1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "jump-threading" 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/IntrinsicInst.h" 17 #include "llvm/LLVMContext.h" 18 #include "llvm/Pass.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LazyValueInfo.h" 21 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 22 #include "llvm/Transforms/Utils/Local.h" 23 #include "llvm/Transforms/Utils/SSAUpdater.h" 24 #include "llvm/Target/TargetData.h" 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 using namespace llvm; 34 35 STATISTIC(NumThreads, "Number of jumps threaded"); 36 STATISTIC(NumFolds, "Number of terminators folded"); 37 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 38 39 static cl::opt<unsigned> 40 Threshold("jump-threading-threshold", 41 cl::desc("Max block size to duplicate for jump threading"), 42 cl::init(6), cl::Hidden); 43 44 // Turn on use of LazyValueInfo. 45 static cl::opt<bool> 46 EnableLVI("enable-jump-threading-lvi", cl::ReallyHidden); 47 48 49 50 namespace { 51 /// This pass performs 'jump threading', which looks at blocks that have 52 /// multiple predecessors and multiple successors. If one or more of the 53 /// predecessors of the block can be proven to always jump to one of the 54 /// successors, we forward the edge from the predecessor to the successor by 55 /// duplicating the contents of this block. 56 /// 57 /// An example of when this can occur is code like this: 58 /// 59 /// if () { ... 60 /// X = 4; 61 /// } 62 /// if (X < 3) { 63 /// 64 /// In this case, the unconditional branch at the end of the first if can be 65 /// revectored to the false side of the second if. 66 /// 67 class JumpThreading : public FunctionPass { 68 TargetData *TD; 69 LazyValueInfo *LVI; 70 #ifdef NDEBUG 71 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 72 #else 73 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 74 #endif 75 public: 76 static char ID; // Pass identification 77 JumpThreading() : FunctionPass(&ID) {} 78 79 bool runOnFunction(Function &F); 80 81 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 82 if (EnableLVI) 83 AU.addRequired<LazyValueInfo>(); 84 } 85 86 void FindLoopHeaders(Function &F); 87 bool ProcessBlock(BasicBlock *BB); 88 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 89 BasicBlock *SuccBB); 90 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 91 BasicBlock *PredBB); 92 93 typedef SmallVectorImpl<std::pair<ConstantInt*, 94 BasicBlock*> > PredValueInfo; 95 96 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 97 PredValueInfo &Result); 98 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB); 99 100 101 bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 102 bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 103 104 bool ProcessJumpOnPHI(PHINode *PN); 105 106 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 107 }; 108 } 109 110 char JumpThreading::ID = 0; 111 static RegisterPass<JumpThreading> 112 X("jump-threading", "Jump Threading"); 113 114 // Public interface to the Jump Threading pass 115 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); } 116 117 /// runOnFunction - Top level algorithm. 118 /// 119 bool JumpThreading::runOnFunction(Function &F) { 120 DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n"); 121 TD = getAnalysisIfAvailable<TargetData>(); 122 LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0; 123 124 FindLoopHeaders(F); 125 126 bool AnotherIteration = true, EverChanged = false; 127 while (AnotherIteration) { 128 AnotherIteration = false; 129 bool Changed = false; 130 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 131 BasicBlock *BB = I; 132 // Thread all of the branches we can over this block. 133 while (ProcessBlock(BB)) 134 Changed = true; 135 136 ++I; 137 138 // If the block is trivially dead, zap it. This eliminates the successor 139 // edges which simplifies the CFG. 140 if (pred_begin(BB) == pred_end(BB) && 141 BB != &BB->getParent()->getEntryBlock()) { 142 DEBUG(errs() << " JT: Deleting dead block '" << BB->getName() 143 << "' with terminator: " << *BB->getTerminator() << '\n'); 144 LoopHeaders.erase(BB); 145 DeleteDeadBlock(BB); 146 Changed = true; 147 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 148 // Can't thread an unconditional jump, but if the block is "almost 149 // empty", we can replace uses of it with uses of the successor and make 150 // this dead. 151 if (BI->isUnconditional() && 152 BB != &BB->getParent()->getEntryBlock()) { 153 BasicBlock::iterator BBI = BB->getFirstNonPHI(); 154 // Ignore dbg intrinsics. 155 while (isa<DbgInfoIntrinsic>(BBI)) 156 ++BBI; 157 // If the terminator is the only non-phi instruction, try to nuke it. 158 if (BBI->isTerminator()) { 159 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 160 // block, we have to make sure it isn't in the LoopHeaders set. We 161 // reinsert afterward in the rare case when the block isn't deleted. 162 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 163 164 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) 165 Changed = true; 166 else if (ErasedFromLoopHeaders) 167 LoopHeaders.insert(BB); 168 } 169 } 170 } 171 } 172 AnotherIteration = Changed; 173 EverChanged |= Changed; 174 } 175 176 LoopHeaders.clear(); 177 return EverChanged; 178 } 179 180 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 181 /// thread across it. 182 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) { 183 /// Ignore PHI nodes, these will be flattened when duplication happens. 184 BasicBlock::const_iterator I = BB->getFirstNonPHI(); 185 186 // FIXME: THREADING will delete values that are just used to compute the 187 // branch, so they shouldn't count against the duplication cost. 188 189 190 // Sum up the cost of each instruction until we get to the terminator. Don't 191 // include the terminator because the copy won't include it. 192 unsigned Size = 0; 193 for (; !isa<TerminatorInst>(I); ++I) { 194 // Debugger intrinsics don't incur code size. 195 if (isa<DbgInfoIntrinsic>(I)) continue; 196 197 // If this is a pointer->pointer bitcast, it is free. 198 if (isa<BitCastInst>(I) && isa<PointerType>(I->getType())) 199 continue; 200 201 // All other instructions count for at least one unit. 202 ++Size; 203 204 // Calls are more expensive. If they are non-intrinsic calls, we model them 205 // as having cost of 4. If they are a non-vector intrinsic, we model them 206 // as having cost of 2 total, and if they are a vector intrinsic, we model 207 // them as having cost 1. 