *SuccBB) {
1099   // If threading to the same block as we come from, we would infinite loop.
1100   if (SuccBB == BB) {
1101     DEBUG(errs() << "  Not threading across BB '" << BB->getName()
1102           << "' - would thread to self!\n");
1103     return false;
1104   }
1105 
1106   // If threading this would thread across a loop header, don't thread the edge.
1107   // See the comments above FindLoopHeaders for justifications and caveats.
1108   if (LoopHeaders.count(BB)) {
1109     DEBUG(errs() << "  Not threading across loop header BB '" << BB->getName()
1110           << "' to dest BB '" << SuccBB->getName()
1111           << "' - it might create an irreducible loop!\n");
1112     return false;
1113   }
1114 
1115   unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1116   if (JumpThreadCost > Threshold) {
1117     DEBUG(errs() << "  Not threading BB '" << BB->getName()
1118           << "' - Cost is too high: " << JumpThreadCost << "\n");
1119     return false;
1120   }
1121 
1122   // And finally, do it!  Start by factoring the predecessors is needed.
1123   BasicBlock *PredBB;
1124   if (PredBBs.size() == 1)
1125     PredBB = PredBBs[0];
1126   else {
1127     DEBUG(errs() << "  Factoring out " << PredBBs.size()
1128           << " common predecessors.\n");
1129     PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1130                                     ".thr_comm", this);
1131   }
1132 
1133   // And finally, do it!
1134   DEBUG(errs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1135         << SuccBB->getName() << "' with cost: " << JumpThreadCost
1136         << ", across block:\n    "
1137         << *BB << "\n");
1138 
1139   // We are going to have to map operands from the original BB block to the new
1140   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1141   // account for entry from PredBB.
1142   DenseMap<Instruction*, Value*> ValueMapping;
1143 
1144   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1145                                          BB->getName()+".thread",
1146                                          BB->getParent(), BB);
1147   NewBB->moveAfter(PredBB);
1148 
1149   BasicBlock::iterator BI = BB->begin();
1150   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1151     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1152 
1153   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1154   // mapping and using it to remap operands in the cloned instructions.
1155   for (; !isa<TerminatorInst>(BI); ++BI) {
1156     Instruction *New = BI->clone();
1157     New->setName(BI->getName());
1158     NewBB->getInstList().push_back(New);
1159     ValueMapping[BI] = New;
1160 
1161     // Remap operands to patch up intra-block references.
1162     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1163       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1164         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1165         if (I != ValueMapping.end())
1166           New->setOperand(i, I->second);
1167       }
1168   }
1169 
1170   // We didn't copy the terminator from BB over to NewBB, because there is now
1171   // an unconditional jump to SuccBB.  Insert the unconditional jump.
1172   BranchInst::Create(SuccBB, NewBB);
1173 
1174   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1175   // PHI nodes for NewBB now.
1176   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1177 
1178   // If there were values defined in BB that are used outside the block, then we
1179   // now have to update all uses of the value to use either the original value,
1180   // the cloned value, or some PHI derived value.  This can require arbitrary
1181   // PHI insertion, of which we are prepared to do, clean these up now.
1182   SSAUpdater SSAUpdate;
1183   SmallVector<Use*, 16> UsesToRename;
1184   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1185     // Scan all uses of this instruction to see if it is used outside of its
1186     // block, and if so, record them in UsesToRename.
1187     for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1188          ++UI) {
1189       Instruction *User = cast<Instruction>(*UI);
1190       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1191         if (UserPN->getIncomingBlock(UI) == BB)
1192           continue;
1193       } else if (User->getParent() == BB)
1194         continue;
1195 
1196       UsesToRename.push_back(&UI.getUse());
1197     }
1198 
1199     // If there are no uses outside the block, we're done with this instruction.
1200     if (UsesToRename.empty())
1201       continue;
1202 
1203     DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1204 
1205     // We found a use of I outside of BB.  Rename all uses of I that are outside
1206     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1207     // with the two values we know.
1208     SSAUpdate.Initialize(I);
1209     SSAUpdate.AddAvailableValue(BB, I);
1210     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1211 
1212     while (!UsesToRename.empty())
1213       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1214     DEBUG(errs() << "\n");
1215   }
1216 
1217 
1218   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1219   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1220   // us to simplify any PHI nodes in BB.
1221   TerminatorInst *PredTerm = PredBB->getTerminator();
1222   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1223     if (PredTerm->getSuccessor(i) == BB) {
1224       RemovePredecessorAndSimplify(BB, PredBB, TD);
1225       PredTerm->setSuccessor(i, NewBB);
1226     }
1227 
1228   // At this point, the IR is fully up to date and consistent.  Do a quick scan
1229   // over the new instructions and zap any that are constants or dead.  This
1230   // frequently happens because of phi translation.
