1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LazyValueInfo.h" 25 #include "llvm/Analysis/Loads.h" 26 #include "llvm/Analysis/TargetLibraryInfo.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Pass.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Local.h" 38 #include "llvm/Transforms/Utils/SSAUpdater.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "jump-threading" 42 43 STATISTIC(NumThreads, "Number of jumps threaded"); 44 STATISTIC(NumFolds, "Number of terminators folded"); 45 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 46 47 static cl::opt<unsigned> 48 BBDuplicateThreshold("jump-threading-threshold", 49 cl::desc("Max block size to duplicate for jump threading"), 50 cl::init(6), cl::Hidden); 51 52 namespace { 53 // These are at global scope so static functions can use them too. 54 typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo; 55 typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy; 56 57 // This is used to keep track of what kind of constant we're currently hoping 58 // to find. 59 enum ConstantPreference { 60 WantInteger, 61 WantBlockAddress 62 }; 63 64 /// This pass performs 'jump threading', which looks at blocks that have 65 /// multiple predecessors and multiple successors. If one or more of the 66 /// predecessors of the block can be proven to always jump to one of the 67 /// successors, we forward the edge from the predecessor to the successor by 68 /// duplicating the contents of this block. 69 /// 70 /// An example of when this can occur is code like this: 71 /// 72 /// if () { ... 73 /// X = 4; 74 /// } 75 /// if (X < 3) { 76 /// 77 /// In this case, the unconditional branch at the end of the first if can be 78 /// revectored to the false side of the second if. 79 /// 80 class JumpThreading : public FunctionPass { 81 TargetLibraryInfo *TLI; 82 LazyValueInfo *LVI; 83 #ifdef NDEBUG 84 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 85 #else 86 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 87 #endif 88 DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet; 89 90 unsigned BBDupThreshold; 91 92 // RAII helper for updating the recursion stack. 93 struct RecursionSetRemover { 94 DenseSet<std::pair<Value*, BasicBlock*> > &TheSet; 95 std::pair<Value*, BasicBlock*> ThePair; 96 97 RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S, 98 std::pair<Value*, BasicBlock*> P) 99 : TheSet(S), ThePair(P) { } 100 101 ~RecursionSetRemover() { 102 TheSet.erase(ThePair); 103 } 104 }; 105 public: 106 static char ID; // Pass identification 107 JumpThreading(int T = -1) : FunctionPass(ID) { 108 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 109 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 110 } 111 112 bool runOnFunction(Function &F) override; 113 114 void getAnalysisUsage(AnalysisUsage &AU) const override { 115 AU.addRequired<LazyValueInfo>(); 116 AU.addPreserved<LazyValueInfo>(); 117 AU.addRequired<TargetLibraryInfoWrapperPass>(); 118 } 119 120 void FindLoopHeaders(Function &F); 121 bool ProcessBlock(BasicBlock *BB); 122 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 123 BasicBlock *SuccBB); 124 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 125 const SmallVectorImpl<BasicBlock *> &PredBBs); 126 127 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 128 PredValueInfo &Result, 129 ConstantPreference Preference, 130 Instruction *CxtI = nullptr); 131 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 132 ConstantPreference Preference, 133 Instruction *CxtI = nullptr); 134 135 bool ProcessBranchOnPHI(PHINode *PN); 136 bool ProcessBranchOnXOR(BinaryOperator *BO); 137 138 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 139 bool TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB); 140 }; 141 } 142 143 char JumpThreading::ID = 0; 144 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 145 "Jump Threading", false, false) 146 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo) 147 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 148 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 149 "Jump Threading", false, false) 150 151 // Public interface to the Jump Threading pass 152 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); } 153 154 /// runOnFunction - Top level algorithm. 155 /// 156 bool JumpThreading::runOnFunction(Function &F) { 157 if (skipOptnoneFunction(F)) 158 return false; 159 160 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 161 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 162 LVI = &getAnalysis<LazyValueInfo>(); 163 164 // Remove unreachable blocks from function as they may result in infinite 165 // loop. We do threading if we found something profitable. Jump threading a 166 // branch can create other opportunities. If these opportunities form a cycle 167 // i.e. if any jump treading is undoing previous threading in the path, then 168 // we will loop forever. We take care of this issue by not jump threading for 169 // back edges. This works for normal cases but not for unreachable blocks as 170 // they may have cycle with no back edge. 171 removeUnreachableBlocks(F); 172 173 FindLoopHeaders(F); 174 175 bool Changed, EverChanged = false; 176 do { 177 Changed = false; 178 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 179 BasicBlock *BB = I; 180 // Thread all of the branches we can over this block. 181 while (ProcessBlock(BB)) 182 Changed = true; 183 184 ++I; 185 186 // If the block is trivially dead, zap it. This eliminates the successor 187 // edges which simplifies the CFG. 188 if (pred_empty(BB) && 189 BB != &BB->getParent()->getEntryBlock()) { 190 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 191 << "' with terminator: " << *BB->getTerminator() << '\n'); 192 LoopHeaders.erase(BB); 193 LVI->eraseBlock(BB); 194 DeleteDeadBlock(BB); 195 Changed = true; 196 continue; 197 } 198 199 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 200 201 // Can't thread an unconditional jump, but if the block is "almost 202 // empty", we can replace uses of it with uses of the successor and make 203 // this dead. 204 if (BI && BI->isUnconditional() && 205 BB != &BB->getParent()->getEntryBlock() && 206 // If the terminator is the only non-phi instruction, try to nuke it. 207 BB->getFirstNonPHIOrDbg()->isTerminator()) { 208 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 209 // block, we have to make sure it isn't in the LoopHeaders set. We 210 // reinsert afterward if needed. 211 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 212 BasicBlock *Succ = BI->getSuccessor(0); 213 214 // FIXME: It is always conservatively correct to drop the info 215 // for a block even if it doesn't get erased. This isn't totally 216 // awesome, but it allows us to use AssertingVH to prevent nasty 217 // dangling pointer issues within LazyValueInfo. 218 LVI->eraseBlock(BB); 219 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { 220 Changed = true; 221 // If we deleted BB and BB was the header of a loop, then the 222 // successor is now the header of the loop. 223 BB = Succ; 224 } 225 226 if (ErasedFromLoopHeaders) 227 LoopHeaders.insert(BB); 228 } 229 } 230 EverChanged |= Changed; 231 } while (Changed); 232 233 LoopHeaders.clear(); 234 return EverChanged; 235 } 236 237 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 238 /// thread across it. Stop scanning the block when passing the threshold. 239 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB, 240 unsigned Threshold) { 241 /// Ignore PHI nodes, these will be flattened when duplication happens. 242 BasicBlock::const_iterator I = BB->getFirstNonPHI(); 243 244 // FIXME: THREADING will delete values that are just used to compute the 245 // branch, so they shouldn't count against the duplication cost. 246 247 // Sum up the cost of each instruction until we get to the terminator. Don't 248 // include the terminator because the copy won't include it. 249 unsigned Size = 0; 250 for (; !isa<TerminatorInst>(I); ++I) { 251 252 // Stop scanning the block if we've reached the threshold. 