xref: /llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp (revision b7dfbb40a3fd9491c0188eca0ed2af66fa5ef44f)
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/GlobalsModRef.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LazyValueInfo.h"
29 #include "llvm/Analysis/Loads.h"
30 #include "llvm/Analysis/LoopInfo.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/ValueHandle.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
44 #include "llvm/Transforms/Utils/Local.h"
45 #include "llvm/Transforms/Utils/SSAUpdater.h"
46 #include <algorithm>
47 #include <memory>
48 using namespace llvm;
49 
50 #define DEBUG_TYPE "jump-threading"
51 
52 STATISTIC(NumThreads, "Number of jumps threaded");
53 STATISTIC(NumFolds,   "Number of terminators folded");
54 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
55 
56 static cl::opt<unsigned>
57 BBDuplicateThreshold("jump-threading-threshold",
58           cl::desc("Max block size to duplicate for jump threading"),
59           cl::init(6), cl::Hidden);
60 
61 static cl::opt<unsigned>
62 ImplicationSearchThreshold(
63   "jump-threading-implication-search-threshold",
64   cl::desc("The number of predecessors to search for a stronger "
65            "condition to use to thread over a weaker condition"),
66   cl::init(3), cl::Hidden);
67 
68 namespace {
69   // These are at global scope so static functions can use them too.
70   typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo;
71   typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy;
72 
73   // This is used to keep track of what kind of constant we're currently hoping
74   // to find.
75   enum ConstantPreference {
76     WantInteger,
77     WantBlockAddress
78   };
79 
80   /// This pass performs 'jump threading', which looks at blocks that have
81   /// multiple predecessors and multiple successors.  If one or more of the
82   /// predecessors of the block can be proven to always jump to one of the
83   /// successors, we forward the edge from the predecessor to the successor by
84   /// duplicating the contents of this block.
85   ///
86   /// An example of when this can occur is code like this:
87   ///
88   ///   if () { ...
89   ///     X = 4;
90   ///   }
91   ///   if (X < 3) {
92   ///
93   /// In this case, the unconditional branch at the end of the first if can be
94   /// revectored to the false side of the second if.
95   ///
96   class JumpThreading : public FunctionPass {
97     TargetLibraryInfo *TLI;
98     LazyValueInfo *LVI;
99     std::unique_ptr<BlockFrequencyInfo> BFI;
100     std::unique_ptr<BranchProbabilityInfo> BPI;
101     bool HasProfileData;
102 #ifdef NDEBUG
103     SmallPtrSet<const BasicBlock *, 16> LoopHeaders;
104 #else
105     SmallSet<AssertingVH<const BasicBlock>, 16> LoopHeaders;
106 #endif
107     DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet;
108 
109     unsigned BBDupThreshold;
110 
111     // RAII helper for updating the recursion stack.
112     struct RecursionSetRemover {
113       DenseSet<std::pair<Value*, BasicBlock*> > &TheSet;
114       std::pair<Value*, BasicBlock*> ThePair;
115 
116       RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S,
117                           std::pair<Value*, BasicBlock*> P)
118         : TheSet(S), ThePair(P) { }
119 
120       ~RecursionSetRemover() {
121         TheSet.erase(ThePair);
122       }
123     };
124   public:
125     static char ID; // Pass identification
126     JumpThreading(int T = -1) : FunctionPass(ID) {
127       BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
128       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
129     }
130 
131     bool runOnFunction(Function &F) override;
132 
133     void getAnalysisUsage(AnalysisUsage &AU) const override {
134       AU.addRequired<LazyValueInfo>();
135       AU.addPreserved<LazyValueInfo>();
136       AU.addPreserved<GlobalsAAWrapperPass>();
137       AU.addRequired<TargetLibraryInfoWrapperPass>();
138     }
139 
140     void releaseMemory() override {
141       BFI.reset();
142       BPI.reset();
143     }
144 
145     void FindLoopHeaders(Function &F);
146     bool ProcessBlock(BasicBlock *BB);
147     bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
148                     BasicBlock *SuccBB);
149     bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
150                                   const SmallVectorImpl<BasicBlock *> &PredBBs);
151 
152     bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
153                                          PredValueInfo &Result,
154                                          ConstantPreference Preference,
155                                          Instruction *CxtI = nullptr);
156     bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
157                                 ConstantPreference Preference,
158                                 Instruction *CxtI = nullptr);
159 
160     bool ProcessBranchOnPHI(PHINode *PN);
161     bool ProcessBranchOnXOR(BinaryOperator *BO);
162     bool ProcessImpliedCondition(BasicBlock *BB);
163 
164     bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
165     bool TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB);
166     bool TryToUnfoldSelectInCurrBB(BasicBlock *BB);
167 
168   private:
169     BasicBlock *SplitBlockPreds(BasicBlock *BB, ArrayRef<BasicBlock *> Preds,
170                                 const char *Suffix);
171     void UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, BasicBlock *BB,
172                                       BasicBlock *NewBB, BasicBlock *SuccBB);
173   };
174 }
175 
176 char JumpThreading::ID = 0;
177 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
178                 "Jump Threading", false, false)
179 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo)
180 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
181 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
182                 "Jump Threading", false, false)
183 
184 // Public interface to the Jump Threading pass
185 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); }
186 
187 /// runOnFunction - Top level algorithm.
188 ///
189 bool JumpThreading::runOnFunction(Function &F) {
190   if (skipOptnoneFunction(F))
191     return false;
192 
193   DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
194   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
195   LVI = &getAnalysis<LazyValueInfo>();
196   BFI.reset();
197   BPI.reset();
198   // When profile data is available, we need to update edge weights after
199   // successful jump threading, which requires both BPI and BFI being available.
200   HasProfileData = F.getEntryCount().hasValue();
201   if (HasProfileData) {
202     LoopInfo LI{DominatorTree(F)};
203     BPI.reset(new BranchProbabilityInfo(F, LI));
204     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
205   }
206 
207   // Remove unreachable blocks from function as they may result in infinite
208   // loop. We do threading if we found something profitable. Jump threading a
209   // branch can create other opportunities. If these opportunities form a cycle
210   // i.e. if any jump threading is undoing previous threading in the path, then
211   // we will loop forever. We take care of this issue by not jump threading for
212   // back edges. This works for normal cases but not for unreachable blocks as
213   // they may have cycle with no back edge.
214   bool EverChanged = false;
215   EverChanged |= removeUnreachableBlocks(F, LVI);
216 
217   FindLoopHeaders(F);
218 
219   bool Changed;
220   do {
221     Changed = false;
222     for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
223       BasicBlock *BB = &*I;
224       // Thread all of the branches we can over this block.
225       while (ProcessBlock(BB))
226         Changed = true;
227 
228       ++I;
229 
230       // If the block is trivially dead, zap it.  This eliminates the successor
231       // edges which simplifies the CFG.
232       if (pred_empty(BB) &&
233           BB != &BB->getParent()->getEntryBlock()) {
234         DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
235               << "' with terminator: " << *BB->getTerminator() << '\n');
236         LoopHeaders.erase(BB);
237         LVI->eraseBlock(BB);
238         DeleteDeadBlock(BB);
239         Changed = true;
240         continue;
241       }
242 
243       BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
244 
245       // Can't thread an unconditional jump, but if the block is "almost
246       // empty", we can replace uses of it with uses of the successor and make
247       // this dead.
248       // We should not eliminate the loop header either, because eliminating
249       // a loop header might later prevent LoopSimplify from transforming nested
250       // loops into simplified form.
251       if (BI && BI->isUnconditional() &&
252           BB != &BB->getParent()->getEntryBlock() &&
253           // If the terminator is the only non-phi instruction, try to nuke it.
254           BB->getFirstNonPHIOrDbg()->isTerminator() && !LoopHeaders.count(BB)) {
255         // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
256         // block, we have to make sure it isn't in the LoopHeaders set.  We
257         // reinsert afterward if needed.
258         bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
259         BasicBlock *Succ = BI->getSuccessor(0);
260 
261         // FIXME: It is always conservatively correct to drop the info
262         // for a block even if it doesn't get erased.  This isn't totally
263         // awesome, but it allows us to use AssertingVH to prevent nasty
264         // dangling pointer issues within LazyValueInfo.
265         LVI->eraseBlock(BB);
266         if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
267           Changed = true;
268           // If we deleted BB and BB was the header of a loop, then the
269           // successor is now the header of the loop.
