1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "jump-threading" 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/CFG.h" 23 #include "llvm/Analysis/ConstantFolding.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/LazyValueInfo.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/Pass.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ValueHandle.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetLibraryInfo.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Local.h" 38 #include "llvm/Transforms/Utils/SSAUpdater.h" 39 using namespace llvm; 40 41 STATISTIC(NumThreads, "Number of jumps threaded"); 42 STATISTIC(NumFolds, "Number of terminators folded"); 43 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 44 45 static cl::opt<unsigned> 46 Threshold("jump-threading-threshold", 47 cl::desc("Max block size to duplicate for jump threading"), 48 cl::init(6), cl::Hidden); 49 50 namespace { 51 // These are at global scope so static functions can use them too. 52 typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo; 53 typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy; 54 55 // This is used to keep track of what kind of constant we're currently hoping 56 // to find. 57 enum ConstantPreference { 58 WantInteger, 59 WantBlockAddress 60 }; 61 62 /// This pass performs 'jump threading', which looks at blocks that have 63 /// multiple predecessors and multiple successors. If one or more of the 64 /// predecessors of the block can be proven to always jump to one of the 65 /// successors, we forward the edge from the predecessor to the successor by 66 /// duplicating the contents of this block. 67 /// 68 /// An example of when this can occur is code like this: 69 /// 70 /// if () { ... 71 /// X = 4; 72 /// } 73 /// if (X < 3) { 74 /// 75 /// In this case, the unconditional branch at the end of the first if can be 76 /// revectored to the false side of the second if. 77 /// 78 class JumpThreading : public FunctionPass { 79 DataLayout *TD; 80 TargetLibraryInfo *TLI; 81 LazyValueInfo *LVI; 82 #ifdef NDEBUG 83 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 84 #else 85 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 86 #endif 87 DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet; 88 89 // RAII helper for updating the recursion stack. 90 struct RecursionSetRemover { 91 DenseSet<std::pair<Value*, BasicBlock*> > &TheSet; 92 std::pair<Value*, BasicBlock*> ThePair; 93 94 RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S, 95 std::pair<Value*, BasicBlock*> P) 96 : TheSet(S), ThePair(P) { } 97 98 ~RecursionSetRemover() { 99 TheSet.erase(ThePair); 100 } 101 }; 102 public: 103 static char ID; // Pass identification 104 JumpThreading() : FunctionPass(ID) { 105 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 106 } 107 108 bool runOnFunction(Function &F); 109 110 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 111 AU.addRequired<LazyValueInfo>(); 112 AU.addPreserved<LazyValueInfo>(); 113 AU.addRequired<TargetLibraryInfo>(); 114 } 115 116 void FindLoopHeaders(Function &F); 117 bool ProcessBlock(BasicBlock *BB); 118 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 119 BasicBlock *SuccBB); 120 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 121 const SmallVectorImpl<BasicBlock *> &PredBBs); 122 123 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 124 PredValueInfo &Result, 125 ConstantPreference Preference); 126 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 127 ConstantPreference Preference); 128 129 bool ProcessBranchOnPHI(PHINode *PN); 130 bool ProcessBranchOnXOR(BinaryOperator *BO); 131 132 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 133 bool TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB); 134 }; 135 } 136 137 char JumpThreading::ID = 0; 138 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 139 "Jump Threading", false, false) 140 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo) 141 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 142 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 143 "Jump Threading", false, false) 144 145 // Public interface to the Jump Threading pass 146 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); } 147 148 /// runOnFunction - Top level algorithm. 149 /// 150 bool JumpThreading::runOnFunction(Function &F) { 151 if (skipOptnoneFunction(F)) 152 return false; 153 154 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 155 TD = getAnalysisIfAvailable<DataLayout>(); 156 TLI = &getAnalysis<TargetLibraryInfo>(); 157 LVI = &getAnalysis<LazyValueInfo>(); 158 159 FindLoopHeaders(F); 160 161 bool Changed, EverChanged = false; 162 do { 163 Changed = false; 164 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 165 BasicBlock *BB = I; 166 // Thread all of the branches we can over this block. 167 while (ProcessBlock(BB)) 168 Changed = true; 169 170 ++I; 171 172 // If the block is trivially dead, zap it. This eliminates the successor 173 // edges which simplifies the CFG. 174 if (pred_begin(BB) == pred_end(BB) && 175 BB != &BB->getParent()->getEntryBlock()) { 176 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 177 << "' with terminator: " << *BB->getTerminator() << '\n'); 178 LoopHeaders.erase(BB); 179 LVI->eraseBlock(BB); 180 DeleteDeadBlock(BB); 181 Changed = true; 182 continue; 183 } 184 185 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 186 187 // Can't thread an unconditional jump, but if the block is "almost 188 // empty", we can replace uses of it with uses of the successor and make 189 // this dead. 190 if (BI && BI->isUnconditional() && 191 BB != &BB->getParent()->getEntryBlock() && 192 // If the terminator is the only non-phi instruction, try to nuke it. 193 BB->getFirstNonPHIOrDbg()->isTerminator()) { 194 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 195 // block, we have to make sure it isn't in the LoopHeaders set. We 196 // reinsert afterward if needed. 197 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 198 BasicBlock *Succ = BI->getSuccessor(0); 199 200 // FIXME: It is always conservatively correct to drop the info 201 // for a block even if it doesn't get erased. This isn't totally 202 // awesome, but it allows us to use AssertingVH to prevent nasty 203 // dangling pointer issues within LazyValueInfo. 204 LVI->eraseBlock(BB); 205 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { 206 Changed = true; 207 // If we deleted BB and BB was the header of a loop, then the 208 // successor is now the header of the loop. 209 BB = Succ; 210 } 211 212 if (ErasedFromLoopHeaders) 213 LoopHeaders.insert(BB); 214 } 215 } 216 EverChanged |= Changed; 217 } while (Changed); 218 219 LoopHeaders.clear(); 220 return EverChanged; 221 } 222 223 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 224 /// thread across it. Stop scanning the block when passing the threshold. 225 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB, 226 unsigned Threshold) { 227 /// Ignore PHI nodes, these will be flattened when duplication happens. 228 BasicBlock::const_iterator I = BB->getFirstNonPHI(); 229 230 // FIXME: THREADING will delete values that are just used to compute the 231 // branch, so they shouldn't count against the duplication cost. 232 233 // Sum up the cost of each instruction until we get to the terminator. Don't 234 // include the terminator because the copy won't include it. 235 unsigned Size = 0; 236 for (; !isa<TerminatorInst>(I); ++I) { 237 238 // Stop scanning the block if we've reached the threshold. 239 if (Size > Threshold) 240 return Size; 241 242 // Debugger intrinsics don't incur code size. 243 if (isa<DbgInfoIntrinsic>(I)) continue; 244 245 // If this is a pointer->pointer bitcast, it is free. 246 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 247 continue; 248 249 // All other instructions count for at least one unit. 250 ++Size; 251 252 // Calls are more expensive. If they are non-intrinsic calls, we model them 253 // as having cost of 4. If they are a non-vector intrinsic, we model them 254 // as having cost of 2 total, and if they are a vector intrinsic, we model 255 // them as having cost 1. 