xref: /llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp (revision ad48367722b23dd373e612c1c53b16290ae10194)
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Jump Threading pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Scalar/JumpThreading.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/CFG.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/DomTreeUpdater.h"
28 #include "llvm/Analysis/GlobalsModRef.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/LazyValueInfo.h"
32 #include "llvm/Analysis/Loads.h"
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/ConstantRange.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/MDBuilder.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/PassManager.h"
54 #include "llvm/IR/PatternMatch.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/Use.h"
57 #include "llvm/IR/User.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/InitializePasses.h"
60 #include "llvm/Pass.h"
61 #include "llvm/Support/BlockFrequency.h"
62 #include "llvm/Support/BranchProbability.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Transforms/Scalar.h"
68 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
69 #include "llvm/Transforms/Utils/Cloning.h"
70 #include "llvm/Transforms/Utils/Local.h"
71 #include "llvm/Transforms/Utils/SSAUpdater.h"
72 #include "llvm/Transforms/Utils/ValueMapper.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstddef>
76 #include <cstdint>
77 #include <iterator>
78 #include <memory>
79 #include <utility>
80 
81 using namespace llvm;
82 using namespace jumpthreading;
83 
84 #define DEBUG_TYPE "jump-threading"
85 
86 STATISTIC(NumThreads, "Number of jumps threaded");
87 STATISTIC(NumFolds,   "Number of terminators folded");
88 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
89 
90 static cl::opt<unsigned>
91 BBDuplicateThreshold("jump-threading-threshold",
92           cl::desc("Max block size to duplicate for jump threading"),
93           cl::init(6), cl::Hidden);
94 
95 static cl::opt<unsigned>
96 ImplicationSearchThreshold(
97   "jump-threading-implication-search-threshold",
98   cl::desc("The number of predecessors to search for a stronger "
99            "condition to use to thread over a weaker condition"),
100   cl::init(3), cl::Hidden);
101 
102 static cl::opt<bool> PrintLVIAfterJumpThreading(
103     "print-lvi-after-jump-threading",
104     cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
105     cl::Hidden);
106 
107 static cl::opt<bool> ThreadAcrossLoopHeaders(
108     "jump-threading-across-loop-headers",
109     cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
110     cl::init(false), cl::Hidden);
111 
112 
113 namespace {
114 
115   /// This pass performs 'jump threading', which looks at blocks that have
116   /// multiple predecessors and multiple successors.  If one or more of the
117   /// predecessors of the block can be proven to always jump to one of the
118   /// successors, we forward the edge from the predecessor to the successor by
119   /// duplicating the contents of this block.
120   ///
121   /// An example of when this can occur is code like this:
122   ///
123   ///   if () { ...
124   ///     X = 4;
125   ///   }
126   ///   if (X < 3) {
127   ///
128   /// In this case, the unconditional branch at the end of the first if can be
129   /// revectored to the false side of the second if.
130   class JumpThreading : public FunctionPass {
131     JumpThreadingPass Impl;
132 
133   public:
134     static char ID; // Pass identification
135 
136     JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
137       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
138     }
139 
140     bool runOnFunction(Function &F) override;
141 
142     void getAnalysisUsage(AnalysisUsage &AU) const override {
143       AU.addRequired<DominatorTreeWrapperPass>();
144       AU.addPreserved<DominatorTreeWrapperPass>();
145       AU.addRequired<AAResultsWrapperPass>();
146       AU.addRequired<LazyValueInfoWrapperPass>();
147       AU.addPreserved<LazyValueInfoWrapperPass>();
148       AU.addPreserved<GlobalsAAWrapperPass>();
149       AU.addRequired<TargetLibraryInfoWrapperPass>();
150     }
151 
152     void releaseMemory() override { Impl.releaseMemory(); }
153   };
154 
155 } // end anonymous namespace
156 
157 char JumpThreading::ID = 0;
158 
159 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
160                 "Jump Threading", false, false)
161 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
162 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
163 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
164 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
165 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
166                 "Jump Threading", false, false)
167 
168 // Public interface to the Jump Threading pass
169 FunctionPass *llvm::createJumpThreadingPass(int Threshold) {
170   return new JumpThreading(Threshold);
171 }
172 
173 JumpThreadingPass::JumpThreadingPass(int T) {
174   DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
175 }
176 
177 // Update branch probability information according to conditional
178 // branch probability. This is usually made possible for cloned branches
179 // in inline instances by the context specific profile in the caller.
180 // For instance,
181 //
182 //  [Block PredBB]
183 //  [Branch PredBr]
184 //  if (t) {
185 //     Block A;
186 //  } else {
187 //     Block B;
188 //  }
189 //
190 //  [Block BB]
191 //  cond = PN([true, %A], [..., %B]); // PHI node
192 //  [Branch CondBr]
193 //  if (cond) {
194 //    ...  // P(cond == true) = 1%
195 //  }
196 //
197 //  Here we know that when block A is taken, cond must be true, which means
198 //      P(cond == true | A) = 1
199 //
200 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
201 //                               P(cond == true | B) * P(B)
202 //  we get:
203 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
204 //
205 //  which gives us:
206 //     P(A) is less than P(cond == true), i.e.
207 //     P(t == true) <= P(cond == true)
208 //
209 //  In other words, if we know P(cond == true) is unlikely, we know
210 //  that P(t == true) is also unlikely.
211 //
212 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
213   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
214   if (!CondBr)
215     return;
216 
217   uint64_t TrueWeight, FalseWeight;
218   if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
219     return;
220 
221   if (TrueWeight + FalseWeight == 0)
222     // Zero branch_weights do not give a hint for getting branch probabilities.
223     // Technically it would result in division by zero denominator, which is
224     // TrueWeight + FalseWeight.
225     return;
226 
227   // Returns the outgoing edge of the dominating predecessor block
228   // that leads to the PhiNode's incoming block:
229   auto GetPredOutEdge =
230       [](BasicBlock *IncomingBB,
231          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
232     auto *PredBB = IncomingBB;
233     auto *SuccBB = PhiBB;
234     SmallPtrSet<BasicBlock *, 16> Visited;
235     while (true) {
236       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
237       if (PredBr && PredBr->isConditional())
238         return {PredBB, SuccBB};
239       Visited.insert(PredBB);
240       auto *SinglePredBB = PredBB->getSinglePredecessor();
241       if (!SinglePredBB)
242         return {nullptr, nullptr};
243 
244       // Stop searching when SinglePredBB has been visited. It means we see
245       // an unreachable loop.
246       if (Visited.count(SinglePredBB))
247         return {nullptr, nullptr};
248 
249       SuccBB = PredBB;
250       PredBB = SinglePredBB;
251     }
252   };
253 
254   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
255     Value *PhiOpnd = PN->getIncomingValue(i);
256     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
257 
258     if (!CI || !CI->getType()->isIntegerTy(1))
259       continue;
260 
261     BranchProbability BP =
262         (CI->isOne() ? BranchProbability::getBranchProbability(
263                            TrueWeight, TrueWeight + FalseWeight)
264                      : BranchProbability::getBranchProbability(
265                            FalseWeight, TrueWeight + FalseWeight));
266 
267     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
268     if (!PredOutEdge.first)
269       return;
270 
271     BasicBlock *PredBB = PredOutEdge.first;
272     BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
273     if (!PredBr)
274       return;
275 
276     uint64_t PredTrueWeight, PredFalseWeight;
277     // FIXME: We currently only set the profile data when it is missing.
278     // With PGO, this can be used to refine even existing profile data with
279     // context information. This needs to be done after more performance
280     // testing.
281     if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
282       continue;
283 
284     // We can not infer anything useful when BP >= 50%, because BP is the
285     // upper bound probability value.
286     if (BP >= BranchProbability(50, 100))
287       continue;
288 
289     SmallVector<uint32_t, 2> Weights;
290     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
291       Weights.push_back(BP.getNumerator());
292       Weights.push_back(BP.getCompl().getNumerator());
293     } else {
294       Weights.push_back(BP.getCompl().getNumerator());
295       Weights.push_back(BP.getNumerator());
296     }
297     PredBr->setMetadata(LLVMContext::MD_prof,
298                         MDBuilder(PredBr->getParent()->getContext())
299                             .createBranchWeights(Weights));
300   }
301 }
302 
303 /// runOnFunction - Toplevel algorithm.