270           BB = Succ;
271         }
272 
273         if (ErasedFromLoopHeaders)
274           LoopHeaders.insert(BB);
275       }
276     }
277     EverChanged |= Changed;
278   } while (Changed);
279 
280   LoopHeaders.clear();
281   return EverChanged;
282 }
283 
284 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
285 /// thread across it. Stop scanning the block when passing the threshold.
286 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB,
287                                              unsigned Threshold) {
288   /// Ignore PHI nodes, these will be flattened when duplication happens.
289   BasicBlock::const_iterator I(BB->getFirstNonPHI());
290 
291   // FIXME: THREADING will delete values that are just used to compute the
292   // branch, so they shouldn't count against the duplication cost.
293 
294   unsigned Bonus = 0;
295   const TerminatorInst *BBTerm = BB->getTerminator();
296   // Threading through a switch statement is particularly profitable.  If this
297   // block ends in a switch, decrease its cost to make it more likely to happen.
298   if (isa<SwitchInst>(BBTerm))
299     Bonus = 6;
300 
301   // The same holds for indirect branches, but slightly more so.
302   if (isa<IndirectBrInst>(BBTerm))
303     Bonus = 8;
304 
305   // Bump the threshold up so the early exit from the loop doesn't skip the
306   // terminator-based Size adjustment at the end.
307   Threshold += Bonus;
308 
309   // Sum up the cost of each instruction until we get to the terminator.  Don't
310   // include the terminator because the copy won't include it.
311   unsigned Size = 0;
312   for (; !isa<TerminatorInst>(I); ++I) {
313 
314     // Stop scanning the block if we've reached the threshold.
315     if (Size > Threshold)
316       return Size;
317 
318     // Debugger intrinsics don't incur code size.
319     if (isa<DbgInfoIntrinsic>(I)) continue;
320 
321     // If this is a pointer->pointer bitcast, it is free.
322     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
323       continue;
324 
325     // Bail out if this instruction gives back a token type, it is not possible
326     // to duplicate it if it is used outside this BB.
327     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
328       return ~0U;
329 
330     // All other instructions count for at least one unit.
331     ++Size;
332 
333     // Calls are more expensive.  If they are non-intrinsic calls, we model them
334     // as having cost of 4.  If they are a non-vector intrinsic, we model them
335     // as having cost of 2 total, and if they are a vector intrinsic, we model
336     // them as having cost 1.
337     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
338       if (CI->cannotDuplicate() || CI->isConvergent())
339         // Blocks with NoDuplicate are modelled as having infinite cost, so they
340         // are never duplicated.
341         return ~0U;
342       else if (!isa<IntrinsicInst>(CI))
343         Size += 3;
344       else if (!CI->getType()->isVectorTy())
345         Size += 1;
346     }
347   }
348 
349   return Size > Bonus ? Size - Bonus : 0;
350 }
351 
352 /// FindLoopHeaders - We do not want jump threading to turn proper loop
353 /// structures into irreducible loops.  Doing this breaks up the loop nesting
354 /// hierarchy and pessimizes later transformations.  To prevent this from
355 /// happening, we first have to find the loop headers.  Here we approximate this
356 /// by finding targets of backedges in the CFG.
357 ///
358 /// Note that there definitely are cases when we want to allow threading of
359 /// edges across a loop header.  For example, threading a jump from outside the
360 /// loop (the preheader) to an exit block of the loop is definitely profitable.
361 /// It is also almost always profitable to thread backedges from within the loop
362 /// to exit blocks, and is often profitable to thread backedges to other blocks
363 /// within the loop (forming a nested loop).  This simple analysis is not rich
364 /// enough to track all of these properties and keep it up-to-date as the CFG
365 /// mutates, so we don't allow any of these transformations.
366 ///
367 void JumpThreading::FindLoopHeaders(Function &F) {
368   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
369   FindFunctionBackedges(F, Edges);
370 
371   for (const auto &Edge : Edges)
372     LoopHeaders.insert(Edge.second);
373 }
374 
375 /// getKnownConstant - Helper method to determine if we can thread over a
376 /// terminator with the given value as its condition, and if so what value to
377 /// use for that. What kind of value this is depends on whether we want an
378 /// integer or a block address, but an undef is always accepted.
379 /// Returns null if Val is null or not an appropriate constant.
380 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
381   if (!Val)
382     return nullptr;
383 
384   // Undef is "known" enough.
385   if (UndefValue *U = dyn_cast<UndefValue>(Val))
386     return U;
387 
388   if (Preference == WantBlockAddress)
389     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
390 
391   return dyn_cast<ConstantInt>(Val);
392 }
393 
394 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
395 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
396 /// in any of our predecessors.  If so, return the known list of value and pred
397 /// BB in the result vector.
398 ///
399 /// This returns true if there were any known values.
400 ///
401 bool JumpThreading::
402 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
403                                 ConstantPreference Preference,
404                                 Instruction *CxtI) {
405   // This method walks up use-def chains recursively.  Because of this, we could
406   // get into an infinite loop going around loops in the use-def chain.  To
407   // prevent this, keep track of what (value, block) pairs we've already visited
408   // and terminate the search if we loop back to them
409   if (!RecursionSet.insert(std::make_pair(V, BB)).second)
410     return false;
411 
412   // An RAII help to remove this pair from the recursion set once the recursion
413   // stack pops back out again.
414   RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
415 
416   // If V is a constant, then it is known in all predecessors.
417   if (Constant *KC = getKnownConstant(V, Preference)) {
418     for (BasicBlock *Pred : predecessors(BB))
419       Result.push_back(std::make_pair(KC, Pred));
420 
421     return !Result.empty();
422   }
423 
424   // If V is a non-instruction value, or an instruction in a different block,
425   // then it can't be derived from a PHI.
426   Instruction *I = dyn_cast<Instruction>(V);
427   if (!I || I->getParent() != BB) {
428 
429     // Okay, if this is a live-in value, see if it has a known value at the end
430     // of any of our predecessors.
431     //
432     // FIXME: This should be an edge property, not a block end property.
433     /// TODO: Per PR2563, we could infer value range information about a
434     /// predecessor based on its terminator.
435     //
436     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
437     // "I" is a non-local compare-with-a-constant instruction.  This would be
438     // able to handle value inequalities better, for example if the compare is
439     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
440     // Perhaps getConstantOnEdge should be smart enough to do this?
441 
442     for (BasicBlock *P : predecessors(BB)) {
443       // If the value is known by LazyValueInfo to be a constant in a
444       // predecessor, use that information to try to thread this block.
445       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
446       if (Constant *KC = getKnownConstant(PredCst, Preference))
447         Result.push_back(std::make_pair(KC, P));
448     }
449 
450     return !Result.empty();
451   }
452 
453   /// If I is a PHI node, then we know the incoming values for any constants.
454   if (PHINode *PN = dyn_cast<PHINode>(I)) {
455     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
456       Value *InVal = PN->getIncomingValue(i);
457       if (Constant *KC = getKnownConstant(InVal, Preference)) {
458         Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
459       } else {
460         Constant *CI = LVI->getConstantOnEdge(InVal,
461                                               PN->getIncomingBlock(i),
462                                               BB, CxtI);
463         if (Constant *KC = getKnownConstant(CI, Preference))
464           Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
465       }
466     }
467 
468     return !Result.empty();
469   }
470 
471   // Handle Cast instructions.  Only see through Cast when the source operand is
472   // PHI or Cmp and the source type is i1 to save the compilation time.
473   if (CastInst *CI = dyn_cast<CastInst>(I)) {
474     Value *Source = CI->getOperand(0);
475     if (!Source->getType()->isIntegerTy(1))
476       return false;
477     if (!isa<PHINode>(Source) && !isa<CmpInst>(Source))
478       return false;
479     ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI);
480     if (Result.empty())
481       return false;
482 
483     // Convert the known values.
484     for (auto &R : Result)
485       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
486 
487     return true;
488   }
489 
490   PredValueInfoTy LHSVals, RHSVals;
491 
492   // Handle some boolean conditions.
493   if (I->getType()->getPrimitiveSizeInBits() == 1) {
494     assert(Preference == WantInteger && "One-bit non-integer type?");
495     // X | true -> true
496     // X & false -> false
497     if (I->getOpcode() == Instruction::Or ||
498         I->getOpcode() == Instruction::And) {
499       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
500                                       WantInteger, CxtI);
501       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
502                                       WantInteger, CxtI);
503 
504       if (LHSVals.empty() && RHSVals.empty())
505         return false;
506 
507       ConstantInt *InterestingVal;
508       if (I->getOpcode() == Instruction::Or)
509         InterestingVal = ConstantInt::getTrue(I->getContext());
510       else
511         InterestingVal = ConstantInt::getFalse(I->getContext());
512 
513       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
514 
515       // Scan for the sentinel.  If we find an undef, force it to the
516       // interesting value: x|undef -> true and x&undef -> false.