256 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 257 if (CI->hasFnAttr(Attribute::NoDuplicate)) 258 // Blocks with NoDuplicate are modelled as having infinite cost, so they 259 // are never duplicated. 260 return ~0U; 261 else if (!isa<IntrinsicInst>(CI)) 262 Size += 3; 263 else if (!CI->getType()->isVectorTy()) 264 Size += 1; 265 } 266 } 267 268 // Threading through a switch statement is particularly profitable. If this 269 // block ends in a switch, decrease its cost to make it more likely to happen. 270 if (isa<SwitchInst>(I)) 271 Size = Size > 6 ? Size-6 : 0; 272 273 // The same holds for indirect branches, but slightly more so. 274 if (isa<IndirectBrInst>(I)) 275 Size = Size > 8 ? Size-8 : 0; 276 277 return Size; 278 } 279 280 /// FindLoopHeaders - We do not want jump threading to turn proper loop 281 /// structures into irreducible loops. Doing this breaks up the loop nesting 282 /// hierarchy and pessimizes later transformations. To prevent this from 283 /// happening, we first have to find the loop headers. Here we approximate this 284 /// by finding targets of backedges in the CFG. 285 /// 286 /// Note that there definitely are cases when we want to allow threading of 287 /// edges across a loop header. For example, threading a jump from outside the 288 /// loop (the preheader) to an exit block of the loop is definitely profitable. 289 /// It is also almost always profitable to thread backedges from within the loop 290 /// to exit blocks, and is often profitable to thread backedges to other blocks 291 /// within the loop (forming a nested loop). This simple analysis is not rich 292 /// enough to track all of these properties and keep it up-to-date as the CFG 293 /// mutates, so we don't allow any of these transformations. 294 /// 295 void JumpThreading::FindLoopHeaders(Function &F) { 296 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 297 FindFunctionBackedges(F, Edges); 298 299 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 300 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 301 } 302 303 /// getKnownConstant - Helper method to determine if we can thread over a 304 /// terminator with the given value as its condition, and if so what value to 305 /// use for that. What kind of value this is depends on whether we want an 306 /// integer or a block address, but an undef is always accepted. 307 /// Returns null if Val is null or not an appropriate constant. 308 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 309 if (!Val) 310 return 0; 311 312 // Undef is "known" enough. 313 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 314 return U; 315 316 if (Preference == WantBlockAddress) 317 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 318 319 return dyn_cast<ConstantInt>(Val); 320 } 321 322 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 323 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 324 /// in any of our predecessors. If so, return the known list of value and pred 325 /// BB in the result vector. 326 /// 327 /// This returns true if there were any known values. 328 /// 329 bool JumpThreading:: 330 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result, 331 ConstantPreference Preference) { 332 // This method walks up use-def chains recursively. Because of this, we could 333 // get into an infinite loop going around loops in the use-def chain. To 334 // prevent this, keep track of what (value, block) pairs we've already visited 335 // and terminate the search if we loop back to them 336 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 337 return false; 338 339 // An RAII help to remove this pair from the recursion set once the recursion 340 // stack pops back out again. 341 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 342 343 // If V is a constant, then it is known in all predecessors. 344 if (Constant *KC = getKnownConstant(V, Preference)) { 345 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 346 Result.push_back(std::make_pair(KC, *PI)); 347 348 return true; 349 } 350 351 // If V is a non-instruction value, or an instruction in a different block, 352 // then it can't be derived from a PHI. 353 Instruction *I = dyn_cast<Instruction>(V); 354 if (I == 0 || I->getParent() != BB) { 355 356 // Okay, if this is a live-in value, see if it has a known value at the end 357 // of any of our predecessors. 358 // 359 // FIXME: This should be an edge property, not a block end property. 360 /// TODO: Per PR2563, we could infer value range information about a 361 /// predecessor based on its terminator. 362 // 363 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 364 // "I" is a non-local compare-with-a-constant instruction. This would be 365 // able to handle value inequalities better, for example if the compare is 366 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 367 // Perhaps getConstantOnEdge should be smart enough to do this? 368 369 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 370 BasicBlock *P = *PI; 371 // If the value is known by LazyValueInfo to be a constant in a 372 // predecessor, use that information to try to thread this block. 373 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB); 374 if (Constant *KC = getKnownConstant(PredCst, Preference)) 375 Result.push_back(std::make_pair(KC, P)); 376 } 377 378 return !Result.empty(); 379 } 380 381 /// If I is a PHI node, then we know the incoming values for any constants. 382 if (PHINode *PN = dyn_cast<PHINode>(I)) { 383 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 384 Value *InVal = PN->getIncomingValue(i); 385 if (Constant *KC = getKnownConstant(InVal, Preference)) { 386 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 387 } else { 388 Constant *CI = LVI->getConstantOnEdge(InVal, 389 PN->getIncomingBlock(i), BB); 390 if (Constant *KC = getKnownConstant(CI, Preference)) 391 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 392 } 393 } 394 395 return !Result.empty(); 396 } 397 398 PredValueInfoTy LHSVals, RHSVals; 399 400 // Handle some boolean conditions. 401 if (I->getType()->getPrimitiveSizeInBits() == 1) { 402 assert(Preference == WantInteger && "One-bit non-integer type?"); 403 // X | true -> true 404 // X & false -> false 405 if (I->getOpcode() == Instruction::Or || 406 I->getOpcode() == Instruction::And) { 407 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 408 WantInteger); 409 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 410 WantInteger); 411 412 if (LHSVals.empty() && RHSVals.empty()) 413 return false; 414 415 ConstantInt *InterestingVal; 416 if (I->getOpcode() == Instruction::Or) 417 InterestingVal = ConstantInt::getTrue(I->getContext()); 418 else 419 InterestingVal = ConstantInt::getFalse(I->getContext()); 420 421 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 422 423 // Scan for the sentinel. If we find an undef, force it to the 424 // interesting value: x|undef -> true and x&undef -> false. 425 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 426 if (LHSVals[i].first == InterestingVal || 427 isa<UndefValue>(LHSVals[i].first)) { 428 Result.push_back(LHSVals[i]); 429 Result.back().first = InterestingVal; 430 LHSKnownBBs.insert(LHSVals[i].second); 431 } 432 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 433 if (RHSVals[i].first == InterestingVal || 434 isa<UndefValue>(RHSVals[i].first)) { 435 // If we already inferred a value for this block on the LHS, don't 436 // re-add it. 437 if (!LHSKnownBBs.count(RHSVals[i].second)) { 438 Result.push_back(RHSVals[i]); 439 Result.back().first = InterestingVal; 440 } 441 } 442 443 return !Result.empty(); 444 } 445 446 // Handle the NOT form of XOR. 447 if (I->getOpcode() == Instruction::Xor && 448 isa<ConstantInt>(I->getOperand(1)) && 449 cast<ConstantInt>(I->getOperand(1))->isOne()) { 450 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 451 WantInteger); 452 if (Result.empty()) 453 return false; 454 455 // Invert the known values. 