208 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 209 if (!isa<IntrinsicInst>(CI)) 210 Size += 3; 211 else if (!isa<VectorType>(CI->getType())) 212 Size += 1; 213 } 214 } 215 216 // Threading through a switch statement is particularly profitable. If this 217 // block ends in a switch, decrease its cost to make it more likely to happen. 218 if (isa<SwitchInst>(I)) 219 Size = Size > 6 ? Size-6 : 0; 220 221 return Size; 222 } 223 224 /// FindLoopHeaders - We do not want jump threading to turn proper loop 225 /// structures into irreducible loops. Doing this breaks up the loop nesting 226 /// hierarchy and pessimizes later transformations. To prevent this from 227 /// happening, we first have to find the loop headers. Here we approximate this 228 /// by finding targets of backedges in the CFG. 229 /// 230 /// Note that there definitely are cases when we want to allow threading of 231 /// edges across a loop header. For example, threading a jump from outside the 232 /// loop (the preheader) to an exit block of the loop is definitely profitable. 233 /// It is also almost always profitable to thread backedges from within the loop 234 /// to exit blocks, and is often profitable to thread backedges to other blocks 235 /// within the loop (forming a nested loop). This simple analysis is not rich 236 /// enough to track all of these properties and keep it up-to-date as the CFG 237 /// mutates, so we don't allow any of these transformations. 238 /// 239 void JumpThreading::FindLoopHeaders(Function &F) { 240 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 241 FindFunctionBackedges(F, Edges); 242 243 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 244 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 245 } 246 247 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 248 /// if we can infer that the value is a known ConstantInt in any of our 249 /// predecessors. If so, return the known list of value and pred BB in the 250 /// result vector. If a value is known to be undef, it is returned as null. 251 /// 252 /// This returns true if there were any known values. 253 /// 254 bool JumpThreading:: 255 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){ 256 // If V is a constantint, then it is known in all predecessors. 257 if (isa<ConstantInt>(V) || isa<UndefValue>(V)) { 258 ConstantInt *CI = dyn_cast<ConstantInt>(V); 259 260 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 261 Result.push_back(std::make_pair(CI, *PI)); 262 return true; 263 } 264 265 // If V is a non-instruction value, or an instruction in a different block, 266 // then it can't be derived from a PHI. 267 Instruction *I = dyn_cast<Instruction>(V); 268 if (I == 0 || I->getParent() != BB) { 269 270 // Okay, if this is a live-in value, see if it has a known value at the end 271 // of any of our predecessors. 272 // 273 // FIXME: This should be an edge property, not a block end property. 274 /// TODO: Per PR2563, we could infer value range information about a 275 /// predecessor based on its terminator. 276 // 277 if (LVI) { 278 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 279 // If the value is known by LazyValueInfo to be a constant in a 280 // predecessor, use that information to try to thread this block. 281 Constant *PredCst = LVI->getConstantOnEdge(V, *PI, BB); 282 if (PredCst == 0 || 283 (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst))) 284 continue; 285 286 Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), *PI)); 287 } 288 289 return !Result.empty(); 290 } 291 292 return false; 293 } 294 295 /// If I is a PHI node, then we know the incoming values for any constants. 296 if (PHINode *PN = dyn_cast<PHINode>(I)) { 297 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 298 Value *InVal = PN->getIncomingValue(i); 299 if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) { 300 ConstantInt *CI = dyn_cast<ConstantInt>(InVal); 301 Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i))); 302 } 303 } 304 return !Result.empty(); 305 } 306 307 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals; 308 309 // Handle some boolean conditions. 310 if (I->getType()->getPrimitiveSizeInBits() == 1) { 311 // X | true -> true 312 // X & false -> false 313 if (I->getOpcode() == Instruction::Or || 314 I->getOpcode() == Instruction::And) { 315 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals); 316 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals); 317 318 if (LHSVals.empty() && RHSVals.empty()) 319 return false; 320 321 ConstantInt *InterestingVal; 322 if (I->getOpcode() == Instruction::Or) 323 InterestingVal = ConstantInt::getTrue(I->getContext()); 324 else 325 InterestingVal = ConstantInt::getFalse(I->getContext()); 326 327 // Scan for the sentinel. 328 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 329 if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) 330 Result.push_back(LHSVals[i]); 331 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 332 if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) 333 Result.push_back(RHSVals[i]); 334 return !Result.empty(); 335 } 336 337 // Handle the NOT form of XOR. 338 if (I->getOpcode() == Instruction::Xor && 339 isa<ConstantInt>(I->getOperand(1)) && 340 cast<ConstantInt>(I->getOperand(1))->isOne()) { 341 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result); 342 if (Result.empty()) 343 return false; 344 345 // Invert the known values. 346 for (unsigned i = 0, e = Result.size(); i != e; ++i) 347 Result[i].first = 348 cast<ConstantInt>(ConstantExpr::getNot(Result[i].first)); 349 return true; 350 } 351 } 352 353 // Handle compare with phi operand, where the PHI is defined in this block. 354 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 355 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 356 if (PN && PN->getParent() == BB) { 357 // We can do this simplification if any comparisons fold to true or false. 