1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/JumpThreading.h" 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 23 #include "llvm/Analysis/ConstantFolding.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/Loads.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/MDBuilder.h" 32 #include "llvm/IR/Metadata.h" 33 #include "llvm/Pass.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 38 #include "llvm/Transforms/Utils/Local.h" 39 #include "llvm/Transforms/Utils/SSAUpdater.h" 40 #include <algorithm> 41 #include <memory> 42 using namespace llvm; 43 using namespace jumpthreading; 44 45 #define DEBUG_TYPE "jump-threading" 46 47 STATISTIC(NumThreads, "Number of jumps threaded"); 48 STATISTIC(NumFolds, "Number of terminators folded"); 49 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 50 51 static cl::opt<unsigned> 52 BBDuplicateThreshold("jump-threading-threshold", 53 cl::desc("Max block size to duplicate for jump threading"), 54 cl::init(6), cl::Hidden); 55 56 static cl::opt<unsigned> 57 ImplicationSearchThreshold( 58 "jump-threading-implication-search-threshold", 59 cl::desc("The number of predecessors to search for a stronger " 60 "condition to use to thread over a weaker condition"), 61 cl::init(3), cl::Hidden); 62 63 namespace { 64 /// This pass performs 'jump threading', which looks at blocks that have 65 /// multiple predecessors and multiple successors. If one or more of the 66 /// predecessors of the block can be proven to always jump to one of the 67 /// successors, we forward the edge from the predecessor to the successor by 68 /// duplicating the contents of this block. 69 /// 70 /// An example of when this can occur is code like this: 71 /// 72 /// if () { ... 73 /// X = 4; 74 /// } 75 /// if (X < 3) { 76 /// 77 /// In this case, the unconditional branch at the end of the first if can be 78 /// revectored to the false side of the second if. 79 /// 80 class JumpThreading : public FunctionPass { 81 JumpThreadingPass Impl; 82 83 public: 84 static char ID; // Pass identification 85 JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) { 86 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 87 } 88 89 bool runOnFunction(Function &F) override; 90 91 void getAnalysisUsage(AnalysisUsage &AU) const override { 92 AU.addRequired<LazyValueInfoWrapperPass>(); 93 AU.addPreserved<LazyValueInfoWrapperPass>(); 94 AU.addPreserved<GlobalsAAWrapperPass>(); 95 AU.addRequired<TargetLibraryInfoWrapperPass>(); 96 } 97 98 void releaseMemory() override { Impl.releaseMemory(); } 99 }; 100 } 101 102 char JumpThreading::ID = 0; 103 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 104 "Jump Threading", false, false) 105 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 106 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 107 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 108 "Jump Threading", false, false) 109 110 // Public interface to the Jump Threading pass 111 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); } 112 113 JumpThreadingPass::JumpThreadingPass(int T) { 114 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 115 } 116 117 /// runOnFunction - Top level algorithm. 118 /// 119 bool JumpThreading::runOnFunction(Function &F) { 120 if (skipFunction(F)) 121 return false; 122 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 123 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 124 std::unique_ptr<BlockFrequencyInfo> BFI; 125 std::unique_ptr<BranchProbabilityInfo> BPI; 126 bool HasProfileData = F.getEntryCount().hasValue(); 127 if (HasProfileData) { 128 LoopInfo LI{DominatorTree(F)}; 129 BPI.reset(new BranchProbabilityInfo(F, LI)); 130 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 131 } 132 return Impl.runImpl(F, TLI, LVI, HasProfileData, std::move(BFI), 133 std::move(BPI)); 134 } 135 136 PreservedAnalyses JumpThreadingPass::run(Function &F, 137 FunctionAnalysisManager &AM) { 138 139 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 140 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 141 std::unique_ptr<BlockFrequencyInfo> BFI; 142 std::unique_ptr<BranchProbabilityInfo> BPI; 143 bool HasProfileData = F.getEntryCount().hasValue(); 144 if (HasProfileData) { 145 LoopInfo LI{DominatorTree(F)}; 146 BPI.reset(new BranchProbabilityInfo(F, LI)); 147 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 148 } 149 bool Changed = 150 runImpl(F, &TLI, &LVI, HasProfileData, std::move(BFI), std::move(BPI)); 151 152 // FIXME: We need to invalidate LVI to avoid PR28400. Is there a better 153 // solution? 154 AM.invalidate<LazyValueAnalysis>(F); 155 156 if (!Changed) 157 return PreservedAnalyses::all(); 158 PreservedAnalyses PA; 159 PA.preserve<GlobalsAA>(); 160 return PA; 161 } 162 163 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 164 LazyValueInfo *LVI_, bool HasProfileData_, 165 std::unique_ptr<BlockFrequencyInfo> BFI_, 166 std::unique_ptr<BranchProbabilityInfo> BPI_) { 167 168 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 169 TLI = TLI_; 170 LVI = LVI_; 171 BFI.reset(); 172 BPI.reset(); 173 // When profile data is available, we need to update edge weights after 174 // successful jump threading, which requires both BPI and BFI being available. 175 HasProfileData = HasProfileData_; 176 if (HasProfileData) { 177 BPI = std::move(BPI_); 178 BFI = std::move(BFI_); 179 } 180 181 // Remove unreachable blocks from function as they may result in infinite 182 // loop. We do threading if we found something profitable. Jump threading a 183 // branch can create other opportunities. If these opportunities form a cycle 184 // i.e. if any jump threading is undoing previous threading in the path, then 185 // we will loop forever. We take care of this issue by not jump threading for 186 // back edges. This works for normal cases but not for unreachable blocks as 187 // they may have cycle with no back edge. 188 bool EverChanged = false; 189 EverChanged |= removeUnreachableBlocks(F, LVI); 190 191 FindLoopHeaders(F); 192 193 bool Changed; 194 do { 195 Changed = false; 196 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 197 BasicBlock *BB = &*I; 198 // Thread all of the branches we can over this block. 199 while (ProcessBlock(BB)) 200 Changed = true; 201 202 ++I; 203 204 // If the block is trivially dead, zap it. This eliminates the successor 205 // edges which simplifies the CFG. 206 if (pred_empty(BB) && 207 BB != &BB->getParent()->getEntryBlock()) { 208 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 209 << "' with terminator: " << *BB->getTerminator() << '\n'); 210 LoopHeaders.erase(BB); 211 LVI->eraseBlock(BB); 212 DeleteDeadBlock(BB); 213 Changed = true; 214 continue; 215 } 216 217 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 218 219 // Can't thread an unconditional jump, but if the block is "almost 220 // empty", we can replace uses of it with uses of the successor and make 221 // this dead. 222 // We should not eliminate the loop header either, because eliminating 223 // a loop header might later prevent LoopSimplify from transforming nested 224 // loops into simplified form. 225 if (BI && BI->isUnconditional() && 226 BB != &BB->getParent()->getEntryBlock() && 227 // If the terminator is the only non-phi instruction, try to nuke it. 228 BB->getFirstNonPHIOrDbg()->isTerminator() && !LoopHeaders.count(BB)) { 229 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 230 // block, we have to make sure it isn't in the LoopHeaders set. We 231 // reinsert afterward if needed. 232 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 233 BasicBlock *Succ = BI->getSuccessor(0); 234 235 // FIXME: It is always conservatively correct to drop the info 236 // for a block even if it doesn't get erased. This isn't totally 237 // awesome, but it allows us to use AssertingVH to prevent nasty 238 // dangling pointer issues within LazyValueInfo. 239 LVI->eraseBlock(BB); 240 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { 241 Changed = true; 242 // If we deleted BB and BB was the header of a loop, then the 243 // successor is now the header of the loop. 244 BB = Succ; 245 } 246 247 if (ErasedFromLoopHeaders) 248 LoopHeaders.insert(BB); 249 } 250 } 251 EverChanged |= Changed; 252 } while (Changed); 253 254 LoopHeaders.clear(); 255 return EverChanged; 256 } 257 258 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 259 /// thread across it. Stop scanning the block when passing the threshold. 260 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB, 261 unsigned Threshold) { 262 /// Ignore PHI nodes, these will be flattened when duplication happens. 263 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 264 265 // FIXME: THREADING will delete values that are just used to compute the 266 // branch, so they shouldn't count against the duplication cost. 267 268 unsigned Bonus = 0; 269 const TerminatorInst *BBTerm = BB->getTerminator(); 270 // Threading through a switch statement is particularly profitable. If this 271 // block ends in a switch, decrease its cost to make it more likely to happen. 272 if (isa<SwitchInst>(BBTerm)) 273 Bonus = 6; 274 275 // The same holds for indirect branches, but slightly more so. 276 if (isa<IndirectBrInst>(BBTerm)) 277 Bonus = 8; 278 279 // Bump the threshold up so the early exit from the loop doesn't skip the 280 // terminator-based Size adjustment at the end. 281 Threshold += Bonus; 282 283 // Sum up the cost of each instruction until we get to the terminator. Don't 284 // include the terminator because the copy won't include it. 285 unsigned Size = 0; 286 for (; !isa<TerminatorInst>(I); ++I) { 287 288 // Stop scanning the block if we've reached the threshold. 