456 for (unsigned i = 0, e = Result.size(); i != e; ++i) 457 Result[i].first = ConstantExpr::getNot(Result[i].first); 458 459 return true; 460 } 461 462 // Try to simplify some other binary operator values. 463 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 464 assert(Preference != WantBlockAddress 465 && "A binary operator creating a block address?"); 466 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 467 PredValueInfoTy LHSVals; 468 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 469 WantInteger); 470 471 // Try to use constant folding to simplify the binary operator. 472 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 473 Constant *V = LHSVals[i].first; 474 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 475 476 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 477 Result.push_back(std::make_pair(KC, LHSVals[i].second)); 478 } 479 } 480 481 return !Result.empty(); 482 } 483 484 // Handle compare with phi operand, where the PHI is defined in this block. 485 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 486 assert(Preference == WantInteger && "Compares only produce integers"); 487 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 488 if (PN && PN->getParent() == BB) { 489 // We can do this simplification if any comparisons fold to true or false. 490 // See if any do. 491 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 492 BasicBlock *PredBB = PN->getIncomingBlock(i); 493 Value *LHS = PN->getIncomingValue(i); 494 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 495 496 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD); 497 if (Res == 0) { 498 if (!isa<Constant>(RHS)) 499 continue; 500 501 LazyValueInfo::Tristate 502 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 503 cast<Constant>(RHS), PredBB, BB); 504 if (ResT == LazyValueInfo::Unknown) 505 continue; 506 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 507 } 508 509 if (Constant *KC = getKnownConstant(Res, WantInteger)) 510 Result.push_back(std::make_pair(KC, PredBB)); 511 } 512 513 return !Result.empty(); 514 } 515 516 517 // If comparing a live-in value against a constant, see if we know the 518 // live-in value on any predecessors. 519 if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) { 520 if (!isa<Instruction>(Cmp->getOperand(0)) || 521 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) { 522 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 523 524 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){ 525 BasicBlock *P = *PI; 526 // If the value is known by LazyValueInfo to be a constant in a 527 // predecessor, use that information to try to thread this block. 528 LazyValueInfo::Tristate Res = 529 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 530 RHSCst, P, BB); 531 if (Res == LazyValueInfo::Unknown) 532 continue; 533 534 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 535 Result.push_back(std::make_pair(ResC, P)); 536 } 537 538 return !Result.empty(); 539 } 540 541 // Try to find a constant value for the LHS of a comparison, 542 // and evaluate it statically if we can. 543 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) { 544 PredValueInfoTy LHSVals; 545 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 546 WantInteger); 547 548 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 549 Constant *V = LHSVals[i].first; 550 Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(), 551 V, CmpConst); 552 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 553 Result.push_back(std::make_pair(KC, LHSVals[i].second)); 554 } 555 556 return !Result.empty(); 557 } 558 } 559 } 560 561 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 562 // Handle select instructions where at least one operand is a known constant 563 // and we can figure out the condition value for any predecessor block. 564 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 565 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 566 PredValueInfoTy Conds; 567 if ((TrueVal || FalseVal) && 568 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 569 WantInteger)) { 570 for (unsigned i = 0, e = Conds.size(); i != e; ++i) { 571 Constant *Cond = Conds[i].first; 572 573 // Figure out what value to use for the condition. 574 bool KnownCond; 575 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 576 // A known boolean. 577 KnownCond = CI->isOne(); 578 } else { 579 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 580 // Either operand will do, so be sure to pick the one that's a known 581 // constant. 582 // FIXME: Do this more cleverly if both values are known constants? 583 KnownCond = (TrueVal != 0); 584 } 585 586 // See if the select has a known constant value for this predecessor. 587 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 588 Result.push_back(std::make_pair(Val, Conds[i].second)); 589 } 590 591 return !Result.empty(); 592 } 593 } 594 595 // If all else fails, see if LVI can figure out a constant value for us. 596 Constant *CI = LVI->getConstant(V, BB); 597 if (Constant *KC = getKnownConstant(CI, Preference)) { 598 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 599 Result.push_back(std::make_pair(KC, *PI)); 600 } 601 602 return !Result.empty(); 603 } 604 605 606 607 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 608 /// in an undefined jump, decide which block is best to revector to. 609 /// 610 /// Since we can pick an arbitrary destination, we pick the successor with the 611 /// fewest predecessors. This should reduce the in-degree of the others. 612 /// 613 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 614 TerminatorInst *BBTerm = BB->getTerminator(); 615 unsigned MinSucc = 0; 616 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 617 // Compute the successor with the minimum number of predecessors. 618 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 619 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 620 TestBB = BBTerm->getSuccessor(i); 621 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 622 if (NumPreds < MinNumPreds) { 623 MinSucc = i; 624 MinNumPreds = NumPreds; 625 } 626 } 627 628 return MinSucc; 629 } 630 631 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 632 if (!BB->hasAddressTaken()) return false; 633 634 // If the block has its address taken, it may be a tree of dead constants 635 // hanging off of it. These shouldn't keep the block alive. 636 BlockAddress *BA = BlockAddress::get(BB); 637 BA->removeDeadConstantUsers(); 638 return !BA->use_empty(); 639 } 640 641 /// ProcessBlock - If there are any predecessors whose control can be threaded 642 /// through to a successor, transform them now. 643 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 644 // If the block is trivially dead, just return and let the caller nuke it. 645 // This simplifies other transformations. 646 if (pred_begin(BB) == pred_end(BB) && 647 BB != &BB->getParent()->getEntryBlock()) 648 return false; 649 650 // If this block has a single predecessor, and if that pred has a single 651 // successor, merge the blocks. This encourages recursive jump threading 652 // because now the condition in this block can be threaded through 653 // predecessors of our predecessor block. 654 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 655 if (SinglePred->getTerminator()->getNumSuccessors() == 1 && 656 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 657 // If SinglePred was a loop header, BB becomes one. 658 if (LoopHeaders.erase(SinglePred)) 659 LoopHeaders.insert(BB); 660 661 // Remember if SinglePred was the entry block of the function. If so, we 662 // will need to move BB back to the entry position. 