517       for (const auto &LHSVal : LHSVals)
518         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
519           Result.emplace_back(InterestingVal, LHSVal.second);
520           LHSKnownBBs.insert(LHSVal.second);
521         }
522       for (const auto &RHSVal : RHSVals)
523         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
524           // If we already inferred a value for this block on the LHS, don't
525           // re-add it.
526           if (!LHSKnownBBs.count(RHSVal.second))
527             Result.emplace_back(InterestingVal, RHSVal.second);
528         }
529 
530       return !Result.empty();
531     }
532 
533     // Handle the NOT form of XOR.
534     if (I->getOpcode() == Instruction::Xor &&
535         isa<ConstantInt>(I->getOperand(1)) &&
536         cast<ConstantInt>(I->getOperand(1))->isOne()) {
537       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
538                                       WantInteger, CxtI);
539       if (Result.empty())
540         return false;
541 
542       // Invert the known values.
543       for (auto &R : Result)
544         R.first = ConstantExpr::getNot(R.first);
545 
546       return true;
547     }
548 
549   // Try to simplify some other binary operator values.
550   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
551     assert(Preference != WantBlockAddress
552             && "A binary operator creating a block address?");
553     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
554       PredValueInfoTy LHSVals;
555       ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
556                                       WantInteger, CxtI);
557 
558       // Try to use constant folding to simplify the binary operator.
559       for (const auto &LHSVal : LHSVals) {
560         Constant *V = LHSVal.first;
561         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
562 
563         if (Constant *KC = getKnownConstant(Folded, WantInteger))
564           Result.push_back(std::make_pair(KC, LHSVal.second));
565       }
566     }
567 
568     return !Result.empty();
569   }
570 
571   // Handle compare with phi operand, where the PHI is defined in this block.
572   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
573     assert(Preference == WantInteger && "Compares only produce integers");
574     PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
575     if (PN && PN->getParent() == BB) {
576       const DataLayout &DL = PN->getModule()->getDataLayout();
577       // We can do this simplification if any comparisons fold to true or false.
578       // See if any do.
579       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
580         BasicBlock *PredBB = PN->getIncomingBlock(i);
581         Value *LHS = PN->getIncomingValue(i);
582         Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
583 
584         Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL);
585         if (!Res) {
586           if (!isa<Constant>(RHS))
587             continue;
588 
589           LazyValueInfo::Tristate
590             ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
591                                            cast<Constant>(RHS), PredBB, BB,
592                                            CxtI ? CxtI : Cmp);
593           if (ResT == LazyValueInfo::Unknown)
594             continue;
595           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
596         }
597 
598         if (Constant *KC = getKnownConstant(Res, WantInteger))
599           Result.push_back(std::make_pair(KC, PredBB));
600       }
601 
602       return !Result.empty();
603     }
604 
605     // If comparing a live-in value against a constant, see if we know the
606     // live-in value on any predecessors.
607     if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
608       if (!isa<Instruction>(Cmp->getOperand(0)) ||
609           cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
610         Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
611 
612         for (BasicBlock *P : predecessors(BB)) {
613           // If the value is known by LazyValueInfo to be a constant in a
614           // predecessor, use that information to try to thread this block.
615           LazyValueInfo::Tristate Res =
616             LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
617                                     RHSCst, P, BB, CxtI ? CxtI : Cmp);
618           if (Res == LazyValueInfo::Unknown)
619             continue;
620 
621           Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
622           Result.push_back(std::make_pair(ResC, P));
623         }
624 
625         return !Result.empty();
626       }
627 
628       // Try to find a constant value for the LHS of a comparison,
629       // and evaluate it statically if we can.
630       if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
631         PredValueInfoTy LHSVals;
632         ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
633                                         WantInteger, CxtI);
634 
635         for (const auto &LHSVal : LHSVals) {
636           Constant *V = LHSVal.first;
637           Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
638                                                       V, CmpConst);
639           if (Constant *KC = getKnownConstant(Folded, WantInteger))
640             Result.push_back(std::make_pair(KC, LHSVal.second));
641         }
642 
643         return !Result.empty();
644       }
645     }
646   }
647 
648   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
649     // Handle select instructions where at least one operand is a known constant
650     // and we can figure out the condition value for any predecessor block.
651     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
652     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
653     PredValueInfoTy Conds;
654     if ((TrueVal || FalseVal) &&
655         ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
656                                         WantInteger, CxtI)) {
657       for (auto &C : Conds) {
658         Constant *Cond = C.first;
659 
660         // Figure out what value to use for the condition.
661         bool KnownCond;
662         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
663           // A known boolean.
664           KnownCond = CI->isOne();
665         } else {
666           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
667           // Either operand will do, so be sure to pick the one that's a known
668           // constant.
669           // FIXME: Do this more cleverly if both values are known constants?
670           KnownCond = (TrueVal != nullptr);
671         }
672 
673         // See if the select has a known constant value for this predecessor.
674         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
675           Result.push_back(std::make_pair(Val, C.second));
676       }
677 
678       return !Result.empty();
679     }
680   }
681 
682   // If all else fails, see if LVI can figure out a constant value for us.
683   Constant *CI = LVI->getConstant(V, BB, CxtI);
684   if (Constant *KC = getKnownConstant(CI, Preference)) {
685     for (BasicBlock *Pred : predecessors(BB))
686       Result.push_back(std::make_pair(KC, Pred));
687   }
688 
689   return !Result.empty();
690 }
691 
692 
693 
694 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
695 /// in an undefined jump, decide which block is best to revector to.
696 ///
697 /// Since we can pick an arbitrary destination, we pick the successor with the
698 /// fewest predecessors.  This should reduce the in-degree of the others.
699 ///
700 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
701   TerminatorInst *BBTerm = BB->getTerminator();
702   unsigned MinSucc = 0;
703   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
704   // Compute the successor with the minimum number of predecessors.
705   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
706   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
707     TestBB = BBTerm->getSuccessor(i);
708     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
709     if (NumPreds < MinNumPreds) {
710       MinSucc = i;
711       MinNumPreds = NumPreds;
712     }
713   }
714 
715   return MinSucc;
716 }
717 
718 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
719   if (!BB->hasAddressTaken()) return false;
720 
721   // If the block has its address taken, it may be a tree of dead constants
722   // hanging off of it.  These shouldn't keep the block alive.
723   BlockAddress *BA = BlockAddress::get(BB);
724   BA->removeDeadConstantUsers();
725   return !BA->use_empty();
726 }
727 
728 /// ProcessBlock - If there are any predecessors whose control can be threaded
729 /// through to a successor, transform them now.
730 bool JumpThreading::ProcessBlock(BasicBlock *BB) {
731   // If the block is trivially dead, just return and let the caller nuke it.
732   // This simplifies other transformations.
733   if (pred_empty(BB) &&
734       BB != &BB->getParent()->getEntryBlock())
735     return false;
736 
737   // If this block has a single predecessor, and if that pred has a single
738   // successor, merge the blocks.  This encourages recursive jump threading
739   // because now the condition in this block can be threaded through
740   // predecessors of our predecessor block.
741   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
742     const TerminatorInst *TI = SinglePred->getTerminator();
743     if (!TI->isExceptional() && TI->getNumSuccessors() == 1 &&
744         SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
745       // If SinglePred was a loop header, BB becomes one.
746       if (LoopHeaders.erase(SinglePred))
747         LoopHeaders.insert(BB);
748 
749       LVI->eraseBlock(SinglePred);
750       MergeBasicBlockIntoOnlyPred(BB);
751 
752       return true;
753     }
754   }
755 
756   if (TryToUnfoldSelectInCurrBB(BB))
757     return true;
758 
759   // What kind of constant we're looking for.
760   ConstantPreference Preference = WantInteger;
761 
762   // Look to see if the terminator is a conditional branch, switch or indirect
763   // branch, if not we can't thread it.
764   Value *Condition;
765   Instruction *Terminator = BB->getTerminator();
766   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
767     // Can't thread an unconditional jump.
768     if (BI->isUnconditional()) return false;
769     Condition = BI->getCondition();
770   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
771     Condition = SI->getCondition();
772   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
773     // Can't thread indirect branch with no successors.