289 if (Size > Threshold) 290 return Size; 291 292 // Debugger intrinsics don't incur code size. 293 if (isa<DbgInfoIntrinsic>(I)) continue; 294 295 // If this is a pointer->pointer bitcast, it is free. 296 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 297 continue; 298 299 // Bail out if this instruction gives back a token type, it is not possible 300 // to duplicate it if it is used outside this BB. 301 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 302 return ~0U; 303 304 // All other instructions count for at least one unit. 305 ++Size; 306 307 // Calls are more expensive. If they are non-intrinsic calls, we model them 308 // as having cost of 4. If they are a non-vector intrinsic, we model them 309 // as having cost of 2 total, and if they are a vector intrinsic, we model 310 // them as having cost 1. 311 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 312 if (CI->cannotDuplicate() || CI->isConvergent()) 313 // Blocks with NoDuplicate are modelled as having infinite cost, so they 314 // are never duplicated. 315 return ~0U; 316 else if (!isa<IntrinsicInst>(CI)) 317 Size += 3; 318 else if (!CI->getType()->isVectorTy()) 319 Size += 1; 320 } 321 } 322 323 return Size > Bonus ? Size - Bonus : 0; 324 } 325 326 /// FindLoopHeaders - We do not want jump threading to turn proper loop 327 /// structures into irreducible loops. Doing this breaks up the loop nesting 328 /// hierarchy and pessimizes later transformations. To prevent this from 329 /// happening, we first have to find the loop headers. Here we approximate this 330 /// by finding targets of backedges in the CFG. 331 /// 332 /// Note that there definitely are cases when we want to allow threading of 333 /// edges across a loop header. For example, threading a jump from outside the 334 /// loop (the preheader) to an exit block of the loop is definitely profitable. 335 /// It is also almost always profitable to thread backedges from within the loop 336 /// to exit blocks, and is often profitable to thread backedges to other blocks 337 /// within the loop (forming a nested loop). This simple analysis is not rich 338 /// enough to track all of these properties and keep it up-to-date as the CFG 339 /// mutates, so we don't allow any of these transformations. 340 /// 341 void JumpThreadingPass::FindLoopHeaders(Function &F) { 342 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 343 FindFunctionBackedges(F, Edges); 344 345 for (const auto &Edge : Edges) 346 LoopHeaders.insert(Edge.second); 347 } 348 349 /// getKnownConstant - Helper method to determine if we can thread over a 350 /// terminator with the given value as its condition, and if so what value to 351 /// use for that. What kind of value this is depends on whether we want an 352 /// integer or a block address, but an undef is always accepted. 353 /// Returns null if Val is null or not an appropriate constant. 354 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 355 if (!Val) 356 return nullptr; 357 358 // Undef is "known" enough. 359 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 360 return U; 361 362 if (Preference == WantBlockAddress) 363 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 364 365 return dyn_cast<ConstantInt>(Val); 366 } 367 368 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 369 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 370 /// in any of our predecessors. If so, return the known list of value and pred 371 /// BB in the result vector. 372 /// 373 /// This returns true if there were any known values. 374 /// 375 bool JumpThreadingPass::ComputeValueKnownInPredecessors( 376 Value *V, BasicBlock *BB, PredValueInfo &Result, 377 ConstantPreference Preference, Instruction *CxtI) { 378 // This method walks up use-def chains recursively. Because of this, we could 379 // get into an infinite loop going around loops in the use-def chain. To 380 // prevent this, keep track of what (value, block) pairs we've already visited 381 // and terminate the search if we loop back to them 382 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 383 return false; 384 385 // An RAII help to remove this pair from the recursion set once the recursion 386 // stack pops back out again. 387 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 388 389 // If V is a constant, then it is known in all predecessors. 390 if (Constant *KC = getKnownConstant(V, Preference)) { 391 for (BasicBlock *Pred : predecessors(BB)) 392 Result.push_back(std::make_pair(KC, Pred)); 393 394 return !Result.empty(); 395 } 396 397 // If V is a non-instruction value, or an instruction in a different block, 398 // then it can't be derived from a PHI. 399 Instruction *I = dyn_cast<Instruction>(V); 400 if (!I || I->getParent() != BB) { 401 402 // Okay, if this is a live-in value, see if it has a known value at the end 403 // of any of our predecessors. 404 // 405 // FIXME: This should be an edge property, not a block end property. 406 /// TODO: Per PR2563, we could infer value range information about a 407 /// predecessor based on its terminator. 408 // 409 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 410 // "I" is a non-local compare-with-a-constant instruction. This would be 411 // able to handle value inequalities better, for example if the compare is 412 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 413 // Perhaps getConstantOnEdge should be smart enough to do this? 414 415 for (BasicBlock *P : predecessors(BB)) { 416 // If the value is known by LazyValueInfo to be a constant in a 417 // predecessor, use that information to try to thread this block. 418 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 419 if (Constant *KC = getKnownConstant(PredCst, Preference)) 420 Result.push_back(std::make_pair(KC, P)); 421 } 422 423 return !Result.empty(); 424 } 425 426 /// If I is a PHI node, then we know the incoming values for any constants. 427 if (PHINode *PN = dyn_cast<PHINode>(I)) { 428 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 429 Value *InVal = PN->getIncomingValue(i); 430 if (Constant *KC = getKnownConstant(InVal, Preference)) { 431 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 432 } else { 433 Constant *CI = LVI->getConstantOnEdge(InVal, 434 PN->getIncomingBlock(i), 435 BB, CxtI); 436 if (Constant *KC = getKnownConstant(CI, Preference)) 437 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 438 } 439 } 440 441 return !Result.empty(); 442 } 443 444 // Handle Cast instructions. Only see through Cast when the source operand is 445 // PHI or Cmp and the source type is i1 to save the compilation time. 446 if (CastInst *CI = dyn_cast<CastInst>(I)) { 447 Value *Source = CI->getOperand(0); 448 if (!Source->getType()->isIntegerTy(1)) 449 return false; 450 if (!isa<PHINode>(Source) && !isa<CmpInst>(Source)) 451 return false; 452 ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI); 453 if (Result.empty()) 454 return false; 455 456 // Convert the known values. 457 for (auto &R : Result) 458 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 459 460 return true; 461 } 462 463 PredValueInfoTy LHSVals, RHSVals; 464 465 // Handle some boolean conditions. 466 if (I->getType()->getPrimitiveSizeInBits() == 1) { 467 assert(Preference == WantInteger && "One-bit non-integer type?"); 468 // X | true -> true 469 // X & false -> false 470 if (I->getOpcode() == Instruction::Or || 471 I->getOpcode() == Instruction::And) { 472 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 473 WantInteger, CxtI); 474 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 475 WantInteger, CxtI); 476 477 if (LHSVals.empty() && RHSVals.empty()) 478 return false; 479 480 ConstantInt *InterestingVal; 481 if (I->getOpcode() == Instruction::Or) 482 InterestingVal = ConstantInt::getTrue(I->getContext()); 483 else 484 InterestingVal = ConstantInt::getFalse(I->getContext()); 485 486 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 487 488 // Scan for the sentinel. If we find an undef, force it to the 489 // interesting value: x|undef -> true and x&undef -> false. 490 for (const auto &LHSVal : LHSVals) 491 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 492 Result.emplace_back(InterestingVal, LHSVal.second); 493 LHSKnownBBs.insert(LHSVal.second); 494 } 495 for (const auto &RHSVal : RHSVals) 496 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 497 // If we already inferred a value for this block on the LHS, don't 498 // re-add it. 499 if (!LHSKnownBBs.count(RHSVal.second)) 500 Result.emplace_back(InterestingVal, RHSVal.second); 501 } 502 503 return !Result.empty(); 504 } 505 506 // Handle the NOT form of XOR. 507 if (I->getOpcode() == Instruction::Xor && 508 isa<ConstantInt>(I->getOperand(1)) && 509 cast<ConstantInt>(I->getOperand(1))->isOne()) { 510 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 511 WantInteger, CxtI); 512 if (Result.empty()) 513 return false; 514 515 // Invert the known values. 516 for (auto &R : Result) 517 R.first = ConstantExpr::getNot(R.first); 518 519 return true; 520 } 521 522 // Try to simplify some other binary operator values. 