253 if (Size > Threshold) 254 return Size; 255 256 // Debugger intrinsics don't incur code size. 257 if (isa<DbgInfoIntrinsic>(I)) continue; 258 259 // If this is a pointer->pointer bitcast, it is free. 260 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 261 continue; 262 263 // All other instructions count for at least one unit. 264 ++Size; 265 266 // Calls are more expensive. If they are non-intrinsic calls, we model them 267 // as having cost of 4. If they are a non-vector intrinsic, we model them 268 // as having cost of 2 total, and if they are a vector intrinsic, we model 269 // them as having cost 1. 270 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 271 if (CI->cannotDuplicate()) 272 // Blocks with NoDuplicate are modelled as having infinite cost, so they 273 // are never duplicated. 274 return ~0U; 275 else if (!isa<IntrinsicInst>(CI)) 276 Size += 3; 277 else if (!CI->getType()->isVectorTy()) 278 Size += 1; 279 } 280 } 281 282 // Threading through a switch statement is particularly profitable. If this 283 // block ends in a switch, decrease its cost to make it more likely to happen. 284 if (isa<SwitchInst>(I)) 285 Size = Size > 6 ? Size-6 : 0; 286 287 // The same holds for indirect branches, but slightly more so. 288 if (isa<IndirectBrInst>(I)) 289 Size = Size > 8 ? Size-8 : 0; 290 291 return Size; 292 } 293 294 /// FindLoopHeaders - We do not want jump threading to turn proper loop 295 /// structures into irreducible loops. Doing this breaks up the loop nesting 296 /// hierarchy and pessimizes later transformations. To prevent this from 297 /// happening, we first have to find the loop headers. Here we approximate this 298 /// by finding targets of backedges in the CFG. 299 /// 300 /// Note that there definitely are cases when we want to allow threading of 301 /// edges across a loop header. For example, threading a jump from outside the 302 /// loop (the preheader) to an exit block of the loop is definitely profitable. 303 /// It is also almost always profitable to thread backedges from within the loop 304 /// to exit blocks, and is often profitable to thread backedges to other blocks 305 /// within the loop (forming a nested loop). This simple analysis is not rich 306 /// enough to track all of these properties and keep it up-to-date as the CFG 307 /// mutates, so we don't allow any of these transformations. 308 /// 309 void JumpThreading::FindLoopHeaders(Function &F) { 310 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 311 FindFunctionBackedges(F, Edges); 312 313 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 314 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 315 } 316 317 /// getKnownConstant - Helper method to determine if we can thread over a 318 /// terminator with the given value as its condition, and if so what value to 319 /// use for that. What kind of value this is depends on whether we want an 320 /// integer or a block address, but an undef is always accepted. 321 /// Returns null if Val is null or not an appropriate constant. 322 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 323 if (!Val) 324 return nullptr; 325 326 // Undef is "known" enough. 327 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 328 return U; 329 330 if (Preference == WantBlockAddress) 331 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 332 333 return dyn_cast<ConstantInt>(Val); 334 } 335 336 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 337 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 338 /// in any of our predecessors. If so, return the known list of value and pred 339 /// BB in the result vector. 340 /// 341 /// This returns true if there were any known values. 342 /// 343 bool JumpThreading:: 344 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result, 345 ConstantPreference Preference, 346 Instruction *CxtI) { 347 // This method walks up use-def chains recursively. Because of this, we could 348 // get into an infinite loop going around loops in the use-def chain. To 349 // prevent this, keep track of what (value, block) pairs we've already visited 350 // and terminate the search if we loop back to them 351 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 352 return false; 353 354 // An RAII help to remove this pair from the recursion set once the recursion 355 // stack pops back out again. 356 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 357 358 // If V is a constant, then it is known in all predecessors. 359 if (Constant *KC = getKnownConstant(V, Preference)) { 360 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 361 Result.push_back(std::make_pair(KC, *PI)); 362 363 return true; 364 } 365 366 // If V is a non-instruction value, or an instruction in a different block, 367 // then it can't be derived from a PHI. 368 Instruction *I = dyn_cast<Instruction>(V); 369 if (!I || I->getParent() != BB) { 370 371 // Okay, if this is a live-in value, see if it has a known value at the end 372 // of any of our predecessors. 373 // 374 // FIXME: This should be an edge property, not a block end property. 375 /// TODO: Per PR2563, we could infer value range information about a 376 /// predecessor based on its terminator. 377 // 378 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 379 // "I" is a non-local compare-with-a-constant instruction. This would be 380 // able to handle value inequalities better, for example if the compare is 381 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 382 // Perhaps getConstantOnEdge should be smart enough to do this? 383 384 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 385 BasicBlock *P = *PI; 386 // If the value is known by LazyValueInfo to be a constant in a 387 // predecessor, use that information to try to thread this block. 388 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 389 if (Constant *KC = getKnownConstant(PredCst, Preference)) 390 Result.push_back(std::make_pair(KC, P)); 391 } 392 393 return !Result.empty(); 394 } 395 396 /// If I is a PHI node, then we know the incoming values for any constants. 397 if (PHINode *PN = dyn_cast<PHINode>(I)) { 398 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 399 Value *InVal = PN->getIncomingValue(i); 400 if (Constant *KC = getKnownConstant(InVal, Preference)) { 401 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 402 } else { 403 Constant *CI = LVI->getConstantOnEdge(InVal, 404 PN->getIncomingBlock(i), 405 BB, CxtI); 406 if (Constant *KC = getKnownConstant(CI, Preference)) 407 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 408 } 409 } 410 411 return !Result.empty(); 412 } 413 414 PredValueInfoTy LHSVals, RHSVals; 415 416 // Handle some boolean conditions. 417 if (I->getType()->getPrimitiveSizeInBits() == 1) { 418 assert(Preference == WantInteger && "One-bit non-integer type?"); 419 // X | true -> true 420 // X & false -> false 421 if (I->getOpcode() == Instruction::Or || 422 I->getOpcode() == Instruction::And) { 423 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 424 WantInteger, CxtI); 425 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 426 WantInteger, CxtI); 427 428 if (LHSVals.empty() && RHSVals.empty()) 429 return false; 430 431 ConstantInt *InterestingVal; 432 if (I->getOpcode() == Instruction::Or) 433 InterestingVal = ConstantInt::getTrue(I->getContext()); 434 else 435 InterestingVal = ConstantInt::getFalse(I->getContext()); 436 437 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 438 439 // Scan for the sentinel. If we find an undef, force it to the 440 // interesting value: x|undef -> true and x&undef -> false. 441 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 442 if (LHSVals[i].first == InterestingVal || 443 isa<UndefValue>(LHSVals[i].first)) { 444 Result.push_back(LHSVals[i]); 445 Result.back().first = InterestingVal; 446 LHSKnownBBs.insert(LHSVals[i].second); 447 } 448 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 449 if (RHSVals[i].first == InterestingVal || 450 isa<UndefValue>(RHSVals[i].first)) { 451 // If we already inferred a value for this block on the LHS, don't 452 // re-add it. 453 if (!LHSKnownBBs.count(RHSVals[i].second)) { 454 Result.push_back(RHSVals[i]); 455 Result.back().first = InterestingVal; 456 } 457 } 458 459 return !Result.empty(); 460 } 461 462 // Handle the NOT form of XOR. 463 if (I->getOpcode() == Instruction::Xor && 464 isa<ConstantInt>(I->getOperand(1)) && 465 cast<ConstantInt>(I->getOperand(1))->isOne()) { 466 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 467 WantInteger, CxtI); 468 if (Result.empty()) 469 return false; 470 471 // Invert the known values. 