358 // See if any do. 359 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 360 BasicBlock *PredBB = PN->getIncomingBlock(i); 361 Value *LHS = PN->getIncomingValue(i); 362 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 363 364 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD); 365 if (Res == 0) continue; 366 367 if (isa<UndefValue>(Res)) 368 Result.push_back(std::make_pair((ConstantInt*)0, PredBB)); 369 else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res)) 370 Result.push_back(std::make_pair(CI, PredBB)); 371 } 372 373 return !Result.empty(); 374 } 375 376 377 // If comparing a live-in value against a constant, see if we know the 378 // live-in value on any predecessors. 379 if (LVI && isa<Constant>(Cmp->getOperand(1)) && 380 (!isa<Instruction>(Cmp->getOperand(0)) || 381 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB)) { 382 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 383 384 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 385 // If the value is known by LazyValueInfo to be a constant in a 386 // predecessor, use that information to try to thread this block. 387 Constant *PredCst = LVI->getConstantOnEdge(Cmp->getOperand(0), *PI, BB); 388 if (PredCst == 0) 389 continue; 390 391 // Constant fold the compare. 392 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), PredCst, RHSCst, TD); 393 if (isa<ConstantInt>(Res) || isa<UndefValue>(Res)) 394 Result.push_back(std::make_pair(dyn_cast<ConstantInt>(Res), *PI)); 395 } 396 397 return !Result.empty(); 398 } 399 } 400 return false; 401 } 402 403 404 405 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 406 /// in an undefined jump, decide which block is best to revector to. 407 /// 408 /// Since we can pick an arbitrary destination, we pick the successor with the 409 /// fewest predecessors. This should reduce the in-degree of the others. 410 /// 411 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 412 TerminatorInst *BBTerm = BB->getTerminator(); 413 unsigned MinSucc = 0; 414 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 415 // Compute the successor with the minimum number of predecessors. 416 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 417 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 418 TestBB = BBTerm->getSuccessor(i); 419 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 420 if (NumPreds < MinNumPreds) 421 MinSucc = i; 422 } 423 424 return MinSucc; 425 } 426 427 /// ProcessBlock - If there are any predecessors whose control can be threaded 428 /// through to a successor, transform them now. 429 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 430 // If this block has a single predecessor, and if that pred has a single 431 // successor, merge the blocks. This encourages recursive jump threading 432 // because now the condition in this block can be threaded through 433 // predecessors of our predecessor block. 434 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 435 if (SinglePred->getTerminator()->getNumSuccessors() == 1 && 436 SinglePred != BB) { 437 // If SinglePred was a loop header, BB becomes one. 438 if (LoopHeaders.erase(SinglePred)) 439 LoopHeaders.insert(BB); 440 441 // Remember if SinglePred was the entry block of the function. If so, we 442 // will need to move BB back to the entry position. 443 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 444 MergeBasicBlockIntoOnlyPred(BB); 445 446 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 447 BB->moveBefore(&BB->getParent()->getEntryBlock()); 448 return true; 449 } 450 } 451 452 // Look to see if the terminator is a branch of switch, if not we can't thread 453 // it. 454 Value *Condition; 455 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 456 // Can't thread an unconditional jump. 457 if (BI->isUnconditional()) return false; 458 Condition = BI->getCondition(); 459 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 460 Condition = SI->getCondition(); 461 else 462 return false; // Must be an invoke. 463 464 // If the terminator of this block is branching on a constant, simplify the 465 // terminator to an unconditional branch. This can occur due to threading in 466 // other blocks. 467 if (isa<ConstantInt>(Condition)) { 468 DEBUG(errs() << " In block '" << BB->getName() 469 << "' folding terminator: " << *BB->getTerminator() << '\n'); 470 ++NumFolds; 471 ConstantFoldTerminator(BB); 472 return true; 473 } 474 475 // If the terminator is branching on an undef, we can pick any of the 476 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 477 if (isa<UndefValue>(Condition)) { 478 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 479 480 // Fold the branch/switch. 481 TerminatorInst *BBTerm = BB->getTerminator(); 482 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 483 if (i == BestSucc) continue; 484 RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD); 485 } 486 487 DEBUG(errs() << " In block '" << BB->getName() 488 << "' folding undef terminator: " << *BBTerm << '\n'); 489 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 490 BBTerm->eraseFromParent(); 491 return true; 492 } 493 494 Instruction *CondInst = dyn_cast<Instruction>(Condition); 495 496 // If the condition is an instruction defined in another block, see if a 497 // predecessor has the same condition: 498 // br COND, BBX, BBY 499 // BBX: 500 // br COND, BBZ, BBW 501 if (!Condition->hasOneUse() && // Multiple uses. 502 (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition. 503 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 504 if (isa<BranchInst>(BB->getTerminator())) { 505 for (; PI != E; ++PI) 506 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 507 if (PBI->isConditional() && PBI->getCondition() == Condition && 508 ProcessBranchOnDuplicateCond(*PI, BB)) 509 return true; 510 } else { 511 assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator"); 512 for (; PI != E; ++PI) 513 if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator())) 514 if (PSI->getCondition() == Condition && 515 ProcessSwitchOnDuplicateCond(*PI, BB)) 516 return true; 517 } 518 } 519 520 // All the rest of our checks depend on the condition being an instruction. 521 if (CondInst == 0) { 522 // FIXME: Unify this with code below. 523 if (LVI && ProcessThreadableEdges(Condition, BB)) 524 return true; 525 return false; 526 } 527 528 529 // See if this is a phi node in the current block. 530 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 531 if (PN->getParent() == BB) 532 return ProcessJumpOnPHI(PN); 533 534 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 535 if (!isa<PHINode>(CondCmp->getOperand(0)) || 536 cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB) { 537 // If we have a comparison, loop over the predecessors to see if there is 538 // a condition with a lexically identical value. 