663 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 664 LVI->eraseBlock(SinglePred); 665 MergeBasicBlockIntoOnlyPred(BB); 666 667 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 668 BB->moveBefore(&BB->getParent()->getEntryBlock()); 669 return true; 670 } 671 } 672 673 // What kind of constant we're looking for. 674 ConstantPreference Preference = WantInteger; 675 676 // Look to see if the terminator is a conditional branch, switch or indirect 677 // branch, if not we can't thread it. 678 Value *Condition; 679 Instruction *Terminator = BB->getTerminator(); 680 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 681 // Can't thread an unconditional jump. 682 if (BI->isUnconditional()) return false; 683 Condition = BI->getCondition(); 684 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 685 Condition = SI->getCondition(); 686 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 687 // Can't thread indirect branch with no successors. 688 if (IB->getNumSuccessors() == 0) return false; 689 Condition = IB->getAddress()->stripPointerCasts(); 690 Preference = WantBlockAddress; 691 } else { 692 return false; // Must be an invoke. 693 } 694 695 // Run constant folding to see if we can reduce the condition to a simple 696 // constant. 697 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 698 Value *SimpleVal = ConstantFoldInstruction(I, TD, TLI); 699 if (SimpleVal) { 700 I->replaceAllUsesWith(SimpleVal); 701 I->eraseFromParent(); 702 Condition = SimpleVal; 703 } 704 } 705 706 // If the terminator is branching on an undef, we can pick any of the 707 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 708 if (isa<UndefValue>(Condition)) { 709 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 710 711 // Fold the branch/switch. 712 TerminatorInst *BBTerm = BB->getTerminator(); 713 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 714 if (i == BestSucc) continue; 715 BBTerm->getSuccessor(i)->removePredecessor(BB, true); 716 } 717 718 DEBUG(dbgs() << " In block '" << BB->getName() 719 << "' folding undef terminator: " << *BBTerm << '\n'); 720 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 721 BBTerm->eraseFromParent(); 722 return true; 723 } 724 725 // If the terminator of this block is branching on a constant, simplify the 726 // terminator to an unconditional branch. This can occur due to threading in 727 // other blocks. 728 if (getKnownConstant(Condition, Preference)) { 729 DEBUG(dbgs() << " In block '" << BB->getName() 730 << "' folding terminator: " << *BB->getTerminator() << '\n'); 731 ++NumFolds; 732 ConstantFoldTerminator(BB, true); 733 return true; 734 } 735 736 Instruction *CondInst = dyn_cast<Instruction>(Condition); 737 738 // All the rest of our checks depend on the condition being an instruction. 739 if (CondInst == 0) { 740 // FIXME: Unify this with code below. 741 if (ProcessThreadableEdges(Condition, BB, Preference)) 742 return true; 743 return false; 744 } 745 746 747 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 748 // For a comparison where the LHS is outside this block, it's possible 749 // that we've branched on it before. Used LVI to see if we can simplify 750 // the branch based on that. 751 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 752 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 753 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 754 if (CondBr && CondConst && CondBr->isConditional() && PI != PE && 755 (!isa<Instruction>(CondCmp->getOperand(0)) || 756 cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) { 757 // For predecessor edge, determine if the comparison is true or false 758 // on that edge. If they're all true or all false, we can simplify the 759 // branch. 760 // FIXME: We could handle mixed true/false by duplicating code. 761 LazyValueInfo::Tristate Baseline = 762 LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0), 763 CondConst, *PI, BB); 764 if (Baseline != LazyValueInfo::Unknown) { 765 // Check that all remaining incoming values match the first one. 766 while (++PI != PE) { 767 LazyValueInfo::Tristate Ret = 768 LVI->getPredicateOnEdge(CondCmp->getPredicate(), 769 CondCmp->getOperand(0), CondConst, *PI, BB); 770 if (Ret != Baseline) break; 771 } 772 773 // If we terminated early, then one of the values didn't match. 774 if (PI == PE) { 775 unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0; 776 unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1; 777 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 778 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 779 CondBr->eraseFromParent(); 780 return true; 781 } 782 } 783 784 } 785 786 if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB)) 787 return true; 788 } 789 790 // Check for some cases that are worth simplifying. Right now we want to look 791 // for loads that are used by a switch or by the condition for the branch. If 792 // we see one, check to see if it's partially redundant. If so, insert a PHI 793 // which can then be used to thread the values. 794 // 795 Value *SimplifyValue = CondInst; 796 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 797 if (isa<Constant>(CondCmp->getOperand(1))) 798 SimplifyValue = CondCmp->getOperand(0); 799 800 // TODO: There are other places where load PRE would be profitable, such as 801 // more complex comparisons. 802 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 803 if (SimplifyPartiallyRedundantLoad(LI)) 804 return true; 805 806 807 // Handle a variety of cases where we are branching on something derived from 808 // a PHI node in the current block. If we can prove that any predecessors 809 // compute a predictable value based on a PHI node, thread those predecessors. 810 // 811 if (ProcessThreadableEdges(CondInst, BB, Preference)) 812 return true; 813 814 // If this is an otherwise-unfoldable branch on a phi node in the current 815 // block, see if we can simplify. 816 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 817 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 818 return ProcessBranchOnPHI(PN); 819 820 821 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 822 if (CondInst->getOpcode() == Instruction::Xor && 823 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 824 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 825 826 827 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 828 // "(X == 4)", thread through this block. 829 830 return false; 831 } 832 833 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 834 /// load instruction, eliminate it by replacing it with a PHI node. This is an 835 /// important optimization that encourages jump threading, and needs to be run 836 /// interlaced with other jump threading tasks. 837 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 838 // Don't hack volatile/atomic loads. 839 if (!LI->isSimple()) return false; 840 841 // If the load is defined in a block with exactly one predecessor, it can't be 842 // partially redundant. 843 BasicBlock *LoadBB = LI->getParent(); 844 if (LoadBB->getSinglePredecessor()) 845 return false; 846 847 // If the load is defined in a landing pad, it can't be partially redundant, 848 // because the edges between the invoke and the landing pad cannot have other 849 // instructions between them. 850 if (LoadBB->isLandingPad()) 851 return false; 852 853 Value *LoadedPtr = LI->getOperand(0); 854 855 // If the loaded operand is defined in the LoadBB, it can't be available. 856 // TODO: Could do simple PHI translation, that would be fun :) 857 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 858 if (PtrOp->getParent() == LoadBB) 859 return false; 860 861 // Scan a few instructions up from the load, to see if it is obviously live at 862 // the entry to its block. 863 BasicBlock::iterator BBIt = LI; 864 865 if (Value *AvailableVal = 866 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) { 867 // If the value if the load is locally available within the block, just use 868 // it. This frequently occurs for reg2mem'd allocas. 869 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 870 871 // If the returned value is the load itself, replace with an undef. This can 872 // only happen in dead loops. 