523 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 524 assert(Preference != WantBlockAddress 525 && "A binary operator creating a block address?"); 526 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 527 PredValueInfoTy LHSVals; 528 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 529 WantInteger, CxtI); 530 531 // Try to use constant folding to simplify the binary operator. 532 for (const auto &LHSVal : LHSVals) { 533 Constant *V = LHSVal.first; 534 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 535 536 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 537 Result.push_back(std::make_pair(KC, LHSVal.second)); 538 } 539 } 540 541 return !Result.empty(); 542 } 543 544 // Handle compare with phi operand, where the PHI is defined in this block. 545 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 546 assert(Preference == WantInteger && "Compares only produce integers"); 547 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 548 if (PN && PN->getParent() == BB) { 549 const DataLayout &DL = PN->getModule()->getDataLayout(); 550 // We can do this simplification if any comparisons fold to true or false. 551 // See if any do. 552 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 553 BasicBlock *PredBB = PN->getIncomingBlock(i); 554 Value *LHS = PN->getIncomingValue(i); 555 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 556 557 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL); 558 if (!Res) { 559 if (!isa<Constant>(RHS)) 560 continue; 561 562 LazyValueInfo::Tristate 563 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 564 cast<Constant>(RHS), PredBB, BB, 565 CxtI ? CxtI : Cmp); 566 if (ResT == LazyValueInfo::Unknown) 567 continue; 568 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 569 } 570 571 if (Constant *KC = getKnownConstant(Res, WantInteger)) 572 Result.push_back(std::make_pair(KC, PredBB)); 573 } 574 575 return !Result.empty(); 576 } 577 578 // If comparing a live-in value against a constant, see if we know the 579 // live-in value on any predecessors. 580 if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) { 581 if (!isa<Instruction>(Cmp->getOperand(0)) || 582 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) { 583 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 584 585 for (BasicBlock *P : predecessors(BB)) { 586 // If the value is known by LazyValueInfo to be a constant in a 587 // predecessor, use that information to try to thread this block. 588 LazyValueInfo::Tristate Res = 589 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 590 RHSCst, P, BB, CxtI ? CxtI : Cmp); 591 if (Res == LazyValueInfo::Unknown) 592 continue; 593 594 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 595 Result.push_back(std::make_pair(ResC, P)); 596 } 597 598 return !Result.empty(); 599 } 600 601 // Try to find a constant value for the LHS of a comparison, 602 // and evaluate it statically if we can. 603 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) { 604 PredValueInfoTy LHSVals; 605 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 606 WantInteger, CxtI); 607 608 for (const auto &LHSVal : LHSVals) { 609 Constant *V = LHSVal.first; 610 Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(), 611 V, CmpConst); 612 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 613 Result.push_back(std::make_pair(KC, LHSVal.second)); 614 } 615 616 return !Result.empty(); 617 } 618 } 619 } 620 621 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 622 // Handle select instructions where at least one operand is a known constant 623 // and we can figure out the condition value for any predecessor block. 624 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 625 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 626 PredValueInfoTy Conds; 627 if ((TrueVal || FalseVal) && 628 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 629 WantInteger, CxtI)) { 630 for (auto &C : Conds) { 631 Constant *Cond = C.first; 632 633 // Figure out what value to use for the condition. 634 bool KnownCond; 635 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 636 // A known boolean. 637 KnownCond = CI->isOne(); 638 } else { 639 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 640 // Either operand will do, so be sure to pick the one that's a known 641 // constant. 642 // FIXME: Do this more cleverly if both values are known constants? 643 KnownCond = (TrueVal != nullptr); 644 } 645 646 // See if the select has a known constant value for this predecessor. 647 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 648 Result.push_back(std::make_pair(Val, C.second)); 649 } 650 651 return !Result.empty(); 652 } 653 } 654 655 // If all else fails, see if LVI can figure out a constant value for us. 656 Constant *CI = LVI->getConstant(V, BB, CxtI); 657 if (Constant *KC = getKnownConstant(CI, Preference)) { 658 for (BasicBlock *Pred : predecessors(BB)) 659 Result.push_back(std::make_pair(KC, Pred)); 660 } 661 662 return !Result.empty(); 663 } 664 665 666 667 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 668 /// in an undefined jump, decide which block is best to revector to. 669 /// 670 /// Since we can pick an arbitrary destination, we pick the successor with the 671 /// fewest predecessors. This should reduce the in-degree of the others. 672 /// 673 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 674 TerminatorInst *BBTerm = BB->getTerminator(); 675 unsigned MinSucc = 0; 676 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 677 // Compute the successor with the minimum number of predecessors. 678 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 679 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 680 TestBB = BBTerm->getSuccessor(i); 681 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 682 if (NumPreds < MinNumPreds) { 683 MinSucc = i; 684 MinNumPreds = NumPreds; 685 } 686 } 687 688 return MinSucc; 689 } 690 691 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 692 if (!BB->hasAddressTaken()) return false; 693 694 // If the block has its address taken, it may be a tree of dead constants 695 // hanging off of it. These shouldn't keep the block alive. 696 BlockAddress *BA = BlockAddress::get(BB); 697 BA->removeDeadConstantUsers(); 698 return !BA->use_empty(); 699 } 700 701 /// ProcessBlock - If there are any predecessors whose control can be threaded 702 /// through to a successor, transform them now. 703 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) { 704 // If the block is trivially dead, just return and let the caller nuke it. 705 // This simplifies other transformations. 706 if (pred_empty(BB) && 707 BB != &BB->getParent()->getEntryBlock()) 708 return false; 709 710 // If this block has a single predecessor, and if that pred has a single 711 // successor, merge the blocks. This encourages recursive jump threading 712 // because now the condition in this block can be threaded through 713 // predecessors of our predecessor block. 714 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 715 const TerminatorInst *TI = SinglePred->getTerminator(); 716 if (!TI->isExceptional() && TI->getNumSuccessors() == 1 && 717 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 718 // If SinglePred was a loop header, BB becomes one. 719 if (LoopHeaders.erase(SinglePred)) 720 LoopHeaders.insert(BB); 721 722 LVI->eraseBlock(SinglePred); 723 MergeBasicBlockIntoOnlyPred(BB); 724 725 return true; 726 } 727 } 728 729 if (TryToUnfoldSelectInCurrBB(BB)) 730 return true; 731 732 // What kind of constant we're looking for. 733 ConstantPreference Preference = WantInteger; 734 735 // Look to see if the terminator is a conditional branch, switch or indirect 736 // branch, if not we can't thread it. 737 Value *Condition; 738 Instruction *Terminator = BB->getTerminator(); 739 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 740 // Can't thread an unconditional jump. 741 if (BI->isUnconditional()) return false; 742 Condition = BI->getCondition(); 743 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 744 Condition = SI->getCondition(); 745 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 746 // Can't thread indirect branch with no successors. 747 if (IB->getNumSuccessors() == 0) return false; 748 Condition = IB->getAddress()->stripPointerCasts(); 749 Preference = WantBlockAddress; 750 } else { 751 return false; // Must be an invoke. 752 } 753 754 // Run constant folding to see if we can reduce the condition to a simple 755 // constant. 756 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 757 Value *SimpleVal = 758 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 759 if (SimpleVal) { 760 I->replaceAllUsesWith(SimpleVal); 761 if (isInstructionTriviallyDead(I, TLI)) 762 I->eraseFromParent(); 763 Condition = SimpleVal; 764 } 765 } 766 767 // If the terminator is branching on an undef, we can pick any of the 768 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 769 if (isa<UndefValue>(Condition)) { 770 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 771 772 // Fold the branch/switch. 773 TerminatorInst *BBTerm = BB->getTerminator(); 774 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 775 if (i == BestSucc) continue; 776 BBTerm->getSuccessor(i)->removePredecessor(BB, true); 777 } 778 779 DEBUG(dbgs() << " In block '" << BB->getName() 780 << "' folding undef terminator: " << *BBTerm << '\n'); 781 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 782 BBTerm->eraseFromParent(); 783 return true; 784 } 785 786 // If the terminator of this block is branching on a constant, simplify the 787 // terminator to an unconditional branch. This can occur due to threading in 788 // other blocks. 