539 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 540 for (; PI != E; ++PI) 541 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 542 if (PBI->isConditional() && *PI != BB) { 543 if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) { 544 if (CI->getOperand(0) == CondCmp->getOperand(0) && 545 CI->getOperand(1) == CondCmp->getOperand(1) && 546 CI->getPredicate() == CondCmp->getPredicate()) { 547 // TODO: Could handle things like (x != 4) --> (x == 17) 548 if (ProcessBranchOnDuplicateCond(*PI, BB)) 549 return true; 550 } 551 } 552 } 553 } 554 } 555 556 // Check for some cases that are worth simplifying. Right now we want to look 557 // for loads that are used by a switch or by the condition for the branch. If 558 // we see one, check to see if it's partially redundant. If so, insert a PHI 559 // which can then be used to thread the values. 560 // 561 // This is particularly important because reg2mem inserts loads and stores all 562 // over the place, and this blocks jump threading if we don't zap them. 563 Value *SimplifyValue = CondInst; 564 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 565 if (isa<Constant>(CondCmp->getOperand(1))) 566 SimplifyValue = CondCmp->getOperand(0); 567 568 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 569 if (SimplifyPartiallyRedundantLoad(LI)) 570 return true; 571 572 573 // Handle a variety of cases where we are branching on something derived from 574 // a PHI node in the current block. If we can prove that any predecessors 575 // compute a predictable value based on a PHI node, thread those predecessors. 576 // 577 if (ProcessThreadableEdges(CondInst, BB)) 578 return true; 579 580 581 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 582 // "(X == 4)" thread through this block. 583 584 return false; 585 } 586 587 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that 588 /// block that jump on exactly the same condition. This means that we almost 589 /// always know the direction of the edge in the DESTBB: 590 /// PREDBB: 591 /// br COND, DESTBB, BBY 592 /// DESTBB: 593 /// br COND, BBZ, BBW 594 /// 595 /// If DESTBB has multiple predecessors, we can't just constant fold the branch 596 /// in DESTBB, we have to thread over it. 597 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB, 598 BasicBlock *BB) { 599 BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator()); 600 601 // If both successors of PredBB go to DESTBB, we don't know anything. We can 602 // fold the branch to an unconditional one, which allows other recursive 603 // simplifications. 604 bool BranchDir; 605 if (PredBI->getSuccessor(1) != BB) 606 BranchDir = true; 607 else if (PredBI->getSuccessor(0) != BB) 608 BranchDir = false; 609 else { 610 DEBUG(errs() << " In block '" << PredBB->getName() 611 << "' folding terminator: " << *PredBB->getTerminator() << '\n'); 612 ++NumFolds; 613 ConstantFoldTerminator(PredBB); 614 return true; 615 } 616 617 BranchInst *DestBI = cast<BranchInst>(BB->getTerminator()); 618 619 // If the dest block has one predecessor, just fix the branch condition to a 620 // constant and fold it. 621 if (BB->getSinglePredecessor()) { 622 DEBUG(errs() << " In block '" << BB->getName() 623 << "' folding condition to '" << BranchDir << "': " 624 << *BB->getTerminator() << '\n'); 625 ++NumFolds; 626 Value *OldCond = DestBI->getCondition(); 627 DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 628 BranchDir)); 629 ConstantFoldTerminator(BB); 630 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 631 return true; 632 } 633 634 635 // Next, figure out which successor we are threading to. 636 BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir); 637 638 SmallVector<BasicBlock*, 2> Preds; 639 Preds.push_back(PredBB); 640 641 // Ok, try to thread it! 642 return ThreadEdge(BB, Preds, SuccBB); 643 } 644 645 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that 646 /// block that switch on exactly the same condition. This means that we almost 647 /// always know the direction of the edge in the DESTBB: 648 /// PREDBB: 649 /// switch COND [... DESTBB, BBY ... ] 650 /// DESTBB: 651 /// switch COND [... BBZ, BBW ] 652 /// 653 /// Optimizing switches like this is very important, because simplifycfg builds 654 /// switches out of repeated 'if' conditions. 655 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, 656 BasicBlock *DestBB) { 657 // Can't thread edge to self. 658 if (PredBB == DestBB) 659 return false; 660 661 SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator()); 662 SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator()); 663 664 // There are a variety of optimizations that we can potentially do on these 665 // blocks: we order them from most to least preferable. 666 667 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB 668 // directly to their destination. This does not introduce *any* code size 669 // growth. Skip debug info first. 670 BasicBlock::iterator BBI = DestBB->begin(); 671 while (isa<DbgInfoIntrinsic>(BBI)) 672 BBI++; 673 674 // FIXME: Thread if it just contains a PHI. 675 if (isa<SwitchInst>(BBI)) { 676 bool MadeChange = false; 677 // Ignore the default edge for now. 678 for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) { 679 ConstantInt *DestVal = DestSI->getCaseValue(i); 680 BasicBlock *DestSucc = DestSI->getSuccessor(i); 681 682 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if 683 // PredSI has an explicit case for it. If so, forward. If it is covered 684 // by the default case, we can't update PredSI. 685 unsigned PredCase = PredSI->findCaseValue(DestVal); 686 if (PredCase == 0) continue; 687 688 // If PredSI doesn't go to DestBB on this value, then it won't reach the 689 // case on this condition. 690 if (PredSI->getSuccessor(PredCase) != DestBB && 691 DestSI->getSuccessor(i) != DestBB) 692 continue; 693 694 // Otherwise, we're safe to make the change. Make sure that the edge from 695 // DestSI to DestSucc is not critical and has no PHI nodes. 696 DEBUG(errs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI); 697 DEBUG(errs() << "THROUGH: " << *DestSI); 698 699 // If the destination has PHI nodes, just split the edge for updating 700 // simplicity. 