304 bool JumpThreading::runOnFunction(Function &F) {
305   if (skipFunction(F))
306     return false;
307   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
308   auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
309   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
310   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
311   DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
312   std::unique_ptr<BlockFrequencyInfo> BFI;
313   std::unique_ptr<BranchProbabilityInfo> BPI;
314   if (F.hasProfileData()) {
315     LoopInfo LI{DominatorTree(F)};
316     BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
317     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
318   }
319 
320   bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, F.hasProfileData(),
321                               std::move(BFI), std::move(BPI));
322   if (PrintLVIAfterJumpThreading) {
323     dbgs() << "LVI for function '" << F.getName() << "':\n";
324     LVI->printLVI(F, DTU.getDomTree(), dbgs());
325   }
326   return Changed;
327 }
328 
329 PreservedAnalyses JumpThreadingPass::run(Function &F,
330                                          FunctionAnalysisManager &AM) {
331   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
332   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
333   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
334   auto &AA = AM.getResult<AAManager>(F);
335   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
336 
337   std::unique_ptr<BlockFrequencyInfo> BFI;
338   std::unique_ptr<BranchProbabilityInfo> BPI;
339   if (F.hasProfileData()) {
340     LoopInfo LI{DominatorTree(F)};
341     BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
342     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
343   }
344 
345   bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, F.hasProfileData(),
346                          std::move(BFI), std::move(BPI));
347 
348   if (!Changed)
349     return PreservedAnalyses::all();
350   PreservedAnalyses PA;
351   PA.preserve<GlobalsAA>();
352   PA.preserve<DominatorTreeAnalysis>();
353   PA.preserve<LazyValueAnalysis>();
354   return PA;
355 }
356 
357 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
358                                 LazyValueInfo *LVI_, AliasAnalysis *AA_,
359                                 DomTreeUpdater *DTU_, bool HasProfileData_,
360                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
361                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
362   LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
363   TLI = TLI_;
364   LVI = LVI_;
365   AA = AA_;
366   DTU = DTU_;
367   BFI.reset();
368   BPI.reset();
369   // When profile data is available, we need to update edge weights after
370   // successful jump threading, which requires both BPI and BFI being available.
371   HasProfileData = HasProfileData_;
372   auto *GuardDecl = F.getParent()->getFunction(
373       Intrinsic::getName(Intrinsic::experimental_guard));
374   HasGuards = GuardDecl && !GuardDecl->use_empty();
375   if (HasProfileData) {
376     BPI = std::move(BPI_);
377     BFI = std::move(BFI_);
378   }
379 
380   // Reduce the number of instructions duplicated when optimizing strictly for
381   // size.
382   if (BBDuplicateThreshold.getNumOccurrences())
383     BBDupThreshold = BBDuplicateThreshold;
384   else if (F.hasFnAttribute(Attribute::MinSize))
385     BBDupThreshold = 3;
386   else
387     BBDupThreshold = DefaultBBDupThreshold;
388 
389   // JumpThreading must not processes blocks unreachable from entry. It's a
390   // waste of compute time and can potentially lead to hangs.
391   SmallPtrSet<BasicBlock *, 16> Unreachable;
392   assert(DTU && "DTU isn't passed into JumpThreading before using it.");
393   assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
394   DominatorTree &DT = DTU->getDomTree();
395   for (auto &BB : F)
396     if (!DT.isReachableFromEntry(&BB))
397       Unreachable.insert(&BB);
398 
399   if (!ThreadAcrossLoopHeaders)
400     FindLoopHeaders(F);
401 
402   bool EverChanged = false;
403   bool Changed;
404   do {
405     Changed = false;
406     for (auto &BB : F) {
407       if (Unreachable.count(&BB))
408         continue;
409       while (ProcessBlock(&BB)) // Thread all of the branches we can over BB.
410         Changed = true;
411 
412       // Jump threading may have introduced redundant debug values into BB
413       // which should be removed.
414       if (Changed)
415         RemoveRedundantDbgInstrs(&BB);
416 
417       // Stop processing BB if it's the entry or is now deleted. The following
418       // routines attempt to eliminate BB and locating a suitable replacement
419       // for the entry is non-trivial.
420       if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB))
421         continue;
422 
423       if (pred_empty(&BB)) {
424         // When ProcessBlock makes BB unreachable it doesn't bother to fix up
425         // the instructions in it. We must remove BB to prevent invalid IR.
426         LLVM_DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
427                           << "' with terminator: " << *BB.getTerminator()
428                           << '\n');
429         LoopHeaders.erase(&BB);
430         LVI->eraseBlock(&BB);
431         DeleteDeadBlock(&BB, DTU);
432         Changed = true;
433         continue;
434       }
435 
436       // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB
437       // is "almost empty", we attempt to merge BB with its sole successor.
438       auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
439       if (BI && BI->isUnconditional()) {
440         BasicBlock *Succ = BI->getSuccessor(0);
441         if (
442             // The terminator must be the only non-phi instruction in BB.
443             BB.getFirstNonPHIOrDbg()->isTerminator() &&
444             // Don't alter Loop headers and latches to ensure another pass can
445             // detect and transform nested loops later.
446             !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) &&
447             TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) {
448           RemoveRedundantDbgInstrs(Succ);
449           // BB is valid for cleanup here because we passed in DTU. F remains
450           // BB's parent until a DTU->getDomTree() event.
451           LVI->eraseBlock(&BB);
452           Changed = true;
453         }
454       }
455     }
456     EverChanged |= Changed;
457   } while (Changed);
458 
459   LoopHeaders.clear();
460   return EverChanged;
461 }
462 
463 // Replace uses of Cond with ToVal when safe to do so. If all uses are
464 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
465 // because we may incorrectly replace uses when guards/assumes are uses of
466 // of `Cond` and we used the guards/assume to reason about the `Cond` value
467 // at the end of block. RAUW unconditionally replaces all uses
468 // including the guards/assumes themselves and the uses before the
469 // guard/assume.
470 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) {
471   assert(Cond->getType() == ToVal->getType());
472   auto *BB = Cond->getParent();
473   // We can unconditionally replace all uses in non-local blocks (i.e. uses
474   // strictly dominated by BB), since LVI information is true from the
475   // terminator of BB.
476   replaceNonLocalUsesWith(Cond, ToVal);
477   for (Instruction &I : reverse(*BB)) {
478     // Reached the Cond whose uses we are trying to replace, so there are no
479     // more uses.
480     if (&I == Cond)
481       break;
482     // We only replace uses in instructions that are guaranteed to reach the end
483     // of BB, where we know Cond is ToVal.
484     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
485       break;
486     I.replaceUsesOfWith(Cond, ToVal);
487   }
488   if (Cond->use_empty() && !Cond->mayHaveSideEffects())
489     Cond->eraseFromParent();
490 }
491 
492 /// Return the cost of duplicating a piece of this block from first non-phi
493 /// and before StopAt instruction to thread across it. Stop scanning the block
494 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
495 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB,
496                                              Instruction *StopAt,
497                                              unsigned Threshold) {
498   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
499   /// Ignore PHI nodes, these will be flattened when duplication happens.
500   BasicBlock::const_iterator I(BB->getFirstNonPHI());
501 
502   // FIXME: THREADING will delete values that are just used to compute the
503   // branch, so they shouldn't count against the duplication cost.
504 
505   unsigned Bonus = 0;
506   if (BB->getTerminator() == StopAt) {
507     // Threading through a switch statement is particularly profitable.  If this
508     // block ends in a switch, decrease its cost to make it more likely to
509     // happen.
510     if (isa<SwitchInst>(StopAt))
511       Bonus = 6;
512 
513     // The same holds for indirect branches, but slightly more so.
514     if (isa<IndirectBrInst>(StopAt))
515       Bonus = 8;
516   }
517 
518   // Bump the threshold up so the early exit from the loop doesn't skip the
519   // terminator-based Size adjustment at the end.
520   Threshold += Bonus;
521 
522   // Sum up the cost of each instruction until we get to the terminator.  Don't
523   // include the terminator because the copy won't include it.
524   unsigned Size = 0;
525   for (; &*I != StopAt; ++I) {
526 
527     // Stop scanning the block if we've reached the threshold.
528     if (Size > Threshold)
529       return Size;
530 
531     // Debugger intrinsics don't incur code size.
532     if (isa<DbgInfoIntrinsic>(I)) continue;
533 
534     // If this is a pointer->pointer bitcast, it is free.
535     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
536       continue;
537 
538     // Bail out if this instruction gives back a token type, it is not possible
539     // to duplicate it if it is used outside this BB.
540     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
541       return ~0U;
542 
543     // All other instructions count for at least one unit.
544     ++Size;
545 
546     // Calls are more expensive.  If they are non-intrinsic calls, we model them
547     // as having cost of 4.  If they are a non-vector intrinsic, we model them
548     // as having cost of 2 total, and if they are a vector intrinsic, we model
549     // them as having cost 1.
550     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
551       if (CI->cannotDuplicate() || CI->isConvergent())
552         // Blocks with NoDuplicate are modelled as having infinite cost, so they
553         // are never duplicated.
554         return ~0U;
555       else if (!isa<IntrinsicInst>(CI))
556         Size += 3;
557       else if (!CI->getType()->isVectorTy())
558         Size += 1;
559     }
560   }
561 
562   return Size > Bonus ? Size - Bonus : 0;
563 }
564 
565 /// FindLoopHeaders - We do not want jump threading to turn proper loop
566 /// structures into irreducible loops.  Doing this breaks up the loop nesting
567 /// hierarchy and pessimizes later transformations.  To prevent this from
568 /// happening, we first have to find the loop headers.  Here we approximate this
569 /// by finding targets of backedges in the CFG.
570 ///
571 /// Note that there definitely are cases when we want to allow threading of
572 /// edges across a loop header.  For example, threading a jump from outside the
573 /// loop (the preheader) to an exit block of the loop is definitely profitable.
574 /// It is also almost always profitable to thread backedges from within the loop
575 /// to exit blocks, and is often profitable to thread backedges to other blocks
576 /// within the loop (forming a nested loop).  This simple analysis is not rich
577 /// enough to track all of these properties and keep it up-to-date as the CFG
578 /// mutates, so we don't allow any of these transformations.