789 if (getKnownConstant(Condition, Preference)) { 790 DEBUG(dbgs() << " In block '" << BB->getName() 791 << "' folding terminator: " << *BB->getTerminator() << '\n'); 792 ++NumFolds; 793 ConstantFoldTerminator(BB, true); 794 return true; 795 } 796 797 Instruction *CondInst = dyn_cast<Instruction>(Condition); 798 799 // All the rest of our checks depend on the condition being an instruction. 800 if (!CondInst) { 801 // FIXME: Unify this with code below. 802 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 803 return true; 804 return false; 805 } 806 807 808 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 809 // If we're branching on a conditional, LVI might be able to determine 810 // it's value at the branch instruction. We only handle comparisons 811 // against a constant at this time. 812 // TODO: This should be extended to handle switches as well. 813 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 814 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 815 if (CondBr && CondConst && CondBr->isConditional()) { 816 LazyValueInfo::Tristate Ret = 817 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 818 CondConst, CondBr); 819 if (Ret != LazyValueInfo::Unknown) { 820 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 821 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 822 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 823 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 824 CondBr->eraseFromParent(); 825 if (CondCmp->use_empty()) 826 CondCmp->eraseFromParent(); 827 else if (CondCmp->getParent() == BB) { 828 // If the fact we just learned is true for all uses of the 829 // condition, replace it with a constant value 830 auto *CI = Ret == LazyValueInfo::True ? 831 ConstantInt::getTrue(CondCmp->getType()) : 832 ConstantInt::getFalse(CondCmp->getType()); 833 CondCmp->replaceAllUsesWith(CI); 834 CondCmp->eraseFromParent(); 835 } 836 return true; 837 } 838 } 839 840 if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB)) 841 return true; 842 } 843 844 // Check for some cases that are worth simplifying. Right now we want to look 845 // for loads that are used by a switch or by the condition for the branch. If 846 // we see one, check to see if it's partially redundant. If so, insert a PHI 847 // which can then be used to thread the values. 848 // 849 Value *SimplifyValue = CondInst; 850 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 851 if (isa<Constant>(CondCmp->getOperand(1))) 852 SimplifyValue = CondCmp->getOperand(0); 853 854 // TODO: There are other places where load PRE would be profitable, such as 855 // more complex comparisons. 856 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 857 if (SimplifyPartiallyRedundantLoad(LI)) 858 return true; 859 860 861 // Handle a variety of cases where we are branching on something derived from 862 // a PHI node in the current block. If we can prove that any predecessors 863 // compute a predictable value based on a PHI node, thread those predecessors. 864 // 865 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 866 return true; 867 868 // If this is an otherwise-unfoldable branch on a phi node in the current 869 // block, see if we can simplify. 870 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 871 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 872 return ProcessBranchOnPHI(PN); 873 874 875 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 876 if (CondInst->getOpcode() == Instruction::Xor && 877 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 878 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 879 880 // Search for a stronger dominating condition that can be used to simplify a 881 // conditional branch leaving BB. 882 if (ProcessImpliedCondition(BB)) 883 return true; 884 885 return false; 886 } 887 888 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) { 889 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 890 if (!BI || !BI->isConditional()) 891 return false; 892 893 Value *Cond = BI->getCondition(); 894 BasicBlock *CurrentBB = BB; 895 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 896 unsigned Iter = 0; 897 898 auto &DL = BB->getModule()->getDataLayout(); 899 900 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 901 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 902 if (!PBI || !PBI->isConditional()) 903 return false; 904 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 905 return false; 906 907 bool FalseDest = PBI->getSuccessor(1) == CurrentBB; 908 Optional<bool> Implication = 909 isImpliedCondition(PBI->getCondition(), Cond, DL, FalseDest); 910 if (Implication) { 911 BI->getSuccessor(*Implication ? 1 : 0)->removePredecessor(BB); 912 BranchInst::Create(BI->getSuccessor(*Implication ? 0 : 1), BI); 913 BI->eraseFromParent(); 914 return true; 915 } 916 CurrentBB = CurrentPred; 917 CurrentPred = CurrentBB->getSinglePredecessor(); 918 } 919 920 return false; 921 } 922 923 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 924 /// load instruction, eliminate it by replacing it with a PHI node. This is an 925 /// important optimization that encourages jump threading, and needs to be run 926 /// interlaced with other jump threading tasks. 927 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 928 // Don't hack volatile and ordered loads. 929 if (!LI->isUnordered()) return false; 930 931 // If the load is defined in a block with exactly one predecessor, it can't be 932 // partially redundant. 933 BasicBlock *LoadBB = LI->getParent(); 934 if (LoadBB->getSinglePredecessor()) 935 return false; 936 937 // If the load is defined in an EH pad, it can't be partially redundant, 938 // because the edges between the invoke and the EH pad cannot have other 939 // instructions between them. 940 if (LoadBB->isEHPad()) 941 return false; 942 943 Value *LoadedPtr = LI->getOperand(0); 944 945 // If the loaded operand is defined in the LoadBB, it can't be available. 946 // TODO: Could do simple PHI translation, that would be fun :) 947 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 948 if (PtrOp->getParent() == LoadBB) 949 return false; 950 951 // Scan a few instructions up from the load, to see if it is obviously live at 952 // the entry to its block. 953 BasicBlock::iterator BBIt(LI); 954 bool IsLoadCSE; 955 if (Value *AvailableVal = 956 FindAvailableLoadedValue(LI, LoadBB, BBIt, DefMaxInstsToScan, nullptr, &IsLoadCSE)) { 957 // If the value of the load is locally available within the block, just use 958 // it. This frequently occurs for reg2mem'd allocas. 959 960 if (IsLoadCSE) { 961 LoadInst *NLI = cast<LoadInst>(AvailableVal); 962 combineMetadataForCSE(NLI, LI); 963 }; 964 965 // If the returned value is the load itself, replace with an undef. This can 966 // only happen in dead loops. 967 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 968 if (AvailableVal->getType() != LI->getType()) 969 AvailableVal = 970 CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI); 971 LI->replaceAllUsesWith(AvailableVal); 972 LI->eraseFromParent(); 973 return true; 974 } 975 976 // Otherwise, if we scanned the whole block and got to the top of the block, 977 // we know the block is locally transparent to the load. If not, something 978 // might clobber its value. 979 if (BBIt != LoadBB->begin()) 980 return false; 981 982 // If all of the loads and stores that feed the value have the same AA tags, 983 // then we can propagate them onto any newly inserted loads. 984 AAMDNodes AATags; 985 LI->getAAMetadata(AATags); 986 987 SmallPtrSet<BasicBlock*, 8> PredsScanned; 988 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 989 AvailablePredsTy AvailablePreds; 990 BasicBlock *OneUnavailablePred = nullptr; 991 SmallVector<LoadInst*, 8> CSELoads; 992 993 // If we got here, the loaded value is transparent through to the start of the 994 // block. Check to see if it is available in any of the predecessor blocks. 995 for (BasicBlock *PredBB : predecessors(LoadBB)) { 996 // If we already scanned this predecessor, skip it. 997 if (!PredsScanned.insert(PredBB).second) 998 continue; 999 1000 // Scan the predecessor to see if the value is available in the pred. 1001 BBIt = PredBB->end(); 1002 Value *PredAvailable = FindAvailableLoadedValue(LI, PredBB, BBIt, 1003 DefMaxInstsToScan, 1004 nullptr, 1005 &IsLoadCSE); 1006 if (!PredAvailable) { 1007 OneUnavailablePred = PredBB; 1008 continue; 1009 } 1010 1011 if (IsLoadCSE) 1012 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1013 1014 // If so, this load is partially redundant. Remember this info so that we 1015 // can create a PHI node. 1016 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 1017 } 1018 1019 // If the loaded value isn't available in any predecessor, it isn't partially 1020 // redundant. 1021 if (AvailablePreds.empty()) return false; 1022 1023 // Okay, the loaded value is available in at least one (and maybe all!) 1024 // predecessors. If the value is unavailable in more than one unique 1025 // predecessor, we want to insert a merge block for those common predecessors. 