1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "jump-threading" 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/IntrinsicInst.h" 17 #include "llvm/LLVMContext.h" 18 #include "llvm/Pass.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LazyValueInfo.h" 21 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 22 #include "llvm/Transforms/Utils/Local.h" 23 #include "llvm/Transforms/Utils/SSAUpdater.h" 24 #include "llvm/Target/TargetData.h" 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ValueHandle.h" 33 #include "llvm/Support/raw_ostream.h" 34 using namespace llvm; 35 36 STATISTIC(NumThreads, "Number of jumps threaded"); 37 STATISTIC(NumFolds, "Number of terminators folded"); 38 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 39 40 static cl::opt<unsigned> 41 Threshold("jump-threading-threshold", 42 cl::desc("Max block size to duplicate for jump threading"), 43 cl::init(6), cl::Hidden); 44 45 // Turn on use of LazyValueInfo. 46 static cl::opt<bool> 47 EnableLVI("enable-jump-threading-lvi", cl::ReallyHidden); 48 49 50 51 namespace { 52 /// This pass performs 'jump threading', which looks at blocks that have 53 /// multiple predecessors and multiple successors. If one or more of the 54 /// predecessors of the block can be proven to always jump to one of the 55 /// successors, we forward the edge from the predecessor to the successor by 56 /// duplicating the contents of this block. 57 /// 58 /// An example of when this can occur is code like this: 59 /// 60 /// if () { ... 61 /// X = 4; 62 /// } 63 /// if (X < 3) { 64 /// 65 /// In this case, the unconditional branch at the end of the first if can be 66 /// revectored to the false side of the second if. 67 /// 68 class JumpThreading : public FunctionPass { 69 TargetData *TD; 70 LazyValueInfo *LVI; 71 #ifdef NDEBUG 72 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 73 #else 74 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 75 #endif 76 public: 77 static char ID; // Pass identification 78 JumpThreading() : FunctionPass(&ID) {} 79 80 bool runOnFunction(Function &F); 81 82 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 83 if (EnableLVI) 84 AU.addRequired<LazyValueInfo>(); 85 } 86 87 void FindLoopHeaders(Function &F); 88 bool ProcessBlock(BasicBlock *BB); 89 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 90 BasicBlock *SuccBB); 91 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 92 const SmallVectorImpl<BasicBlock *> &PredBBs); 93 94 typedef SmallVectorImpl<std::pair<ConstantInt*, 95 BasicBlock*> > PredValueInfo; 96 97 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 98 PredValueInfo &Result); 99 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB); 100 101 102 bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 103 bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 104 105 bool ProcessBranchOnPHI(PHINode *PN); 106 bool ProcessBranchOnXOR(BinaryOperator *BO); 107 108 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 109 }; 110 } 111 112 char JumpThreading::ID = 0; 113 static RegisterPass<JumpThreading> 114 X("jump-threading", "Jump Threading"); 115 116 // Public interface to the Jump Threading pass 117 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); } 118 119 /// runOnFunction - Top level algorithm. 120 /// 121 bool JumpThreading::runOnFunction(Function &F) { 122 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 123 TD = getAnalysisIfAvailable<TargetData>(); 124 LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0; 125 126 FindLoopHeaders(F); 127 128 bool Changed, EverChanged = false; 129 do { 130 Changed = false; 131 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 132 BasicBlock *BB = I; 133 // Thread all of the branches we can over this block. 134 while (ProcessBlock(BB)) 135 Changed = true; 136 137 ++I; 138 139 // If the block is trivially dead, zap it. This eliminates the successor 140 // edges which simplifies the CFG. 141 if (pred_begin(BB) == pred_end(BB) && 142 BB != &BB->getParent()->getEntryBlock()) { 143 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 144 << "' with terminator: " << *BB->getTerminator() << '\n'); 145 LoopHeaders.erase(BB); 146 DeleteDeadBlock(BB); 147 Changed = true; 148 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 149 // Can't thread an unconditional jump, but if the block is "almost 150 // empty", we can replace uses of it with uses of the successor and make 151 // this dead. 152 if (BI->isUnconditional() && 153 BB != &BB->getParent()->getEntryBlock()) { 154 BasicBlock::iterator BBI = BB->getFirstNonPHI(); 155 // Ignore dbg intrinsics. 156 while (isa<DbgInfoIntrinsic>(BBI)) 157 ++BBI; 158 // If the terminator is the only non-phi instruction, try to nuke it. 159 if (BBI->isTerminator()) { 160 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 161 // block, we have to make sure it isn't in the LoopHeaders set. We 162 // reinsert afterward if needed. 163 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 164 BasicBlock *Succ = BI->getSuccessor(0); 165 166 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { 167 Changed = true; 168 // If we deleted BB and BB was the header of a loop, then the 169 // successor is now the header of the loop. 170 BB = Succ; 171 } 172 173 if (ErasedFromLoopHeaders) 174 LoopHeaders.insert(BB); 175 } 176 } 177 } 178 } 179 EverChanged |= Changed; 180 } while (Changed); 181 182 LoopHeaders.clear(); 183 return EverChanged; 184 } 185 186 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 187 /// thread across it. 188 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) { 189 /// Ignore PHI nodes, these will be flattened when duplication happens. 190 BasicBlock::const_iterator I = BB->getFirstNonPHI(); 191 192 // FIXME: THREADING will delete values that are just used to compute the 193 // branch, so they shouldn't count against the duplication cost. 194 195 196 // Sum up the cost of each instruction until we get to the terminator. Don't 197 // include the terminator because the copy won't include it. 198 unsigned Size = 0; 199 for (; !isa<TerminatorInst>(I); ++I) { 200 // Debugger intrinsics don't incur code size. 201 if (isa<DbgInfoIntrinsic>(I)) continue; 202 203 // If this is a pointer->pointer bitcast, it is free. 204 if (isa<BitCastInst>(I) && isa<PointerType>(I->getType())) 205 continue; 206 207 // All other instructions count for at least one unit. 208 ++Size; 209 210 // Calls are more expensive. If they are non-intrinsic calls, we model them 211 // as having cost of 4. If they are a non-vector intrinsic, we model them 212 // as having cost of 2 total, and if they are a vector intrinsic, we model 213 // them as having cost 1. 214 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 215 if (!isa<IntrinsicInst>(CI)) 216 Size += 3; 217 else if (!isa<VectorType>(CI->getType())) 218 Size += 1; 219 } 220 } 221 222 // Threading through a switch statement is particularly profitable. If this 223 // block ends in a switch, decrease its cost to make it more likely to happen. 