579 void JumpThreadingPass::FindLoopHeaders(Function &F) {
580   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
581   FindFunctionBackedges(F, Edges);
582 
583   for (const auto &Edge : Edges)
584     LoopHeaders.insert(Edge.second);
585 }
586 
587 /// getKnownConstant - Helper method to determine if we can thread over a
588 /// terminator with the given value as its condition, and if so what value to
589 /// use for that. What kind of value this is depends on whether we want an
590 /// integer or a block address, but an undef is always accepted.
591 /// Returns null if Val is null or not an appropriate constant.
592 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
593   if (!Val)
594     return nullptr;
595 
596   // Undef is "known" enough.
597   if (UndefValue *U = dyn_cast<UndefValue>(Val))
598     return U;
599 
600   if (Preference == WantBlockAddress)
601     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
602 
603   return dyn_cast<ConstantInt>(Val);
604 }
605 
606 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
607 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
608 /// in any of our predecessors.  If so, return the known list of value and pred
609 /// BB in the result vector.
610 ///
611 /// This returns true if there were any known values.
612 bool JumpThreadingPass::ComputeValueKnownInPredecessorsImpl(
613     Value *V, BasicBlock *BB, PredValueInfo &Result,
614     ConstantPreference Preference, DenseSet<Value *> &RecursionSet,
615     Instruction *CxtI) {
616   // This method walks up use-def chains recursively.  Because of this, we could
617   // get into an infinite loop going around loops in the use-def chain.  To
618   // prevent this, keep track of what (value, block) pairs we've already visited
619   // and terminate the search if we loop back to them
620   if (!RecursionSet.insert(V).second)
621     return false;
622 
623   // If V is a constant, then it is known in all predecessors.
624   if (Constant *KC = getKnownConstant(V, Preference)) {
625     for (BasicBlock *Pred : predecessors(BB))
626       Result.emplace_back(KC, Pred);
627 
628     return !Result.empty();
629   }
630 
631   // If V is a non-instruction value, or an instruction in a different block,
632   // then it can't be derived from a PHI.
633   Instruction *I = dyn_cast<Instruction>(V);
634   if (!I || I->getParent() != BB) {
635 
636     // Okay, if this is a live-in value, see if it has a known value at the end
637     // of any of our predecessors.
638     //
639     // FIXME: This should be an edge property, not a block end property.
640     /// TODO: Per PR2563, we could infer value range information about a
641     /// predecessor based on its terminator.
642     //
643     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
644     // "I" is a non-local compare-with-a-constant instruction.  This would be
645     // able to handle value inequalities better, for example if the compare is
646     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
647     // Perhaps getConstantOnEdge should be smart enough to do this?
648     for (BasicBlock *P : predecessors(BB)) {
649       // If the value is known by LazyValueInfo to be a constant in a
650       // predecessor, use that information to try to thread this block.
651       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
652       if (Constant *KC = getKnownConstant(PredCst, Preference))
653         Result.emplace_back(KC, P);
654     }
655 
656     return !Result.empty();
657   }
658 
659   /// If I is a PHI node, then we know the incoming values for any constants.
660   if (PHINode *PN = dyn_cast<PHINode>(I)) {
661     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
662       Value *InVal = PN->getIncomingValue(i);
663       if (Constant *KC = getKnownConstant(InVal, Preference)) {
664         Result.emplace_back(KC, PN->getIncomingBlock(i));
665       } else {
666         Constant *CI = LVI->getConstantOnEdge(InVal,
667                                               PN->getIncomingBlock(i),
668                                               BB, CxtI);
669         if (Constant *KC = getKnownConstant(CI, Preference))
670           Result.emplace_back(KC, PN->getIncomingBlock(i));
671       }
672     }
673 
674     return !Result.empty();
675   }
676 
677   // Handle Cast instructions.  Only see through Cast when the source operand is
678   // PHI, Cmp, or Freeze to save the compilation time.
679   if (CastInst *CI = dyn_cast<CastInst>(I)) {
680     Value *Source = CI->getOperand(0);
681     if (!isa<PHINode>(Source) && !isa<CmpInst>(Source) &&
682         !isa<FreezeInst>(Source))
683       return false;
684     ComputeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
685                                         RecursionSet, CxtI);
686     if (Result.empty())
687       return false;
688 
689     // Convert the known values.
690     for (auto &R : Result)
691       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
692 
693     return true;
694   }
695 
696   // Handle Freeze instructions, in a manner similar to Cast.
697   if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
698     Value *Source = FI->getOperand(0);
699     if (!isa<PHINode>(Source) && !isa<CmpInst>(Source) &&
700         !isa<CastInst>(Source))
701       return false;
702     ComputeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
703                                         RecursionSet, CxtI);
704 
705     erase_if(Result, [](auto &Pair) {
706       return !isGuaranteedNotToBeUndefOrPoison(Pair.first);
707     });
708 
709     return !Result.empty();
710   }
711 
712   // Handle some boolean conditions.
713   if (I->getType()->getPrimitiveSizeInBits() == 1) {
714     assert(Preference == WantInteger && "One-bit non-integer type?");
715     // X | true -> true
716     // X & false -> false
717     if (I->getOpcode() == Instruction::Or ||
718         I->getOpcode() == Instruction::And) {
719       PredValueInfoTy LHSVals, RHSVals;
720 
721       ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
722                                       WantInteger, RecursionSet, CxtI);
723       ComputeValueKnownInPredecessorsImpl(I->getOperand(1), BB, RHSVals,
724                                           WantInteger, RecursionSet, CxtI);
725 
726       if (LHSVals.empty() && RHSVals.empty())
727         return false;
728 
729       ConstantInt *InterestingVal;
730       if (I->getOpcode() == Instruction::Or)
731         InterestingVal = ConstantInt::getTrue(I->getContext());
732       else
733         InterestingVal = ConstantInt::getFalse(I->getContext());
734 
735       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
736 
737       // Scan for the sentinel.  If we find an undef, force it to the
738       // interesting value: x|undef -> true and x&undef -> false.
739       for (const auto &LHSVal : LHSVals)
740         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
741           Result.emplace_back(InterestingVal, LHSVal.second);
742           LHSKnownBBs.insert(LHSVal.second);
743         }
744       for (const auto &RHSVal : RHSVals)
745         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
746           // If we already inferred a value for this block on the LHS, don't
747           // re-add it.
748           if (!LHSKnownBBs.count(RHSVal.second))
749             Result.emplace_back(InterestingVal, RHSVal.second);
750         }
751 
752       return !Result.empty();
753     }
754 
755     // Handle the NOT form of XOR.
756     if (I->getOpcode() == Instruction::Xor &&
757         isa<ConstantInt>(I->getOperand(1)) &&
758         cast<ConstantInt>(I->getOperand(1))->isOne()) {
759       ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
760                                           WantInteger, RecursionSet, CxtI);
761       if (Result.empty())
762         return false;
763 
764       // Invert the known values.
765       for (auto &R : Result)
766         R.first = ConstantExpr::getNot(R.first);
767 
768       return true;
769     }
770 
771   // Try to simplify some other binary operator values.
772   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
773     assert(Preference != WantBlockAddress
774             && "A binary operator creating a block address?");
775     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
776       PredValueInfoTy LHSVals;
777       ComputeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
778                                           WantInteger, RecursionSet, CxtI);
779 
780       // Try to use constant folding to simplify the binary operator.
781       for (const auto &LHSVal : LHSVals) {
782         Constant *V = LHSVal.first;
783         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
784 
785         if (Constant *KC = getKnownConstant(Folded, WantInteger))
786           Result.emplace_back(KC, LHSVal.second);
787       }
788     }
789 
790     return !Result.empty();
791   }
792 
793   // Handle compare with phi operand, where the PHI is defined in this block.
794   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
795     assert(Preference == WantInteger && "Compares only produce integers");
796     Type *CmpType = Cmp->getType();
797     Value *CmpLHS = Cmp->getOperand(0);
798     Value *CmpRHS = Cmp->getOperand(1);
799     CmpInst::Predicate Pred = Cmp->getPredicate();
800 
801     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
802     if (!PN)
803       PN = dyn_cast<PHINode>(CmpRHS);
804     if (PN && PN->getParent() == BB) {
805       const DataLayout &DL = PN->getModule()->getDataLayout();
806       // We can do this simplification if any comparisons fold to true or false.
807       // See if any do.
808       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
809         BasicBlock *PredBB = PN->getIncomingBlock(i);
810         Value *LHS, *RHS;
811         if (PN == CmpLHS) {
812           LHS = PN->getIncomingValue(i);
813           RHS = CmpRHS->DoPHITranslation(BB, PredBB);
814         } else {
815           LHS = CmpLHS->DoPHITranslation(BB, PredBB);
816           RHS = PN->getIncomingValue(i);
817         }
818         Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
819         if (!Res) {
820           if (!isa<Constant>(RHS))
821             continue;
822 
823           // getPredicateOnEdge call will make no sense if LHS is defined in BB.