1026 // This ensures that we only have to insert one reload, thus not increasing 1027 // code size. 1028 BasicBlock *UnavailablePred = nullptr; 1029 1030 // If there is exactly one predecessor where the value is unavailable, the 1031 // already computed 'OneUnavailablePred' block is it. If it ends in an 1032 // unconditional branch, we know that it isn't a critical edge. 1033 if (PredsScanned.size() == AvailablePreds.size()+1 && 1034 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1035 UnavailablePred = OneUnavailablePred; 1036 } else if (PredsScanned.size() != AvailablePreds.size()) { 1037 // Otherwise, we had multiple unavailable predecessors or we had a critical 1038 // edge from the one. 1039 SmallVector<BasicBlock*, 8> PredsToSplit; 1040 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1041 1042 for (const auto &AvailablePred : AvailablePreds) 1043 AvailablePredSet.insert(AvailablePred.first); 1044 1045 // Add all the unavailable predecessors to the PredsToSplit list. 1046 for (BasicBlock *P : predecessors(LoadBB)) { 1047 // If the predecessor is an indirect goto, we can't split the edge. 1048 if (isa<IndirectBrInst>(P->getTerminator())) 1049 return false; 1050 1051 if (!AvailablePredSet.count(P)) 1052 PredsToSplit.push_back(P); 1053 } 1054 1055 // Split them out to their own block. 1056 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1057 } 1058 1059 // If the value isn't available in all predecessors, then there will be 1060 // exactly one where it isn't available. Insert a load on that edge and add 1061 // it to the AvailablePreds list. 1062 if (UnavailablePred) { 1063 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1064 "Can't handle critical edge here!"); 1065 LoadInst *NewVal = 1066 new LoadInst(LoadedPtr, LI->getName() + ".pr", false, 1067 LI->getAlignment(), LI->getOrdering(), LI->getSynchScope(), 1068 UnavailablePred->getTerminator()); 1069 NewVal->setDebugLoc(LI->getDebugLoc()); 1070 if (AATags) 1071 NewVal->setAAMetadata(AATags); 1072 1073 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1074 } 1075 1076 // Now we know that each predecessor of this block has a value in 1077 // AvailablePreds, sort them for efficient access as we're walking the preds. 1078 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1079 1080 // Create a PHI node at the start of the block for the PRE'd load value. 1081 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1082 PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "", 1083 &LoadBB->front()); 1084 PN->takeName(LI); 1085 PN->setDebugLoc(LI->getDebugLoc()); 1086 1087 // Insert new entries into the PHI for each predecessor. A single block may 1088 // have multiple entries here. 1089 for (pred_iterator PI = PB; PI != PE; ++PI) { 1090 BasicBlock *P = *PI; 1091 AvailablePredsTy::iterator I = 1092 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1093 std::make_pair(P, (Value*)nullptr)); 1094 1095 assert(I != AvailablePreds.end() && I->first == P && 1096 "Didn't find entry for predecessor!"); 1097 1098 // If we have an available predecessor but it requires casting, insert the 1099 // cast in the predecessor and use the cast. Note that we have to update the 1100 // AvailablePreds vector as we go so that all of the PHI entries for this 1101 // predecessor use the same bitcast. 1102 Value *&PredV = I->second; 1103 if (PredV->getType() != LI->getType()) 1104 PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "", 1105 P->getTerminator()); 1106 1107 PN->addIncoming(PredV, I->first); 1108 } 1109 1110 for (LoadInst *PredLI : CSELoads) { 1111 combineMetadataForCSE(PredLI, LI); 1112 } 1113 1114 LI->replaceAllUsesWith(PN); 1115 LI->eraseFromParent(); 1116 1117 return true; 1118 } 1119 1120 /// FindMostPopularDest - The specified list contains multiple possible 1121 /// threadable destinations. Pick the one that occurs the most frequently in 1122 /// the list. 1123 static BasicBlock * 1124 FindMostPopularDest(BasicBlock *BB, 1125 const SmallVectorImpl<std::pair<BasicBlock*, 1126 BasicBlock*> > &PredToDestList) { 1127 assert(!PredToDestList.empty()); 1128 1129 // Determine popularity. If there are multiple possible destinations, we 1130 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1131 // blocks with known and real destinations to threading undef. We'll handle 1132 // them later if interesting. 1133 DenseMap<BasicBlock*, unsigned> DestPopularity; 1134 for (const auto &PredToDest : PredToDestList) 1135 if (PredToDest.second) 1136 DestPopularity[PredToDest.second]++; 1137 1138 // Find the most popular dest. 1139 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1140 BasicBlock *MostPopularDest = DPI->first; 1141 unsigned Popularity = DPI->second; 1142 SmallVector<BasicBlock*, 4> SamePopularity; 1143 1144 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1145 // If the popularity of this entry isn't higher than the popularity we've 1146 // seen so far, ignore it. 1147 if (DPI->second < Popularity) 1148 ; // ignore. 1149 else if (DPI->second == Popularity) { 1150 // If it is the same as what we've seen so far, keep track of it. 1151 SamePopularity.push_back(DPI->first); 1152 } else { 1153 // If it is more popular, remember it. 1154 SamePopularity.clear(); 1155 MostPopularDest = DPI->first; 1156 Popularity = DPI->second; 1157 } 1158 } 1159 1160 // Okay, now we know the most popular destination. If there is more than one 1161 // destination, we need to determine one. This is arbitrary, but we need 1162 // to make a deterministic decision. Pick the first one that appears in the 1163 // successor list. 1164 if (!SamePopularity.empty()) { 1165 SamePopularity.push_back(MostPopularDest); 1166 TerminatorInst *TI = BB->getTerminator(); 1167 for (unsigned i = 0; ; ++i) { 1168 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1169 1170 if (!is_contained(SamePopularity, TI->getSuccessor(i))) 1171 continue; 1172 1173 MostPopularDest = TI->getSuccessor(i); 1174 break; 1175 } 1176 } 1177 1178 // Okay, we have finally picked the most popular destination. 1179 return MostPopularDest; 1180 } 1181 1182 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1183 ConstantPreference Preference, 1184 Instruction *CxtI) { 1185 // If threading this would thread across a loop header, don't even try to 1186 // thread the edge. 1187 if (LoopHeaders.count(BB)) 1188 return false; 1189 1190 PredValueInfoTy PredValues; 1191 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1192 return false; 1193 1194 assert(!PredValues.empty() && 1195 "ComputeValueKnownInPredecessors returned true with no values"); 1196 1197 DEBUG(dbgs() << "IN BB: " << *BB; 1198 for (const auto &PredValue : PredValues) { 1199 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1200 << *PredValue.first 1201 << " for pred '" << PredValue.second->getName() << "'.\n"; 1202 }); 1203 1204 // Decide what we want to thread through. Convert our list of known values to 1205 // a list of known destinations for each pred. This also discards duplicate 1206 // predecessors and keeps track of the undefined inputs (which are represented 1207 // as a null dest in the PredToDestList). 1208 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1209 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1210 1211 BasicBlock *OnlyDest = nullptr; 1212 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1213 1214 for (const auto &PredValue : PredValues) { 1215 BasicBlock *Pred = PredValue.second; 1216 if (!SeenPreds.insert(Pred).second) 1217 continue; // Duplicate predecessor entry. 1218 1219 // If the predecessor ends with an indirect goto, we can't change its 1220 // destination. 1221 if (isa<IndirectBrInst>(Pred->getTerminator())) 1222 continue; 1223 1224 Constant *Val = PredValue.first; 1225 1226 BasicBlock *DestBB; 1227 if (isa<UndefValue>(Val)) 1228 DestBB = nullptr; 1229 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1230 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1231 else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1232 DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor(); 1233 } else { 1234 assert(isa<IndirectBrInst>(BB->getTerminator()) 1235 && "Unexpected terminator"); 1236 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1237 } 1238 1239 // If we have exactly one destination, remember it for efficiency below. 1240 if (PredToDestList.empty()) 1241 OnlyDest = DestBB; 1242 else if (OnlyDest != DestBB) 1243 OnlyDest = MultipleDestSentinel; 1244 1245 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1246 } 1247 1248 // If all edges were unthreadable, we fail. 1249 if (PredToDestList.empty()) 1250 return false; 1251 1252 // Determine which is the most common successor. If we have many inputs and 1253 // this block is a switch, we want to start by threading the batch that goes 1254 // to the most popular destination first. If we only know about one 1255 // threadable destination (the common case) we can avoid this. 1256 BasicBlock *MostPopularDest = OnlyDest; 1257 1258 if (MostPopularDest == MultipleDestSentinel) 1259 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1260 1261 // Now that we know what the most popular destination is, factor all 1262 // predecessors that will jump to it into a single predecessor. 1263 SmallVector<BasicBlock*, 16> PredsToFactor; 1264 for (const auto &PredToDest : PredToDestList) 1265 if (PredToDest.second == MostPopularDest) { 1266 BasicBlock *Pred = PredToDest.first; 1267 1268 // This predecessor may be a switch or something else that has multiple 1269 // edges to the block. Factor each of these edges by listing them 1270 // according to # occurrences in PredsToFactor. 