224 if (isa<SwitchInst>(I)) 225 Size = Size > 6 ? Size-6 : 0; 226 227 return Size; 228 } 229 230 /// FindLoopHeaders - We do not want jump threading to turn proper loop 231 /// structures into irreducible loops. Doing this breaks up the loop nesting 232 /// hierarchy and pessimizes later transformations. To prevent this from 233 /// happening, we first have to find the loop headers. Here we approximate this 234 /// by finding targets of backedges in the CFG. 235 /// 236 /// Note that there definitely are cases when we want to allow threading of 237 /// edges across a loop header. For example, threading a jump from outside the 238 /// loop (the preheader) to an exit block of the loop is definitely profitable. 239 /// It is also almost always profitable to thread backedges from within the loop 240 /// to exit blocks, and is often profitable to thread backedges to other blocks 241 /// within the loop (forming a nested loop). This simple analysis is not rich 242 /// enough to track all of these properties and keep it up-to-date as the CFG 243 /// mutates, so we don't allow any of these transformations. 244 /// 245 void JumpThreading::FindLoopHeaders(Function &F) { 246 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 247 FindFunctionBackedges(F, Edges); 248 249 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 250 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 251 } 252 253 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 254 /// if we can infer that the value is a known ConstantInt in any of our 255 /// predecessors. If so, return the known list of value and pred BB in the 256 /// result vector. If a value is known to be undef, it is returned as null. 257 /// 258 /// This returns true if there were any known values. 259 /// 260 bool JumpThreading:: 261 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){ 262 // If V is a constantint, then it is known in all predecessors. 263 if (isa<ConstantInt>(V) || isa<UndefValue>(V)) { 264 ConstantInt *CI = dyn_cast<ConstantInt>(V); 265 266 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 267 Result.push_back(std::make_pair(CI, *PI)); 268 return true; 269 } 270 271 // If V is a non-instruction value, or an instruction in a different block, 272 // then it can't be derived from a PHI. 273 Instruction *I = dyn_cast<Instruction>(V); 274 if (I == 0 || I->getParent() != BB) { 275 276 // Okay, if this is a live-in value, see if it has a known value at the end 277 // of any of our predecessors. 278 // 279 // FIXME: This should be an edge property, not a block end property. 280 /// TODO: Per PR2563, we could infer value range information about a 281 /// predecessor based on its terminator. 282 // 283 if (LVI) { 284 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 285 // "I" is a non-local compare-with-a-constant instruction. This would be 286 // able to handle value inequalities better, for example if the compare is 287 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 288 // Perhaps getConstantOnEdge should be smart enough to do this? 289 290 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 291 // If the value is known by LazyValueInfo to be a constant in a 292 // predecessor, use that information to try to thread this block. 293 Constant *PredCst = LVI->getConstantOnEdge(V, *PI, BB); 294 if (PredCst == 0 || 295 (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst))) 296 continue; 297 298 Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), *PI)); 299 } 300 301 return !Result.empty(); 302 } 303 304 return false; 305 } 306 307 /// If I is a PHI node, then we know the incoming values for any constants. 308 if (PHINode *PN = dyn_cast<PHINode>(I)) { 309 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 310 Value *InVal = PN->getIncomingValue(i); 311 if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) { 312 ConstantInt *CI = dyn_cast<ConstantInt>(InVal); 313 Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i))); 314 } 315 } 316 return !Result.empty(); 317 } 318 319 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals; 320 321 // Handle some boolean conditions. 322 if (I->getType()->getPrimitiveSizeInBits() == 1) { 323 // X | true -> true 324 // X & false -> false 325 if (I->getOpcode() == Instruction::Or || 326 I->getOpcode() == Instruction::And) { 327 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals); 328 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals); 329 330 if (LHSVals.empty() && RHSVals.empty()) 331 return false; 332 333 ConstantInt *InterestingVal; 334 if (I->getOpcode() == Instruction::Or) 335 InterestingVal = ConstantInt::getTrue(I->getContext()); 336 else 337 InterestingVal = ConstantInt::getFalse(I->getContext()); 338 339 // Scan for the sentinel. 340 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 341 if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) 342 Result.push_back(LHSVals[i]); 343 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 344 if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) 345 Result.push_back(RHSVals[i]); 346 return !Result.empty(); 347 } 348 349 // Handle the NOT form of XOR. 350 if (I->getOpcode() == Instruction::Xor && 351 isa<ConstantInt>(I->getOperand(1)) && 352 cast<ConstantInt>(I->getOperand(1))->isOne()) { 353 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result); 354 if (Result.empty()) 355 return false; 356 357 // Invert the known values. 358 for (unsigned i = 0, e = Result.size(); i != e; ++i) 359 if (Result[i].first) 360 Result[i].first = 361 cast<ConstantInt>(ConstantExpr::getNot(Result[i].first)); 362 return true; 363 } 364 } 365 366 // Handle compare with phi operand, where the PHI is defined in this block. 367 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 368 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 369 if (PN && PN->getParent() == BB) { 370 // We can do this simplification if any comparisons fold to true or false. 371 // See if any do. 372 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 373 BasicBlock *PredBB = PN->getIncomingBlock(i); 374 Value *LHS = PN->getIncomingValue(i); 375 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 376 377 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD); 378 if (Res == 0) { 379 if (!LVI || !isa<Constant>(RHS)) 380 continue; 381 382 LazyValueInfo::Tristate 383 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 384 cast<Constant>(RHS), PredBB, BB); 385 if (ResT == LazyValueInfo::Unknown) 386 continue; 387 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 388 } 389 390 if (isa<UndefValue>(Res)) 391 Result.push_back(std::make_pair((ConstantInt*)0, PredBB)); 392 else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res)) 393 Result.push_back(std::make_pair(CI, PredBB)); 394 } 395 396 return !Result.empty(); 397 } 398 399 400 // If comparing a live-in value against a constant, see if we know the 401 // live-in value on any predecessors. 