824           auto LHSInst = dyn_cast<Instruction>(LHS);
825           if (LHSInst && LHSInst->getParent() == BB)
826             continue;
827 
828           LazyValueInfo::Tristate
829             ResT = LVI->getPredicateOnEdge(Pred, LHS,
830                                            cast<Constant>(RHS), PredBB, BB,
831                                            CxtI ? CxtI : Cmp);
832           if (ResT == LazyValueInfo::Unknown)
833             continue;
834           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
835         }
836 
837         if (Constant *KC = getKnownConstant(Res, WantInteger))
838           Result.emplace_back(KC, PredBB);
839       }
840 
841       return !Result.empty();
842     }
843 
844     // If comparing a live-in value against a constant, see if we know the
845     // live-in value on any predecessors.
846     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
847       Constant *CmpConst = cast<Constant>(CmpRHS);
848 
849       if (!isa<Instruction>(CmpLHS) ||
850           cast<Instruction>(CmpLHS)->getParent() != BB) {
851         for (BasicBlock *P : predecessors(BB)) {
852           // If the value is known by LazyValueInfo to be a constant in a
853           // predecessor, use that information to try to thread this block.
854           LazyValueInfo::Tristate Res =
855             LVI->getPredicateOnEdge(Pred, CmpLHS,
856                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
857           if (Res == LazyValueInfo::Unknown)
858             continue;
859 
860           Constant *ResC = ConstantInt::get(CmpType, Res);
861           Result.emplace_back(ResC, P);
862         }
863 
864         return !Result.empty();
865       }
866 
867       // InstCombine can fold some forms of constant range checks into
868       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
869       // x as a live-in.
870       {
871         using namespace PatternMatch;
872 
873         Value *AddLHS;
874         ConstantInt *AddConst;
875         if (isa<ConstantInt>(CmpConst) &&
876             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
877           if (!isa<Instruction>(AddLHS) ||
878               cast<Instruction>(AddLHS)->getParent() != BB) {
879             for (BasicBlock *P : predecessors(BB)) {
880               // If the value is known by LazyValueInfo to be a ConstantRange in
881               // a predecessor, use that information to try to thread this
882               // block.
883               ConstantRange CR = LVI->getConstantRangeOnEdge(
884                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
885               // Propagate the range through the addition.
886               CR = CR.add(AddConst->getValue());
887 
888               // Get the range where the compare returns true.
889               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
890                   Pred, cast<ConstantInt>(CmpConst)->getValue());
891 
892               Constant *ResC;
893               if (CmpRange.contains(CR))
894                 ResC = ConstantInt::getTrue(CmpType);
895               else if (CmpRange.inverse().contains(CR))
896                 ResC = ConstantInt::getFalse(CmpType);
897               else
898                 continue;
899 
900               Result.emplace_back(ResC, P);
901             }
902 
903             return !Result.empty();
904           }
905         }
906       }
907 
908       // Try to find a constant value for the LHS of a comparison,
909       // and evaluate it statically if we can.
910       PredValueInfoTy LHSVals;
911       ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
912                                           WantInteger, RecursionSet, CxtI);
913 
914       for (const auto &LHSVal : LHSVals) {
915         Constant *V = LHSVal.first;
916         Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
917         if (Constant *KC = getKnownConstant(Folded, WantInteger))
918           Result.emplace_back(KC, LHSVal.second);
919       }
920 
921       return !Result.empty();
922     }
923   }
924 
925   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
926     // Handle select instructions where at least one operand is a known constant
927     // and we can figure out the condition value for any predecessor block.
928     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
929     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
930     PredValueInfoTy Conds;
931     if ((TrueVal || FalseVal) &&
932         ComputeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
933                                             WantInteger, RecursionSet, CxtI)) {
934       for (auto &C : Conds) {
935         Constant *Cond = C.first;
936 
937         // Figure out what value to use for the condition.
938         bool KnownCond;
939         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
940           // A known boolean.
941           KnownCond = CI->isOne();
942         } else {
943           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
944           // Either operand will do, so be sure to pick the one that's a known
945           // constant.
946           // FIXME: Do this more cleverly if both values are known constants?
947           KnownCond = (TrueVal != nullptr);
948         }
949 
950         // See if the select has a known constant value for this predecessor.
951         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
952           Result.emplace_back(Val, C.second);
953       }
954 
955       return !Result.empty();
956     }
957   }
958 
959   // If all else fails, see if LVI can figure out a constant value for us.
960   Constant *CI = LVI->getConstant(V, BB, CxtI);
961   if (Constant *KC = getKnownConstant(CI, Preference)) {
962     for (BasicBlock *Pred : predecessors(BB))
963       Result.emplace_back(KC, Pred);
964   }
965 
966   return !Result.empty();
967 }
968 
969 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
970 /// in an undefined jump, decide which block is best to revector to.
971 ///
972 /// Since we can pick an arbitrary destination, we pick the successor with the
973 /// fewest predecessors.  This should reduce the in-degree of the others.
974 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
975   Instruction *BBTerm = BB->getTerminator();
976   unsigned MinSucc = 0;
977   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
978   // Compute the successor with the minimum number of predecessors.
979   unsigned MinNumPreds = pred_size(TestBB);
980   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
981     TestBB = BBTerm->getSuccessor(i);
982     unsigned NumPreds = pred_size(TestBB);
983     if (NumPreds < MinNumPreds) {
984       MinSucc = i;
985       MinNumPreds = NumPreds;
986     }
987   }
988 
989   return MinSucc;
990 }
991 
992 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
993   if (!BB->hasAddressTaken()) return false;
994 
995   // If the block has its address taken, it may be a tree of dead constants
996   // hanging off of it.  These shouldn't keep the block alive.
997   BlockAddress *BA = BlockAddress::get(BB);
998   BA->removeDeadConstantUsers();
999   return !BA->use_empty();
1000 }
1001 
1002 /// ProcessBlock - If there are any predecessors whose control can be threaded
1003 /// through to a successor, transform them now.
1004 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) {
1005   // If the block is trivially dead, just return and let the caller nuke it.
1006   // This simplifies other transformations.
1007   if (DTU->isBBPendingDeletion(BB) ||
1008       (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
1009     return false;
1010 
1011   // If this block has a single predecessor, and if that pred has a single
1012   // successor, merge the blocks.  This encourages recursive jump threading
1013   // because now the condition in this block can be threaded through
1014   // predecessors of our predecessor block.
1015   if (MaybeMergeBasicBlockIntoOnlyPred(BB))
1016     return true;
1017 
1018   if (TryToUnfoldSelectInCurrBB(BB))
1019     return true;
1020 
1021   // Look if we can propagate guards to predecessors.
1022   if (HasGuards && ProcessGuards(BB))
1023     return true;
1024 
1025   // What kind of constant we're looking for.
1026   ConstantPreference Preference = WantInteger;
1027 
1028   // Look to see if the terminator is a conditional branch, switch or indirect
1029   // branch, if not we can't thread it.
1030   Value *Condition;
1031   Instruction *Terminator = BB->getTerminator();
1032   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1033     // Can't thread an unconditional jump.
1034     if (BI->isUnconditional()) return false;
1035     Condition = BI->getCondition();
1036   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1037     Condition = SI->getCondition();
1038   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1039     // Can't thread indirect branch with no successors.
1040     if (IB->getNumSuccessors() == 0) return false;
1041     Condition = IB->getAddress()->stripPointerCasts();
1042     Preference = WantBlockAddress;
1043   } else {
1044     return false; // Must be an invoke or callbr.
1045   }
1046 
1047   // Run constant folding to see if we can reduce the condition to a simple
1048   // constant.
1049   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1050     Value *SimpleVal =
1051         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1052     if (SimpleVal) {
1053       I->replaceAllUsesWith(SimpleVal);
1054       if (isInstructionTriviallyDead(I, TLI))
1055         I->eraseFromParent();
1056       Condition = SimpleVal;
1057     }
1058   }
1059 
1060   // If the terminator is branching on an undef or freeze undef, we can pick any
1061   // of the successors to branch to.  Let GetBestDestForJumpOnUndef decide.
1062   auto *FI = dyn_cast<FreezeInst>(Condition);
1063   if (isa<UndefValue>(Condition) ||
1064       (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) {
1065     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
1066     std::vector<DominatorTree::UpdateType> Updates;
1067 
1068     // Fold the branch/switch.
1069     Instruction *BBTerm = BB->getTerminator();
1070     Updates.reserve(BBTerm->getNumSuccessors());
1071     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1072       if (i == BestSucc) continue;
1073       BasicBlock *Succ = BBTerm->getSuccessor(i);
1074       Succ->removePredecessor(BB, true);
1075       Updates.push_back({DominatorTree::Delete, BB, Succ});
1076     }
1077 
1078     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1079                       << "' folding undef terminator: " << *BBTerm << '\n');
1080     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1081     BBTerm->eraseFromParent();
1082     DTU->applyUpdatesPermissive(Updates);
1083     if (FI)
1084       FI->eraseFromParent();
1085     return true;
1086   }
1087 
1088   // If the terminator of this block is branching on a constant, simplify the
1089   // terminator to an unconditional branch.  This can occur due to threading in
1090   // other blocks.
1091   if (getKnownConstant(Condition, Preference)) {
1092     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1093                       << "' folding terminator: " << *BB->getTerminator()
1094                       << '\n');
1095     ++NumFolds;
1096     ConstantFoldTerminator(BB, true, nullptr, DTU);
1097     return true;
1098   }
1099 
1100   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1101 
1102   // All the rest of our checks depend on the condition being an instruction.