701 if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){ 702 SplitCriticalEdge(DestSI, i, this); 703 DestSucc = DestSI->getSuccessor(i); 704 } 705 FoldSingleEntryPHINodes(DestSucc); 706 PredSI->setSuccessor(PredCase, DestSucc); 707 MadeChange = true; 708 } 709 710 if (MadeChange) 711 return true; 712 } 713 714 return false; 715 } 716 717 718 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 719 /// load instruction, eliminate it by replacing it with a PHI node. This is an 720 /// important optimization that encourages jump threading, and needs to be run 721 /// interlaced with other jump threading tasks. 722 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 723 // Don't hack volatile loads. 724 if (LI->isVolatile()) return false; 725 726 // If the load is defined in a block with exactly one predecessor, it can't be 727 // partially redundant. 728 BasicBlock *LoadBB = LI->getParent(); 729 if (LoadBB->getSinglePredecessor()) 730 return false; 731 732 Value *LoadedPtr = LI->getOperand(0); 733 734 // If the loaded operand is defined in the LoadBB, it can't be available. 735 // FIXME: Could do PHI translation, that would be fun :) 736 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 737 if (PtrOp->getParent() == LoadBB) 738 return false; 739 740 // Scan a few instructions up from the load, to see if it is obviously live at 741 // the entry to its block. 742 BasicBlock::iterator BBIt = LI; 743 744 if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB, 745 BBIt, 6)) { 746 // If the value if the load is locally available within the block, just use 747 // it. This frequently occurs for reg2mem'd allocas. 748 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 749 750 // If the returned value is the load itself, replace with an undef. This can 751 // only happen in dead loops. 752 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 753 LI->replaceAllUsesWith(AvailableVal); 754 LI->eraseFromParent(); 755 return true; 756 } 757 758 // Otherwise, if we scanned the whole block and got to the top of the block, 759 // we know the block is locally transparent to the load. If not, something 760 // might clobber its value. 761 if (BBIt != LoadBB->begin()) 762 return false; 763 764 765 SmallPtrSet<BasicBlock*, 8> PredsScanned; 766 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 767 AvailablePredsTy AvailablePreds; 768 BasicBlock *OneUnavailablePred = 0; 769 770 // If we got here, the loaded value is transparent through to the start of the 771 // block. Check to see if it is available in any of the predecessor blocks. 772 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 773 PI != PE; ++PI) { 774 BasicBlock *PredBB = *PI; 775 776 // If we already scanned this predecessor, skip it. 777 if (!PredsScanned.insert(PredBB)) 778 continue; 779 780 // Scan the predecessor to see if the value is available in the pred. 781 BBIt = PredBB->end(); 782 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6); 783 if (!PredAvailable) { 784 OneUnavailablePred = PredBB; 785 continue; 786 } 787 788 // If so, this load is partially redundant. Remember this info so that we 789 // can create a PHI node. 790 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 791 } 792 793 // If the loaded value isn't available in any predecessor, it isn't partially 794 // redundant. 795 if (AvailablePreds.empty()) return false; 796 797 // Okay, the loaded value is available in at least one (and maybe all!) 798 // predecessors. If the value is unavailable in more than one unique 799 // predecessor, we want to insert a merge block for those common predecessors. 800 // This ensures that we only have to insert one reload, thus not increasing 801 // code size. 802 BasicBlock *UnavailablePred = 0; 803 804 // If there is exactly one predecessor where the value is unavailable, the 805 // already computed 'OneUnavailablePred' block is it. If it ends in an 806 // unconditional branch, we know that it isn't a critical edge. 807 if (PredsScanned.size() == AvailablePreds.size()+1 && 808 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 809 UnavailablePred = OneUnavailablePred; 810 } else if (PredsScanned.size() != AvailablePreds.size()) { 811 // Otherwise, we had multiple unavailable predecessors or we had a critical 812 // edge from the one. 813 SmallVector<BasicBlock*, 8> PredsToSplit; 814 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 815 816 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 817 AvailablePredSet.insert(AvailablePreds[i].first); 818 819 // Add all the unavailable predecessors to the PredsToSplit list. 820 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 821 PI != PE; ++PI) 822 if (!AvailablePredSet.count(*PI)) 823 PredsToSplit.push_back(*PI); 824 825 // Split them out to their own block. 826 UnavailablePred = 827 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(), 828 "thread-split", this); 829 } 830 831 // If the value isn't available in all predecessors, then there will be 832 // exactly one where it isn't available. Insert a load on that edge and add 833 // it to the AvailablePreds list. 834 if (UnavailablePred) { 835 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 836 "Can't handle critical edge here!"); 837 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", 838 UnavailablePred->getTerminator()); 839 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 840 } 841 842 // Now we know that each predecessor of this block has a value in 843 // AvailablePreds, sort them for efficient access as we're walking the preds. 844 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 845 846 // Create a PHI node at the start of the block for the PRE'd load value. 847 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin()); 848 PN->takeName(LI); 849 850 // Insert new entries into the PHI for each predecessor. A single block may 851 // have multiple entries here. 852 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E; 853 ++PI) { 854 AvailablePredsTy::iterator I = 855 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 856 std::make_pair(*PI, (Value*)0)); 857 858 assert(I != AvailablePreds.end() && I->first == *PI && 859 "Didn't find entry for predecessor!"); 860 861 PN->addIncoming(I->second, I->first); 862 } 863 864 //cerr << "PRE: " << *LI << *PN << "\n"; 865 866 LI->replaceAllUsesWith(PN); 867 LI->eraseFromParent(); 868 869 return true; 870 } 871 872 /// FindMostPopularDest - The specified list contains multiple possible 873 /// threadable destinations. Pick the one that occurs the most frequently in 874 /// the list. 875 static BasicBlock * 876 FindMostPopularDest(BasicBlock *BB, 877 const SmallVectorImpl<std::pair<BasicBlock*, 878 BasicBlock*> > &PredToDestList) { 879 assert(!PredToDestList.empty()); 880 881 // Determine popularity. If there are multiple possible destinations, we 882 // explicitly choose to ignore 'undef' destinations. We prefer to thread 883 // blocks with known and real destinations to threading undef. We'll handle 884 // them later if interesting. 