1271 for (BasicBlock *Succ : successors(Pred)) 1272 if (Succ == BB) 1273 PredsToFactor.push_back(Pred); 1274 } 1275 1276 // If the threadable edges are branching on an undefined value, we get to pick 1277 // the destination that these predecessors should get to. 1278 if (!MostPopularDest) 1279 MostPopularDest = BB->getTerminator()-> 1280 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1281 1282 // Ok, try to thread it! 1283 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1284 } 1285 1286 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1287 /// a PHI node in the current block. See if there are any simplifications we 1288 /// can do based on inputs to the phi node. 1289 /// 1290 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) { 1291 BasicBlock *BB = PN->getParent(); 1292 1293 // TODO: We could make use of this to do it once for blocks with common PHI 1294 // values. 1295 SmallVector<BasicBlock*, 1> PredBBs; 1296 PredBBs.resize(1); 1297 1298 // If any of the predecessor blocks end in an unconditional branch, we can 1299 // *duplicate* the conditional branch into that block in order to further 1300 // encourage jump threading and to eliminate cases where we have branch on a 1301 // phi of an icmp (branch on icmp is much better). 1302 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1303 BasicBlock *PredBB = PN->getIncomingBlock(i); 1304 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1305 if (PredBr->isUnconditional()) { 1306 PredBBs[0] = PredBB; 1307 // Try to duplicate BB into PredBB. 1308 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1309 return true; 1310 } 1311 } 1312 1313 return false; 1314 } 1315 1316 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1317 /// a xor instruction in the current block. See if there are any 1318 /// simplifications we can do based on inputs to the xor. 1319 /// 1320 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) { 1321 BasicBlock *BB = BO->getParent(); 1322 1323 // If either the LHS or RHS of the xor is a constant, don't do this 1324 // optimization. 1325 if (isa<ConstantInt>(BO->getOperand(0)) || 1326 isa<ConstantInt>(BO->getOperand(1))) 1327 return false; 1328 1329 // If the first instruction in BB isn't a phi, we won't be able to infer 1330 // anything special about any particular predecessor. 1331 if (!isa<PHINode>(BB->front())) 1332 return false; 1333 1334 // If this BB is a landing pad, we won't be able to split the edge into it. 1335 if (BB->isEHPad()) 1336 return false; 1337 1338 // If we have a xor as the branch input to this block, and we know that the 1339 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1340 // the condition into the predecessor and fix that value to true, saving some 1341 // logical ops on that path and encouraging other paths to simplify. 1342 // 1343 // This copies something like this: 1344 // 1345 // BB: 1346 // %X = phi i1 [1], [%X'] 1347 // %Y = icmp eq i32 %A, %B 1348 // %Z = xor i1 %X, %Y 1349 // br i1 %Z, ... 1350 // 1351 // Into: 1352 // BB': 1353 // %Y = icmp ne i32 %A, %B 1354 // br i1 %Y, ... 1355 1356 PredValueInfoTy XorOpValues; 1357 bool isLHS = true; 1358 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1359 WantInteger, BO)) { 1360 assert(XorOpValues.empty()); 1361 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1362 WantInteger, BO)) 1363 return false; 1364 isLHS = false; 1365 } 1366 1367 assert(!XorOpValues.empty() && 1368 "ComputeValueKnownInPredecessors returned true with no values"); 1369 1370 // Scan the information to see which is most popular: true or false. The 1371 // predecessors can be of the set true, false, or undef. 1372 unsigned NumTrue = 0, NumFalse = 0; 1373 for (const auto &XorOpValue : XorOpValues) { 1374 if (isa<UndefValue>(XorOpValue.first)) 1375 // Ignore undefs for the count. 1376 continue; 1377 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1378 ++NumFalse; 1379 else 1380 ++NumTrue; 1381 } 1382 1383 // Determine which value to split on, true, false, or undef if neither. 1384 ConstantInt *SplitVal = nullptr; 1385 if (NumTrue > NumFalse) 1386 SplitVal = ConstantInt::getTrue(BB->getContext()); 1387 else if (NumTrue != 0 || NumFalse != 0) 1388 SplitVal = ConstantInt::getFalse(BB->getContext()); 1389 1390 // Collect all of the blocks that this can be folded into so that we can 1391 // factor this once and clone it once. 1392 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1393 for (const auto &XorOpValue : XorOpValues) { 1394 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1395 continue; 1396 1397 BlocksToFoldInto.push_back(XorOpValue.second); 1398 } 1399 1400 // If we inferred a value for all of the predecessors, then duplication won't 1401 // help us. However, we can just replace the LHS or RHS with the constant. 1402 if (BlocksToFoldInto.size() == 1403 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1404 if (!SplitVal) { 1405 // If all preds provide undef, just nuke the xor, because it is undef too. 1406 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1407 BO->eraseFromParent(); 1408 } else if (SplitVal->isZero()) { 1409 // If all preds provide 0, replace the xor with the other input. 1410 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1411 BO->eraseFromParent(); 1412 } else { 1413 // If all preds provide 1, set the computed value to 1. 1414 BO->setOperand(!isLHS, SplitVal); 1415 } 1416 1417 return true; 1418 } 1419 1420 // Try to duplicate BB into PredBB. 1421 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1422 } 1423 1424 1425 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1426 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1427 /// NewPred using the entries from OldPred (suitably mapped). 1428 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1429 BasicBlock *OldPred, 1430 BasicBlock *NewPred, 1431 DenseMap<Instruction*, Value*> &ValueMap) { 1432 for (BasicBlock::iterator PNI = PHIBB->begin(); 1433 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1434 // Ok, we have a PHI node. Figure out what the incoming value was for the 1435 // DestBlock. 1436 Value *IV = PN->getIncomingValueForBlock(OldPred); 1437 1438 // Remap the value if necessary. 1439 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1440 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1441 if (I != ValueMap.end()) 1442 IV = I->second; 1443 } 1444 1445 PN->addIncoming(IV, NewPred); 1446 } 1447 } 1448 1449 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1450 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1451 /// across BB. Transform the IR to reflect this change. 1452 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB, 1453 const SmallVectorImpl<BasicBlock *> &PredBBs, 1454 BasicBlock *SuccBB) { 1455 // If threading to the same block as we come from, we would infinite loop. 1456 if (SuccBB == BB) { 1457 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1458 << "' - would thread to self!\n"); 1459 return false; 1460 } 1461 1462 // If threading this would thread across a loop header, don't thread the edge. 1463 // See the comments above FindLoopHeaders for justifications and caveats. 1464 if (LoopHeaders.count(BB)) { 1465 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1466 << "' to dest BB '" << SuccBB->getName() 1467 << "' - it might create an irreducible loop!\n"); 1468 return false; 1469 } 1470 1471 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, BBDupThreshold); 1472 if (JumpThreadCost > BBDupThreshold) { 1473 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1474 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1475 return false; 1476 } 1477 1478 // And finally, do it! Start by factoring the predecessors if needed. 1479 BasicBlock *PredBB; 1480 if (PredBBs.size() == 1) 1481 PredBB = PredBBs[0]; 1482 else { 1483 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1484 << " common predecessors.\n"); 1485 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1486 } 1487 1488 // And finally, do it! 1489 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1490 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1491 << ", across block:\n " 1492 << *BB << "\n"); 1493 1494 LVI->threadEdge(PredBB, BB, SuccBB); 1495 1496 // We are going to have to map operands from the original BB block to the new 1497 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1498 // account for entry from PredBB. 1499 DenseMap<Instruction*, Value*> ValueMapping; 1500 1501 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1502 BB->getName()+".thread", 1503 BB->getParent(), BB); 1504 NewBB->moveAfter(PredBB); 1505 1506 // Set the block frequency of NewBB. 1507 if (HasProfileData) { 1508 auto NewBBFreq = 1509 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 1510 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 1511 } 1512 1513 BasicBlock::iterator BI = BB->begin(); 1514 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1515 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1516 1517 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1518 // mapping and using it to remap operands in the cloned instructions. 1519 for (; !isa<TerminatorInst>(BI); ++BI) { 1520 Instruction *New = BI->clone(); 1521 New->setName(BI->getName()); 1522 NewBB->getInstList().push_back(New); 1523 ValueMapping[&*BI] = New; 1524 1525 // Remap operands to patch up intra-block references. 