472 for (unsigned i = 0, e = Result.size(); i != e; ++i) 473 Result[i].first = ConstantExpr::getNot(Result[i].first); 474 475 return true; 476 } 477 478 // Try to simplify some other binary operator values. 479 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 480 assert(Preference != WantBlockAddress 481 && "A binary operator creating a block address?"); 482 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 483 PredValueInfoTy LHSVals; 484 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 485 WantInteger, CxtI); 486 487 // Try to use constant folding to simplify the binary operator. 488 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 489 Constant *V = LHSVals[i].first; 490 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 491 492 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 493 Result.push_back(std::make_pair(KC, LHSVals[i].second)); 494 } 495 } 496 497 return !Result.empty(); 498 } 499 500 // Handle compare with phi operand, where the PHI is defined in this block. 501 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 502 assert(Preference == WantInteger && "Compares only produce integers"); 503 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 504 if (PN && PN->getParent() == BB) { 505 const DataLayout &DL = PN->getModule()->getDataLayout(); 506 // We can do this simplification if any comparisons fold to true or false. 507 // See if any do. 508 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 509 BasicBlock *PredBB = PN->getIncomingBlock(i); 510 Value *LHS = PN->getIncomingValue(i); 511 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 512 513 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL); 514 if (!Res) { 515 if (!isa<Constant>(RHS)) 516 continue; 517 518 LazyValueInfo::Tristate 519 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 520 cast<Constant>(RHS), PredBB, BB, 521 CxtI ? CxtI : Cmp); 522 if (ResT == LazyValueInfo::Unknown) 523 continue; 524 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 525 } 526 527 if (Constant *KC = getKnownConstant(Res, WantInteger)) 528 Result.push_back(std::make_pair(KC, PredBB)); 529 } 530 531 return !Result.empty(); 532 } 533 534 // If comparing a live-in value against a constant, see if we know the 535 // live-in value on any predecessors. 536 if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) { 537 if (!isa<Instruction>(Cmp->getOperand(0)) || 538 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) { 539 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 540 541 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){ 542 BasicBlock *P = *PI; 543 // If the value is known by LazyValueInfo to be a constant in a 544 // predecessor, use that information to try to thread this block. 545 LazyValueInfo::Tristate Res = 546 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 547 RHSCst, P, BB, CxtI ? CxtI : Cmp); 548 if (Res == LazyValueInfo::Unknown) 549 continue; 550 551 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 552 Result.push_back(std::make_pair(ResC, P)); 553 } 554 555 return !Result.empty(); 556 } 557 558 // Try to find a constant value for the LHS of a comparison, 559 // and evaluate it statically if we can. 560 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) { 561 PredValueInfoTy LHSVals; 562 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 563 WantInteger, CxtI); 564 565 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 566 Constant *V = LHSVals[i].first; 567 Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(), 568 V, CmpConst); 569 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 570 Result.push_back(std::make_pair(KC, LHSVals[i].second)); 571 } 572 573 return !Result.empty(); 574 } 575 } 576 } 577 578 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 579 // Handle select instructions where at least one operand is a known constant 580 // and we can figure out the condition value for any predecessor block. 581 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 582 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 583 PredValueInfoTy Conds; 584 if ((TrueVal || FalseVal) && 585 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 586 WantInteger, CxtI)) { 587 for (unsigned i = 0, e = Conds.size(); i != e; ++i) { 588 Constant *Cond = Conds[i].first; 589 590 // Figure out what value to use for the condition. 591 bool KnownCond; 592 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 593 // A known boolean. 594 KnownCond = CI->isOne(); 595 } else { 596 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 597 // Either operand will do, so be sure to pick the one that's a known 598 // constant. 599 // FIXME: Do this more cleverly if both values are known constants? 600 KnownCond = (TrueVal != nullptr); 601 } 602 603 // See if the select has a known constant value for this predecessor. 604 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 605 Result.push_back(std::make_pair(Val, Conds[i].second)); 606 } 607 608 return !Result.empty(); 609 } 610 } 611 612 // If all else fails, see if LVI can figure out a constant value for us. 613 Constant *CI = LVI->getConstant(V, BB, CxtI); 614 if (Constant *KC = getKnownConstant(CI, Preference)) { 615 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 616 Result.push_back(std::make_pair(KC, *PI)); 617 } 618 619 return !Result.empty(); 620 } 621 622 623 624 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 625 /// in an undefined jump, decide which block is best to revector to. 626 /// 627 /// Since we can pick an arbitrary destination, we pick the successor with the 628 /// fewest predecessors. This should reduce the in-degree of the others. 629 /// 630 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 631 TerminatorInst *BBTerm = BB->getTerminator(); 632 unsigned MinSucc = 0; 633 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 634 // Compute the successor with the minimum number of predecessors. 635 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 636 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 637 TestBB = BBTerm->getSuccessor(i); 638 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 639 if (NumPreds < MinNumPreds) { 640 MinSucc = i; 641 MinNumPreds = NumPreds; 642 } 643 } 644 645 return MinSucc; 646 } 647 648 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 649 if (!BB->hasAddressTaken()) return false; 650 651 // If the block has its address taken, it may be a tree of dead constants 652 // hanging off of it. These shouldn't keep the block alive. 653 BlockAddress *BA = BlockAddress::get(BB); 654 BA->removeDeadConstantUsers(); 655 return !BA->use_empty(); 656 } 657 658 /// ProcessBlock - If there are any predecessors whose control can be threaded 659 /// through to a successor, transform them now. 660 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 661 // If the block is trivially dead, just return and let the caller nuke it. 662 // This simplifies other transformations. 663 if (pred_empty(BB) && 664 BB != &BB->getParent()->getEntryBlock()) 665 return false; 666 667 // If this block has a single predecessor, and if that pred has a single 668 // successor, merge the blocks. This encourages recursive jump threading 669 // because now the condition in this block can be threaded through 670 // predecessors of our predecessor block. 