885 DenseMap<BasicBlock*, unsigned> DestPopularity; 886 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 887 if (PredToDestList[i].second) 888 DestPopularity[PredToDestList[i].second]++; 889 890 // Find the most popular dest. 891 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 892 BasicBlock *MostPopularDest = DPI->first; 893 unsigned Popularity = DPI->second; 894 SmallVector<BasicBlock*, 4> SamePopularity; 895 896 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 897 // If the popularity of this entry isn't higher than the popularity we've 898 // seen so far, ignore it. 899 if (DPI->second < Popularity) 900 ; // ignore. 901 else if (DPI->second == Popularity) { 902 // If it is the same as what we've seen so far, keep track of it. 903 SamePopularity.push_back(DPI->first); 904 } else { 905 // If it is more popular, remember it. 906 SamePopularity.clear(); 907 MostPopularDest = DPI->first; 908 Popularity = DPI->second; 909 } 910 } 911 912 // Okay, now we know the most popular destination. If there is more than 913 // destination, we need to determine one. This is arbitrary, but we need 914 // to make a deterministic decision. Pick the first one that appears in the 915 // successor list. 916 if (!SamePopularity.empty()) { 917 SamePopularity.push_back(MostPopularDest); 918 TerminatorInst *TI = BB->getTerminator(); 919 for (unsigned i = 0; ; ++i) { 920 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 921 922 if (std::find(SamePopularity.begin(), SamePopularity.end(), 923 TI->getSuccessor(i)) == SamePopularity.end()) 924 continue; 925 926 MostPopularDest = TI->getSuccessor(i); 927 break; 928 } 929 } 930 931 // Okay, we have finally picked the most popular destination. 932 return MostPopularDest; 933 } 934 935 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) { 936 // If threading this would thread across a loop header, don't even try to 937 // thread the edge. 938 if (LoopHeaders.count(BB)) 939 return false; 940 941 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues; 942 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues)) 943 return false; 944 assert(!PredValues.empty() && 945 "ComputeValueKnownInPredecessors returned true with no values"); 946 947 DEBUG(errs() << "IN BB: " << *BB; 948 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 949 errs() << " BB '" << BB->getName() << "': FOUND condition = "; 950 if (PredValues[i].first) 951 errs() << *PredValues[i].first; 952 else 953 errs() << "UNDEF"; 954 errs() << " for pred '" << PredValues[i].second->getName() 955 << "'.\n"; 956 }); 957 958 // Decide what we want to thread through. Convert our list of known values to 959 // a list of known destinations for each pred. This also discards duplicate 960 // predecessors and keeps track of the undefined inputs (which are represented 961 // as a null dest in the PredToDestList). 962 SmallPtrSet<BasicBlock*, 16> SeenPreds; 963 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 964 965 BasicBlock *OnlyDest = 0; 966 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 967 968 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 969 BasicBlock *Pred = PredValues[i].second; 970 if (!SeenPreds.insert(Pred)) 971 continue; // Duplicate predecessor entry. 972 973 // If the predecessor ends with an indirect goto, we can't change its 974 // destination. 975 if (isa<IndirectBrInst>(Pred->getTerminator())) 976 continue; 977 978 ConstantInt *Val = PredValues[i].first; 979 980 BasicBlock *DestBB; 981 if (Val == 0) // Undef. 982 DestBB = 0; 983 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 984 DestBB = BI->getSuccessor(Val->isZero()); 985 else { 986 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator()); 987 DestBB = SI->getSuccessor(SI->findCaseValue(Val)); 988 } 989 990 // If we have exactly one destination, remember it for efficiency below. 991 if (i == 0) 992 OnlyDest = DestBB; 993 else if (OnlyDest != DestBB) 994 OnlyDest = MultipleDestSentinel; 995 996 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 997 } 998 999 // If all edges were unthreadable, we fail. 1000 if (PredToDestList.empty()) 1001 return false; 1002 1003 // Determine which is the most common successor. If we have many inputs and 1004 // this block is a switch, we want to start by threading the batch that goes 1005 // to the most popular destination first. If we only know about one 1006 // threadable destination (the common case) we can avoid this. 1007 BasicBlock *MostPopularDest = OnlyDest; 1008 1009 if (MostPopularDest == MultipleDestSentinel) 1010 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1011 1012 // Now that we know what the most popular destination is, factor all 1013 // predecessors that will jump to it into a single predecessor. 1014 SmallVector<BasicBlock*, 16> PredsToFactor; 1015 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1016 if (PredToDestList[i].second == MostPopularDest) { 1017 BasicBlock *Pred = PredToDestList[i].first; 1018 1019 // This predecessor may be a switch or something else that has multiple 1020 // edges to the block. Factor each of these edges by listing them 1021 // according to # occurrences in PredsToFactor. 1022 TerminatorInst *PredTI = Pred->getTerminator(); 1023 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 1024 if (PredTI->getSuccessor(i) == BB) 1025 PredsToFactor.push_back(Pred); 1026 } 1027 1028 // If the threadable edges are branching on an undefined value, we get to pick 1029 // the destination that these predecessors should get to. 1030 if (MostPopularDest == 0) 1031 MostPopularDest = BB->getTerminator()-> 1032 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1033 1034 // Ok, try to thread it! 1035 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1036 } 1037 1038 /// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in 1039 /// the current block. See if there are any simplifications we can do based on 1040 /// inputs to the phi node. 1041 /// 1042 bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) { 1043 BasicBlock *BB = PN->getParent(); 1044 1045 // If any of the predecessor blocks end in an unconditional branch, we can 1046 // *duplicate* the jump into that block in order to further encourage jump 1047 // threading and to eliminate cases where we have branch on a phi of an icmp 1048 // (branch on icmp is much better). 