873 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 874 LI->replaceAllUsesWith(AvailableVal); 875 LI->eraseFromParent(); 876 return true; 877 } 878 879 // Otherwise, if we scanned the whole block and got to the top of the block, 880 // we know the block is locally transparent to the load. If not, something 881 // might clobber its value. 882 if (BBIt != LoadBB->begin()) 883 return false; 884 885 // If all of the loads and stores that feed the value have the same TBAA tag, 886 // then we can propagate it onto any newly inserted loads. 887 MDNode *TBAATag = LI->getMetadata(LLVMContext::MD_tbaa); 888 889 SmallPtrSet<BasicBlock*, 8> PredsScanned; 890 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 891 AvailablePredsTy AvailablePreds; 892 BasicBlock *OneUnavailablePred = 0; 893 894 // If we got here, the loaded value is transparent through to the start of the 895 // block. Check to see if it is available in any of the predecessor blocks. 896 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 897 PI != PE; ++PI) { 898 BasicBlock *PredBB = *PI; 899 900 // If we already scanned this predecessor, skip it. 901 if (!PredsScanned.insert(PredBB)) 902 continue; 903 904 // Scan the predecessor to see if the value is available in the pred. 905 BBIt = PredBB->end(); 906 MDNode *ThisTBAATag = 0; 907 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6, 908 0, &ThisTBAATag); 909 if (!PredAvailable) { 910 OneUnavailablePred = PredBB; 911 continue; 912 } 913 914 // If tbaa tags disagree or are not present, forget about them. 915 if (TBAATag != ThisTBAATag) TBAATag = 0; 916 917 // If so, this load is partially redundant. Remember this info so that we 918 // can create a PHI node. 919 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 920 } 921 922 // If the loaded value isn't available in any predecessor, it isn't partially 923 // redundant. 924 if (AvailablePreds.empty()) return false; 925 926 // Okay, the loaded value is available in at least one (and maybe all!) 927 // predecessors. If the value is unavailable in more than one unique 928 // predecessor, we want to insert a merge block for those common predecessors. 929 // This ensures that we only have to insert one reload, thus not increasing 930 // code size. 931 BasicBlock *UnavailablePred = 0; 932 933 // If there is exactly one predecessor where the value is unavailable, the 934 // already computed 'OneUnavailablePred' block is it. If it ends in an 935 // unconditional branch, we know that it isn't a critical edge. 936 if (PredsScanned.size() == AvailablePreds.size()+1 && 937 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 938 UnavailablePred = OneUnavailablePred; 939 } else if (PredsScanned.size() != AvailablePreds.size()) { 940 // Otherwise, we had multiple unavailable predecessors or we had a critical 941 // edge from the one. 942 SmallVector<BasicBlock*, 8> PredsToSplit; 943 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 944 945 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 946 AvailablePredSet.insert(AvailablePreds[i].first); 947 948 // Add all the unavailable predecessors to the PredsToSplit list. 949 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 950 PI != PE; ++PI) { 951 BasicBlock *P = *PI; 952 // If the predecessor is an indirect goto, we can't split the edge. 953 if (isa<IndirectBrInst>(P->getTerminator())) 954 return false; 955 956 if (!AvailablePredSet.count(P)) 957 PredsToSplit.push_back(P); 958 } 959 960 // Split them out to their own block. 961 UnavailablePred = 962 SplitBlockPredecessors(LoadBB, PredsToSplit, "thread-pre-split", this); 963 } 964 965 // If the value isn't available in all predecessors, then there will be 966 // exactly one where it isn't available. Insert a load on that edge and add 967 // it to the AvailablePreds list. 968 if (UnavailablePred) { 969 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 970 "Can't handle critical edge here!"); 971 LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, 972 LI->getAlignment(), 973 UnavailablePred->getTerminator()); 974 NewVal->setDebugLoc(LI->getDebugLoc()); 975 if (TBAATag) 976 NewVal->setMetadata(LLVMContext::MD_tbaa, TBAATag); 977 978 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 979 } 980 981 // Now we know that each predecessor of this block has a value in 982 // AvailablePreds, sort them for efficient access as we're walking the preds. 983 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 984 985 // Create a PHI node at the start of the block for the PRE'd load value. 986 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 987 PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "", 988 LoadBB->begin()); 989 PN->takeName(LI); 990 PN->setDebugLoc(LI->getDebugLoc()); 991 992 // Insert new entries into the PHI for each predecessor. A single block may 993 // have multiple entries here. 994 for (pred_iterator PI = PB; PI != PE; ++PI) { 995 BasicBlock *P = *PI; 996 AvailablePredsTy::iterator I = 997 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 998 std::make_pair(P, (Value*)0)); 999 1000 assert(I != AvailablePreds.end() && I->first == P && 1001 "Didn't find entry for predecessor!"); 1002 1003 PN->addIncoming(I->second, I->first); 1004 } 1005 1006 //cerr << "PRE: " << *LI << *PN << "\n"; 1007 1008 LI->replaceAllUsesWith(PN); 1009 LI->eraseFromParent(); 1010 1011 return true; 1012 } 1013 1014 /// FindMostPopularDest - The specified list contains multiple possible 1015 /// threadable destinations. Pick the one that occurs the most frequently in 1016 /// the list. 1017 static BasicBlock * 1018 FindMostPopularDest(BasicBlock *BB, 1019 const SmallVectorImpl<std::pair<BasicBlock*, 1020 BasicBlock*> > &PredToDestList) { 1021 assert(!PredToDestList.empty()); 1022 1023 // Determine popularity. If there are multiple possible destinations, we 1024 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1025 // blocks with known and real destinations to threading undef. We'll handle 1026 // them later if interesting. 1027 DenseMap<BasicBlock*, unsigned> DestPopularity; 1028 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1029 if (PredToDestList[i].second) 1030 DestPopularity[PredToDestList[i].second]++; 1031 1032 // Find the most popular dest. 1033 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1034 BasicBlock *MostPopularDest = DPI->first; 1035 unsigned Popularity = DPI->second; 1036 SmallVector<BasicBlock*, 4> SamePopularity; 1037 1038 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1039 // If the popularity of this entry isn't higher than the popularity we've 1040 // seen so far, ignore it. 1041 if (DPI->second < Popularity) 1042 ; // ignore. 1043 else if (DPI->second == Popularity) { 1044 // If it is the same as what we've seen so far, keep track of it. 1045 SamePopularity.push_back(DPI->first); 1046 } else { 1047 // If it is more popular, remember it. 1048 SamePopularity.clear(); 1049 MostPopularDest = DPI->first; 1050 Popularity = DPI->second; 1051 } 1052 } 1053 1054 // Okay, now we know the most popular destination. If there is more than one 1055 // destination, we need to determine one. This is arbitrary, but we need 1056 // to make a deterministic decision. Pick the first one that appears in the 1057 // successor list. 1058 if (!SamePopularity.empty()) { 1059 SamePopularity.push_back(MostPopularDest); 1060 TerminatorInst *TI = BB->getTerminator(); 1061 for (unsigned i = 0; ; ++i) { 1062 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1063 1064 if (std::find(SamePopularity.begin(), SamePopularity.end(), 1065 TI->getSuccessor(i)) == SamePopularity.end()) 1066 continue; 1067 1068 MostPopularDest = TI->getSuccessor(i); 1069 break; 1070 } 1071 } 1072 1073 // Okay, we have finally picked the most popular destination. 