671 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 672 const TerminatorInst *TI = SinglePred->getTerminator(); 673 if (!TI->isExceptional() && TI->getNumSuccessors() == 1 && 674 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 675 // If SinglePred was a loop header, BB becomes one. 676 if (LoopHeaders.erase(SinglePred)) 677 LoopHeaders.insert(BB); 678 679 LVI->eraseBlock(SinglePred); 680 MergeBasicBlockIntoOnlyPred(BB); 681 682 return true; 683 } 684 } 685 686 // What kind of constant we're looking for. 687 ConstantPreference Preference = WantInteger; 688 689 // Look to see if the terminator is a conditional branch, switch or indirect 690 // branch, if not we can't thread it. 691 Value *Condition; 692 Instruction *Terminator = BB->getTerminator(); 693 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 694 // Can't thread an unconditional jump. 695 if (BI->isUnconditional()) return false; 696 Condition = BI->getCondition(); 697 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 698 Condition = SI->getCondition(); 699 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 700 // Can't thread indirect branch with no successors. 701 if (IB->getNumSuccessors() == 0) return false; 702 Condition = IB->getAddress()->stripPointerCasts(); 703 Preference = WantBlockAddress; 704 } else { 705 return false; // Must be an invoke. 706 } 707 708 // Run constant folding to see if we can reduce the condition to a simple 709 // constant. 710 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 711 Value *SimpleVal = 712 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 713 if (SimpleVal) { 714 I->replaceAllUsesWith(SimpleVal); 715 I->eraseFromParent(); 716 Condition = SimpleVal; 717 } 718 } 719 720 // If the terminator is branching on an undef, we can pick any of the 721 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 722 if (isa<UndefValue>(Condition)) { 723 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 724 725 // Fold the branch/switch. 726 TerminatorInst *BBTerm = BB->getTerminator(); 727 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 728 if (i == BestSucc) continue; 729 BBTerm->getSuccessor(i)->removePredecessor(BB, true); 730 } 731 732 DEBUG(dbgs() << " In block '" << BB->getName() 733 << "' folding undef terminator: " << *BBTerm << '\n'); 734 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 735 BBTerm->eraseFromParent(); 736 return true; 737 } 738 739 // If the terminator of this block is branching on a constant, simplify the 740 // terminator to an unconditional branch. This can occur due to threading in 741 // other blocks. 742 if (getKnownConstant(Condition, Preference)) { 743 DEBUG(dbgs() << " In block '" << BB->getName() 744 << "' folding terminator: " << *BB->getTerminator() << '\n'); 745 ++NumFolds; 746 ConstantFoldTerminator(BB, true); 747 return true; 748 } 749 750 Instruction *CondInst = dyn_cast<Instruction>(Condition); 751 752 // All the rest of our checks depend on the condition being an instruction. 753 if (!CondInst) { 754 // FIXME: Unify this with code below. 755 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 756 return true; 757 return false; 758 } 759 760 761 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 762 // If we're branching on a conditional, LVI might be able to determine 763 // it's value at the branch instruction. We only handle comparisons 764 // against a constant at this time. 765 // TODO: This should be extended to handle switches as well. 766 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 767 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 768 if (CondBr && CondConst && CondBr->isConditional()) { 769 LazyValueInfo::Tristate Ret = 770 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 771 CondConst, CondBr); 772 if (Ret != LazyValueInfo::Unknown) { 773 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 774 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 775 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 776 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 777 CondBr->eraseFromParent(); 778 if (CondCmp->use_empty()) 779 CondCmp->eraseFromParent(); 780 else if (CondCmp->getParent() == BB) { 781 // If the fact we just learned is true for all uses of the 782 // condition, replace it with a constant value 783 auto *CI = Ret == LazyValueInfo::True ? 784 ConstantInt::getTrue(CondCmp->getType()) : 785 ConstantInt::getFalse(CondCmp->getType()); 786 CondCmp->replaceAllUsesWith(CI); 787 CondCmp->eraseFromParent(); 788 } 789 return true; 790 } 791 } 792 793 if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB)) 794 return true; 795 } 796 797 // Check for some cases that are worth simplifying. Right now we want to look 798 // for loads that are used by a switch or by the condition for the branch. If 799 // we see one, check to see if it's partially redundant. If so, insert a PHI 800 // which can then be used to thread the values. 801 // 802 Value *SimplifyValue = CondInst; 803 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 804 if (isa<Constant>(CondCmp->getOperand(1))) 805 SimplifyValue = CondCmp->getOperand(0); 806 807 // TODO: There are other places where load PRE would be profitable, such as 808 // more complex comparisons. 809 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 810 if (SimplifyPartiallyRedundantLoad(LI)) 811 return true; 812 813 814 // Handle a variety of cases where we are branching on something derived from 815 // a PHI node in the current block. If we can prove that any predecessors 816 // compute a predictable value based on a PHI node, thread those predecessors. 817 // 818 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 819 return true; 820 821 // If this is an otherwise-unfoldable branch on a phi node in the current 822 // block, see if we can simplify. 823 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 824 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 825 return ProcessBranchOnPHI(PN); 826 827 828 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 829 if (CondInst->getOpcode() == Instruction::Xor && 830 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 831 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 832 833 834 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 835 // "(X == 4)", thread through this block. 836 837 return false; 838 } 839 840 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 841 /// load instruction, eliminate it by replacing it with a PHI node. This is an 842 /// important optimization that encourages jump threading, and needs to be run 843 /// interlaced with other jump threading tasks. 844 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 845 // Don't hack volatile/atomic loads. 846 if (!LI->isSimple()) return false; 847 848 // If the load is defined in a block with exactly one predecessor, it can't be 849 // partially redundant. 850 BasicBlock *LoadBB = LI->getParent(); 851 if (LoadBB->getSinglePredecessor()) 852 return false; 853 854 // If the load is defined in a landing pad, it can't be partially redundant, 855 // because the edges between the invoke and the landing pad cannot have other 856 // instructions between them. 857 if (LoadBB->isLandingPad()) 858 return false; 859 860 Value *LoadedPtr = LI->getOperand(0); 861 862 // If the loaded operand is defined in the LoadBB, it can't be available. 863 // TODO: Could do simple PHI translation, that would be fun :) 864 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 865 if (PtrOp->getParent() == LoadBB) 866 return false; 867 868 // Scan a few instructions up from the load, to see if it is obviously live at 869 // the entry to its block. 870 BasicBlock::iterator BBIt = LI; 871 872 if (Value *AvailableVal = 873 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) { 874 // If the value if the load is locally available within the block, just use 875 // it. This frequently occurs for reg2mem'd allocas. 876 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 877 878 // If the returned value is the load itself, replace with an undef. This can 879 // only happen in dead loops. 880 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 881 if (AvailableVal->getType() != LI->getType()) 882 AvailableVal = 883 CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI); 884 LI->replaceAllUsesWith(AvailableVal); 885 LI->eraseFromParent(); 886 return true; 887 } 888 889 // Otherwise, if we scanned the whole block and got to the top of the block, 890 // we know the block is locally transparent to the load. If not, something 891 // might clobber its value. 