774     if (IB->getNumSuccessors() == 0) return false;
775     Condition = IB->getAddress()->stripPointerCasts();
776     Preference = WantBlockAddress;
777   } else {
778     return false; // Must be an invoke.
779   }
780 
781   // Run constant folding to see if we can reduce the condition to a simple
782   // constant.
783   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
784     Value *SimpleVal =
785         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
786     if (SimpleVal) {
787       I->replaceAllUsesWith(SimpleVal);
788       I->eraseFromParent();
789       Condition = SimpleVal;
790     }
791   }
792 
793   // If the terminator is branching on an undef, we can pick any of the
794   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
795   if (isa<UndefValue>(Condition)) {
796     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
797 
798     // Fold the branch/switch.
799     TerminatorInst *BBTerm = BB->getTerminator();
800     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
801       if (i == BestSucc) continue;
802       BBTerm->getSuccessor(i)->removePredecessor(BB, true);
803     }
804 
805     DEBUG(dbgs() << "  In block '" << BB->getName()
806           << "' folding undef terminator: " << *BBTerm << '\n');
807     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
808     BBTerm->eraseFromParent();
809     return true;
810   }
811 
812   // If the terminator of this block is branching on a constant, simplify the
813   // terminator to an unconditional branch.  This can occur due to threading in
814   // other blocks.
815   if (getKnownConstant(Condition, Preference)) {
816     DEBUG(dbgs() << "  In block '" << BB->getName()
817           << "' folding terminator: " << *BB->getTerminator() << '\n');
818     ++NumFolds;
819     ConstantFoldTerminator(BB, true);
820     return true;
821   }
822 
823   Instruction *CondInst = dyn_cast<Instruction>(Condition);
824 
825   // All the rest of our checks depend on the condition being an instruction.
826   if (!CondInst) {
827     // FIXME: Unify this with code below.
828     if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
829       return true;
830     return false;
831   }
832 
833 
834   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
835     // If we're branching on a conditional, LVI might be able to determine
836     // it's value at the branch instruction.  We only handle comparisons
837     // against a constant at this time.
838     // TODO: This should be extended to handle switches as well.
839     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
840     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
841     if (CondBr && CondConst && CondBr->isConditional()) {
842       LazyValueInfo::Tristate Ret =
843         LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
844                             CondConst, CondBr);
845       if (Ret != LazyValueInfo::Unknown) {
846         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
847         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
848         CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
849         BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
850         CondBr->eraseFromParent();
851         if (CondCmp->use_empty())
852           CondCmp->eraseFromParent();
853         else if (CondCmp->getParent() == BB) {
854           // If the fact we just learned is true for all uses of the
855           // condition, replace it with a constant value
856           auto *CI = Ret == LazyValueInfo::True ?
857             ConstantInt::getTrue(CondCmp->getType()) :
858             ConstantInt::getFalse(CondCmp->getType());
859           CondCmp->replaceAllUsesWith(CI);
860           CondCmp->eraseFromParent();
861         }
862         return true;
863       }
864     }
865 
866     if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB))
867       return true;
868   }
869 
870   // Check for some cases that are worth simplifying.  Right now we want to look
871   // for loads that are used by a switch or by the condition for the branch.  If
872   // we see one, check to see if it's partially redundant.  If so, insert a PHI
873   // which can then be used to thread the values.
874   //
875   Value *SimplifyValue = CondInst;
876   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
877     if (isa<Constant>(CondCmp->getOperand(1)))
878       SimplifyValue = CondCmp->getOperand(0);
879 
880   // TODO: There are other places where load PRE would be profitable, such as
881   // more complex comparisons.
882   if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
883     if (SimplifyPartiallyRedundantLoad(LI))
884       return true;
885 
886 
887   // Handle a variety of cases where we are branching on something derived from
888   // a PHI node in the current block.  If we can prove that any predecessors
889   // compute a predictable value based on a PHI node, thread those predecessors.
890   //
891   if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
892     return true;
893 
894   // If this is an otherwise-unfoldable branch on a phi node in the current
895   // block, see if we can simplify.
896   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
897     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
898       return ProcessBranchOnPHI(PN);
899 
900 
901   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
902   if (CondInst->getOpcode() == Instruction::Xor &&
903       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
904     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
905 
906   // Search for a stronger dominating condition that can be used to simplify a
907   // conditional branch leaving BB.
908   if (ProcessImpliedCondition(BB))
909     return true;
910 
911   return false;
912 }
913 
914 bool JumpThreading::ProcessImpliedCondition(BasicBlock *BB) {
915   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
916   if (!BI || !BI->isConditional())
917     return false;
918 
919   Value *Cond = BI->getCondition();
920   BasicBlock *CurrentBB = BB;
921   BasicBlock *CurrentPred = BB->getSinglePredecessor();
922   unsigned Iter = 0;
923 
924   auto &DL = BB->getModule()->getDataLayout();
925 
926   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
927     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
928     if (!PBI || !PBI->isConditional() || PBI->getSuccessor(0) != CurrentBB)
929       return false;
930 
931     bool ImpliedTrue;
932     if (isImpliedCondition(PBI->getCondition(), Cond, ImpliedTrue, DL)) {
933       BI->getSuccessor(ImpliedTrue ? 1 : 0)->removePredecessor(BB);
934       BranchInst::Create(BI->getSuccessor(ImpliedTrue ? 0 : 1), BI);
935       BI->eraseFromParent();
936       return true;
937     }
938     CurrentBB = CurrentPred;
939     CurrentPred = CurrentBB->getSinglePredecessor();
940   }
941 
942   return false;
943 }
944 
945 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
946 /// load instruction, eliminate it by replacing it with a PHI node.  This is an
947 /// important optimization that encourages jump threading, and needs to be run
948 /// interlaced with other jump threading tasks.
949 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
950   // Don't hack volatile/atomic loads.
951   if (!LI->isSimple()) return false;
952 
953   // If the load is defined in a block with exactly one predecessor, it can't be
954   // partially redundant.
955   BasicBlock *LoadBB = LI->getParent();
956   if (LoadBB->getSinglePredecessor())
957     return false;
958 
959   // If the load is defined in an EH pad, it can't be partially redundant,
960   // because the edges between the invoke and the EH pad cannot have other
961   // instructions between them.
962   if (LoadBB->isEHPad())
963     return false;
964 
965   Value *LoadedPtr = LI->getOperand(0);
966 
967   // If the loaded operand is defined in the LoadBB, it can't be available.
968   // TODO: Could do simple PHI translation, that would be fun :)
969   if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
970     if (PtrOp->getParent() == LoadBB)
971       return false;
972 
973   // Scan a few instructions up from the load, to see if it is obviously live at
974   // the entry to its block.
975   BasicBlock::iterator BBIt(LI);
976 
977   if (Value *AvailableVal =
978         FindAvailableLoadedValue(LI, LoadBB, BBIt, DefMaxInstsToScan)) {
979     // If the value of the load is locally available within the block, just use
980     // it.  This frequently occurs for reg2mem'd allocas.
981     //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
982 
983     // If the returned value is the load itself, replace with an undef. This can
984     // only happen in dead loops.
985     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
986     if (AvailableVal->getType() != LI->getType())
987       AvailableVal =
988           CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI);
989     LI->replaceAllUsesWith(AvailableVal);
990     LI->eraseFromParent();
991     return true;
992   }
993 
994   // Otherwise, if we scanned the whole block and got to the top of the block,
995   // we know the block is locally transparent to the load.  If not, something
996   // might clobber its value.
997   if (BBIt != LoadBB->begin())
998     return false;
999 
1000   // If all of the loads and stores that feed the value have the same AA tags,
1001   // then we can propagate them onto any newly inserted loads.
1002   AAMDNodes AATags;
1003   LI->getAAMetadata(AATags);
1004 
1005   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1006   typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
1007   AvailablePredsTy AvailablePreds;
1008   BasicBlock *OneUnavailablePred = nullptr;
1009 
1010   // If we got here, the loaded value is transparent through to the start of the
1011   // block.  Check to see if it is available in any of the predecessor blocks.
1012   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1013     // If we already scanned this predecessor, skip it.
1014     if (!PredsScanned.insert(PredBB).second)
1015       continue;
1016 
1017     // Scan the predecessor to see if the value is available in the pred.