1074 return MostPopularDest; 1075 } 1076 1077 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1078 ConstantPreference Preference) { 1079 // If threading this would thread across a loop header, don't even try to 1080 // thread the edge. 1081 if (LoopHeaders.count(BB)) 1082 return false; 1083 1084 PredValueInfoTy PredValues; 1085 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference)) 1086 return false; 1087 1088 assert(!PredValues.empty() && 1089 "ComputeValueKnownInPredecessors returned true with no values"); 1090 1091 DEBUG(dbgs() << "IN BB: " << *BB; 1092 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1093 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1094 << *PredValues[i].first 1095 << " for pred '" << PredValues[i].second->getName() << "'.\n"; 1096 }); 1097 1098 // Decide what we want to thread through. Convert our list of known values to 1099 // a list of known destinations for each pred. This also discards duplicate 1100 // predecessors and keeps track of the undefined inputs (which are represented 1101 // as a null dest in the PredToDestList). 1102 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1103 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1104 1105 BasicBlock *OnlyDest = 0; 1106 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1107 1108 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1109 BasicBlock *Pred = PredValues[i].second; 1110 if (!SeenPreds.insert(Pred)) 1111 continue; // Duplicate predecessor entry. 1112 1113 // If the predecessor ends with an indirect goto, we can't change its 1114 // destination. 1115 if (isa<IndirectBrInst>(Pred->getTerminator())) 1116 continue; 1117 1118 Constant *Val = PredValues[i].first; 1119 1120 BasicBlock *DestBB; 1121 if (isa<UndefValue>(Val)) 1122 DestBB = 0; 1123 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1124 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1125 else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1126 DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor(); 1127 } else { 1128 assert(isa<IndirectBrInst>(BB->getTerminator()) 1129 && "Unexpected terminator"); 1130 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1131 } 1132 1133 // If we have exactly one destination, remember it for efficiency below. 1134 if (PredToDestList.empty()) 1135 OnlyDest = DestBB; 1136 else if (OnlyDest != DestBB) 1137 OnlyDest = MultipleDestSentinel; 1138 1139 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1140 } 1141 1142 // If all edges were unthreadable, we fail. 1143 if (PredToDestList.empty()) 1144 return false; 1145 1146 // Determine which is the most common successor. If we have many inputs and 1147 // this block is a switch, we want to start by threading the batch that goes 1148 // to the most popular destination first. If we only know about one 1149 // threadable destination (the common case) we can avoid this. 1150 BasicBlock *MostPopularDest = OnlyDest; 1151 1152 if (MostPopularDest == MultipleDestSentinel) 1153 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1154 1155 // Now that we know what the most popular destination is, factor all 1156 // predecessors that will jump to it into a single predecessor. 1157 SmallVector<BasicBlock*, 16> PredsToFactor; 1158 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1159 if (PredToDestList[i].second == MostPopularDest) { 1160 BasicBlock *Pred = PredToDestList[i].first; 1161 1162 // This predecessor may be a switch or something else that has multiple 1163 // edges to the block. Factor each of these edges by listing them 1164 // according to # occurrences in PredsToFactor. 1165 TerminatorInst *PredTI = Pred->getTerminator(); 1166 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 1167 if (PredTI->getSuccessor(i) == BB) 1168 PredsToFactor.push_back(Pred); 1169 } 1170 1171 // If the threadable edges are branching on an undefined value, we get to pick 1172 // the destination that these predecessors should get to. 1173 if (MostPopularDest == 0) 1174 MostPopularDest = BB->getTerminator()-> 1175 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1176 1177 // Ok, try to thread it! 1178 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1179 } 1180 1181 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1182 /// a PHI node in the current block. See if there are any simplifications we 1183 /// can do based on inputs to the phi node. 1184 /// 1185 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) { 1186 BasicBlock *BB = PN->getParent(); 1187 1188 // TODO: We could make use of this to do it once for blocks with common PHI 1189 // values. 1190 SmallVector<BasicBlock*, 1> PredBBs; 1191 PredBBs.resize(1); 1192 1193 // If any of the predecessor blocks end in an unconditional branch, we can 1194 // *duplicate* the conditional branch into that block in order to further 1195 // encourage jump threading and to eliminate cases where we have branch on a 1196 // phi of an icmp (branch on icmp is much better). 1197 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1198 BasicBlock *PredBB = PN->getIncomingBlock(i); 1199 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1200 if (PredBr->isUnconditional()) { 1201 PredBBs[0] = PredBB; 1202 // Try to duplicate BB into PredBB. 1203 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1204 return true; 1205 } 1206 } 1207 1208 return false; 1209 } 1210 1211 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1212 /// a xor instruction in the current block. See if there are any 1213 /// simplifications we can do based on inputs to the xor. 1214 /// 1215 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) { 1216 BasicBlock *BB = BO->getParent(); 1217 1218 // If either the LHS or RHS of the xor is a constant, don't do this 1219 // optimization. 1220 if (isa<ConstantInt>(BO->getOperand(0)) || 1221 isa<ConstantInt>(BO->getOperand(1))) 1222 return false; 1223 1224 // If the first instruction in BB isn't a phi, we won't be able to infer 1225 // anything special about any particular predecessor. 1226 if (!isa<PHINode>(BB->front())) 1227 return false; 1228 1229 // If we have a xor as the branch input to this block, and we know that the 1230 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1231 // the condition into the predecessor and fix that value to true, saving some 1232 // logical ops on that path and encouraging other paths to simplify. 1233 // 1234 // This copies something like this: 1235 // 1236 // BB: 1237 // %X = phi i1 [1], [%X'] 1238 // %Y = icmp eq i32 %A, %B 1239 // %Z = xor i1 %X, %Y 1240 // br i1 %Z, ... 1241 // 1242 // Into: 1243 // BB': 1244 // %Y = icmp ne i32 %A, %B 1245 // br i1 %Z, ... 1246 1247 PredValueInfoTy XorOpValues; 1248 bool isLHS = true; 1249 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1250 WantInteger)) { 1251 assert(XorOpValues.empty()); 1252 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1253 WantInteger)) 1254 return false; 1255 isLHS = false; 1256 } 1257 1258 assert(!XorOpValues.empty() && 1259 "ComputeValueKnownInPredecessors returned true with no values"); 1260 1261 // Scan the information to see which is most popular: true or false. The 1262 // predecessors can be of the set true, false, or undef. 1263 unsigned NumTrue = 0, NumFalse = 0; 1264 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1265 if (isa<UndefValue>(XorOpValues[i].first)) 1266 // Ignore undefs for the count. 1267 continue; 1268 if (cast<ConstantInt>(XorOpValues[i].first)->isZero()) 1269 ++NumFalse; 1270 else 1271 ++NumTrue; 1272 } 1273 1274 // Determine which value to split on, true, false, or undef if neither. 1275 ConstantInt *SplitVal = 0; 1276 if (NumTrue > NumFalse) 1277 SplitVal = ConstantInt::getTrue(BB->getContext()); 1278 else if (NumTrue != 0 || NumFalse != 0) 1279 SplitVal = ConstantInt::getFalse(BB->getContext()); 1280 1281 // Collect all of the blocks that this can be folded into so that we can 1282 // factor this once and clone it once. 1283 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1284 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1285 if (XorOpValues[i].first != SplitVal && 1286 !isa<UndefValue>(XorOpValues[i].first)) 1287 continue; 1288 1289 BlocksToFoldInto.push_back(XorOpValues[i].second); 1290 } 1291 1292 // If we inferred a value for all of the predecessors, then duplication won't 1293 // help us. However, we can just replace the LHS or RHS with the constant. 