892 if (BBIt != LoadBB->begin()) 893 return false; 894 895 // If all of the loads and stores that feed the value have the same AA tags, 896 // then we can propagate them onto any newly inserted loads. 897 AAMDNodes AATags; 898 LI->getAAMetadata(AATags); 899 900 SmallPtrSet<BasicBlock*, 8> PredsScanned; 901 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 902 AvailablePredsTy AvailablePreds; 903 BasicBlock *OneUnavailablePred = nullptr; 904 905 // If we got here, the loaded value is transparent through to the start of the 906 // block. Check to see if it is available in any of the predecessor blocks. 907 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 908 PI != PE; ++PI) { 909 BasicBlock *PredBB = *PI; 910 911 // If we already scanned this predecessor, skip it. 912 if (!PredsScanned.insert(PredBB).second) 913 continue; 914 915 // Scan the predecessor to see if the value is available in the pred. 916 BBIt = PredBB->end(); 917 AAMDNodes ThisAATags; 918 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6, 919 nullptr, &ThisAATags); 920 if (!PredAvailable) { 921 OneUnavailablePred = PredBB; 922 continue; 923 } 924 925 // If AA tags disagree or are not present, forget about them. 926 if (AATags != ThisAATags) AATags = AAMDNodes(); 927 928 // If so, this load is partially redundant. Remember this info so that we 929 // can create a PHI node. 930 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 931 } 932 933 // If the loaded value isn't available in any predecessor, it isn't partially 934 // redundant. 935 if (AvailablePreds.empty()) return false; 936 937 // Okay, the loaded value is available in at least one (and maybe all!) 938 // predecessors. If the value is unavailable in more than one unique 939 // predecessor, we want to insert a merge block for those common predecessors. 940 // This ensures that we only have to insert one reload, thus not increasing 941 // code size. 942 BasicBlock *UnavailablePred = nullptr; 943 944 // If there is exactly one predecessor where the value is unavailable, the 945 // already computed 'OneUnavailablePred' block is it. If it ends in an 946 // unconditional branch, we know that it isn't a critical edge. 947 if (PredsScanned.size() == AvailablePreds.size()+1 && 948 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 949 UnavailablePred = OneUnavailablePred; 950 } else if (PredsScanned.size() != AvailablePreds.size()) { 951 // Otherwise, we had multiple unavailable predecessors or we had a critical 952 // edge from the one. 953 SmallVector<BasicBlock*, 8> PredsToSplit; 954 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 955 956 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 957 AvailablePredSet.insert(AvailablePreds[i].first); 958 959 // Add all the unavailable predecessors to the PredsToSplit list. 960 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 961 PI != PE; ++PI) { 962 BasicBlock *P = *PI; 963 // If the predecessor is an indirect goto, we can't split the edge. 964 if (isa<IndirectBrInst>(P->getTerminator())) 965 return false; 966 967 if (!AvailablePredSet.count(P)) 968 PredsToSplit.push_back(P); 969 } 970 971 // Split them out to their own block. 972 UnavailablePred = 973 SplitBlockPredecessors(LoadBB, PredsToSplit, "thread-pre-split"); 974 } 975 976 // If the value isn't available in all predecessors, then there will be 977 // exactly one where it isn't available. Insert a load on that edge and add 978 // it to the AvailablePreds list. 979 if (UnavailablePred) { 980 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 981 "Can't handle critical edge here!"); 982 LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, 983 LI->getAlignment(), 984 UnavailablePred->getTerminator()); 985 NewVal->setDebugLoc(LI->getDebugLoc()); 986 if (AATags) 987 NewVal->setAAMetadata(AATags); 988 989 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 990 } 991 992 // Now we know that each predecessor of this block has a value in 993 // AvailablePreds, sort them for efficient access as we're walking the preds. 994 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 995 996 // Create a PHI node at the start of the block for the PRE'd load value. 997 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 998 PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "", 999 LoadBB->begin()); 1000 PN->takeName(LI); 1001 PN->setDebugLoc(LI->getDebugLoc()); 1002 1003 // Insert new entries into the PHI for each predecessor. A single block may 1004 // have multiple entries here. 1005 for (pred_iterator PI = PB; PI != PE; ++PI) { 1006 BasicBlock *P = *PI; 1007 AvailablePredsTy::iterator I = 1008 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1009 std::make_pair(P, (Value*)nullptr)); 1010 1011 assert(I != AvailablePreds.end() && I->first == P && 1012 "Didn't find entry for predecessor!"); 1013 1014 // If we have an available predecessor but it requires casting, insert the 1015 // cast in the predecessor and use the cast. Note that we have to update the 1016 // AvailablePreds vector as we go so that all of the PHI entries for this 1017 // predecessor use the same bitcast. 1018 Value *&PredV = I->second; 1019 if (PredV->getType() != LI->getType()) 1020 PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "", 1021 P->getTerminator()); 1022 1023 PN->addIncoming(PredV, I->first); 1024 } 1025 1026 //cerr << "PRE: " << *LI << *PN << "\n"; 1027 1028 LI->replaceAllUsesWith(PN); 1029 LI->eraseFromParent(); 1030 1031 return true; 1032 } 1033 1034 /// FindMostPopularDest - The specified list contains multiple possible 1035 /// threadable destinations. Pick the one that occurs the most frequently in 1036 /// the list. 1037 static BasicBlock * 1038 FindMostPopularDest(BasicBlock *BB, 1039 const SmallVectorImpl<std::pair<BasicBlock*, 1040 BasicBlock*> > &PredToDestList) { 1041 assert(!PredToDestList.empty()); 1042 1043 // Determine popularity. If there are multiple possible destinations, we 1044 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1045 // blocks with known and real destinations to threading undef. We'll handle 1046 // them later if interesting. 1047 DenseMap<BasicBlock*, unsigned> DestPopularity; 1048 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1049 if (PredToDestList[i].second) 1050 DestPopularity[PredToDestList[i].second]++; 1051 1052 // Find the most popular dest. 1053 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1054 BasicBlock *MostPopularDest = DPI->first; 1055 unsigned Popularity = DPI->second; 1056 SmallVector<BasicBlock*, 4> SamePopularity; 1057 1058 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1059 // If the popularity of this entry isn't higher than the popularity we've 1060 // seen so far, ignore it. 1061 if (DPI->second < Popularity) 1062 ; // ignore. 1063 else if (DPI->second == Popularity) { 1064 // If it is the same as what we've seen so far, keep track of it. 1065 SamePopularity.push_back(DPI->first); 1066 } else { 1067 // If it is more popular, remember it. 1068 SamePopularity.clear(); 1069 MostPopularDest = DPI->first; 1070 Popularity = DPI->second; 1071 } 1072 } 1073 1074 // Okay, now we know the most popular destination. If there is more than one 1075 // destination, we need to determine one. This is arbitrary, but we need 1076 // to make a deterministic decision. Pick the first one that appears in the 1077 // successor list. 1078 if (!SamePopularity.empty()) { 1079 SamePopularity.push_back(MostPopularDest); 1080 TerminatorInst *TI = BB->getTerminator(); 1081 for (unsigned i = 0; ; ++i) { 1082 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1083 1084 if (std::find(SamePopularity.begin(), SamePopularity.end(), 1085 TI->getSuccessor(i)) == SamePopularity.end()) 1086 continue; 1087 1088 MostPopularDest = TI->getSuccessor(i); 1089 break; 1090 } 1091 } 1092 1093 // Okay, we have finally picked the most popular destination. 