1231   BI = NewBB->begin();
1232   for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
1233     Instruction *Inst = BI++;
1234 
1235     if (Value *V = SimplifyInstruction(Inst, TD)) {
1236       WeakVH BIHandle(BI);
1237       ReplaceAndSimplifyAllUses(Inst, V, TD);
1238       if (BIHandle == 0)
1239         BI = NewBB->begin();
1240       continue;
1241     }
1242 
1243     RecursivelyDeleteTriviallyDeadInstructions(Inst);
1244   }
1245 
1246   // Threaded an edge!
1247   ++NumThreads;
1248   return true;
1249 }
1250 
1251 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1252 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1253 /// If we can duplicate the contents of BB up into PredBB do so now, this
1254 /// improves the odds that the branch will be on an analyzable instruction like
1255 /// a compare.
1256 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1257                                                      BasicBlock *PredBB) {
1258   // If BB is a loop header, then duplicating this block outside the loop would
1259   // cause us to transform this into an irreducible loop, don't do this.
1260   // See the comments above FindLoopHeaders for justifications and caveats.
1261   if (LoopHeaders.count(BB)) {
1262     DEBUG(errs() << "  Not duplicating loop header '" << BB->getName()
1263           << "' into predecessor block '" << PredBB->getName()
1264           << "' - it might create an irreducible loop!\n");
1265     return false;
1266   }
1267 
1268   unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1269   if (DuplicationCost > Threshold) {
1270     DEBUG(errs() << "  Not duplicating BB '" << BB->getName()
1271           << "' - Cost is too high: " << DuplicationCost << "\n");
1272     return false;
1273   }
1274 
1275   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1276   // of PredBB.
1277   DEBUG(errs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1278         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1279         << DuplicationCost << " block is:" << *BB << "\n");
1280 
1281   // We are going to have to map operands from the original BB block into the
1282   // PredBB block.  Evaluate PHI nodes in BB.
1283   DenseMap<Instruction*, Value*> ValueMapping;
1284 
1285   BasicBlock::iterator BI = BB->begin();
1286   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1287     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1288 
1289   BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1290 
1291   // Clone the non-phi instructions of BB into PredBB, keeping track of the
1292   // mapping and using it to remap operands in the cloned instructions.
1293   for (; BI != BB->end(); ++BI) {
1294     Instruction *New = BI->clone();
1295     New->setName(BI->getName());
1296     PredBB->getInstList().insert(OldPredBranch, New);
1297     ValueMapping[BI] = New;
1298 
1299     // Remap operands to patch up intra-block references.
1300     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1301       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1302         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1303         if (I != ValueMapping.end())
1304           New->setOperand(i, I->second);
1305       }
1306   }
1307 
1308   // Check to see if the targets of the branch had PHI nodes. If so, we need to
1309   // add entries to the PHI nodes for branch from PredBB now.
1310   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1311   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1312                                   ValueMapping);
1313   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1314                                   ValueMapping);
1315 
1316   // If there were values defined in BB that are used outside the block, then we
1317   // now have to update all uses of the value to use either the original value,
1318   // the cloned value, or some PHI derived value.  This can require arbitrary
1319   // PHI insertion, of which we are prepared to do, clean these up now.
1320   SSAUpdater SSAUpdate;
1321   SmallVector<Use*, 16> UsesToRename;
1322   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1323     // Scan all uses of this instruction to see if it is used outside of its
1324     // block, and if so, record them in UsesToRename.
1325     for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1326          ++UI) {
1327       Instruction *User = cast<Instruction>(*UI);
1328       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1329         if (UserPN->getIncomingBlock(UI) == BB)
1330           continue;
1331       } else if (User->getParent() == BB)
1332         continue;
1333 
1334       UsesToRename.push_back(&UI.getUse());
1335     }
1336 
1337     // If there are no uses outside the block, we're done with this instruction.
1338     if (UsesToRename.empty())
1339       continue;
1340 
1341     DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1342 
1343     // We found a use of I outside of BB.  Rename all uses of I that are outside
1344     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1345     // with the two values we know.
1346     SSAUpdate.Initialize(I);
1347     SSAUpdate.AddAvailableValue(BB, I);
1348     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1349 
1350     while (!UsesToRename.empty())
1351       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1352     DEBUG(errs() << "\n");
1353   }
1354 
1355   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1356   // that we nuked.
1357   RemovePredecessorAndSimplify(BB, PredBB, TD);
1358 
1359   // Remove the unconditional branch at the end of the PredBB block.
1360   OldPredBranch->eraseFromParent();
1361 
1362   ++NumDupes;
1363   return true;
1364 }
1365 
1366 
1367