402 if (LVI && isa<Constant>(Cmp->getOperand(1)) && 403 Cmp->getType()->isInteger() && // Not vector compare. 404 (!isa<Instruction>(Cmp->getOperand(0)) || 405 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB)) { 406 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 407 408 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 409 // If the value is known by LazyValueInfo to be a constant in a 410 // predecessor, use that information to try to thread this block. 411 LazyValueInfo::Tristate 412 Res = LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 413 RHSCst, *PI, BB); 414 if (Res == LazyValueInfo::Unknown) 415 continue; 416 417 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 418 Result.push_back(std::make_pair(cast<ConstantInt>(ResC), *PI)); 419 } 420 421 return !Result.empty(); 422 } 423 } 424 return false; 425 } 426 427 428 429 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 430 /// in an undefined jump, decide which block is best to revector to. 431 /// 432 /// Since we can pick an arbitrary destination, we pick the successor with the 433 /// fewest predecessors. This should reduce the in-degree of the others. 434 /// 435 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 436 TerminatorInst *BBTerm = BB->getTerminator(); 437 unsigned MinSucc = 0; 438 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 439 // Compute the successor with the minimum number of predecessors. 440 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 441 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 442 TestBB = BBTerm->getSuccessor(i); 443 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 444 if (NumPreds < MinNumPreds) 445 MinSucc = i; 446 } 447 448 return MinSucc; 449 } 450 451 /// ProcessBlock - If there are any predecessors whose control can be threaded 452 /// through to a successor, transform them now. 453 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 454 // If this block has a single predecessor, and if that pred has a single 455 // successor, merge the blocks. This encourages recursive jump threading 456 // because now the condition in this block can be threaded through 457 // predecessors of our predecessor block. 458 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 459 if (SinglePred->getTerminator()->getNumSuccessors() == 1 && 460 SinglePred != BB) { 461 // If SinglePred was a loop header, BB becomes one. 462 if (LoopHeaders.erase(SinglePred)) 463 LoopHeaders.insert(BB); 464 465 // Remember if SinglePred was the entry block of the function. If so, we 466 // will need to move BB back to the entry position. 467 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 468 MergeBasicBlockIntoOnlyPred(BB); 469 470 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 471 BB->moveBefore(&BB->getParent()->getEntryBlock()); 472 return true; 473 } 474 } 475 476 // Look to see if the terminator is a branch of switch, if not we can't thread 477 // it. 478 Value *Condition; 479 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 480 // Can't thread an unconditional jump. 481 if (BI->isUnconditional()) return false; 482 Condition = BI->getCondition(); 483 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 484 Condition = SI->getCondition(); 485 else 486 return false; // Must be an invoke. 487 488 // If the terminator of this block is branching on a constant, simplify the 489 // terminator to an unconditional branch. This can occur due to threading in 490 // other blocks. 491 if (isa<ConstantInt>(Condition)) { 492 DEBUG(dbgs() << " In block '" << BB->getName() 493 << "' folding terminator: " << *BB->getTerminator() << '\n'); 494 ++NumFolds; 495 ConstantFoldTerminator(BB); 496 return true; 497 } 498 499 // If the terminator is branching on an undef, we can pick any of the 500 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 501 if (isa<UndefValue>(Condition)) { 502 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 503 504 // Fold the branch/switch. 505 TerminatorInst *BBTerm = BB->getTerminator(); 506 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 507 if (i == BestSucc) continue; 508 RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD); 509 } 510 511 DEBUG(dbgs() << " In block '" << BB->getName() 512 << "' folding undef terminator: " << *BBTerm << '\n'); 513 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 514 BBTerm->eraseFromParent(); 515 return true; 516 } 517 518 Instruction *CondInst = dyn_cast<Instruction>(Condition); 519 520 // If the condition is an instruction defined in another block, see if a 521 // predecessor has the same condition: 522 // br COND, BBX, BBY 523 // BBX: 524 // br COND, BBZ, BBW 525 if (!LVI && 526 !Condition->hasOneUse() && // Multiple uses. 527 (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition. 528 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 529 if (isa<BranchInst>(BB->getTerminator())) { 530 for (; PI != E; ++PI) 531 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 532 if (PBI->isConditional() && PBI->getCondition() == Condition && 533 ProcessBranchOnDuplicateCond(*PI, BB)) 534 return true; 535 } else { 536 assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator"); 537 for (; PI != E; ++PI) 538 if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator())) 539 if (PSI->getCondition() == Condition && 540 ProcessSwitchOnDuplicateCond(*PI, BB)) 541 return true; 542 } 543 } 544 545 // All the rest of our checks depend on the condition being an instruction. 546 if (CondInst == 0) { 547 // FIXME: Unify this with code below. 548 if (LVI && ProcessThreadableEdges(Condition, BB)) 549 return true; 550 return false; 551 } 552 553 554 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 555 if (!LVI && 556 (!isa<PHINode>(CondCmp->getOperand(0)) || 557 cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) { 558 // If we have a comparison, loop over the predecessors to see if there is 559 // a condition with a lexically identical value. 560 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 561 for (; PI != E; ++PI) 562 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 563 if (PBI->isConditional() && *PI != BB) { 564 if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) { 565 if (CI->getOperand(0) == CondCmp->getOperand(0) && 566 CI->getOperand(1) == CondCmp->getOperand(1) && 567 CI->getPredicate() == CondCmp->getPredicate()) { 568 // TODO: Could handle things like (x != 4) --> (x == 17) 569 if (ProcessBranchOnDuplicateCond(*PI, BB)) 570 return true; 571 } 572 } 573 } 574 } 575 } 576 577 // Check for some cases that are worth simplifying. Right now we want to look 578 // for loads that are used by a switch or by the condition for the branch. If 579 // we see one, check to see if it's partially redundant. If so, insert a PHI 580 // which can then be used to thread the values. 