1018     BBIt = PredBB->end();
1019     AAMDNodes ThisAATags;
1020     Value *PredAvailable = FindAvailableLoadedValue(LI, PredBB, BBIt,
1021                                                     DefMaxInstsToScan,
1022                                                     nullptr, &ThisAATags);
1023     if (!PredAvailable) {
1024       OneUnavailablePred = PredBB;
1025       continue;
1026     }
1027 
1028     // If AA tags disagree or are not present, forget about them.
1029     if (AATags != ThisAATags) AATags = AAMDNodes();
1030 
1031     // If so, this load is partially redundant.  Remember this info so that we
1032     // can create a PHI node.
1033     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
1034   }
1035 
1036   // If the loaded value isn't available in any predecessor, it isn't partially
1037   // redundant.
1038   if (AvailablePreds.empty()) return false;
1039 
1040   // Okay, the loaded value is available in at least one (and maybe all!)
1041   // predecessors.  If the value is unavailable in more than one unique
1042   // predecessor, we want to insert a merge block for those common predecessors.
1043   // This ensures that we only have to insert one reload, thus not increasing
1044   // code size.
1045   BasicBlock *UnavailablePred = nullptr;
1046 
1047   // If there is exactly one predecessor where the value is unavailable, the
1048   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1049   // unconditional branch, we know that it isn't a critical edge.
1050   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1051       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1052     UnavailablePred = OneUnavailablePred;
1053   } else if (PredsScanned.size() != AvailablePreds.size()) {
1054     // Otherwise, we had multiple unavailable predecessors or we had a critical
1055     // edge from the one.
1056     SmallVector<BasicBlock*, 8> PredsToSplit;
1057     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1058 
1059     for (const auto &AvailablePred : AvailablePreds)
1060       AvailablePredSet.insert(AvailablePred.first);
1061 
1062     // Add all the unavailable predecessors to the PredsToSplit list.
1063     for (BasicBlock *P : predecessors(LoadBB)) {
1064       // If the predecessor is an indirect goto, we can't split the edge.
1065       if (isa<IndirectBrInst>(P->getTerminator()))
1066         return false;
1067 
1068       if (!AvailablePredSet.count(P))
1069         PredsToSplit.push_back(P);
1070     }
1071 
1072     // Split them out to their own block.
1073     UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1074   }
1075 
1076   // If the value isn't available in all predecessors, then there will be
1077   // exactly one where it isn't available.  Insert a load on that edge and add
1078   // it to the AvailablePreds list.
1079   if (UnavailablePred) {
1080     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1081            "Can't handle critical edge here!");
1082     LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
1083                                  LI->getAlignment(),
1084                                  UnavailablePred->getTerminator());
1085     NewVal->setDebugLoc(LI->getDebugLoc());
1086     if (AATags)
1087       NewVal->setAAMetadata(AATags);
1088 
1089     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
1090   }
1091 
1092   // Now we know that each predecessor of this block has a value in
1093   // AvailablePreds, sort them for efficient access as we're walking the preds.
1094   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1095 
1096   // Create a PHI node at the start of the block for the PRE'd load value.
1097   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1098   PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "",
1099                                 &LoadBB->front());
1100   PN->takeName(LI);
1101   PN->setDebugLoc(LI->getDebugLoc());
1102 
1103   // Insert new entries into the PHI for each predecessor.  A single block may
1104   // have multiple entries here.
1105   for (pred_iterator PI = PB; PI != PE; ++PI) {
1106     BasicBlock *P = *PI;
1107     AvailablePredsTy::iterator I =
1108       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
1109                        std::make_pair(P, (Value*)nullptr));
1110 
1111     assert(I != AvailablePreds.end() && I->first == P &&
1112            "Didn't find entry for predecessor!");
1113 
1114     // If we have an available predecessor but it requires casting, insert the
1115     // cast in the predecessor and use the cast. Note that we have to update the
1116     // AvailablePreds vector as we go so that all of the PHI entries for this
1117     // predecessor use the same bitcast.
1118     Value *&PredV = I->second;
1119     if (PredV->getType() != LI->getType())
1120       PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "",
1121                                                P->getTerminator());
1122 
1123     PN->addIncoming(PredV, I->first);
1124   }
1125 
1126   //cerr << "PRE: " << *LI << *PN << "\n";
1127 
1128   LI->replaceAllUsesWith(PN);
1129   LI->eraseFromParent();
1130 
1131   return true;
1132 }
1133 
1134 /// FindMostPopularDest - The specified list contains multiple possible
1135 /// threadable destinations.  Pick the one that occurs the most frequently in
1136 /// the list.
1137 static BasicBlock *
1138 FindMostPopularDest(BasicBlock *BB,
1139                     const SmallVectorImpl<std::pair<BasicBlock*,
1140                                   BasicBlock*> > &PredToDestList) {
1141   assert(!PredToDestList.empty());
1142 
1143   // Determine popularity.  If there are multiple possible destinations, we
1144   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1145   // blocks with known and real destinations to threading undef.  We'll handle
1146   // them later if interesting.
1147   DenseMap<BasicBlock*, unsigned> DestPopularity;
1148   for (const auto &PredToDest : PredToDestList)
1149     if (PredToDest.second)
1150       DestPopularity[PredToDest.second]++;
1151 
1152   // Find the most popular dest.
1153   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1154   BasicBlock *MostPopularDest = DPI->first;
1155   unsigned Popularity = DPI->second;
1156   SmallVector<BasicBlock*, 4> SamePopularity;
1157 
1158   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1159     // If the popularity of this entry isn't higher than the popularity we've
1160     // seen so far, ignore it.
1161     if (DPI->second < Popularity)
1162       ; // ignore.
1163     else if (DPI->second == Popularity) {
1164       // If it is the same as what we've seen so far, keep track of it.
1165       SamePopularity.push_back(DPI->first);
1166     } else {
1167       // If it is more popular, remember it.
1168       SamePopularity.clear();
1169       MostPopularDest = DPI->first;
1170       Popularity = DPI->second;
1171     }
1172   }
1173 
1174   // Okay, now we know the most popular destination.  If there is more than one
1175   // destination, we need to determine one.  This is arbitrary, but we need
1176   // to make a deterministic decision.  Pick the first one that appears in the
1177   // successor list.
1178   if (!SamePopularity.empty()) {
1179     SamePopularity.push_back(MostPopularDest);
1180     TerminatorInst *TI = BB->getTerminator();
1181     for (unsigned i = 0; ; ++i) {
1182       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1183 
1184       if (std::find(SamePopularity.begin(), SamePopularity.end(),
1185                     TI->getSuccessor(i)) == SamePopularity.end())
1186         continue;
1187 
1188       MostPopularDest = TI->getSuccessor(i);
1189       break;
1190     }
1191   }
1192 
1193   // Okay, we have finally picked the most popular destination.
1194   return MostPopularDest;
1195 }
1196 
1197 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1198                                            ConstantPreference Preference,
1199                                            Instruction *CxtI) {
1200   // If threading this would thread across a loop header, don't even try to
1201   // thread the edge.
1202   if (LoopHeaders.count(BB))
1203     return false;
1204 
1205   PredValueInfoTy PredValues;
1206   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
1207     return false;
1208 
1209   assert(!PredValues.empty() &&
1210          "ComputeValueKnownInPredecessors returned true with no values");
1211 
1212   DEBUG(dbgs() << "IN BB: " << *BB;
1213         for (const auto &PredValue : PredValues) {
1214           dbgs() << "  BB '" << BB->getName() << "': FOUND condition = "
1215             << *PredValue.first
1216             << " for pred '" << PredValue.second->getName() << "'.\n";
1217         });
1218 
1219   // Decide what we want to thread through.  Convert our list of known values to
1220   // a list of known destinations for each pred.  This also discards duplicate
1221   // predecessors and keeps track of the undefined inputs (which are represented
1222   // as a null dest in the PredToDestList).
1223   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1224   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1225 
1226   BasicBlock *OnlyDest = nullptr;
1227   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1228 
1229   for (const auto &PredValue : PredValues) {
1230     BasicBlock *Pred = PredValue.second;
1231     if (!SeenPreds.insert(Pred).second)
1232       continue;  // Duplicate predecessor entry.
1233 
1234     // If the predecessor ends with an indirect goto, we can't change its
1235     // destination.
1236     if (isa<IndirectBrInst>(Pred->getTerminator()))
1237       continue;
1238 
1239     Constant *Val = PredValue.first;
1240 
1241     BasicBlock *DestBB;
1242     if (isa<UndefValue>(Val))
1243       DestBB = nullptr;
1244     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1245       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1246     else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1247       DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor();
1248     } else {
1249       assert(isa<IndirectBrInst>(BB->getTerminator())
1250               && "Unexpected terminator");
1251       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1252     }
1253 
1254     // If we have exactly one destination, remember it for efficiency below.