1049 1050 // We don't want to do this tranformation for switches, because we don't 1051 // really want to duplicate a switch. 1052 if (isa<SwitchInst>(BB->getTerminator())) 1053 return false; 1054 1055 // Look for unconditional branch predecessors. 1056 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1057 BasicBlock *PredBB = PN->getIncomingBlock(i); 1058 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1059 if (PredBr->isUnconditional() && 1060 // Try to duplicate BB into PredBB. 1061 DuplicateCondBranchOnPHIIntoPred(BB, PredBB)) 1062 return true; 1063 } 1064 1065 return false; 1066 } 1067 1068 1069 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1070 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1071 /// NewPred using the entries from OldPred (suitably mapped). 1072 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1073 BasicBlock *OldPred, 1074 BasicBlock *NewPred, 1075 DenseMap<Instruction*, Value*> &ValueMap) { 1076 for (BasicBlock::iterator PNI = PHIBB->begin(); 1077 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1078 // Ok, we have a PHI node. Figure out what the incoming value was for the 1079 // DestBlock. 1080 Value *IV = PN->getIncomingValueForBlock(OldPred); 1081 1082 // Remap the value if necessary. 1083 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1084 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1085 if (I != ValueMap.end()) 1086 IV = I->second; 1087 } 1088 1089 PN->addIncoming(IV, NewPred); 1090 } 1091 } 1092 1093 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1094 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1095 /// across BB. Transform the IR to reflect this change. 1096 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1097 const SmallVectorImpl<BasicBlock*> &PredBBs, 1098 BasicBlock *SuccBB) { 1099 // If threading to the same block as we come from, we would infinite loop. 1100 if (SuccBB == BB) { 1101 DEBUG(errs() << " Not threading across BB '" << BB->getName() 1102 << "' - would thread to self!\n"); 1103 return false; 1104 } 1105 1106 // If threading this would thread across a loop header, don't thread the edge. 1107 // See the comments above FindLoopHeaders for justifications and caveats. 1108 if (LoopHeaders.count(BB)) { 1109 DEBUG(errs() << " Not threading across loop header BB '" << BB->getName() 1110 << "' to dest BB '" << SuccBB->getName() 1111 << "' - it might create an irreducible loop!\n"); 1112 return false; 1113 } 1114 1115 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB); 1116 if (JumpThreadCost > Threshold) { 1117 DEBUG(errs() << " Not threading BB '" << BB->getName() 1118 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1119 return false; 1120 } 1121 1122 // And finally, do it! Start by factoring the predecessors is needed. 1123 BasicBlock *PredBB; 1124 if (PredBBs.size() == 1) 1125 PredBB = PredBBs[0]; 1126 else { 1127 DEBUG(errs() << " Factoring out " << PredBBs.size() 1128 << " common predecessors.\n"); 1129 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), 1130 ".thr_comm", this); 1131 } 1132 1133 // And finally, do it! 1134 DEBUG(errs() << " Threading edge from '" << PredBB->getName() << "' to '" 1135 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1136 << ", across block:\n " 1137 << *BB << "\n"); 1138 1139 // We are going to have to map operands from the original BB block to the new 1140 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1141 // account for entry from PredBB. 1142 DenseMap<Instruction*, Value*> ValueMapping; 1143 1144 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1145 BB->getName()+".thread", 1146 BB->getParent(), BB); 1147 NewBB->moveAfter(PredBB); 1148 1149 BasicBlock::iterator BI = BB->begin(); 1150 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1151 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1152 1153 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1154 // mapping and using it to remap operands in the cloned instructions. 1155 for (; !isa<TerminatorInst>(BI); ++BI) { 1156 Instruction *New = BI->clone(); 1157 New->setName(BI->getName()); 1158 NewBB->getInstList().push_back(New); 1159 ValueMapping[BI] = New; 1160 1161 // Remap operands to patch up intra-block references. 1162 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1163 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1164 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1165 if (I != ValueMapping.end()) 1166 New->setOperand(i, I->second); 1167 } 1168 } 1169 1170 // We didn't copy the terminator from BB over to NewBB, because there is now 1171 // an unconditional jump to SuccBB. Insert the unconditional jump. 1172 BranchInst::Create(SuccBB, NewBB); 1173 1174 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1175 // PHI nodes for NewBB now. 1176 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1177 1178 // If there were values defined in BB that are used outside the block, then we 1179 // now have to update all uses of the value to use either the original value, 1180 // the cloned value, or some PHI derived value. This can require arbitrary 1181 // PHI insertion, of which we are prepared to do, clean these up now. 1182 SSAUpdater SSAUpdate; 1183 SmallVector<Use*, 16> UsesToRename; 1184 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1185 // Scan all uses of this instruction to see if it is used outside of its 1186 // block, and if so, record them in UsesToRename. 1187 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1188 ++UI) { 1189 Instruction *User = cast<Instruction>(*UI); 1190 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1191 if (UserPN->getIncomingBlock(UI) == BB) 1192 continue; 1193 } else if (User->getParent() == BB) 1194 continue; 1195 1196 UsesToRename.push_back(&UI.getUse()); 1197 } 1198 1199 // If there are no uses outside the block, we're done with this instruction. 