581 // 582 Value *SimplifyValue = CondInst; 583 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 584 if (isa<Constant>(CondCmp->getOperand(1))) 585 SimplifyValue = CondCmp->getOperand(0); 586 587 // TODO: There are other places where load PRE would be profitable, such as 588 // more complex comparisons. 589 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 590 if (SimplifyPartiallyRedundantLoad(LI)) 591 return true; 592 593 594 // Handle a variety of cases where we are branching on something derived from 595 // a PHI node in the current block. If we can prove that any predecessors 596 // compute a predictable value based on a PHI node, thread those predecessors. 597 // 598 if (ProcessThreadableEdges(CondInst, BB)) 599 return true; 600 601 // If this is an otherwise-unfoldable branch on a phi node in the current 602 // block, see if we can simplify. 603 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 604 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 605 return ProcessBranchOnPHI(PN); 606 607 608 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 609 if (CondInst->getOpcode() == Instruction::Xor && 610 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 611 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 612 613 614 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 615 // "(X == 4)", thread through this block. 616 617 return false; 618 } 619 620 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that 621 /// block that jump on exactly the same condition. This means that we almost 622 /// always know the direction of the edge in the DESTBB: 623 /// PREDBB: 624 /// br COND, DESTBB, BBY 625 /// DESTBB: 626 /// br COND, BBZ, BBW 627 /// 628 /// If DESTBB has multiple predecessors, we can't just constant fold the branch 629 /// in DESTBB, we have to thread over it. 630 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB, 631 BasicBlock *BB) { 632 BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator()); 633 634 // If both successors of PredBB go to DESTBB, we don't know anything. We can 635 // fold the branch to an unconditional one, which allows other recursive 636 // simplifications. 637 bool BranchDir; 638 if (PredBI->getSuccessor(1) != BB) 639 BranchDir = true; 640 else if (PredBI->getSuccessor(0) != BB) 641 BranchDir = false; 642 else { 643 DEBUG(dbgs() << " In block '" << PredBB->getName() 644 << "' folding terminator: " << *PredBB->getTerminator() << '\n'); 645 ++NumFolds; 646 ConstantFoldTerminator(PredBB); 647 return true; 648 } 649 650 BranchInst *DestBI = cast<BranchInst>(BB->getTerminator()); 651 652 // If the dest block has one predecessor, just fix the branch condition to a 653 // constant and fold it. 654 if (BB->getSinglePredecessor()) { 655 DEBUG(dbgs() << " In block '" << BB->getName() 656 << "' folding condition to '" << BranchDir << "': " 657 << *BB->getTerminator() << '\n'); 658 ++NumFolds; 659 Value *OldCond = DestBI->getCondition(); 660 DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 661 BranchDir)); 662 ConstantFoldTerminator(BB); 663 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 664 return true; 665 } 666 667 668 // Next, figure out which successor we are threading to. 669 BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir); 670 671 SmallVector<BasicBlock*, 2> Preds; 672 Preds.push_back(PredBB); 673 674 // Ok, try to thread it! 675 return ThreadEdge(BB, Preds, SuccBB); 676 } 677 678 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that 679 /// block that switch on exactly the same condition. This means that we almost 680 /// always know the direction of the edge in the DESTBB: 681 /// PREDBB: 682 /// switch COND [... DESTBB, BBY ... ] 683 /// DESTBB: 684 /// switch COND [... BBZ, BBW ] 685 /// 686 /// Optimizing switches like this is very important, because simplifycfg builds 687 /// switches out of repeated 'if' conditions. 688 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, 689 BasicBlock *DestBB) { 690 // Can't thread edge to self. 691 if (PredBB == DestBB) 692 return false; 693 694 SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator()); 695 SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator()); 696 697 // There are a variety of optimizations that we can potentially do on these 698 // blocks: we order them from most to least preferable. 699 700 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB 701 // directly to their destination. This does not introduce *any* code size 702 // growth. Skip debug info first. 703 BasicBlock::iterator BBI = DestBB->begin(); 704 while (isa<DbgInfoIntrinsic>(BBI)) 705 BBI++; 706 707 // FIXME: Thread if it just contains a PHI. 708 if (isa<SwitchInst>(BBI)) { 709 bool MadeChange = false; 710 // Ignore the default edge for now. 711 for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) { 712 ConstantInt *DestVal = DestSI->getCaseValue(i); 713 BasicBlock *DestSucc = DestSI->getSuccessor(i); 714 715 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if 716 // PredSI has an explicit case for it. If so, forward. If it is covered 717 // by the default case, we can't update PredSI. 718 unsigned PredCase = PredSI->findCaseValue(DestVal); 719 if (PredCase == 0) continue; 720 721 // If PredSI doesn't go to DestBB on this value, then it won't reach the 722 // case on this condition. 723 if (PredSI->getSuccessor(PredCase) != DestBB && 724 DestSI->getSuccessor(i) != DestBB) 725 continue; 726 727 // Do not forward this if it already goes to this destination, this would 728 // be an infinite loop. 729 if (PredSI->getSuccessor(PredCase) == DestSucc) 730 continue; 731 732 // Otherwise, we're safe to make the change. Make sure that the edge from 733 // DestSI to DestSucc is not critical and has no PHI nodes. 734 DEBUG(dbgs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI); 735 DEBUG(dbgs() << "THROUGH: " << *DestSI); 736 737 // If the destination has PHI nodes, just split the edge for updating 738 // simplicity. 739 if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){ 740 SplitCriticalEdge(DestSI, i, this); 741 DestSucc = DestSI->getSuccessor(i); 742 } 743 FoldSingleEntryPHINodes(DestSucc); 744 PredSI->setSuccessor(PredCase, DestSucc); 745 MadeChange = true; 746 } 747 748 if (MadeChange) 749 return true; 750 } 751 752 return false; 753 } 754 755 756 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 757 /// load instruction, eliminate it by replacing it with a PHI node. This is an 758 /// important optimization that encourages jump threading, and needs to be run 759 /// interlaced with other jump threading tasks. 760 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 761 // Don't hack volatile loads. 762 if (LI->isVolatile()) return false; 763 764 // If the load is defined in a block with exactly one predecessor, it can't be 765 // partially redundant. 766 BasicBlock *LoadBB = LI->getParent(); 767 if (LoadBB->getSinglePredecessor()) 768 return false; 769 770 Value *LoadedPtr = LI->getOperand(0); 771 772 // If the loaded operand is defined in the LoadBB, it can't be available. 