1526 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1527 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1528 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1529 if (I != ValueMapping.end()) 1530 New->setOperand(i, I->second); 1531 } 1532 } 1533 1534 // We didn't copy the terminator from BB over to NewBB, because there is now 1535 // an unconditional jump to SuccBB. Insert the unconditional jump. 1536 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 1537 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1538 1539 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1540 // PHI nodes for NewBB now. 1541 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1542 1543 // If there were values defined in BB that are used outside the block, then we 1544 // now have to update all uses of the value to use either the original value, 1545 // the cloned value, or some PHI derived value. This can require arbitrary 1546 // PHI insertion, of which we are prepared to do, clean these up now. 1547 SSAUpdater SSAUpdate; 1548 SmallVector<Use*, 16> UsesToRename; 1549 for (Instruction &I : *BB) { 1550 // Scan all uses of this instruction to see if it is used outside of its 1551 // block, and if so, record them in UsesToRename. 1552 for (Use &U : I.uses()) { 1553 Instruction *User = cast<Instruction>(U.getUser()); 1554 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1555 if (UserPN->getIncomingBlock(U) == BB) 1556 continue; 1557 } else if (User->getParent() == BB) 1558 continue; 1559 1560 UsesToRename.push_back(&U); 1561 } 1562 1563 // If there are no uses outside the block, we're done with this instruction. 1564 if (UsesToRename.empty()) 1565 continue; 1566 1567 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 1568 1569 // We found a use of I outside of BB. Rename all uses of I that are outside 1570 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1571 // with the two values we know. 1572 SSAUpdate.Initialize(I.getType(), I.getName()); 1573 SSAUpdate.AddAvailableValue(BB, &I); 1574 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 1575 1576 while (!UsesToRename.empty()) 1577 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1578 DEBUG(dbgs() << "\n"); 1579 } 1580 1581 1582 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1583 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1584 // us to simplify any PHI nodes in BB. 1585 TerminatorInst *PredTerm = PredBB->getTerminator(); 1586 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1587 if (PredTerm->getSuccessor(i) == BB) { 1588 BB->removePredecessor(PredBB, true); 1589 PredTerm->setSuccessor(i, NewBB); 1590 } 1591 1592 // At this point, the IR is fully up to date and consistent. Do a quick scan 1593 // over the new instructions and zap any that are constants or dead. This 1594 // frequently happens because of phi translation. 1595 SimplifyInstructionsInBlock(NewBB, TLI); 1596 1597 // Update the edge weight from BB to SuccBB, which should be less than before. 1598 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 1599 1600 // Threaded an edge! 1601 ++NumThreads; 1602 return true; 1603 } 1604 1605 /// Create a new basic block that will be the predecessor of BB and successor of 1606 /// all blocks in Preds. When profile data is availble, update the frequency of 1607 /// this new block. 1608 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB, 1609 ArrayRef<BasicBlock *> Preds, 1610 const char *Suffix) { 1611 // Collect the frequencies of all predecessors of BB, which will be used to 1612 // update the edge weight on BB->SuccBB. 1613 BlockFrequency PredBBFreq(0); 1614 if (HasProfileData) 1615 for (auto Pred : Preds) 1616 PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB); 1617 1618 BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix); 1619 1620 // Set the block frequency of the newly created PredBB, which is the sum of 1621 // frequencies of Preds. 1622 if (HasProfileData) 1623 BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency()); 1624 return PredBB; 1625 } 1626 1627 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 1628 const TerminatorInst *TI = BB->getTerminator(); 1629 assert(TI->getNumSuccessors() > 1 && "not a split"); 1630 1631 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 1632 if (!WeightsNode) 1633 return false; 1634 1635 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0)); 1636 if (MDName->getString() != "branch_weights") 1637 return false; 1638 1639 // Ensure there are weights for all of the successors. Note that the first 1640 // operand to the metadata node is a name, not a weight. 1641 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1; 1642 } 1643 1644 /// Update the block frequency of BB and branch weight and the metadata on the 1645 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 1646 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 1647 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 1648 BasicBlock *BB, 1649 BasicBlock *NewBB, 1650 BasicBlock *SuccBB) { 1651 if (!HasProfileData) 1652 return; 1653 1654 assert(BFI && BPI && "BFI & BPI should have been created here"); 1655 1656 // As the edge from PredBB to BB is deleted, we have to update the block 1657 // frequency of BB. 1658 auto BBOrigFreq = BFI->getBlockFreq(BB); 1659 auto NewBBFreq = BFI->getBlockFreq(NewBB); 1660 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 1661 auto BBNewFreq = BBOrigFreq - NewBBFreq; 1662 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 1663 1664 // Collect updated outgoing edges' frequencies from BB and use them to update 1665 // edge probabilities. 1666 SmallVector<uint64_t, 4> BBSuccFreq; 1667 for (BasicBlock *Succ : successors(BB)) { 1668 auto SuccFreq = (Succ == SuccBB) 1669 ? BB2SuccBBFreq - NewBBFreq 1670 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 1671 BBSuccFreq.push_back(SuccFreq.getFrequency()); 1672 } 1673 1674 uint64_t MaxBBSuccFreq = 1675 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 1676 1677 SmallVector<BranchProbability, 4> BBSuccProbs; 1678 if (MaxBBSuccFreq == 0) 1679 BBSuccProbs.assign(BBSuccFreq.size(), 1680 {1, static_cast<unsigned>(BBSuccFreq.size())}); 1681 else { 1682 for (uint64_t Freq : BBSuccFreq) 1683 BBSuccProbs.push_back( 1684 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 1685 // Normalize edge probabilities so that they sum up to one. 1686 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 1687 BBSuccProbs.end()); 1688 } 1689 1690 // Update edge probabilities in BPI. 1691 for (int I = 0, E = BBSuccProbs.size(); I < E; I++) 1692 BPI->setEdgeProbability(BB, I, BBSuccProbs[I]); 1693 1694 // Update the profile metadata as well. 1695 // 1696 // Don't do this if the profile of the transformed blocks was statically 1697 // estimated. (This could occur despite the function having an entry 1698 // frequency in completely cold parts of the CFG.) 1699 // 1700 // In this case we don't want to suggest to subsequent passes that the 1701 // calculated weights are fully consistent. Consider this graph: 1702 // 1703 // check_1 1704 // 50% / | 1705 // eq_1 | 50% 1706 // \ | 1707 // check_2 1708 // 50% / | 1709 // eq_2 | 50% 1710 // \ | 1711 // check_3 1712 // 50% / | 1713 // eq_3 | 50% 1714 // \ | 1715 // 1716 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 1717 // the overall probabilities are inconsistent; the total probability that the 1718 // value is either 1, 2 or 3 is 150%. 1719 // 1720 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 1721 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 1722 // the loop exit edge. Then based solely on static estimation we would assume 1723 // the loop was extremely hot. 1724 // 1725 // FIXME this locally as well so that BPI and BFI are consistent as well. We 1726 // shouldn't make edges extremely likely or unlikely based solely on static 1727 // estimation. 1728 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { 1729 SmallVector<uint32_t, 4> Weights; 1730 for (auto Prob : BBSuccProbs) 1731 Weights.push_back(Prob.getNumerator()); 1732 1733 auto TI = BB->getTerminator(); 1734 TI->setMetadata( 1735 LLVMContext::MD_prof, 1736 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 1737 } 1738 } 1739 1740 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1741 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1742 /// If we can duplicate the contents of BB up into PredBB do so now, this 1743 /// improves the odds that the branch will be on an analyzable instruction like 1744 /// a compare. 1745 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred( 1746 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 1747 assert(!PredBBs.empty() && "Can't handle an empty set"); 1748 1749 // If BB is a loop header, then duplicating this block outside the loop would 1750 // cause us to transform this into an irreducible loop, don't do this. 1751 // See the comments above FindLoopHeaders for justifications and caveats. 1752 if (LoopHeaders.count(BB)) { 1753 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1754 << "' into predecessor block '" << PredBBs[0]->getName() 1755 << "' - it might create an irreducible loop!\n"); 1756 return false; 1757 } 1758 1759 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, BBDupThreshold); 1760 if (DuplicationCost > BBDupThreshold) { 1761 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1762 << "' - Cost is too high: " << DuplicationCost << "\n"); 1763 return false; 1764 } 1765 1766 // And finally, do it! Start by factoring the predecessors if needed. 