1103   if (!CondInst) {
1104     // FIXME: Unify this with code below.
1105     if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
1106       return true;
1107     return false;
1108   }
1109 
1110   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
1111     // If we're branching on a conditional, LVI might be able to determine
1112     // it's value at the branch instruction.  We only handle comparisons
1113     // against a constant at this time.
1114     // TODO: This should be extended to handle switches as well.
1115     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1116     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
1117     if (CondBr && CondConst) {
1118       // We should have returned as soon as we turn a conditional branch to
1119       // unconditional. Because its no longer interesting as far as jump
1120       // threading is concerned.
1121       assert(CondBr->isConditional() && "Threading on unconditional terminator");
1122 
1123       LazyValueInfo::Tristate Ret =
1124         LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1125                             CondConst, CondBr);
1126       if (Ret != LazyValueInfo::Unknown) {
1127         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
1128         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
1129         BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove);
1130         ToRemoveSucc->removePredecessor(BB, true);
1131         BranchInst *UncondBr =
1132           BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
1133         UncondBr->setDebugLoc(CondBr->getDebugLoc());
1134         CondBr->eraseFromParent();
1135         if (CondCmp->use_empty())
1136           CondCmp->eraseFromParent();
1137         // We can safely replace *some* uses of the CondInst if it has
1138         // exactly one value as returned by LVI. RAUW is incorrect in the
1139         // presence of guards and assumes, that have the `Cond` as the use. This
1140         // is because we use the guards/assume to reason about the `Cond` value
1141         // at the end of block, but RAUW unconditionally replaces all uses
1142         // including the guards/assumes themselves and the uses before the
1143         // guard/assume.
1144         else if (CondCmp->getParent() == BB) {
1145           auto *CI = Ret == LazyValueInfo::True ?
1146             ConstantInt::getTrue(CondCmp->getType()) :
1147             ConstantInt::getFalse(CondCmp->getType());
1148           ReplaceFoldableUses(CondCmp, CI);
1149         }
1150         DTU->applyUpdatesPermissive(
1151             {{DominatorTree::Delete, BB, ToRemoveSucc}});
1152         return true;
1153       }
1154 
1155       // We did not manage to simplify this branch, try to see whether
1156       // CondCmp depends on a known phi-select pattern.
1157       if (TryToUnfoldSelect(CondCmp, BB))
1158         return true;
1159     }
1160   }
1161 
1162   if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1163     if (TryToUnfoldSelect(SI, BB))
1164       return true;
1165 
1166   // Check for some cases that are worth simplifying.  Right now we want to look
1167   // for loads that are used by a switch or by the condition for the branch.  If
1168   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1169   // which can then be used to thread the values.
1170   Value *SimplifyValue = CondInst;
1171 
1172   if (auto *FI = dyn_cast<FreezeInst>(SimplifyValue))
1173     // Look into freeze's operand
1174     SimplifyValue = FI->getOperand(0);
1175 
1176   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1177     if (isa<Constant>(CondCmp->getOperand(1)))
1178       SimplifyValue = CondCmp->getOperand(0);
1179 
1180   // TODO: There are other places where load PRE would be profitable, such as
1181   // more complex comparisons.
1182   if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1183     if (SimplifyPartiallyRedundantLoad(LoadI))
1184       return true;
1185 
1186   // Before threading, try to propagate profile data backwards:
1187   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1188     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1189       updatePredecessorProfileMetadata(PN, BB);
1190 
1191   // Handle a variety of cases where we are branching on something derived from
1192   // a PHI node in the current block.  If we can prove that any predecessors
1193   // compute a predictable value based on a PHI node, thread those predecessors.
1194   if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
1195     return true;
1196 
1197   // If this is an otherwise-unfoldable branch on a phi node in the current
1198   // block, see if we can simplify.
1199   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1200     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1201       return ProcessBranchOnPHI(PN);
1202 
1203   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1204   if (CondInst->getOpcode() == Instruction::Xor &&
1205       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1206     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
1207 
1208   // Search for a stronger dominating condition that can be used to simplify a
1209   // conditional branch leaving BB.
1210   if (ProcessImpliedCondition(BB))
1211     return true;
1212 
1213   return false;
1214 }
1215 
1216 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) {
1217   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1218   if (!BI || !BI->isConditional())
1219     return false;
1220 
1221   Value *Cond = BI->getCondition();
1222   BasicBlock *CurrentBB = BB;
1223   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1224   unsigned Iter = 0;
1225 
1226   auto &DL = BB->getModule()->getDataLayout();
1227 
1228   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1229     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1230     if (!PBI || !PBI->isConditional())
1231       return false;
1232     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1233       return false;
1234 
1235     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1236     Optional<bool> Implication =
1237         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1238     if (Implication) {
1239       BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1240       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1241       RemoveSucc->removePredecessor(BB);
1242       BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI);
1243       UncondBI->setDebugLoc(BI->getDebugLoc());
1244       BI->eraseFromParent();
1245       DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}});
1246       return true;
1247     }
1248     CurrentBB = CurrentPred;
1249     CurrentPred = CurrentBB->getSinglePredecessor();
1250   }
1251 
1252   return false;
1253 }
1254 
1255 /// Return true if Op is an instruction defined in the given block.
1256 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1257   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1258     if (OpInst->getParent() == BB)
1259       return true;
1260   return false;
1261 }
1262 
1263 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1264 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1265 /// This is an important optimization that encourages jump threading, and needs
1266 /// to be run interlaced with other jump threading tasks.
1267 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1268   // Don't hack volatile and ordered loads.
1269   if (!LoadI->isUnordered()) return false;
1270 
1271   // If the load is defined in a block with exactly one predecessor, it can't be
1272   // partially redundant.
1273   BasicBlock *LoadBB = LoadI->getParent();
1274   if (LoadBB->getSinglePredecessor())
1275     return false;
1276 
1277   // If the load is defined in an EH pad, it can't be partially redundant,
1278   // because the edges between the invoke and the EH pad cannot have other
1279   // instructions between them.
1280   if (LoadBB->isEHPad())
1281     return false;
1282 
1283   Value *LoadedPtr = LoadI->getOperand(0);
1284 
1285   // If the loaded operand is defined in the LoadBB and its not a phi,
1286   // it can't be available in predecessors.
1287   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1288     return false;
1289 
1290   // Scan a few instructions up from the load, to see if it is obviously live at
1291   // the entry to its block.
1292   BasicBlock::iterator BBIt(LoadI);
1293   bool IsLoadCSE;
1294   if (Value *AvailableVal = FindAvailableLoadedValue(
1295           LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1296     // If the value of the load is locally available within the block, just use
1297     // it.  This frequently occurs for reg2mem'd allocas.
1298 
1299     if (IsLoadCSE) {
1300       LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1301       combineMetadataForCSE(NLoadI, LoadI, false);
1302     };
1303 
1304     // If the returned value is the load itself, replace with an undef. This can
1305     // only happen in dead loops.
1306     if (AvailableVal == LoadI)
1307       AvailableVal = UndefValue::get(LoadI->getType());
1308     if (AvailableVal->getType() != LoadI->getType())
1309       AvailableVal = CastInst::CreateBitOrPointerCast(
1310           AvailableVal, LoadI->getType(), "", LoadI);
1311     LoadI->replaceAllUsesWith(AvailableVal);
1312     LoadI->eraseFromParent();
1313     return true;
1314   }
1315 
1316   // Otherwise, if we scanned the whole block and got to the top of the block,
1317   // we know the block is locally transparent to the load.  If not, something
1318   // might clobber its value.
1319   if (BBIt != LoadBB->begin())
1320     return false;
1321 
1322   // If all of the loads and stores that feed the value have the same AA tags,
1323   // then we can propagate them onto any newly inserted loads.
1324   AAMDNodes AATags;
1325   LoadI->getAAMetadata(AATags);
1326 
1327   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1328 
1329   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1330 
1331   AvailablePredsTy AvailablePreds;
1332   BasicBlock *OneUnavailablePred = nullptr;
1333   SmallVector<LoadInst*, 8> CSELoads;
1334 
1335   // If we got here, the loaded value is transparent through to the start of the
1336   // block.  Check to see if it is available in any of the predecessor blocks.
1337   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1338     // If we already scanned this predecessor, skip it.
1339     if (!PredsScanned.insert(PredBB).second)
1340       continue;
1341 
1342     BBIt = PredBB->end();
1343     unsigned NumScanedInst = 0;
1344     Value *PredAvailable = nullptr;
1345     // NOTE: We don't CSE load that is volatile or anything stronger than
1346     // unordered, that should have been checked when we entered the function.
1347     assert(LoadI->isUnordered() &&
1348            "Attempting to CSE volatile or atomic loads");
1349     // If this is a load on a phi pointer, phi-translate it and search
1350     // for available load/store to the pointer in predecessors.
1351     Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB);
1352     PredAvailable = FindAvailablePtrLoadStore(
1353         Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt,
1354         DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst);
1355 
1356     // If PredBB has a single predecessor, continue scanning through the
1357     // single predecessor.