773 // TODO: Could do simple PHI translation, that would be fun :) 774 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 775 if (PtrOp->getParent() == LoadBB) 776 return false; 777 778 // Scan a few instructions up from the load, to see if it is obviously live at 779 // the entry to its block. 780 BasicBlock::iterator BBIt = LI; 781 782 if (Value *AvailableVal = 783 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) { 784 // If the value if the load is locally available within the block, just use 785 // it. This frequently occurs for reg2mem'd allocas. 786 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 787 788 // If the returned value is the load itself, replace with an undef. This can 789 // only happen in dead loops. 790 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 791 LI->replaceAllUsesWith(AvailableVal); 792 LI->eraseFromParent(); 793 return true; 794 } 795 796 // Otherwise, if we scanned the whole block and got to the top of the block, 797 // we know the block is locally transparent to the load. If not, something 798 // might clobber its value. 799 if (BBIt != LoadBB->begin()) 800 return false; 801 802 803 SmallPtrSet<BasicBlock*, 8> PredsScanned; 804 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 805 AvailablePredsTy AvailablePreds; 806 BasicBlock *OneUnavailablePred = 0; 807 808 // If we got here, the loaded value is transparent through to the start of the 809 // block. Check to see if it is available in any of the predecessor blocks. 810 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 811 PI != PE; ++PI) { 812 BasicBlock *PredBB = *PI; 813 814 // If we already scanned this predecessor, skip it. 815 if (!PredsScanned.insert(PredBB)) 816 continue; 817 818 // Scan the predecessor to see if the value is available in the pred. 819 BBIt = PredBB->end(); 820 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6); 821 if (!PredAvailable) { 822 OneUnavailablePred = PredBB; 823 continue; 824 } 825 826 // If so, this load is partially redundant. Remember this info so that we 827 // can create a PHI node. 828 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 829 } 830 831 // If the loaded value isn't available in any predecessor, it isn't partially 832 // redundant. 833 if (AvailablePreds.empty()) return false; 834 835 // Okay, the loaded value is available in at least one (and maybe all!) 836 // predecessors. If the value is unavailable in more than one unique 837 // predecessor, we want to insert a merge block for those common predecessors. 838 // This ensures that we only have to insert one reload, thus not increasing 839 // code size. 840 BasicBlock *UnavailablePred = 0; 841 842 // If there is exactly one predecessor where the value is unavailable, the 843 // already computed 'OneUnavailablePred' block is it. If it ends in an 844 // unconditional branch, we know that it isn't a critical edge. 845 if (PredsScanned.size() == AvailablePreds.size()+1 && 846 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 847 UnavailablePred = OneUnavailablePred; 848 } else if (PredsScanned.size() != AvailablePreds.size()) { 849 // Otherwise, we had multiple unavailable predecessors or we had a critical 850 // edge from the one. 851 SmallVector<BasicBlock*, 8> PredsToSplit; 852 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 853 854 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 855 AvailablePredSet.insert(AvailablePreds[i].first); 856 857 // Add all the unavailable predecessors to the PredsToSplit list. 858 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 859 PI != PE; ++PI) 860 if (!AvailablePredSet.count(*PI)) 861 PredsToSplit.push_back(*PI); 862 863 // Split them out to their own block. 864 UnavailablePred = 865 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(), 866 "thread-pre-split", this); 867 } 868 869 // If the value isn't available in all predecessors, then there will be 870 // exactly one where it isn't available. Insert a load on that edge and add 871 // it to the AvailablePreds list. 872 if (UnavailablePred) { 873 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 874 "Can't handle critical edge here!"); 875 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, 876 LI->getAlignment(), 877 UnavailablePred->getTerminator()); 878 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 879 } 880 881 // Now we know that each predecessor of this block has a value in 882 // AvailablePreds, sort them for efficient access as we're walking the preds. 883 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 884 885 // Create a PHI node at the start of the block for the PRE'd load value. 886 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin()); 887 PN->takeName(LI); 888 889 // Insert new entries into the PHI for each predecessor. A single block may 890 // have multiple entries here. 891 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E; 892 ++PI) { 893 AvailablePredsTy::iterator I = 894 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 895 std::make_pair(*PI, (Value*)0)); 896 897 assert(I != AvailablePreds.end() && I->first == *PI && 898 "Didn't find entry for predecessor!"); 899 900 PN->addIncoming(I->second, I->first); 901 } 902 903 //cerr << "PRE: " << *LI << *PN << "\n"; 904 905 LI->replaceAllUsesWith(PN); 906 LI->eraseFromParent(); 907 908 return true; 909 } 910 911 /// FindMostPopularDest - The specified list contains multiple possible 912 /// threadable destinations. Pick the one that occurs the most frequently in 913 /// the list. 914 static BasicBlock * 915 FindMostPopularDest(BasicBlock *BB, 916 const SmallVectorImpl<std::pair<BasicBlock*, 917 BasicBlock*> > &PredToDestList) { 918 assert(!PredToDestList.empty()); 919 920 // Determine popularity. If there are multiple possible destinations, we 921 // explicitly choose to ignore 'undef' destinations. We prefer to thread 922 // blocks with known and real destinations to threading undef. We'll handle 923 // them later if interesting. 924 DenseMap<BasicBlock*, unsigned> DestPopularity; 925 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 926 if (PredToDestList[i].second) 927 DestPopularity[PredToDestList[i].second]++; 928 929 // Find the most popular dest. 930 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 931 BasicBlock *MostPopularDest = DPI->first; 932 unsigned Popularity = DPI->second; 933 SmallVector<BasicBlock*, 4> SamePopularity; 934 935 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 936 // If the popularity of this entry isn't higher than the popularity we've 937 // seen so far, ignore it. 938 if (DPI->second < Popularity) 939 ; // ignore. 