1294 if (BlocksToFoldInto.size() == 1295 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1296 if (SplitVal == 0) { 1297 // If all preds provide undef, just nuke the xor, because it is undef too. 1298 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1299 BO->eraseFromParent(); 1300 } else if (SplitVal->isZero()) { 1301 // If all preds provide 0, replace the xor with the other input. 1302 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1303 BO->eraseFromParent(); 1304 } else { 1305 // If all preds provide 1, set the computed value to 1. 1306 BO->setOperand(!isLHS, SplitVal); 1307 } 1308 1309 return true; 1310 } 1311 1312 // Try to duplicate BB into PredBB. 1313 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1314 } 1315 1316 1317 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1318 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1319 /// NewPred using the entries from OldPred (suitably mapped). 1320 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1321 BasicBlock *OldPred, 1322 BasicBlock *NewPred, 1323 DenseMap<Instruction*, Value*> &ValueMap) { 1324 for (BasicBlock::iterator PNI = PHIBB->begin(); 1325 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1326 // Ok, we have a PHI node. Figure out what the incoming value was for the 1327 // DestBlock. 1328 Value *IV = PN->getIncomingValueForBlock(OldPred); 1329 1330 // Remap the value if necessary. 1331 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1332 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1333 if (I != ValueMap.end()) 1334 IV = I->second; 1335 } 1336 1337 PN->addIncoming(IV, NewPred); 1338 } 1339 } 1340 1341 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1342 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1343 /// across BB. Transform the IR to reflect this change. 1344 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1345 const SmallVectorImpl<BasicBlock*> &PredBBs, 1346 BasicBlock *SuccBB) { 1347 // If threading to the same block as we come from, we would infinite loop. 1348 if (SuccBB == BB) { 1349 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1350 << "' - would thread to self!\n"); 1351 return false; 1352 } 1353 1354 // If threading this would thread across a loop header, don't thread the edge. 1355 // See the comments above FindLoopHeaders for justifications and caveats. 1356 if (LoopHeaders.count(BB)) { 1357 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1358 << "' to dest BB '" << SuccBB->getName() 1359 << "' - it might create an irreducible loop!\n"); 1360 return false; 1361 } 1362 1363 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, Threshold); 1364 if (JumpThreadCost > Threshold) { 1365 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1366 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1367 return false; 1368 } 1369 1370 // And finally, do it! Start by factoring the predecessors is needed. 1371 BasicBlock *PredBB; 1372 if (PredBBs.size() == 1) 1373 PredBB = PredBBs[0]; 1374 else { 1375 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1376 << " common predecessors.\n"); 1377 PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this); 1378 } 1379 1380 // And finally, do it! 1381 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1382 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1383 << ", across block:\n " 1384 << *BB << "\n"); 1385 1386 LVI->threadEdge(PredBB, BB, SuccBB); 1387 1388 // We are going to have to map operands from the original BB block to the new 1389 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1390 // account for entry from PredBB. 1391 DenseMap<Instruction*, Value*> ValueMapping; 1392 1393 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1394 BB->getName()+".thread", 1395 BB->getParent(), BB); 1396 NewBB->moveAfter(PredBB); 1397 1398 BasicBlock::iterator BI = BB->begin(); 1399 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1400 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1401 1402 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1403 // mapping and using it to remap operands in the cloned instructions. 1404 for (; !isa<TerminatorInst>(BI); ++BI) { 1405 Instruction *New = BI->clone(); 1406 New->setName(BI->getName()); 1407 NewBB->getInstList().push_back(New); 1408 ValueMapping[BI] = New; 1409 1410 // Remap operands to patch up intra-block references. 1411 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1412 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1413 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1414 if (I != ValueMapping.end()) 1415 New->setOperand(i, I->second); 1416 } 1417 } 1418 1419 // We didn't copy the terminator from BB over to NewBB, because there is now 1420 // an unconditional jump to SuccBB. Insert the unconditional jump. 1421 BranchInst *NewBI =BranchInst::Create(SuccBB, NewBB); 1422 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1423 1424 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1425 // PHI nodes for NewBB now. 1426 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1427 1428 // If there were values defined in BB that are used outside the block, then we 1429 // now have to update all uses of the value to use either the original value, 1430 // the cloned value, or some PHI derived value. This can require arbitrary 1431 // PHI insertion, of which we are prepared to do, clean these up now. 1432 SSAUpdater SSAUpdate; 1433 SmallVector<Use*, 16> UsesToRename; 1434 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1435 // Scan all uses of this instruction to see if it is used outside of its 1436 // block, and if so, record them in UsesToRename. 1437 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1438 ++UI) { 1439 Instruction *User = cast<Instruction>(*UI); 1440 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1441 if (UserPN->getIncomingBlock(UI) == BB) 1442 continue; 1443 } else if (User->getParent() == BB) 1444 continue; 1445 1446 UsesToRename.push_back(&UI.getUse()); 1447 } 1448 1449 // If there are no uses outside the block, we're done with this instruction. 1450 if (UsesToRename.empty()) 1451 continue; 1452 1453 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1454 1455 // We found a use of I outside of BB. Rename all uses of I that are outside 1456 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1457 // with the two values we know. 1458 SSAUpdate.Initialize(I->getType(), I->getName()); 1459 SSAUpdate.AddAvailableValue(BB, I); 1460 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); 1461 1462 while (!UsesToRename.empty()) 1463 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1464 DEBUG(dbgs() << "\n"); 1465 } 1466 1467 1468 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1469 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1470 // us to simplify any PHI nodes in BB. 1471 TerminatorInst *PredTerm = PredBB->getTerminator(); 1472 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1473 if (PredTerm->getSuccessor(i) == BB) { 1474 BB->removePredecessor(PredBB, true); 1475 PredTerm->setSuccessor(i, NewBB); 1476 } 1477 1478 // At this point, the IR is fully up to date and consistent. Do a quick scan 1479 // over the new instructions and zap any that are constants or dead. This 1480 // frequently happens because of phi translation. 1481 SimplifyInstructionsInBlock(NewBB, TD, TLI); 1482 1483 // Threaded an edge! 1484 ++NumThreads; 1485 return true; 1486 } 1487 1488 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1489 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1490 /// If we can duplicate the contents of BB up into PredBB do so now, this 1491 /// improves the odds that the branch will be on an analyzable instruction like 1492 /// a compare. 1493 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1494 const SmallVectorImpl<BasicBlock *> &PredBBs) { 1495 assert(!PredBBs.empty() && "Can't handle an empty set"); 1496 1497 // If BB is a loop header, then duplicating this block outside the loop would 1498 // cause us to transform this into an irreducible loop, don't do this. 1499 // See the comments above FindLoopHeaders for justifications and caveats. 