1358     BasicBlock *SinglePredBB = PredBB;
1359     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1360            NumScanedInst < DefMaxInstsToScan) {
1361       SinglePredBB = SinglePredBB->getSinglePredecessor();
1362       if (SinglePredBB) {
1363         BBIt = SinglePredBB->end();
1364         PredAvailable = FindAvailablePtrLoadStore(
1365             Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt,
1366             (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1367             &NumScanedInst);
1368       }
1369     }
1370 
1371     if (!PredAvailable) {
1372       OneUnavailablePred = PredBB;
1373       continue;
1374     }
1375 
1376     if (IsLoadCSE)
1377       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1378 
1379     // If so, this load is partially redundant.  Remember this info so that we
1380     // can create a PHI node.
1381     AvailablePreds.emplace_back(PredBB, PredAvailable);
1382   }
1383 
1384   // If the loaded value isn't available in any predecessor, it isn't partially
1385   // redundant.
1386   if (AvailablePreds.empty()) return false;
1387 
1388   // Okay, the loaded value is available in at least one (and maybe all!)
1389   // predecessors.  If the value is unavailable in more than one unique
1390   // predecessor, we want to insert a merge block for those common predecessors.
1391   // This ensures that we only have to insert one reload, thus not increasing
1392   // code size.
1393   BasicBlock *UnavailablePred = nullptr;
1394 
1395   // If the value is unavailable in one of predecessors, we will end up
1396   // inserting a new instruction into them. It is only valid if all the
1397   // instructions before LoadI are guaranteed to pass execution to its
1398   // successor, or if LoadI is safe to speculate.
1399   // TODO: If this logic becomes more complex, and we will perform PRE insertion
1400   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1401   // It requires domination tree analysis, so for this simple case it is an
1402   // overkill.
1403   if (PredsScanned.size() != AvailablePreds.size() &&
1404       !isSafeToSpeculativelyExecute(LoadI))
1405     for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1406       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1407         return false;
1408 
1409   // If there is exactly one predecessor where the value is unavailable, the
1410   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1411   // unconditional branch, we know that it isn't a critical edge.
1412   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1413       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1414     UnavailablePred = OneUnavailablePred;
1415   } else if (PredsScanned.size() != AvailablePreds.size()) {
1416     // Otherwise, we had multiple unavailable predecessors or we had a critical
1417     // edge from the one.
1418     SmallVector<BasicBlock*, 8> PredsToSplit;
1419     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1420 
1421     for (const auto &AvailablePred : AvailablePreds)
1422       AvailablePredSet.insert(AvailablePred.first);
1423 
1424     // Add all the unavailable predecessors to the PredsToSplit list.
1425     for (BasicBlock *P : predecessors(LoadBB)) {
1426       // If the predecessor is an indirect goto, we can't split the edge.
1427       // Same for CallBr.
1428       if (isa<IndirectBrInst>(P->getTerminator()) ||
1429           isa<CallBrInst>(P->getTerminator()))
1430         return false;
1431 
1432       if (!AvailablePredSet.count(P))
1433         PredsToSplit.push_back(P);
1434     }
1435 
1436     // Split them out to their own block.
1437     UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1438   }
1439 
1440   // If the value isn't available in all predecessors, then there will be
1441   // exactly one where it isn't available.  Insert a load on that edge and add
1442   // it to the AvailablePreds list.
1443   if (UnavailablePred) {
1444     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1445            "Can't handle critical edge here!");
1446     LoadInst *NewVal = new LoadInst(
1447         LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1448         LoadI->getName() + ".pr", false, LoadI->getAlign(),
1449         LoadI->getOrdering(), LoadI->getSyncScopeID(),
1450         UnavailablePred->getTerminator());
1451     NewVal->setDebugLoc(LoadI->getDebugLoc());
1452     if (AATags)
1453       NewVal->setAAMetadata(AATags);
1454 
1455     AvailablePreds.emplace_back(UnavailablePred, NewVal);
1456   }
1457 
1458   // Now we know that each predecessor of this block has a value in
1459   // AvailablePreds, sort them for efficient access as we're walking the preds.
1460   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1461 
1462   // Create a PHI node at the start of the block for the PRE'd load value.
1463   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1464   PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
1465                                 &LoadBB->front());
1466   PN->takeName(LoadI);
1467   PN->setDebugLoc(LoadI->getDebugLoc());
1468 
1469   // Insert new entries into the PHI for each predecessor.  A single block may
1470   // have multiple entries here.
1471   for (pred_iterator PI = PB; PI != PE; ++PI) {
1472     BasicBlock *P = *PI;
1473     AvailablePredsTy::iterator I =
1474         llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr));
1475 
1476     assert(I != AvailablePreds.end() && I->first == P &&
1477            "Didn't find entry for predecessor!");
1478 
1479     // If we have an available predecessor but it requires casting, insert the
1480     // cast in the predecessor and use the cast. Note that we have to update the
1481     // AvailablePreds vector as we go so that all of the PHI entries for this
1482     // predecessor use the same bitcast.
1483     Value *&PredV = I->second;
1484     if (PredV->getType() != LoadI->getType())
1485       PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1486                                                P->getTerminator());
1487 
1488     PN->addIncoming(PredV, I->first);
1489   }
1490 
1491   for (LoadInst *PredLoadI : CSELoads) {
1492     combineMetadataForCSE(PredLoadI, LoadI, true);
1493   }
1494 
1495   LoadI->replaceAllUsesWith(PN);
1496   LoadI->eraseFromParent();
1497 
1498   return true;
1499 }
1500 
1501 /// FindMostPopularDest - The specified list contains multiple possible
1502 /// threadable destinations.  Pick the one that occurs the most frequently in
1503 /// the list.
1504 static BasicBlock *
1505 FindMostPopularDest(BasicBlock *BB,
1506                     const SmallVectorImpl<std::pair<BasicBlock *,
1507                                           BasicBlock *>> &PredToDestList) {
1508   assert(!PredToDestList.empty());
1509 
1510   // Determine popularity.  If there are multiple possible destinations, we
1511   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1512   // blocks with known and real destinations to threading undef.  We'll handle
1513   // them later if interesting.
1514   MapVector<BasicBlock *, unsigned> DestPopularity;
1515 
1516   // Populate DestPopularity with the successors in the order they appear in the
1517   // successor list.  This way, we ensure determinism by iterating it in the
1518   // same order in std::max_element below.  We map nullptr to 0 so that we can
1519   // return nullptr when PredToDestList contains nullptr only.
1520   DestPopularity[nullptr] = 0;
1521   for (auto *SuccBB : successors(BB))
1522     DestPopularity[SuccBB] = 0;
1523 
1524   for (const auto &PredToDest : PredToDestList)
1525     if (PredToDest.second)
1526       DestPopularity[PredToDest.second]++;
1527 
1528   // Find the most popular dest.
1529   using VT = decltype(DestPopularity)::value_type;
1530   auto MostPopular = std::max_element(
1531       DestPopularity.begin(), DestPopularity.end(),
1532       [](const VT &L, const VT &R) { return L.second < R.second; });
1533 
1534   // Okay, we have finally picked the most popular destination.
1535   return MostPopular->first;
1536 }
1537 
1538 // Try to evaluate the value of V when the control flows from PredPredBB to
1539 // BB->getSinglePredecessor() and then on to BB.
1540 Constant *JumpThreadingPass::EvaluateOnPredecessorEdge(BasicBlock *BB,
1541                                                        BasicBlock *PredPredBB,
1542                                                        Value *V) {
1543   BasicBlock *PredBB = BB->getSinglePredecessor();
1544   assert(PredBB && "Expected a single predecessor");
1545 
1546   if (Constant *Cst = dyn_cast<Constant>(V)) {
1547     return Cst;
1548   }
1549 
1550   // Consult LVI if V is not an instruction in BB or PredBB.
1551   Instruction *I = dyn_cast<Instruction>(V);
1552   if (!I || (I->getParent() != BB && I->getParent() != PredBB)) {
1553     return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr);
1554   }
1555 
1556   // Look into a PHI argument.
1557   if (PHINode *PHI = dyn_cast<PHINode>(V)) {
1558     if (PHI->getParent() == PredBB)
1559       return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB));
1560     return nullptr;
1561   }
1562 
1563   // If we have a CmpInst, try to fold it for each incoming edge into PredBB.
1564   if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) {
1565     if (CondCmp->getParent() == BB) {
1566       Constant *Op0 =
1567           EvaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0));
1568       Constant *Op1 =
1569           EvaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1));
1570       if (Op0 && Op1) {
1571         return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1);
1572       }
1573     }
1574     return nullptr;
1575   }
1576 
1577   return nullptr;
1578 }
1579 
1580 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1581                                                ConstantPreference Preference,
1582                                                Instruction *CxtI) {
1583   // If threading this would thread across a loop header, don't even try to
1584   // thread the edge.
1585   if (LoopHeaders.count(BB))
1586     return false;
1587 
1588   PredValueInfoTy PredValues;
1589   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference,
1590                                        CxtI)) {
1591     // We don't have known values in predecessors.  See if we can thread through
1592     // BB and its sole predecessor.