1200 if (UsesToRename.empty()) 1201 continue; 1202 1203 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1204 1205 // We found a use of I outside of BB. Rename all uses of I that are outside 1206 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1207 // with the two values we know. 1208 SSAUpdate.Initialize(I); 1209 SSAUpdate.AddAvailableValue(BB, I); 1210 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); 1211 1212 while (!UsesToRename.empty()) 1213 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1214 DEBUG(errs() << "\n"); 1215 } 1216 1217 1218 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1219 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1220 // us to simplify any PHI nodes in BB. 1221 TerminatorInst *PredTerm = PredBB->getTerminator(); 1222 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1223 if (PredTerm->getSuccessor(i) == BB) { 1224 RemovePredecessorAndSimplify(BB, PredBB, TD); 1225 PredTerm->setSuccessor(i, NewBB); 1226 } 1227 1228 // At this point, the IR is fully up to date and consistent. Do a quick scan 1229 // over the new instructions and zap any that are constants or dead. This 1230 // frequently happens because of phi translation. 1231 BI = NewBB->begin(); 1232 for (BasicBlock::iterator E = NewBB->end(); BI != E; ) { 1233 Instruction *Inst = BI++; 1234 1235 if (Value *V = SimplifyInstruction(Inst, TD)) { 1236 WeakVH BIHandle(BI); 1237 ReplaceAndSimplifyAllUses(Inst, V, TD); 1238 if (BIHandle == 0) 1239 BI = NewBB->begin(); 1240 continue; 1241 } 1242 1243 RecursivelyDeleteTriviallyDeadInstructions(Inst); 1244 } 1245 1246 // Threaded an edge! 1247 ++NumThreads; 1248 return true; 1249 } 1250 1251 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1252 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1253 /// If we can duplicate the contents of BB up into PredBB do so now, this 1254 /// improves the odds that the branch will be on an analyzable instruction like 1255 /// a compare. 1256 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1257 BasicBlock *PredBB) { 1258 // If BB is a loop header, then duplicating this block outside the loop would 1259 // cause us to transform this into an irreducible loop, don't do this. 1260 // See the comments above FindLoopHeaders for justifications and caveats. 1261 if (LoopHeaders.count(BB)) { 1262 DEBUG(errs() << " Not duplicating loop header '" << BB->getName() 1263 << "' into predecessor block '" << PredBB->getName() 1264 << "' - it might create an irreducible loop!\n"); 1265 return false; 1266 } 1267 1268 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB); 1269 if (DuplicationCost > Threshold) { 1270 DEBUG(errs() << " Not duplicating BB '" << BB->getName() 1271 << "' - Cost is too high: " << DuplicationCost << "\n"); 1272 return false; 1273 } 1274 1275 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1276 // of PredBB. 1277 DEBUG(errs() << " Duplicating block '" << BB->getName() << "' into end of '" 1278 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1279 << DuplicationCost << " block is:" << *BB << "\n"); 1280 1281 // We are going to have to map operands from the original BB block into the 1282 // PredBB block. Evaluate PHI nodes in BB. 1283 DenseMap<Instruction*, Value*> ValueMapping; 1284 1285 BasicBlock::iterator BI = BB->begin(); 1286 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1287 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1288 1289 BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1290 1291 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1292 // mapping and using it to remap operands in the cloned instructions. 1293 for (; BI != BB->end(); ++BI) { 1294 Instruction *New = BI->clone(); 1295 New->setName(BI->getName()); 1296 PredBB->getInstList().insert(OldPredBranch, New); 1297 ValueMapping[BI] = New; 1298 1299 // Remap operands to patch up intra-block references. 1300 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1301 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1302 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1303 if (I != ValueMapping.end()) 1304 New->setOperand(i, I->second); 1305 } 1306 } 1307 1308 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1309 // add entries to the PHI nodes for branch from PredBB now. 1310 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1311 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1312 ValueMapping); 1313 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1314 ValueMapping); 1315 1316 // If there were values defined in BB that are used outside the block, then we 1317 // now have to update all uses of the value to use either the original value, 1318 // the cloned value, or some PHI derived value. This can require arbitrary 1319 // PHI insertion, of which we are prepared to do, clean these up now. 1320 SSAUpdater SSAUpdate; 1321 SmallVector<Use*, 16> UsesToRename; 1322 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1323 // Scan all uses of this instruction to see if it is used outside of its 1324 // block, and if so, record them in UsesToRename. 1325 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1326 ++UI) { 1327 Instruction *User = cast<Instruction>(*UI); 1328 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1329 if (UserPN->getIncomingBlock(UI) == BB) 1330 continue; 1331 } else if (User->getParent() == BB) 1332 continue; 1333 1334 UsesToRename.push_back(&UI.getUse()); 1335 } 1336 1337 // If there are no uses outside the block, we're done with this instruction. 1338 if (UsesToRename.empty()) 1339 continue; 1340 1341 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1342 1343 // We found a use of I outside of BB. Rename all uses of I that are outside 1344 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1345 // with the two values we know. 1346 SSAUpdate.Initialize(I); 1347 SSAUpdate.AddAvailableValue(BB, I); 1348 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); 1349 1350 while (!UsesToRename.empty()) 1351 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1352 DEBUG(errs() << "\n"); 1353 } 1354 1355 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1356 // that we nuked. 1357 RemovePredecessorAndSimplify(BB, PredBB, TD); 1358 1359 // Remove the unconditional branch at the end of the PredBB block. 1360 OldPredBranch->eraseFromParent(); 1361 1362 ++NumDupes; 1363 return true; 1364 } 1365 1366 1367