1094 return MostPopularDest; 1095 } 1096 1097 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1098 ConstantPreference Preference, 1099 Instruction *CxtI) { 1100 // If threading this would thread across a loop header, don't even try to 1101 // thread the edge. 1102 if (LoopHeaders.count(BB)) 1103 return false; 1104 1105 PredValueInfoTy PredValues; 1106 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1107 return false; 1108 1109 assert(!PredValues.empty() && 1110 "ComputeValueKnownInPredecessors returned true with no values"); 1111 1112 DEBUG(dbgs() << "IN BB: " << *BB; 1113 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1114 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1115 << *PredValues[i].first 1116 << " for pred '" << PredValues[i].second->getName() << "'.\n"; 1117 }); 1118 1119 // Decide what we want to thread through. Convert our list of known values to 1120 // a list of known destinations for each pred. This also discards duplicate 1121 // predecessors and keeps track of the undefined inputs (which are represented 1122 // as a null dest in the PredToDestList). 1123 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1124 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1125 1126 BasicBlock *OnlyDest = nullptr; 1127 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1128 1129 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1130 BasicBlock *Pred = PredValues[i].second; 1131 if (!SeenPreds.insert(Pred).second) 1132 continue; // Duplicate predecessor entry. 1133 1134 // If the predecessor ends with an indirect goto, we can't change its 1135 // destination. 1136 if (isa<IndirectBrInst>(Pred->getTerminator())) 1137 continue; 1138 1139 Constant *Val = PredValues[i].first; 1140 1141 BasicBlock *DestBB; 1142 if (isa<UndefValue>(Val)) 1143 DestBB = nullptr; 1144 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1145 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1146 else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1147 DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor(); 1148 } else { 1149 assert(isa<IndirectBrInst>(BB->getTerminator()) 1150 && "Unexpected terminator"); 1151 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1152 } 1153 1154 // If we have exactly one destination, remember it for efficiency below. 1155 if (PredToDestList.empty()) 1156 OnlyDest = DestBB; 1157 else if (OnlyDest != DestBB) 1158 OnlyDest = MultipleDestSentinel; 1159 1160 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1161 } 1162 1163 // If all edges were unthreadable, we fail. 1164 if (PredToDestList.empty()) 1165 return false; 1166 1167 // Determine which is the most common successor. If we have many inputs and 1168 // this block is a switch, we want to start by threading the batch that goes 1169 // to the most popular destination first. If we only know about one 1170 // threadable destination (the common case) we can avoid this. 1171 BasicBlock *MostPopularDest = OnlyDest; 1172 1173 if (MostPopularDest == MultipleDestSentinel) 1174 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1175 1176 // Now that we know what the most popular destination is, factor all 1177 // predecessors that will jump to it into a single predecessor. 1178 SmallVector<BasicBlock*, 16> PredsToFactor; 1179 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1180 if (PredToDestList[i].second == MostPopularDest) { 1181 BasicBlock *Pred = PredToDestList[i].first; 1182 1183 // This predecessor may be a switch or something else that has multiple 1184 // edges to the block. Factor each of these edges by listing them 1185 // according to # occurrences in PredsToFactor. 1186 TerminatorInst *PredTI = Pred->getTerminator(); 1187 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 1188 if (PredTI->getSuccessor(i) == BB) 1189 PredsToFactor.push_back(Pred); 1190 } 1191 1192 // If the threadable edges are branching on an undefined value, we get to pick 1193 // the destination that these predecessors should get to. 1194 if (!MostPopularDest) 1195 MostPopularDest = BB->getTerminator()-> 1196 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1197 1198 // Ok, try to thread it! 1199 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1200 } 1201 1202 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1203 /// a PHI node in the current block. See if there are any simplifications we 1204 /// can do based on inputs to the phi node. 1205 /// 1206 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) { 1207 BasicBlock *BB = PN->getParent(); 1208 1209 // TODO: We could make use of this to do it once for blocks with common PHI 1210 // values. 1211 SmallVector<BasicBlock*, 1> PredBBs; 1212 PredBBs.resize(1); 1213 1214 // If any of the predecessor blocks end in an unconditional branch, we can 1215 // *duplicate* the conditional branch into that block in order to further 1216 // encourage jump threading and to eliminate cases where we have branch on a 1217 // phi of an icmp (branch on icmp is much better). 1218 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1219 BasicBlock *PredBB = PN->getIncomingBlock(i); 1220 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1221 if (PredBr->isUnconditional()) { 1222 PredBBs[0] = PredBB; 1223 // Try to duplicate BB into PredBB. 1224 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1225 return true; 1226 } 1227 } 1228 1229 return false; 1230 } 1231 1232 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1233 /// a xor instruction in the current block. See if there are any 1234 /// simplifications we can do based on inputs to the xor. 1235 /// 1236 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) { 1237 BasicBlock *BB = BO->getParent(); 1238 1239 // If either the LHS or RHS of the xor is a constant, don't do this 1240 // optimization. 1241 if (isa<ConstantInt>(BO->getOperand(0)) || 1242 isa<ConstantInt>(BO->getOperand(1))) 1243 return false; 1244 1245 // If the first instruction in BB isn't a phi, we won't be able to infer 1246 // anything special about any particular predecessor. 1247 if (!isa<PHINode>(BB->front())) 1248 return false; 1249 1250 // If we have a xor as the branch input to this block, and we know that the 1251 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1252 // the condition into the predecessor and fix that value to true, saving some 1253 // logical ops on that path and encouraging other paths to simplify. 1254 // 1255 // This copies something like this: 1256 // 1257 // BB: 1258 // %X = phi i1 [1], [%X'] 1259 // %Y = icmp eq i32 %A, %B 1260 // %Z = xor i1 %X, %Y 1261 // br i1 %Z, ... 1262 // 1263 // Into: 1264 // BB': 1265 // %Y = icmp ne i32 %A, %B 1266 // br i1 %Z, ... 1267 1268 PredValueInfoTy XorOpValues; 1269 bool isLHS = true; 1270 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1271 WantInteger, BO)) { 1272 assert(XorOpValues.empty()); 1273 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1274 WantInteger, BO)) 1275 return false; 1276 isLHS = false; 1277 } 1278 1279 assert(!XorOpValues.empty() && 1280 "ComputeValueKnownInPredecessors returned true with no values"); 1281 1282 // Scan the information to see which is most popular: true or false. The 1283 // predecessors can be of the set true, false, or undef. 1284 unsigned NumTrue = 0, NumFalse = 0; 1285 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1286 if (isa<UndefValue>(XorOpValues[i].first)) 1287 // Ignore undefs for the count. 1288 continue; 1289 if (cast<ConstantInt>(XorOpValues[i].first)->isZero()) 1290 ++NumFalse; 1291 else 1292 ++NumTrue; 1293 } 1294 1295 // Determine which value to split on, true, false, or undef if neither. 1296 ConstantInt *SplitVal = nullptr; 1297 if (NumTrue > NumFalse) 1298 SplitVal = ConstantInt::getTrue(BB->getContext()); 1299 else if (NumTrue != 0 || NumFalse != 0) 1300 SplitVal = ConstantInt::getFalse(BB->getContext()); 1301 1302 // Collect all of the blocks that this can be folded into so that we can 1303 // factor this once and clone it once. 1304 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1305 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1306 if (XorOpValues[i].first != SplitVal && 1307 !isa<UndefValue>(XorOpValues[i].first)) 1308 continue; 1309 1310 BlocksToFoldInto.push_back(XorOpValues[i].second); 1311 } 1312 1313 // If we inferred a value for all of the predecessors, then duplication won't 1314 // help us. However, we can just replace the LHS or RHS with the constant. 