1593     return MaybeThreadThroughTwoBasicBlocks(BB, Cond);
1594   }
1595 
1596   assert(!PredValues.empty() &&
1597          "ComputeValueKnownInPredecessors returned true with no values");
1598 
1599   LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1600              for (const auto &PredValue : PredValues) {
1601                dbgs() << "  BB '" << BB->getName()
1602                       << "': FOUND condition = " << *PredValue.first
1603                       << " for pred '" << PredValue.second->getName() << "'.\n";
1604   });
1605 
1606   // Decide what we want to thread through.  Convert our list of known values to
1607   // a list of known destinations for each pred.  This also discards duplicate
1608   // predecessors and keeps track of the undefined inputs (which are represented
1609   // as a null dest in the PredToDestList).
1610   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1611   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1612 
1613   BasicBlock *OnlyDest = nullptr;
1614   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1615   Constant *OnlyVal = nullptr;
1616   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1617 
1618   for (const auto &PredValue : PredValues) {
1619     BasicBlock *Pred = PredValue.second;
1620     if (!SeenPreds.insert(Pred).second)
1621       continue;  // Duplicate predecessor entry.
1622 
1623     Constant *Val = PredValue.first;
1624 
1625     BasicBlock *DestBB;
1626     if (isa<UndefValue>(Val))
1627       DestBB = nullptr;
1628     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1629       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1630       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1631     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1632       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1633       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1634     } else {
1635       assert(isa<IndirectBrInst>(BB->getTerminator())
1636               && "Unexpected terminator");
1637       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1638       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1639     }
1640 
1641     // If we have exactly one destination, remember it for efficiency below.
1642     if (PredToDestList.empty()) {
1643       OnlyDest = DestBB;
1644       OnlyVal = Val;
1645     } else {
1646       if (OnlyDest != DestBB)
1647         OnlyDest = MultipleDestSentinel;
1648       // It possible we have same destination, but different value, e.g. default
1649       // case in switchinst.
1650       if (Val != OnlyVal)
1651         OnlyVal = MultipleVal;
1652     }
1653 
1654     // If the predecessor ends with an indirect goto, we can't change its
1655     // destination. Same for CallBr.
1656     if (isa<IndirectBrInst>(Pred->getTerminator()) ||
1657         isa<CallBrInst>(Pred->getTerminator()))
1658       continue;
1659 
1660     PredToDestList.emplace_back(Pred, DestBB);
1661   }
1662 
1663   // If all edges were unthreadable, we fail.
1664   if (PredToDestList.empty())
1665     return false;
1666 
1667   // If all the predecessors go to a single known successor, we want to fold,
1668   // not thread. By doing so, we do not need to duplicate the current block and
1669   // also miss potential opportunities in case we dont/cant duplicate.
1670   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1671     if (BB->hasNPredecessors(PredToDestList.size())) {
1672       bool SeenFirstBranchToOnlyDest = false;
1673       std::vector <DominatorTree::UpdateType> Updates;
1674       Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1675       for (BasicBlock *SuccBB : successors(BB)) {
1676         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1677           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1678         } else {
1679           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1680           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1681         }
1682       }
1683 
1684       // Finally update the terminator.
1685       Instruction *Term = BB->getTerminator();
1686       BranchInst::Create(OnlyDest, Term);
1687       Term->eraseFromParent();
1688       DTU->applyUpdatesPermissive(Updates);
1689 
1690       // If the condition is now dead due to the removal of the old terminator,
1691       // erase it.
1692       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1693         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1694           CondInst->eraseFromParent();
1695         // We can safely replace *some* uses of the CondInst if it has
1696         // exactly one value as returned by LVI. RAUW is incorrect in the
1697         // presence of guards and assumes, that have the `Cond` as the use. This
1698         // is because we use the guards/assume to reason about the `Cond` value
1699         // at the end of block, but RAUW unconditionally replaces all uses
1700         // including the guards/assumes themselves and the uses before the
1701         // guard/assume.
1702         else if (OnlyVal && OnlyVal != MultipleVal &&
1703                  CondInst->getParent() == BB)
1704           ReplaceFoldableUses(CondInst, OnlyVal);
1705       }
1706       return true;
1707     }
1708   }
1709 
1710   // Determine which is the most common successor.  If we have many inputs and
1711   // this block is a switch, we want to start by threading the batch that goes
1712   // to the most popular destination first.  If we only know about one
1713   // threadable destination (the common case) we can avoid this.
1714   BasicBlock *MostPopularDest = OnlyDest;
1715 
1716   if (MostPopularDest == MultipleDestSentinel) {
1717     // Remove any loop headers from the Dest list, ThreadEdge conservatively
1718     // won't process them, but we might have other destination that are eligible
1719     // and we still want to process.
1720     erase_if(PredToDestList,
1721              [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1722                return LoopHeaders.count(PredToDest.second) != 0;
1723              });
1724 
1725     if (PredToDestList.empty())
1726       return false;
1727 
1728     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1729   }
1730 
1731   // Now that we know what the most popular destination is, factor all
1732   // predecessors that will jump to it into a single predecessor.
1733   SmallVector<BasicBlock*, 16> PredsToFactor;
1734   for (const auto &PredToDest : PredToDestList)
1735     if (PredToDest.second == MostPopularDest) {
1736       BasicBlock *Pred = PredToDest.first;
1737 
1738       // This predecessor may be a switch or something else that has multiple
1739       // edges to the block.  Factor each of these edges by listing them
1740       // according to # occurrences in PredsToFactor.
1741       for (BasicBlock *Succ : successors(Pred))
1742         if (Succ == BB)
1743           PredsToFactor.push_back(Pred);
1744     }
1745 
1746   // If the threadable edges are branching on an undefined value, we get to pick
1747   // the destination that these predecessors should get to.
1748   if (!MostPopularDest)
1749     MostPopularDest = BB->getTerminator()->
1750                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1751 
1752   // Ok, try to thread it!
1753   return TryThreadEdge(BB, PredsToFactor, MostPopularDest);
1754 }
1755 
1756 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1757 /// a PHI node in the current block.  See if there are any simplifications we
1758 /// can do based on inputs to the phi node.
1759 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) {
1760   BasicBlock *BB = PN->getParent();
1761 
1762   // TODO: We could make use of this to do it once for blocks with common PHI
1763   // values.
1764   SmallVector<BasicBlock*, 1> PredBBs;
1765   PredBBs.resize(1);
1766 
1767   // If any of the predecessor blocks end in an unconditional branch, we can
1768   // *duplicate* the conditional branch into that block in order to further
1769   // encourage jump threading and to eliminate cases where we have branch on a
1770   // phi of an icmp (branch on icmp is much better).
1771   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1772     BasicBlock *PredBB = PN->getIncomingBlock(i);
1773     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1774       if (PredBr->isUnconditional()) {
1775         PredBBs[0] = PredBB;
1776         // Try to duplicate BB into PredBB.
1777         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1778           return true;
1779       }
1780   }
1781 
1782   return false;
1783 }
1784 
1785 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1786 /// a xor instruction in the current block.  See if there are any
1787 /// simplifications we can do based on inputs to the xor.
1788 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) {
1789   BasicBlock *BB = BO->getParent();
1790 
1791   // If either the LHS or RHS of the xor is a constant, don't do this
1792   // optimization.
1793   if (isa<ConstantInt>(BO->getOperand(0)) ||
1794       isa<ConstantInt>(BO->getOperand(1)))
1795     return false;
1796 
1797   // If the first instruction in BB isn't a phi, we won't be able to infer
1798   // anything special about any particular predecessor.
1799   if (!isa<PHINode>(BB->front()))
1800     return false;
1801 
1802   // If this BB is a landing pad, we won't be able to split the edge into it.
1803   if (BB->isEHPad())
1804     return false;
1805 
1806   // If we have a xor as the branch input to this block, and we know that the
1807   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1808   // the condition into the predecessor and fix that value to true, saving some
1809   // logical ops on that path and encouraging other paths to simplify.
1810   //
1811   // This copies something like this:
1812   //
1813   //  BB:
1814   //    %X = phi i1 [1],  [%X']
1815   //    %Y = icmp eq i32 %A, %B
1816   //    %Z = xor i1 %X, %Y
1817   //    br i1 %Z, ...
1818   //
1819   // Into:
1820   //  BB':
1821   //    %Y = icmp ne i32 %A, %B
1822   //    br i1 %Y, ...
1823 
1824   PredValueInfoTy XorOpValues;
1825   bool isLHS = true;
1826   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1827                                        WantInteger, BO)) {
1828     assert(XorOpValues.empty());
1829     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1830                                          WantInteger, BO))
1831       return false;
1832     isLHS = false;
1833   }
1834 
1835   assert(!XorOpValues.empty() &&
1836          "ComputeValueKnownInPredecessors returned true with no values");
1837 
1838   // Scan the information to see which is most popular: true or false.  The
1839   // predecessors can be of the set true, false, or undef.
1840   unsigned NumTrue = 0, NumFalse = 0;
1841   for (const auto &XorOpValue : XorOpValues) {
1842     if (isa<UndefValue>(XorOpValue.first))
1843       // Ignore undefs for the count.
1844       continue;
1845     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1846       ++NumFalse;
1847     else
1848       ++NumTrue;
1849   }
1850 
1851   // Determine which value to split on, true, false, or undef if neither.