940 else if (DPI->second == Popularity) { 941 // If it is the same as what we've seen so far, keep track of it. 942 SamePopularity.push_back(DPI->first); 943 } else { 944 // If it is more popular, remember it. 945 SamePopularity.clear(); 946 MostPopularDest = DPI->first; 947 Popularity = DPI->second; 948 } 949 } 950 951 // Okay, now we know the most popular destination. If there is more than 952 // destination, we need to determine one. This is arbitrary, but we need 953 // to make a deterministic decision. Pick the first one that appears in the 954 // successor list. 955 if (!SamePopularity.empty()) { 956 SamePopularity.push_back(MostPopularDest); 957 TerminatorInst *TI = BB->getTerminator(); 958 for (unsigned i = 0; ; ++i) { 959 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 960 961 if (std::find(SamePopularity.begin(), SamePopularity.end(), 962 TI->getSuccessor(i)) == SamePopularity.end()) 963 continue; 964 965 MostPopularDest = TI->getSuccessor(i); 966 break; 967 } 968 } 969 970 // Okay, we have finally picked the most popular destination. 971 return MostPopularDest; 972 } 973 974 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) { 975 // If threading this would thread across a loop header, don't even try to 976 // thread the edge. 977 if (LoopHeaders.count(BB)) 978 return false; 979 980 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues; 981 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues)) 982 return false; 983 assert(!PredValues.empty() && 984 "ComputeValueKnownInPredecessors returned true with no values"); 985 986 DEBUG(dbgs() << "IN BB: " << *BB; 987 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 988 dbgs() << " BB '" << BB->getName() << "': FOUND condition = "; 989 if (PredValues[i].first) 990 dbgs() << *PredValues[i].first; 991 else 992 dbgs() << "UNDEF"; 993 dbgs() << " for pred '" << PredValues[i].second->getName() 994 << "'.\n"; 995 }); 996 997 // Decide what we want to thread through. Convert our list of known values to 998 // a list of known destinations for each pred. This also discards duplicate 999 // predecessors and keeps track of the undefined inputs (which are represented 1000 // as a null dest in the PredToDestList). 1001 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1002 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1003 1004 BasicBlock *OnlyDest = 0; 1005 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1006 1007 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1008 BasicBlock *Pred = PredValues[i].second; 1009 if (!SeenPreds.insert(Pred)) 1010 continue; // Duplicate predecessor entry. 1011 1012 // If the predecessor ends with an indirect goto, we can't change its 1013 // destination. 1014 if (isa<IndirectBrInst>(Pred->getTerminator())) 1015 continue; 1016 1017 ConstantInt *Val = PredValues[i].first; 1018 1019 BasicBlock *DestBB; 1020 if (Val == 0) // Undef. 1021 DestBB = 0; 1022 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1023 DestBB = BI->getSuccessor(Val->isZero()); 1024 else { 1025 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator()); 1026 DestBB = SI->getSuccessor(SI->findCaseValue(Val)); 1027 } 1028 1029 // If we have exactly one destination, remember it for efficiency below. 1030 if (i == 0) 1031 OnlyDest = DestBB; 1032 else if (OnlyDest != DestBB) 1033 OnlyDest = MultipleDestSentinel; 1034 1035 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1036 } 1037 1038 // If all edges were unthreadable, we fail. 1039 if (PredToDestList.empty()) 1040 return false; 1041 1042 // Determine which is the most common successor. If we have many inputs and 1043 // this block is a switch, we want to start by threading the batch that goes 1044 // to the most popular destination first. If we only know about one 1045 // threadable destination (the common case) we can avoid this. 1046 BasicBlock *MostPopularDest = OnlyDest; 1047 1048 if (MostPopularDest == MultipleDestSentinel) 1049 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1050 1051 // Now that we know what the most popular destination is, factor all 1052 // predecessors that will jump to it into a single predecessor. 1053 SmallVector<BasicBlock*, 16> PredsToFactor; 1054 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1055 if (PredToDestList[i].second == MostPopularDest) { 1056 BasicBlock *Pred = PredToDestList[i].first; 1057 1058 // This predecessor may be a switch or something else that has multiple 1059 // edges to the block. Factor each of these edges by listing them 1060 // according to # occurrences in PredsToFactor. 1061 TerminatorInst *PredTI = Pred->getTerminator(); 1062 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 1063 if (PredTI->getSuccessor(i) == BB) 1064 PredsToFactor.push_back(Pred); 1065 } 1066 1067 // If the threadable edges are branching on an undefined value, we get to pick 1068 // the destination that these predecessors should get to. 1069 if (MostPopularDest == 0) 1070 MostPopularDest = BB->getTerminator()-> 1071 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1072 1073 // Ok, try to thread it! 1074 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1075 } 1076 1077 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1078 /// a PHI node in the current block. See if there are any simplifications we 1079 /// can do based on inputs to the phi node. 1080 /// 1081 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) { 1082 BasicBlock *BB = PN->getParent(); 1083 1084 // TODO: We could make use of this to do it once for blocks with common PHI 1085 // values. 1086 SmallVector<BasicBlock*, 1> PredBBs; 1087 PredBBs.resize(1); 1088 1089 // If any of the predecessor blocks end in an unconditional branch, we can 1090 // *duplicate* the conditional branch into that block in order to further 1091 // encourage jump threading and to eliminate cases where we have branch on a 1092 // phi of an icmp (branch on icmp is much better). 1093 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1094 BasicBlock *PredBB = PN->getIncomingBlock(i); 1095 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1096 if (PredBr->isUnconditional()) { 1097 PredBBs[0] = PredBB; 1098 // Try to duplicate BB into PredBB. 1099 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1100 return true; 1101 } 1102 } 1103 1104 return false; 1105 } 1106 1107 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1108 /// a xor instruction in the current block. See if there are any 1109 /// simplifications we can do based on inputs to the xor. 1110 /// 1111 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) { 1112 BasicBlock *BB = BO->getParent(); 1113 1114 // If either the LHS or RHS of the xor is a constant, don't do this 1115 // optimization. 1116 if (isa<ConstantInt>(BO->getOperand(0)) || 1117 isa<ConstantInt>(BO->getOperand(1))) 1118 return false; 1119 1120 // If we have a xor as the branch input to this block, and we know that the 1121 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1122 // the condition into the predecessor and fix that value to true, saving some 1123 // logical ops on that path and encouraging other paths to simplify. 1124 // 1125 // This copies something like this: 1126 // 1127 // BB: 1128 // %X = phi i1 [1], [%X'] 1129 // %Y = icmp eq i32 %A, %B 1130 // %Z = xor i1 %X, %Y 1131 // br i1 %Z, ... 1132 // 1133 // Into: 1134 // BB': 1135 // %Y = icmp ne i32 %A, %B 1136 // br i1 %Z, ... 