1767 BasicBlock *PredBB; 1768 if (PredBBs.size() == 1) 1769 PredBB = PredBBs[0]; 1770 else { 1771 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1772 << " common predecessors.\n"); 1773 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1774 } 1775 1776 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1777 // of PredBB. 1778 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1779 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1780 << DuplicationCost << " block is:" << *BB << "\n"); 1781 1782 // Unless PredBB ends with an unconditional branch, split the edge so that we 1783 // can just clone the bits from BB into the end of the new PredBB. 1784 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 1785 1786 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 1787 PredBB = SplitEdge(PredBB, BB); 1788 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1789 } 1790 1791 // We are going to have to map operands from the original BB block into the 1792 // PredBB block. Evaluate PHI nodes in BB. 1793 DenseMap<Instruction*, Value*> ValueMapping; 1794 1795 BasicBlock::iterator BI = BB->begin(); 1796 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1797 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1798 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1799 // mapping and using it to remap operands in the cloned instructions. 1800 for (; BI != BB->end(); ++BI) { 1801 Instruction *New = BI->clone(); 1802 1803 // Remap operands to patch up intra-block references. 1804 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1805 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1806 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1807 if (I != ValueMapping.end()) 1808 New->setOperand(i, I->second); 1809 } 1810 1811 // If this instruction can be simplified after the operands are updated, 1812 // just use the simplified value instead. This frequently happens due to 1813 // phi translation. 1814 if (Value *IV = 1815 SimplifyInstruction(New, BB->getModule()->getDataLayout())) { 1816 ValueMapping[&*BI] = IV; 1817 if (!New->mayHaveSideEffects()) { 1818 delete New; 1819 New = nullptr; 1820 } 1821 } else { 1822 ValueMapping[&*BI] = New; 1823 } 1824 if (New) { 1825 // Otherwise, insert the new instruction into the block. 1826 New->setName(BI->getName()); 1827 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 1828 } 1829 } 1830 1831 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1832 // add entries to the PHI nodes for branch from PredBB now. 1833 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1834 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1835 ValueMapping); 1836 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1837 ValueMapping); 1838 1839 // If there were values defined in BB that are used outside the block, then we 1840 // now have to update all uses of the value to use either the original value, 1841 // the cloned value, or some PHI derived value. This can require arbitrary 1842 // PHI insertion, of which we are prepared to do, clean these up now. 1843 SSAUpdater SSAUpdate; 1844 SmallVector<Use*, 16> UsesToRename; 1845 for (Instruction &I : *BB) { 1846 // Scan all uses of this instruction to see if it is used outside of its 1847 // block, and if so, record them in UsesToRename. 1848 for (Use &U : I.uses()) { 1849 Instruction *User = cast<Instruction>(U.getUser()); 1850 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1851 if (UserPN->getIncomingBlock(U) == BB) 1852 continue; 1853 } else if (User->getParent() == BB) 1854 continue; 1855 1856 UsesToRename.push_back(&U); 1857 } 1858 1859 // If there are no uses outside the block, we're done with this instruction. 1860 if (UsesToRename.empty()) 1861 continue; 1862 1863 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 1864 1865 // We found a use of I outside of BB. Rename all uses of I that are outside 1866 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1867 // with the two values we know. 1868 SSAUpdate.Initialize(I.getType(), I.getName()); 1869 SSAUpdate.AddAvailableValue(BB, &I); 1870 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]); 1871 1872 while (!UsesToRename.empty()) 1873 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1874 DEBUG(dbgs() << "\n"); 1875 } 1876 1877 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1878 // that we nuked. 1879 BB->removePredecessor(PredBB, true); 1880 1881 // Remove the unconditional branch at the end of the PredBB block. 1882 OldPredBranch->eraseFromParent(); 1883 1884 ++NumDupes; 1885 return true; 1886 } 1887 1888 /// TryToUnfoldSelect - Look for blocks of the form 1889 /// bb1: 1890 /// %a = select 1891 /// br bb 1892 /// 1893 /// bb2: 1894 /// %p = phi [%a, %bb] ... 1895 /// %c = icmp %p 1896 /// br i1 %c 1897 /// 1898 /// And expand the select into a branch structure if one of its arms allows %c 1899 /// to be folded. This later enables threading from bb1 over bb2. 1900 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 1901 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1902 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 1903 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 1904 1905 if (!CondBr || !CondBr->isConditional() || !CondLHS || 1906 CondLHS->getParent() != BB) 1907 return false; 1908 1909 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 1910 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 1911 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 1912 1913 // Look if one of the incoming values is a select in the corresponding 1914 // predecessor. 1915 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 1916 continue; 1917 1918 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 1919 if (!PredTerm || !PredTerm->isUnconditional()) 1920 continue; 1921 1922 // Now check if one of the select values would allow us to constant fold the 1923 // terminator in BB. We don't do the transform if both sides fold, those 1924 // cases will be threaded in any case. 1925 LazyValueInfo::Tristate LHSFolds = 1926 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 1927 CondRHS, Pred, BB, CondCmp); 1928 LazyValueInfo::Tristate RHSFolds = 1929 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 1930 CondRHS, Pred, BB, CondCmp); 1931 if ((LHSFolds != LazyValueInfo::Unknown || 1932 RHSFolds != LazyValueInfo::Unknown) && 1933 LHSFolds != RHSFolds) { 1934 // Expand the select. 1935 // 1936 // Pred -- 1937 // | v 1938 // | NewBB 1939 // | | 1940 // |----- 1941 // v 1942 // BB 1943 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 1944 BB->getParent(), BB); 1945 // Move the unconditional branch to NewBB. 1946 PredTerm->removeFromParent(); 1947 NewBB->getInstList().insert(NewBB->end(), PredTerm); 1948 // Create a conditional branch and update PHI nodes. 1949 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 1950 CondLHS->setIncomingValue(I, SI->getFalseValue()); 1951 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 1952 // The select is now dead. 1953 SI->eraseFromParent(); 1954 1955 // Update any other PHI nodes in BB. 1956 for (BasicBlock::iterator BI = BB->begin(); 1957 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 1958 if (Phi != CondLHS) 1959 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 1960 return true; 1961 } 1962 } 1963 return false; 1964 } 1965 1966 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select in the same BB of the form 1967 /// bb: 1968 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 1969 /// %s = select p, trueval, falseval 1970 /// 1971 /// And expand the select into a branch structure. This later enables 1972 /// jump-threading over bb in this pass. 1973 /// 1974 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 1975 /// select if the associated PHI has at least one constant. If the unfolded 1976 /// select is not jump-threaded, it will be folded again in the later 1977 /// optimizations. 1978 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) { 1979 // If threading this would thread across a loop header, don't thread the edge. 1980 // See the comments above FindLoopHeaders for justifications and caveats. 1981 if (LoopHeaders.count(BB)) 1982 return false; 1983 1984 // Look for a Phi/Select pair in the same basic block. The Phi feeds the 1985 // condition of the Select and at least one of the incoming values is a 1986 // constant. 1987 for (BasicBlock::iterator BI = BB->begin(); 1988 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 1989 unsigned NumPHIValues = PN->getNumIncomingValues(); 1990 if (NumPHIValues == 0 || !PN->hasOneUse()) 1991 continue; 1992 1993 SelectInst *SI = dyn_cast<SelectInst>(PN->user_back()); 1994 if (!SI || SI->getParent() != BB) 1995 continue; 1996 1997 Value *Cond = SI->getCondition(); 1998 if (!Cond || Cond != PN || !Cond->getType()->isIntegerTy(1)) 1999 continue; 2000 2001 bool HasConst = false; 2002 for (unsigned i = 0; i != NumPHIValues; ++i) { 2003 if (PN->getIncomingBlock(i) == BB) 2004 return false; 2005 if (isa<ConstantInt>(PN->getIncomingValue(i))) 2006 HasConst = true; 2007 } 2008 2009 if (HasConst) { 2010 // Expand the select. 2011 TerminatorInst *Term = 2012 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false); 2013 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 2014 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2015 NewPN->addIncoming(SI->getFalseValue(), BB); 2016 SI->replaceAllUsesWith(NewPN); 2017 SI->eraseFromParent(); 2018 return true; 2019 } 2020 } 2021 2022 return false; 2023 } 2024