1255     if (PredToDestList.empty())
1256       OnlyDest = DestBB;
1257     else if (OnlyDest != DestBB)
1258       OnlyDest = MultipleDestSentinel;
1259 
1260     PredToDestList.push_back(std::make_pair(Pred, DestBB));
1261   }
1262 
1263   // If all edges were unthreadable, we fail.
1264   if (PredToDestList.empty())
1265     return false;
1266 
1267   // Determine which is the most common successor.  If we have many inputs and
1268   // this block is a switch, we want to start by threading the batch that goes
1269   // to the most popular destination first.  If we only know about one
1270   // threadable destination (the common case) we can avoid this.
1271   BasicBlock *MostPopularDest = OnlyDest;
1272 
1273   if (MostPopularDest == MultipleDestSentinel)
1274     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1275 
1276   // Now that we know what the most popular destination is, factor all
1277   // predecessors that will jump to it into a single predecessor.
1278   SmallVector<BasicBlock*, 16> PredsToFactor;
1279   for (const auto &PredToDest : PredToDestList)
1280     if (PredToDest.second == MostPopularDest) {
1281       BasicBlock *Pred = PredToDest.first;
1282 
1283       // This predecessor may be a switch or something else that has multiple
1284       // edges to the block.  Factor each of these edges by listing them
1285       // according to # occurrences in PredsToFactor.
1286       for (BasicBlock *Succ : successors(Pred))
1287         if (Succ == BB)
1288           PredsToFactor.push_back(Pred);
1289     }
1290 
1291   // If the threadable edges are branching on an undefined value, we get to pick
1292   // the destination that these predecessors should get to.
1293   if (!MostPopularDest)
1294     MostPopularDest = BB->getTerminator()->
1295                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1296 
1297   // Ok, try to thread it!
1298   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1299 }
1300 
1301 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1302 /// a PHI node in the current block.  See if there are any simplifications we
1303 /// can do based on inputs to the phi node.
1304 ///
1305 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
1306   BasicBlock *BB = PN->getParent();
1307 
1308   // TODO: We could make use of this to do it once for blocks with common PHI
1309   // values.
1310   SmallVector<BasicBlock*, 1> PredBBs;
1311   PredBBs.resize(1);
1312 
1313   // If any of the predecessor blocks end in an unconditional branch, we can
1314   // *duplicate* the conditional branch into that block in order to further
1315   // encourage jump threading and to eliminate cases where we have branch on a
1316   // phi of an icmp (branch on icmp is much better).
1317   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1318     BasicBlock *PredBB = PN->getIncomingBlock(i);
1319     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1320       if (PredBr->isUnconditional()) {
1321         PredBBs[0] = PredBB;
1322         // Try to duplicate BB into PredBB.
1323         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1324           return true;
1325       }
1326   }
1327 
1328   return false;
1329 }
1330 
1331 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1332 /// a xor instruction in the current block.  See if there are any
1333 /// simplifications we can do based on inputs to the xor.
1334 ///
1335 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
1336   BasicBlock *BB = BO->getParent();
1337 
1338   // If either the LHS or RHS of the xor is a constant, don't do this
1339   // optimization.
1340   if (isa<ConstantInt>(BO->getOperand(0)) ||
1341       isa<ConstantInt>(BO->getOperand(1)))
1342     return false;
1343 
1344   // If the first instruction in BB isn't a phi, we won't be able to infer
1345   // anything special about any particular predecessor.
1346   if (!isa<PHINode>(BB->front()))
1347     return false;
1348 
1349   // If we have a xor as the branch input to this block, and we know that the
1350   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1351   // the condition into the predecessor and fix that value to true, saving some
1352   // logical ops on that path and encouraging other paths to simplify.
1353   //
1354   // This copies something like this:
1355   //
1356   //  BB:
1357   //    %X = phi i1 [1],  [%X']
1358   //    %Y = icmp eq i32 %A, %B
1359   //    %Z = xor i1 %X, %Y
1360   //    br i1 %Z, ...
1361   //
1362   // Into:
1363   //  BB':
1364   //    %Y = icmp ne i32 %A, %B
1365   //    br i1 %Y, ...
1366 
1367   PredValueInfoTy XorOpValues;
1368   bool isLHS = true;
1369   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1370                                        WantInteger, BO)) {
1371     assert(XorOpValues.empty());
1372     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1373                                          WantInteger, BO))
1374       return false;
1375     isLHS = false;
1376   }
1377 
1378   assert(!XorOpValues.empty() &&
1379          "ComputeValueKnownInPredecessors returned true with no values");
1380 
1381   // Scan the information to see which is most popular: true or false.  The
1382   // predecessors can be of the set true, false, or undef.
1383   unsigned NumTrue = 0, NumFalse = 0;
1384   for (const auto &XorOpValue : XorOpValues) {
1385     if (isa<UndefValue>(XorOpValue.first))
1386       // Ignore undefs for the count.
1387       continue;
1388     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1389       ++NumFalse;
1390     else
1391       ++NumTrue;
1392   }
1393 
1394   // Determine which value to split on, true, false, or undef if neither.
1395   ConstantInt *SplitVal = nullptr;
1396   if (NumTrue > NumFalse)
1397     SplitVal = ConstantInt::getTrue(BB->getContext());
1398   else if (NumTrue != 0 || NumFalse != 0)
1399     SplitVal = ConstantInt::getFalse(BB->getContext());
1400 
1401   // Collect all of the blocks that this can be folded into so that we can
1402   // factor this once and clone it once.
1403   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1404   for (const auto &XorOpValue : XorOpValues) {
1405     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1406       continue;
1407 
1408     BlocksToFoldInto.push_back(XorOpValue.second);
1409   }
1410 
1411   // If we inferred a value for all of the predecessors, then duplication won't
1412   // help us.  However, we can just replace the LHS or RHS with the constant.
1413   if (BlocksToFoldInto.size() ==
1414       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1415     if (!SplitVal) {
1416       // If all preds provide undef, just nuke the xor, because it is undef too.
1417       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1418       BO->eraseFromParent();
1419     } else if (SplitVal->isZero()) {
1420       // If all preds provide 0, replace the xor with the other input.
1421       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1422       BO->eraseFromParent();
1423     } else {
1424       // If all preds provide 1, set the computed value to 1.
1425       BO->setOperand(!isLHS, SplitVal);
1426     }
1427 
1428     return true;
1429   }
1430 
1431   // Try to duplicate BB into PredBB.
1432   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1433 }
1434 
1435 
1436 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1437 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1438 /// NewPred using the entries from OldPred (suitably mapped).
1439 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1440                                             BasicBlock *OldPred,
1441                                             BasicBlock *NewPred,
1442                                      DenseMap<Instruction*, Value*> &ValueMap) {
1443   for (BasicBlock::iterator PNI = PHIBB->begin();
1444        PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1445     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1446     // DestBlock.
1447     Value *IV = PN->getIncomingValueForBlock(OldPred);
1448 
1449     // Remap the value if necessary.
1450     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1451       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1452       if (I != ValueMap.end())
1453         IV = I->second;
1454     }
1455 
1456     PN->addIncoming(IV, NewPred);
1457   }
1458 }
1459 
1460 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1461 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1462 /// across BB.  Transform the IR to reflect this change.
1463 bool JumpThreading::ThreadEdge(BasicBlock *BB,
1464                                const SmallVectorImpl<BasicBlock*> &PredBBs,
1465                                BasicBlock *SuccBB) {
1466   // If threading to the same block as we come from, we would infinite loop.
1467   if (SuccBB == BB) {
1468     DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1469           << "' - would thread to self!\n");
1470     return false;
1471   }
1472 
1473   // If threading this would thread across a loop header, don't thread the edge.
1474   // See the comments above FindLoopHeaders for justifications and caveats.
1475   if (LoopHeaders.count(BB)) {
1476     DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
1477           << "' to dest BB '" << SuccBB->getName()
1478           << "' - it might create an irreducible loop!\n");
1479     return false;
1480   }
1481 
1482   unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, BBDupThreshold);
1483   if (JumpThreadCost > BBDupThreshold) {
1484     DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1485           << "' - Cost is too high: " << JumpThreadCost << "\n");
1486     return false;
1487   }
1488 
1489   // And finally, do it!  Start by factoring the predecessors if needed.