1137 1138 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> XorOpValues; 1139 bool isLHS = true; 1140 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues)) { 1141 assert(XorOpValues.empty()); 1142 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues)) 1143 return false; 1144 isLHS = false; 1145 } 1146 1147 assert(!XorOpValues.empty() && 1148 "ComputeValueKnownInPredecessors returned true with no values"); 1149 1150 // Scan the information to see which is most popular: true or false. The 1151 // predecessors can be of the set true, false, or undef. 1152 unsigned NumTrue = 0, NumFalse = 0; 1153 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1154 if (!XorOpValues[i].first) continue; // Ignore undefs for the count. 1155 if (XorOpValues[i].first->isZero()) 1156 ++NumFalse; 1157 else 1158 ++NumTrue; 1159 } 1160 1161 // Determine which value to split on, true, false, or undef if neither. 1162 ConstantInt *SplitVal = 0; 1163 if (NumTrue > NumFalse) 1164 SplitVal = ConstantInt::getTrue(BB->getContext()); 1165 else if (NumTrue != 0 || NumFalse != 0) 1166 SplitVal = ConstantInt::getFalse(BB->getContext()); 1167 1168 // Collect all of the blocks that this can be folded into so that we can 1169 // factor this once and clone it once. 1170 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1171 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1172 if (XorOpValues[i].first != SplitVal && XorOpValues[i].first != 0) continue; 1173 1174 BlocksToFoldInto.push_back(XorOpValues[i].second); 1175 } 1176 1177 // Try to duplicate BB into PredBB. 1178 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1179 } 1180 1181 1182 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1183 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1184 /// NewPred using the entries from OldPred (suitably mapped). 1185 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1186 BasicBlock *OldPred, 1187 BasicBlock *NewPred, 1188 DenseMap<Instruction*, Value*> &ValueMap) { 1189 for (BasicBlock::iterator PNI = PHIBB->begin(); 1190 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1191 // Ok, we have a PHI node. Figure out what the incoming value was for the 1192 // DestBlock. 1193 Value *IV = PN->getIncomingValueForBlock(OldPred); 1194 1195 // Remap the value if necessary. 1196 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1197 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1198 if (I != ValueMap.end()) 1199 IV = I->second; 1200 } 1201 1202 PN->addIncoming(IV, NewPred); 1203 } 1204 } 1205 1206 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1207 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1208 /// across BB. Transform the IR to reflect this change. 1209 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1210 const SmallVectorImpl<BasicBlock*> &PredBBs, 1211 BasicBlock *SuccBB) { 1212 // If threading to the same block as we come from, we would infinite loop. 1213 if (SuccBB == BB) { 1214 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1215 << "' - would thread to self!\n"); 1216 return false; 1217 } 1218 1219 // If threading this would thread across a loop header, don't thread the edge. 1220 // See the comments above FindLoopHeaders for justifications and caveats. 1221 if (LoopHeaders.count(BB)) { 1222 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1223 << "' to dest BB '" << SuccBB->getName() 1224 << "' - it might create an irreducible loop!\n"); 1225 return false; 1226 } 1227 1228 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB); 1229 if (JumpThreadCost > Threshold) { 1230 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1231 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1232 return false; 1233 } 1234 1235 // And finally, do it! Start by factoring the predecessors is needed. 1236 BasicBlock *PredBB; 1237 if (PredBBs.size() == 1) 1238 PredBB = PredBBs[0]; 1239 else { 1240 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1241 << " common predecessors.\n"); 1242 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), 1243 ".thr_comm", this); 1244 } 1245 1246 // And finally, do it! 1247 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1248 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1249 << ", across block:\n " 1250 << *BB << "\n"); 1251 1252 // We are going to have to map operands from the original BB block to the new 1253 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1254 // account for entry from PredBB. 1255 DenseMap<Instruction*, Value*> ValueMapping; 1256 1257 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1258 BB->getName()+".thread", 1259 BB->getParent(), BB); 1260 NewBB->moveAfter(PredBB); 1261 1262 BasicBlock::iterator BI = BB->begin(); 1263 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1264 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1265 1266 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1267 // mapping and using it to remap operands in the cloned instructions. 1268 for (; !isa<TerminatorInst>(BI); ++BI) { 1269 Instruction *New = BI->clone(); 1270 New->setName(BI->getName()); 1271 NewBB->getInstList().push_back(New); 1272 ValueMapping[BI] = New; 1273 1274 // Remap operands to patch up intra-block references. 1275 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1276 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1277 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1278 if (I != ValueMapping.end()) 1279 New->setOperand(i, I->second); 1280 } 1281 } 1282 1283 // We didn't copy the terminator from BB over to NewBB, because there is now 1284 // an unconditional jump to SuccBB. Insert the unconditional jump. 1285 BranchInst::Create(SuccBB, NewBB); 1286 1287 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1288 // PHI nodes for NewBB now. 1289 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1290 1291 // If there were values defined in BB that are used outside the block, then we 1292 // now have to update all uses of the value to use either the original value, 1293 // the cloned value, or some PHI derived value. This can require arbitrary 1294 // PHI insertion, of which we are prepared to do, clean these up now. 1295 SSAUpdater SSAUpdate; 1296 SmallVector<Use*, 16> UsesToRename; 1297 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1298 // Scan all uses of this instruction to see if it is used outside of its 1299 // block, and if so, record them in UsesToRename. 1300 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1301 ++UI) { 1302 Instruction *User = cast<Instruction>(*UI); 1303 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1304 if (UserPN->getIncomingBlock(UI) == BB) 1305 continue; 1306 } else if (User->getParent() == BB) 1307 continue; 1308 1309 UsesToRename.push_back(&UI.getUse()); 1310 } 1311 1312 // If there are no uses outside the block, we're done with this instruction. 