1315 if (BlocksToFoldInto.size() == 1316 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1317 if (!SplitVal) { 1318 // If all preds provide undef, just nuke the xor, because it is undef too. 1319 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1320 BO->eraseFromParent(); 1321 } else if (SplitVal->isZero()) { 1322 // If all preds provide 0, replace the xor with the other input. 1323 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1324 BO->eraseFromParent(); 1325 } else { 1326 // If all preds provide 1, set the computed value to 1. 1327 BO->setOperand(!isLHS, SplitVal); 1328 } 1329 1330 return true; 1331 } 1332 1333 // Try to duplicate BB into PredBB. 1334 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1335 } 1336 1337 1338 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1339 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1340 /// NewPred using the entries from OldPred (suitably mapped). 1341 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1342 BasicBlock *OldPred, 1343 BasicBlock *NewPred, 1344 DenseMap<Instruction*, Value*> &ValueMap) { 1345 for (BasicBlock::iterator PNI = PHIBB->begin(); 1346 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1347 // Ok, we have a PHI node. Figure out what the incoming value was for the 1348 // DestBlock. 1349 Value *IV = PN->getIncomingValueForBlock(OldPred); 1350 1351 // Remap the value if necessary. 1352 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1353 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1354 if (I != ValueMap.end()) 1355 IV = I->second; 1356 } 1357 1358 PN->addIncoming(IV, NewPred); 1359 } 1360 } 1361 1362 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1363 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1364 /// across BB. Transform the IR to reflect this change. 1365 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1366 const SmallVectorImpl<BasicBlock*> &PredBBs, 1367 BasicBlock *SuccBB) { 1368 // If threading to the same block as we come from, we would infinite loop. 1369 if (SuccBB == BB) { 1370 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1371 << "' - would thread to self!\n"); 1372 return false; 1373 } 1374 1375 // If threading this would thread across a loop header, don't thread the edge. 1376 // See the comments above FindLoopHeaders for justifications and caveats. 1377 if (LoopHeaders.count(BB)) { 1378 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1379 << "' to dest BB '" << SuccBB->getName() 1380 << "' - it might create an irreducible loop!\n"); 1381 return false; 1382 } 1383 1384 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, BBDupThreshold); 1385 if (JumpThreadCost > BBDupThreshold) { 1386 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1387 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1388 return false; 1389 } 1390 1391 // And finally, do it! Start by factoring the predecessors is needed. 1392 BasicBlock *PredBB; 1393 if (PredBBs.size() == 1) 1394 PredBB = PredBBs[0]; 1395 else { 1396 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1397 << " common predecessors.\n"); 1398 PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm"); 1399 } 1400 1401 // And finally, do it! 1402 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1403 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1404 << ", across block:\n " 1405 << *BB << "\n"); 1406 1407 LVI->threadEdge(PredBB, BB, SuccBB); 1408 1409 // We are going to have to map operands from the original BB block to the new 1410 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1411 // account for entry from PredBB. 1412 DenseMap<Instruction*, Value*> ValueMapping; 1413 1414 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1415 BB->getName()+".thread", 1416 BB->getParent(), BB); 1417 NewBB->moveAfter(PredBB); 1418 1419 BasicBlock::iterator BI = BB->begin(); 1420 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1421 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1422 1423 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1424 // mapping and using it to remap operands in the cloned instructions. 1425 for (; !isa<TerminatorInst>(BI); ++BI) { 1426 Instruction *New = BI->clone(); 1427 New->setName(BI->getName()); 1428 NewBB->getInstList().push_back(New); 1429 ValueMapping[BI] = New; 1430 1431 // Remap operands to patch up intra-block references. 1432 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1433 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1434 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1435 if (I != ValueMapping.end()) 1436 New->setOperand(i, I->second); 1437 } 1438 } 1439 1440 // We didn't copy the terminator from BB over to NewBB, because there is now 1441 // an unconditional jump to SuccBB. Insert the unconditional jump. 1442 BranchInst *NewBI =BranchInst::Create(SuccBB, NewBB); 1443 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1444 1445 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1446 // PHI nodes for NewBB now. 1447 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1448 1449 // If there were values defined in BB that are used outside the block, then we 1450 // now have to update all uses of the value to use either the original value, 1451 // the cloned value, or some PHI derived value. This can require arbitrary 1452 // PHI insertion, of which we are prepared to do, clean these up now. 1453 SSAUpdater SSAUpdate; 1454 SmallVector<Use*, 16> UsesToRename; 1455 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1456 // Scan all uses of this instruction to see if it is used outside of its 1457 // block, and if so, record them in UsesToRename. 1458 for (Use &U : I->uses()) { 1459 Instruction *User = cast<Instruction>(U.getUser()); 1460 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1461 if (UserPN->getIncomingBlock(U) == BB) 1462 continue; 1463 } else if (User->getParent() == BB) 1464 continue; 1465 1466 UsesToRename.push_back(&U); 1467 } 1468 1469 // If there are no uses outside the block, we're done with this instruction. 1470 if (UsesToRename.empty()) 1471 continue; 1472 1473 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1474 1475 // We found a use of I outside of BB. Rename all uses of I that are outside 1476 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1477 // with the two values we know. 1478 SSAUpdate.Initialize(I->getType(), I->getName()); 1479 SSAUpdate.AddAvailableValue(BB, I); 1480 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); 1481 1482 while (!UsesToRename.empty()) 1483 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1484 DEBUG(dbgs() << "\n"); 1485 } 1486 1487 1488 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1489 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1490 // us to simplify any PHI nodes in BB. 1491 TerminatorInst *PredTerm = PredBB->getTerminator(); 1492 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1493 if (PredTerm->getSuccessor(i) == BB) { 1494 BB->removePredecessor(PredBB, true); 1495 PredTerm->setSuccessor(i, NewBB); 1496 } 1497 1498 // At this point, the IR is fully up to date and consistent. Do a quick scan 1499 // over the new instructions and zap any that are constants or dead. This 1500 // frequently happens because of phi translation. 1501 SimplifyInstructionsInBlock(NewBB, TLI); 1502 1503 // Threaded an edge! 1504 ++NumThreads; 1505 return true; 1506 } 1507 1508 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1509 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1510 /// If we can duplicate the contents of BB up into PredBB do so now, this 1511 /// improves the odds that the branch will be on an analyzable instruction like 1512 /// a compare. 