1490   BasicBlock *PredBB;
1491   if (PredBBs.size() == 1)
1492     PredBB = PredBBs[0];
1493   else {
1494     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1495           << " common predecessors.\n");
1496     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1497   }
1498 
1499   // And finally, do it!
1500   DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1501         << SuccBB->getName() << "' with cost: " << JumpThreadCost
1502         << ", across block:\n    "
1503         << *BB << "\n");
1504 
1505   LVI->threadEdge(PredBB, BB, SuccBB);
1506 
1507   // We are going to have to map operands from the original BB block to the new
1508   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1509   // account for entry from PredBB.
1510   DenseMap<Instruction*, Value*> ValueMapping;
1511 
1512   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1513                                          BB->getName()+".thread",
1514                                          BB->getParent(), BB);
1515   NewBB->moveAfter(PredBB);
1516 
1517   // Set the block frequency of NewBB.
1518   if (HasProfileData) {
1519     auto NewBBFreq =
1520         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
1521     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
1522   }
1523 
1524   BasicBlock::iterator BI = BB->begin();
1525   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1526     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1527 
1528   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1529   // mapping and using it to remap operands in the cloned instructions.
1530   for (; !isa<TerminatorInst>(BI); ++BI) {
1531     Instruction *New = BI->clone();
1532     New->setName(BI->getName());
1533     NewBB->getInstList().push_back(New);
1534     ValueMapping[&*BI] = New;
1535 
1536     // Remap operands to patch up intra-block references.
1537     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1538       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1539         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1540         if (I != ValueMapping.end())
1541           New->setOperand(i, I->second);
1542       }
1543   }
1544 
1545   // We didn't copy the terminator from BB over to NewBB, because there is now
1546   // an unconditional jump to SuccBB.  Insert the unconditional jump.
1547   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
1548   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
1549 
1550   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1551   // PHI nodes for NewBB now.
1552   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1553 
1554   // If there were values defined in BB that are used outside the block, then we
1555   // now have to update all uses of the value to use either the original value,
1556   // the cloned value, or some PHI derived value.  This can require arbitrary
1557   // PHI insertion, of which we are prepared to do, clean these up now.
1558   SSAUpdater SSAUpdate;
1559   SmallVector<Use*, 16> UsesToRename;
1560   for (Instruction &I : *BB) {
1561     // Scan all uses of this instruction to see if it is used outside of its
1562     // block, and if so, record them in UsesToRename.
1563     for (Use &U : I.uses()) {
1564       Instruction *User = cast<Instruction>(U.getUser());
1565       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1566         if (UserPN->getIncomingBlock(U) == BB)
1567           continue;
1568       } else if (User->getParent() == BB)
1569         continue;
1570 
1571       UsesToRename.push_back(&U);
1572     }
1573 
1574     // If there are no uses outside the block, we're done with this instruction.
1575     if (UsesToRename.empty())
1576       continue;
1577 
1578     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
1579 
1580     // We found a use of I outside of BB.  Rename all uses of I that are outside
1581     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1582     // with the two values we know.
1583     SSAUpdate.Initialize(I.getType(), I.getName());
1584     SSAUpdate.AddAvailableValue(BB, &I);
1585     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
1586 
1587     while (!UsesToRename.empty())
1588       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1589     DEBUG(dbgs() << "\n");
1590   }
1591 
1592 
1593   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1594   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1595   // us to simplify any PHI nodes in BB.
1596   TerminatorInst *PredTerm = PredBB->getTerminator();
1597   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1598     if (PredTerm->getSuccessor(i) == BB) {
1599       BB->removePredecessor(PredBB, true);
1600       PredTerm->setSuccessor(i, NewBB);
1601     }
1602 
1603   // At this point, the IR is fully up to date and consistent.  Do a quick scan
1604   // over the new instructions and zap any that are constants or dead.  This
1605   // frequently happens because of phi translation.
1606   SimplifyInstructionsInBlock(NewBB, TLI);
1607 
1608   // Update the edge weight from BB to SuccBB, which should be less than before.
1609   UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
1610 
1611   // Threaded an edge!
1612   ++NumThreads;
1613   return true;
1614 }
1615 
1616 /// Create a new basic block that will be the predecessor of BB and successor of
1617 /// all blocks in Preds. When profile data is availble, update the frequency of
1618 /// this new block.
1619 BasicBlock *JumpThreading::SplitBlockPreds(BasicBlock *BB,
1620                                            ArrayRef<BasicBlock *> Preds,
1621                                            const char *Suffix) {
1622   // Collect the frequencies of all predecessors of BB, which will be used to
1623   // update the edge weight on BB->SuccBB.
1624   BlockFrequency PredBBFreq(0);
1625   if (HasProfileData)
1626     for (auto Pred : Preds)
1627       PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB);
1628 
1629   BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix);
1630 
1631   // Set the block frequency of the newly created PredBB, which is the sum of
1632   // frequencies of Preds.
1633   if (HasProfileData)
1634     BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency());
1635   return PredBB;
1636 }
1637 
1638 /// Update the block frequency of BB and branch weight and the metadata on the
1639 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
1640 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
1641 void JumpThreading::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
1642                                                  BasicBlock *BB,
1643                                                  BasicBlock *NewBB,
1644                                                  BasicBlock *SuccBB) {
1645   if (!HasProfileData)
1646     return;
1647 
1648   assert(BFI && BPI && "BFI & BPI should have been created here");
1649 
1650   // As the edge from PredBB to BB is deleted, we have to update the block
1651   // frequency of BB.
1652   auto BBOrigFreq = BFI->getBlockFreq(BB);
1653   auto NewBBFreq = BFI->getBlockFreq(NewBB);
1654   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
1655   auto BBNewFreq = BBOrigFreq - NewBBFreq;
1656   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
1657 
1658   // Collect updated outgoing edges' frequencies from BB and use them to update
1659   // edge probabilities.
1660   SmallVector<uint64_t, 4> BBSuccFreq;
1661   for (BasicBlock *Succ : successors(BB)) {
1662     auto SuccFreq = (Succ == SuccBB)
1663                         ? BB2SuccBBFreq - NewBBFreq
1664                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
1665     BBSuccFreq.push_back(SuccFreq.getFrequency());
1666   }
1667 
1668   uint64_t MaxBBSuccFreq =
1669       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
1670 
1671   SmallVector<BranchProbability, 4> BBSuccProbs;
1672   if (MaxBBSuccFreq == 0)
1673     BBSuccProbs.assign(BBSuccFreq.size(),
1674                        {1, static_cast<unsigned>(BBSuccFreq.size())});
1675   else {
1676     for (uint64_t Freq : BBSuccFreq)
1677       BBSuccProbs.push_back(
1678           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
1679     // Normalize edge probabilities so that they sum up to one.
1680     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
1681                                               BBSuccProbs.end());
1682   }
1683 
1684   // Update edge probabilities in BPI.
1685   for (int I = 0, E = BBSuccProbs.size(); I < E; I++)
1686     BPI->setEdgeProbability(BB, I, BBSuccProbs[I]);
1687 
1688   if (BBSuccProbs.size() >= 2) {
1689     SmallVector<uint32_t, 4> Weights;
1690     for (auto Prob : BBSuccProbs)
1691       Weights.push_back(Prob.getNumerator());
1692 
1693     auto TI = BB->getTerminator();
1694     TI->setMetadata(
1695         LLVMContext::MD_prof,
1696         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
1697   }
1698 }
1699 
1700 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1701 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1702 /// If we can duplicate the contents of BB up into PredBB do so now, this
1703 /// improves the odds that the branch will be on an analyzable instruction like
1704 /// a compare.
1705 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1706                                  const SmallVectorImpl<BasicBlock *> &PredBBs) {
1707   assert(!PredBBs.empty() && "Can't handle an empty set");
1708 
1709   // If BB is a loop header, then duplicating this block outside the loop would
1710   // cause us to transform this into an irreducible loop, don't do this.
1711   // See the comments above FindLoopHeaders for justifications and caveats.
1712   if (LoopHeaders.count(BB)) {
1713     DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
1714           << "' into predecessor block '" << PredBBs[0]->getName()
1715           << "' - it might create an irreducible loop!\n");
1716     return false;
1717   }
1718 
1719   unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, BBDupThreshold);
1720   if (DuplicationCost > BBDupThreshold) {
1721     DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
1722           << "' - Cost is too high: " << DuplicationCost << "\n");
1723     return false;
1724   }
1725 
1726   // And finally, do it!  Start by factoring the predecessors if needed.