1313 if (UsesToRename.empty()) 1314 continue; 1315 1316 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1317 1318 // We found a use of I outside of BB. Rename all uses of I that are outside 1319 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1320 // with the two values we know. 1321 SSAUpdate.Initialize(I); 1322 SSAUpdate.AddAvailableValue(BB, I); 1323 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); 1324 1325 while (!UsesToRename.empty()) 1326 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1327 DEBUG(dbgs() << "\n"); 1328 } 1329 1330 1331 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1332 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1333 // us to simplify any PHI nodes in BB. 1334 TerminatorInst *PredTerm = PredBB->getTerminator(); 1335 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1336 if (PredTerm->getSuccessor(i) == BB) { 1337 RemovePredecessorAndSimplify(BB, PredBB, TD); 1338 PredTerm->setSuccessor(i, NewBB); 1339 } 1340 1341 // At this point, the IR is fully up to date and consistent. Do a quick scan 1342 // over the new instructions and zap any that are constants or dead. This 1343 // frequently happens because of phi translation. 1344 BI = NewBB->begin(); 1345 for (BasicBlock::iterator E = NewBB->end(); BI != E; ) { 1346 Instruction *Inst = BI++; 1347 1348 if (Value *V = SimplifyInstruction(Inst, TD)) { 1349 WeakVH BIHandle(BI); 1350 ReplaceAndSimplifyAllUses(Inst, V, TD); 1351 if (BIHandle == 0) 1352 BI = NewBB->begin(); 1353 continue; 1354 } 1355 1356 RecursivelyDeleteTriviallyDeadInstructions(Inst); 1357 } 1358 1359 // Threaded an edge! 1360 ++NumThreads; 1361 return true; 1362 } 1363 1364 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1365 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1366 /// If we can duplicate the contents of BB up into PredBB do so now, this 1367 /// improves the odds that the branch will be on an analyzable instruction like 1368 /// a compare. 1369 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1370 const SmallVectorImpl<BasicBlock *> &PredBBs) { 1371 assert(!PredBBs.empty() && "Can't handle an empty set"); 1372 1373 // If BB is a loop header, then duplicating this block outside the loop would 1374 // cause us to transform this into an irreducible loop, don't do this. 1375 // See the comments above FindLoopHeaders for justifications and caveats. 1376 if (LoopHeaders.count(BB)) { 1377 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1378 << "' into predecessor block '" << PredBBs[0]->getName() 1379 << "' - it might create an irreducible loop!\n"); 1380 return false; 1381 } 1382 1383 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB); 1384 if (DuplicationCost > Threshold) { 1385 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1386 << "' - Cost is too high: " << DuplicationCost << "\n"); 1387 return false; 1388 } 1389 1390 // And finally, do it! Start by factoring the predecessors is needed. 1391 BasicBlock *PredBB; 1392 if (PredBBs.size() == 1) 1393 PredBB = PredBBs[0]; 1394 else { 1395 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1396 << " common predecessors.\n"); 1397 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), 1398 ".thr_comm", this); 1399 } 1400 1401 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1402 // of PredBB. 1403 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1404 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1405 << DuplicationCost << " block is:" << *BB << "\n"); 1406 1407 // Unless PredBB ends with an unconditional branch, split the edge so that we 1408 // can just clone the bits from BB into the end of the new PredBB. 1409 BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1410 1411 if (!OldPredBranch->isUnconditional()) { 1412 PredBB = SplitEdge(PredBB, BB, this); 1413 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1414 } 1415 1416 // We are going to have to map operands from the original BB block into the 1417 // PredBB block. Evaluate PHI nodes in BB. 1418 DenseMap<Instruction*, Value*> ValueMapping; 1419 1420 BasicBlock::iterator BI = BB->begin(); 1421 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1422 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1423 1424 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1425 // mapping and using it to remap operands in the cloned instructions. 1426 for (; BI != BB->end(); ++BI) { 1427 Instruction *New = BI->clone(); 1428 New->setName(BI->getName()); 1429 PredBB->getInstList().insert(OldPredBranch, New); 1430 ValueMapping[BI] = New; 1431 1432 // Remap operands to patch up intra-block references. 1433 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1434 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1435 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1436 if (I != ValueMapping.end()) 1437 New->setOperand(i, I->second); 1438 } 1439 } 1440 1441 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1442 // add entries to the PHI nodes for branch from PredBB now. 1443 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1444 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1445 ValueMapping); 1446 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1447 ValueMapping); 1448 1449 // If there were values defined in BB that are used outside the block, then we 1450 // now have to update all uses of the value to use either the original value, 1451 // the cloned value, or some PHI derived value. This can require arbitrary 1452 // PHI insertion, of which we are prepared to do, clean these up now. 1453 SSAUpdater SSAUpdate; 1454 SmallVector<Use*, 16> UsesToRename; 1455 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1456 // Scan all uses of this instruction to see if it is used outside of its 1457 // block, and if so, record them in UsesToRename. 1458 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1459 ++UI) { 1460 Instruction *User = cast<Instruction>(*UI); 1461 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1462 if (UserPN->getIncomingBlock(UI) == BB) 1463 continue; 1464 } else if (User->getParent() == BB) 1465 continue; 1466 1467 UsesToRename.push_back(&UI.getUse()); 1468 } 1469 1470 // If there are no uses outside the block, we're done with this instruction. 1471 if (UsesToRename.empty()) 1472 continue; 1473 1474 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1475 1476 // We found a use of I outside of BB. Rename all uses of I that are outside 1477 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1478 // with the two values we know. 1479 SSAUpdate.Initialize(I); 1480 SSAUpdate.AddAvailableValue(BB, I); 1481 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); 1482 1483 while (!UsesToRename.empty()) 1484 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1485 DEBUG(dbgs() << "\n"); 1486 } 1487 1488 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1489 // that we nuked. 1490 RemovePredecessorAndSimplify(BB, PredBB, TD); 1491 1492 // Remove the unconditional branch at the end of the PredBB block. 1493 OldPredBranch->eraseFromParent(); 1494 1495 ++NumDupes; 1496 return true; 1497 } 1498 1499 1500