1513 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1514 const SmallVectorImpl<BasicBlock *> &PredBBs) { 1515 assert(!PredBBs.empty() && "Can't handle an empty set"); 1516 1517 // If BB is a loop header, then duplicating this block outside the loop would 1518 // cause us to transform this into an irreducible loop, don't do this. 1519 // See the comments above FindLoopHeaders for justifications and caveats. 1520 if (LoopHeaders.count(BB)) { 1521 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1522 << "' into predecessor block '" << PredBBs[0]->getName() 1523 << "' - it might create an irreducible loop!\n"); 1524 return false; 1525 } 1526 1527 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, BBDupThreshold); 1528 if (DuplicationCost > BBDupThreshold) { 1529 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1530 << "' - Cost is too high: " << DuplicationCost << "\n"); 1531 return false; 1532 } 1533 1534 // And finally, do it! Start by factoring the predecessors is needed. 1535 BasicBlock *PredBB; 1536 if (PredBBs.size() == 1) 1537 PredBB = PredBBs[0]; 1538 else { 1539 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1540 << " common predecessors.\n"); 1541 PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm"); 1542 } 1543 1544 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1545 // of PredBB. 1546 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1547 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1548 << DuplicationCost << " block is:" << *BB << "\n"); 1549 1550 // Unless PredBB ends with an unconditional branch, split the edge so that we 1551 // can just clone the bits from BB into the end of the new PredBB. 1552 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 1553 1554 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 1555 PredBB = SplitEdge(PredBB, BB); 1556 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1557 } 1558 1559 // We are going to have to map operands from the original BB block into the 1560 // PredBB block. Evaluate PHI nodes in BB. 1561 DenseMap<Instruction*, Value*> ValueMapping; 1562 1563 BasicBlock::iterator BI = BB->begin(); 1564 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1565 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1566 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1567 // mapping and using it to remap operands in the cloned instructions. 1568 for (; BI != BB->end(); ++BI) { 1569 Instruction *New = BI->clone(); 1570 1571 // Remap operands to patch up intra-block references. 1572 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1573 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1574 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1575 if (I != ValueMapping.end()) 1576 New->setOperand(i, I->second); 1577 } 1578 1579 // If this instruction can be simplified after the operands are updated, 1580 // just use the simplified value instead. This frequently happens due to 1581 // phi translation. 1582 if (Value *IV = 1583 SimplifyInstruction(New, BB->getModule()->getDataLayout())) { 1584 delete New; 1585 ValueMapping[BI] = IV; 1586 } else { 1587 // Otherwise, insert the new instruction into the block. 1588 New->setName(BI->getName()); 1589 PredBB->getInstList().insert(OldPredBranch, New); 1590 ValueMapping[BI] = New; 1591 } 1592 } 1593 1594 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1595 // add entries to the PHI nodes for branch from PredBB now. 1596 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1597 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1598 ValueMapping); 1599 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1600 ValueMapping); 1601 1602 // If there were values defined in BB that are used outside the block, then we 1603 // now have to update all uses of the value to use either the original value, 1604 // the cloned value, or some PHI derived value. This can require arbitrary 1605 // PHI insertion, of which we are prepared to do, clean these up now. 1606 SSAUpdater SSAUpdate; 1607 SmallVector<Use*, 16> UsesToRename; 1608 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1609 // Scan all uses of this instruction to see if it is used outside of its 1610 // block, and if so, record them in UsesToRename. 1611 for (Use &U : I->uses()) { 1612 Instruction *User = cast<Instruction>(U.getUser()); 1613 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1614 if (UserPN->getIncomingBlock(U) == BB) 1615 continue; 1616 } else if (User->getParent() == BB) 1617 continue; 1618 1619 UsesToRename.push_back(&U); 1620 } 1621 1622 // If there are no uses outside the block, we're done with this instruction. 1623 if (UsesToRename.empty()) 1624 continue; 1625 1626 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1627 1628 // We found a use of I outside of BB. Rename all uses of I that are outside 1629 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1630 // with the two values we know. 1631 SSAUpdate.Initialize(I->getType(), I->getName()); 1632 SSAUpdate.AddAvailableValue(BB, I); 1633 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); 1634 1635 while (!UsesToRename.empty()) 1636 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1637 DEBUG(dbgs() << "\n"); 1638 } 1639 1640 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1641 // that we nuked. 1642 BB->removePredecessor(PredBB, true); 1643 1644 // Remove the unconditional branch at the end of the PredBB block. 1645 OldPredBranch->eraseFromParent(); 1646 1647 ++NumDupes; 1648 return true; 1649 } 1650 1651 /// TryToUnfoldSelect - Look for blocks of the form 1652 /// bb1: 1653 /// %a = select 1654 /// br bb 1655 /// 1656 /// bb2: 1657 /// %p = phi [%a, %bb] ... 1658 /// %c = icmp %p 1659 /// br i1 %c 1660 /// 1661 /// And expand the select into a branch structure if one of its arms allows %c 1662 /// to be folded. This later enables threading from bb1 over bb2. 1663 bool JumpThreading::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 1664 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1665 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 1666 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 1667 1668 if (!CondBr || !CondBr->isConditional() || !CondLHS || 1669 CondLHS->getParent() != BB) 1670 return false; 1671 1672 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 1673 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 1674 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 1675 1676 // Look if one of the incoming values is a select in the corresponding 1677 // predecessor. 1678 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 1679 continue; 1680 1681 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 1682 if (!PredTerm || !PredTerm->isUnconditional()) 1683 continue; 1684 1685 // Now check if one of the select values would allow us to constant fold the 1686 // terminator in BB. We don't do the transform if both sides fold, those 1687 // cases will be threaded in any case. 1688 LazyValueInfo::Tristate LHSFolds = 1689 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 1690 CondRHS, Pred, BB, CondCmp); 1691 LazyValueInfo::Tristate RHSFolds = 1692 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 1693 CondRHS, Pred, BB, CondCmp); 1694 if ((LHSFolds != LazyValueInfo::Unknown || 1695 RHSFolds != LazyValueInfo::Unknown) && 1696 LHSFolds != RHSFolds) { 1697 // Expand the select. 1698 // 1699 // Pred -- 1700 // | v 1701 // | NewBB 1702 // | | 1703 // |----- 1704 // v 1705 // BB 1706 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 1707 BB->getParent(), BB); 1708 // Move the unconditional branch to NewBB. 1709 PredTerm->removeFromParent(); 1710 NewBB->getInstList().insert(NewBB->end(), PredTerm); 1711 // Create a conditional branch and update PHI nodes. 1712 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 1713 CondLHS->setIncomingValue(I, SI->getFalseValue()); 1714 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 1715 // The select is now dead. 1716 SI->eraseFromParent(); 1717 1718 // Update any other PHI nodes in BB. 1719 for (BasicBlock::iterator BI = BB->begin(); 1720 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 1721 if (Phi != CondLHS) 1722 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 1723 return true; 1724 } 1725 } 1726 return false; 1727 } 1728