1727   BasicBlock *PredBB;
1728   if (PredBBs.size() == 1)
1729     PredBB = PredBBs[0];
1730   else {
1731     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1732           << " common predecessors.\n");
1733     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1734   }
1735 
1736   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1737   // of PredBB.
1738   DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1739         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1740         << DuplicationCost << " block is:" << *BB << "\n");
1741 
1742   // Unless PredBB ends with an unconditional branch, split the edge so that we
1743   // can just clone the bits from BB into the end of the new PredBB.
1744   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1745 
1746   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
1747     PredBB = SplitEdge(PredBB, BB);
1748     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1749   }
1750 
1751   // We are going to have to map operands from the original BB block into the
1752   // PredBB block.  Evaluate PHI nodes in BB.
1753   DenseMap<Instruction*, Value*> ValueMapping;
1754 
1755   BasicBlock::iterator BI = BB->begin();
1756   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1757     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1758   // Clone the non-phi instructions of BB into PredBB, keeping track of the
1759   // mapping and using it to remap operands in the cloned instructions.
1760   for (; BI != BB->end(); ++BI) {
1761     Instruction *New = BI->clone();
1762 
1763     // Remap operands to patch up intra-block references.
1764     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1765       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1766         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1767         if (I != ValueMapping.end())
1768           New->setOperand(i, I->second);
1769       }
1770 
1771     // If this instruction can be simplified after the operands are updated,
1772     // just use the simplified value instead.  This frequently happens due to
1773     // phi translation.
1774     if (Value *IV =
1775             SimplifyInstruction(New, BB->getModule()->getDataLayout())) {
1776       delete New;
1777       ValueMapping[&*BI] = IV;
1778     } else {
1779       // Otherwise, insert the new instruction into the block.
1780       New->setName(BI->getName());
1781       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
1782       ValueMapping[&*BI] = New;
1783     }
1784   }
1785 
1786   // Check to see if the targets of the branch had PHI nodes. If so, we need to
1787   // add entries to the PHI nodes for branch from PredBB now.
1788   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1789   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1790                                   ValueMapping);
1791   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1792                                   ValueMapping);
1793 
1794   // If there were values defined in BB that are used outside the block, then we
1795   // now have to update all uses of the value to use either the original value,
1796   // the cloned value, or some PHI derived value.  This can require arbitrary
1797   // PHI insertion, of which we are prepared to do, clean these up now.
1798   SSAUpdater SSAUpdate;
1799   SmallVector<Use*, 16> UsesToRename;
1800   for (Instruction &I : *BB) {
1801     // Scan all uses of this instruction to see if it is used outside of its
1802     // block, and if so, record them in UsesToRename.
1803     for (Use &U : I.uses()) {
1804       Instruction *User = cast<Instruction>(U.getUser());
1805       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1806         if (UserPN->getIncomingBlock(U) == BB)
1807           continue;
1808       } else if (User->getParent() == BB)
1809         continue;
1810 
1811       UsesToRename.push_back(&U);
1812     }
1813 
1814     // If there are no uses outside the block, we're done with this instruction.
1815     if (UsesToRename.empty())
1816       continue;
1817 
1818     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
1819 
1820     // We found a use of I outside of BB.  Rename all uses of I that are outside
1821     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1822     // with the two values we know.
1823     SSAUpdate.Initialize(I.getType(), I.getName());
1824     SSAUpdate.AddAvailableValue(BB, &I);
1825     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]);
1826 
1827     while (!UsesToRename.empty())
1828       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1829     DEBUG(dbgs() << "\n");
1830   }
1831 
1832   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1833   // that we nuked.
1834   BB->removePredecessor(PredBB, true);
1835 
1836   // Remove the unconditional branch at the end of the PredBB block.
1837   OldPredBranch->eraseFromParent();
1838 
1839   ++NumDupes;
1840   return true;
1841 }
1842 
1843 /// TryToUnfoldSelect - Look for blocks of the form
1844 /// bb1:
1845 ///   %a = select
1846 ///   br bb
1847 ///
1848 /// bb2:
1849 ///   %p = phi [%a, %bb] ...
1850 ///   %c = icmp %p
1851 ///   br i1 %c
1852 ///
1853 /// And expand the select into a branch structure if one of its arms allows %c
1854 /// to be folded. This later enables threading from bb1 over bb2.
1855 bool JumpThreading::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
1856   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1857   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
1858   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
1859 
1860   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
1861       CondLHS->getParent() != BB)
1862     return false;
1863 
1864   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
1865     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
1866     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
1867 
1868     // Look if one of the incoming values is a select in the corresponding
1869     // predecessor.
1870     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
1871       continue;
1872 
1873     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
1874     if (!PredTerm || !PredTerm->isUnconditional())
1875       continue;
1876 
1877     // Now check if one of the select values would allow us to constant fold the
1878     // terminator in BB. We don't do the transform if both sides fold, those
1879     // cases will be threaded in any case.
1880     LazyValueInfo::Tristate LHSFolds =
1881         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
1882                                 CondRHS, Pred, BB, CondCmp);
1883     LazyValueInfo::Tristate RHSFolds =
1884         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
1885                                 CondRHS, Pred, BB, CondCmp);
1886     if ((LHSFolds != LazyValueInfo::Unknown ||
1887          RHSFolds != LazyValueInfo::Unknown) &&
1888         LHSFolds != RHSFolds) {
1889       // Expand the select.
1890       //
1891       // Pred --
1892       //  |    v
1893       //  |  NewBB
1894       //  |    |
1895       //  |-----
1896       //  v
1897       // BB
1898       BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
1899                                              BB->getParent(), BB);
1900       // Move the unconditional branch to NewBB.
1901       PredTerm->removeFromParent();
1902       NewBB->getInstList().insert(NewBB->end(), PredTerm);
1903       // Create a conditional branch and update PHI nodes.
1904       BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
1905       CondLHS->setIncomingValue(I, SI->getFalseValue());
1906       CondLHS->addIncoming(SI->getTrueValue(), NewBB);
1907       // The select is now dead.
1908       SI->eraseFromParent();
1909 
1910       // Update any other PHI nodes in BB.
1911       for (BasicBlock::iterator BI = BB->begin();
1912            PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
1913         if (Phi != CondLHS)
1914           Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
1915       return true;
1916     }
1917   }
1918   return false;
1919 }
1920 
1921 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select in the same BB of the form
1922 /// bb:
1923 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
1924 ///   %s = select p, trueval, falseval
1925 ///
1926 /// And expand the select into a branch structure. This later enables
1927 /// jump-threading over bb in this pass.
1928 ///
1929 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
1930 /// select if the associated PHI has at least one constant.  If the unfolded
1931 /// select is not jump-threaded, it will be folded again in the later
1932 /// optimizations.
1933 bool JumpThreading::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
1934   // If threading this would thread across a loop header, don't thread the edge.
1935   // See the comments above FindLoopHeaders for justifications and caveats.
1936   if (LoopHeaders.count(BB))
1937     return false;
1938 
1939   // Look for a Phi/Select pair in the same basic block.  The Phi feeds the
1940   // condition of the Select and at least one of the incoming values is a
1941   // constant.
1942   for (BasicBlock::iterator BI = BB->begin();
1943        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
1944     unsigned NumPHIValues = PN->getNumIncomingValues();
1945     if (NumPHIValues == 0 || !PN->hasOneUse())
1946       continue;
1947 
1948     SelectInst *SI = dyn_cast<SelectInst>(PN->user_back());
1949     if (!SI || SI->getParent() != BB)
1950       continue;
1951 
1952     Value *Cond = SI->getCondition();
1953     if (!Cond || Cond != PN || !Cond->getType()->isIntegerTy(1))
1954       continue;
1955 
1956     bool HasConst = false;
1957     for (unsigned i = 0; i != NumPHIValues; ++i) {
1958       if (PN->getIncomingBlock(i) == BB)
1959         return false;
1960       if (isa<ConstantInt>(PN->getIncomingValue(i)))
1961         HasConst = true;
1962     }
1963 
1964     if (HasConst) {
1965       // Expand the select.
1966       TerminatorInst *Term =
1967           SplitBlockAndInsertIfThen(SI->getCondition(), SI, false);
1968       PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
1969       NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
1970       NewPN->addIncoming(SI->getFalseValue(), BB);
1971       SI->replaceAllUsesWith(NewPN);
1972       SI->eraseFromParent();
1973       return true;
1974     }
1975   }
1976 
1977   return false;
1978 }
1979