1500 if (LoopHeaders.count(BB)) { 1501 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1502 << "' into predecessor block '" << PredBBs[0]->getName() 1503 << "' - it might create an irreducible loop!\n"); 1504 return false; 1505 } 1506 1507 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, Threshold); 1508 if (DuplicationCost > Threshold) { 1509 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1510 << "' - Cost is too high: " << DuplicationCost << "\n"); 1511 return false; 1512 } 1513 1514 // And finally, do it! Start by factoring the predecessors is needed. 1515 BasicBlock *PredBB; 1516 if (PredBBs.size() == 1) 1517 PredBB = PredBBs[0]; 1518 else { 1519 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1520 << " common predecessors.\n"); 1521 PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this); 1522 } 1523 1524 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1525 // of PredBB. 1526 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1527 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1528 << DuplicationCost << " block is:" << *BB << "\n"); 1529 1530 // Unless PredBB ends with an unconditional branch, split the edge so that we 1531 // can just clone the bits from BB into the end of the new PredBB. 1532 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 1533 1534 if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) { 1535 PredBB = SplitEdge(PredBB, BB, this); 1536 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1537 } 1538 1539 // We are going to have to map operands from the original BB block into the 1540 // PredBB block. Evaluate PHI nodes in BB. 1541 DenseMap<Instruction*, Value*> ValueMapping; 1542 1543 BasicBlock::iterator BI = BB->begin(); 1544 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1545 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1546 1547 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1548 // mapping and using it to remap operands in the cloned instructions. 1549 for (; BI != BB->end(); ++BI) { 1550 Instruction *New = BI->clone(); 1551 1552 // Remap operands to patch up intra-block references. 1553 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1554 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1555 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1556 if (I != ValueMapping.end()) 1557 New->setOperand(i, I->second); 1558 } 1559 1560 // If this instruction can be simplified after the operands are updated, 1561 // just use the simplified value instead. This frequently happens due to 1562 // phi translation. 1563 if (Value *IV = SimplifyInstruction(New, TD)) { 1564 delete New; 1565 ValueMapping[BI] = IV; 1566 } else { 1567 // Otherwise, insert the new instruction into the block. 1568 New->setName(BI->getName()); 1569 PredBB->getInstList().insert(OldPredBranch, New); 1570 ValueMapping[BI] = New; 1571 } 1572 } 1573 1574 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1575 // add entries to the PHI nodes for branch from PredBB now. 1576 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1577 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1578 ValueMapping); 1579 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1580 ValueMapping); 1581 1582 // If there were values defined in BB that are used outside the block, then we 1583 // now have to update all uses of the value to use either the original value, 1584 // the cloned value, or some PHI derived value. This can require arbitrary 1585 // PHI insertion, of which we are prepared to do, clean these up now. 1586 SSAUpdater SSAUpdate; 1587 SmallVector<Use*, 16> UsesToRename; 1588 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1589 // Scan all uses of this instruction to see if it is used outside of its 1590 // block, and if so, record them in UsesToRename. 1591 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1592 ++UI) { 1593 Instruction *User = cast<Instruction>(*UI); 1594 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1595 if (UserPN->getIncomingBlock(UI) == BB) 1596 continue; 1597 } else if (User->getParent() == BB) 1598 continue; 1599 1600 UsesToRename.push_back(&UI.getUse()); 1601 } 1602 1603 // If there are no uses outside the block, we're done with this instruction. 1604 if (UsesToRename.empty()) 1605 continue; 1606 1607 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1608 1609 // We found a use of I outside of BB. Rename all uses of I that are outside 1610 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1611 // with the two values we know. 1612 SSAUpdate.Initialize(I->getType(), I->getName()); 1613 SSAUpdate.AddAvailableValue(BB, I); 1614 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); 1615 1616 while (!UsesToRename.empty()) 1617 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1618 DEBUG(dbgs() << "\n"); 1619 } 1620 1621 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1622 // that we nuked. 1623 BB->removePredecessor(PredBB, true); 1624 1625 // Remove the unconditional branch at the end of the PredBB block. 1626 OldPredBranch->eraseFromParent(); 1627 1628 ++NumDupes; 1629 return true; 1630 } 1631 1632 /// TryToUnfoldSelect - Look for blocks of the form 1633 /// bb1: 1634 /// %a = select 1635 /// br bb 1636 /// 1637 /// bb2: 1638 /// %p = phi [%a, %bb] ... 1639 /// %c = icmp %p 1640 /// br i1 %c 1641 /// 1642 /// And expand the select into a branch structure if one of its arms allows %c 1643 /// to be folded. This later enables threading from bb1 over bb2. 1644 bool JumpThreading::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 1645 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1646 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 1647 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 1648 1649 if (!CondBr || !CondBr->isConditional() || !CondLHS || 1650 CondLHS->getParent() != BB) 1651 return false; 1652 1653 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 1654 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 1655 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 1656 1657 // Look if one of the incoming values is a select in the corresponding 1658 // predecessor. 1659 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 1660 continue; 1661 1662 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 1663 if (!PredTerm || !PredTerm->isUnconditional()) 1664 continue; 1665 1666 // Now check if one of the select values would allow us to constant fold the 1667 // terminator in BB. We don't do the transform if both sides fold, those 1668 // cases will be threaded in any case. 1669 LazyValueInfo::Tristate LHSFolds = 1670 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 1671 CondRHS, Pred, BB); 1672 LazyValueInfo::Tristate RHSFolds = 1673 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 1674 CondRHS, Pred, BB); 1675 if ((LHSFolds != LazyValueInfo::Unknown || 1676 RHSFolds != LazyValueInfo::Unknown) && 1677 LHSFolds != RHSFolds) { 1678 // Expand the select. 1679 // 1680 // Pred -- 1681 // | v 1682 // | NewBB 1683 // | | 1684 // |----- 1685 // v 1686 // BB 1687 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 1688 BB->getParent(), BB); 1689 // Move the unconditional branch to NewBB. 1690 PredTerm->removeFromParent(); 1691 NewBB->getInstList().insert(NewBB->end(), PredTerm); 1692 // Create a conditional branch and update PHI nodes. 1693 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 1694 CondLHS->setIncomingValue(I, SI->getFalseValue()); 1695 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 1696 // The select is now dead. 1697 SI->eraseFromParent(); 1698 1699 // Update any other PHI nodes in BB. 1700 for (BasicBlock::iterator BI = BB->begin(); 1701 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 1702 if (Phi != CondLHS) 1703 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 1704 return true; 1705 } 1706 } 1707 return false; 1708 } 1709