1852   ConstantInt *SplitVal = nullptr;
1853   if (NumTrue > NumFalse)
1854     SplitVal = ConstantInt::getTrue(BB->getContext());
1855   else if (NumTrue != 0 || NumFalse != 0)
1856     SplitVal = ConstantInt::getFalse(BB->getContext());
1857 
1858   // Collect all of the blocks that this can be folded into so that we can
1859   // factor this once and clone it once.
1860   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1861   for (const auto &XorOpValue : XorOpValues) {
1862     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1863       continue;
1864 
1865     BlocksToFoldInto.push_back(XorOpValue.second);
1866   }
1867 
1868   // If we inferred a value for all of the predecessors, then duplication won't
1869   // help us.  However, we can just replace the LHS or RHS with the constant.
1870   if (BlocksToFoldInto.size() ==
1871       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1872     if (!SplitVal) {
1873       // If all preds provide undef, just nuke the xor, because it is undef too.
1874       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1875       BO->eraseFromParent();
1876     } else if (SplitVal->isZero()) {
1877       // If all preds provide 0, replace the xor with the other input.
1878       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1879       BO->eraseFromParent();
1880     } else {
1881       // If all preds provide 1, set the computed value to 1.
1882       BO->setOperand(!isLHS, SplitVal);
1883     }
1884 
1885     return true;
1886   }
1887 
1888   // If any of predecessors end with an indirect goto, we can't change its
1889   // destination. Same for CallBr.
1890   if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) {
1891         return isa<IndirectBrInst>(Pred->getTerminator()) ||
1892                isa<CallBrInst>(Pred->getTerminator());
1893       }))
1894     return false;
1895 
1896   // Try to duplicate BB into PredBB.
1897   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1898 }
1899 
1900 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1901 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1902 /// NewPred using the entries from OldPred (suitably mapped).
1903 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1904                                             BasicBlock *OldPred,
1905                                             BasicBlock *NewPred,
1906                                      DenseMap<Instruction*, Value*> &ValueMap) {
1907   for (PHINode &PN : PHIBB->phis()) {
1908     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1909     // DestBlock.
1910     Value *IV = PN.getIncomingValueForBlock(OldPred);
1911 
1912     // Remap the value if necessary.
1913     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1914       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1915       if (I != ValueMap.end())
1916         IV = I->second;
1917     }
1918 
1919     PN.addIncoming(IV, NewPred);
1920   }
1921 }
1922 
1923 /// Merge basic block BB into its sole predecessor if possible.
1924 bool JumpThreadingPass::MaybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) {
1925   BasicBlock *SinglePred = BB->getSinglePredecessor();
1926   if (!SinglePred)
1927     return false;
1928 
1929   const Instruction *TI = SinglePred->getTerminator();
1930   if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 ||
1931       SinglePred == BB || hasAddressTakenAndUsed(BB))
1932     return false;
1933 
1934   // If SinglePred was a loop header, BB becomes one.
1935   if (LoopHeaders.erase(SinglePred))
1936     LoopHeaders.insert(BB);
1937 
1938   LVI->eraseBlock(SinglePred);
1939   MergeBasicBlockIntoOnlyPred(BB, DTU);
1940 
1941   // Now that BB is merged into SinglePred (i.e. SinglePred code followed by
1942   // BB code within one basic block `BB`), we need to invalidate the LVI
1943   // information associated with BB, because the LVI information need not be
1944   // true for all of BB after the merge. For example,
1945   // Before the merge, LVI info and code is as follows:
1946   // SinglePred: <LVI info1 for %p val>
1947   // %y = use of %p
1948   // call @exit() // need not transfer execution to successor.
1949   // assume(%p) // from this point on %p is true
1950   // br label %BB
1951   // BB: <LVI info2 for %p val, i.e. %p is true>
1952   // %x = use of %p
1953   // br label exit
1954   //
1955   // Note that this LVI info for blocks BB and SinglPred is correct for %p
1956   // (info2 and info1 respectively). After the merge and the deletion of the
1957   // LVI info1 for SinglePred. We have the following code:
1958   // BB: <LVI info2 for %p val>
1959   // %y = use of %p
1960   // call @exit()
1961   // assume(%p)
1962   // %x = use of %p <-- LVI info2 is correct from here onwards.
1963   // br label exit
1964   // LVI info2 for BB is incorrect at the beginning of BB.
1965 
1966   // Invalidate LVI information for BB if the LVI is not provably true for
1967   // all of BB.
1968   if (!isGuaranteedToTransferExecutionToSuccessor(BB))
1969     LVI->eraseBlock(BB);
1970   return true;
1971 }
1972 
1973 /// Update the SSA form.  NewBB contains instructions that are copied from BB.
1974 /// ValueMapping maps old values in BB to new ones in NewBB.
1975 void JumpThreadingPass::UpdateSSA(
1976     BasicBlock *BB, BasicBlock *NewBB,
1977     DenseMap<Instruction *, Value *> &ValueMapping) {
1978   // If there were values defined in BB that are used outside the block, then we
1979   // now have to update all uses of the value to use either the original value,
1980   // the cloned value, or some PHI derived value.  This can require arbitrary
1981   // PHI insertion, of which we are prepared to do, clean these up now.
1982   SSAUpdater SSAUpdate;
1983   SmallVector<Use *, 16> UsesToRename;
1984 
1985   for (Instruction &I : *BB) {
1986     // Scan all uses of this instruction to see if it is used outside of its
1987     // block, and if so, record them in UsesToRename.
1988     for (Use &U : I.uses()) {
1989       Instruction *User = cast<Instruction>(U.getUser());
1990       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1991         if (UserPN->getIncomingBlock(U) == BB)
1992           continue;
1993       } else if (User->getParent() == BB)
1994         continue;
1995 
1996       UsesToRename.push_back(&U);
1997     }
1998 
1999     // If there are no uses outside the block, we're done with this instruction.
2000     if (UsesToRename.empty())
2001       continue;
2002     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2003 
2004     // We found a use of I outside of BB.  Rename all uses of I that are outside
2005     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2006     // with the two values we know.
2007     SSAUpdate.Initialize(I.getType(), I.getName());
2008     SSAUpdate.AddAvailableValue(BB, &I);
2009     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
2010 
2011     while (!UsesToRename.empty())
2012       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2013     LLVM_DEBUG(dbgs() << "\n");
2014   }
2015 }
2016 
2017 /// Clone instructions in range [BI, BE) to NewBB.  For PHI nodes, we only clone
2018 /// arguments that come from PredBB.  Return the map from the variables in the
2019 /// source basic block to the variables in the newly created basic block.
2020 DenseMap<Instruction *, Value *>
2021 JumpThreadingPass::CloneInstructions(BasicBlock::iterator BI,
2022                                      BasicBlock::iterator BE, BasicBlock *NewBB,
2023                                      BasicBlock *PredBB) {
2024   // We are going to have to map operands from the source basic block to the new
2025   // copy of the block 'NewBB'.  If there are PHI nodes in the source basic
2026   // block, evaluate them to account for entry from PredBB.
2027   DenseMap<Instruction *, Value *> ValueMapping;
2028 
2029   // Clone the phi nodes of the source basic block into NewBB.  The resulting
2030   // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater
2031   // might need to rewrite the operand of the cloned phi.
2032   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2033     PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB);
2034     NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB);
2035     ValueMapping[PN] = NewPN;
2036   }
2037 
2038   // Clone the non-phi instructions of the source basic block into NewBB,
2039   // keeping track of the mapping and using it to remap operands in the cloned
2040   // instructions.
2041   for (; BI != BE; ++BI) {
2042     Instruction *New = BI->clone();
2043     New->setName(BI->getName());
2044     NewBB->getInstList().push_back(New);
2045     ValueMapping[&*BI] = New;
2046 
2047     // Remap operands to patch up intra-block references.
2048     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2049       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2050         DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst);
2051         if (I != ValueMapping.end())
2052           New->setOperand(i, I->second);
2053       }
2054   }
2055 
2056   return ValueMapping;
2057 }
2058 
2059 /// Attempt to thread through two successive basic blocks.
2060 bool JumpThreadingPass::MaybeThreadThroughTwoBasicBlocks(BasicBlock *BB,
2061                                                          Value *Cond) {
2062   // Consider:
2063   //
2064   // PredBB:
2065   //   %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ]
2066   //   %tobool = icmp eq i32 %cond, 0
2067   //   br i1 %tobool, label %BB, label ...
2068   //
2069   // BB:
2070   //   %cmp = icmp eq i32* %var, null
2071   //   br i1 %cmp, label ..., label ...
2072   //
2073   // We don't know the value of %var at BB even if we know which incoming edge
2074   // we take to BB.  However, once we duplicate PredBB for each of its incoming
2075   // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of
2076   // PredBB.  Then we can thread edges PredBB1->BB and PredBB2->BB through BB.
2077 
2078   // Require that BB end with a Branch for simplicity.
2079   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2080   if (!CondBr)
2081     return false;
2082 
2083   // BB must have exactly one predecessor.
2084   BasicBlock *PredBB = BB->getSinglePredecessor();
2085   if (!PredBB)
2086     return false;
2087 
2088   // Require that PredBB end with a conditional Branch. If PredBB ends with an
2089   // unconditional branch, we should be merging PredBB and BB instead. For
2090   // simplicity, we don't deal with a switch.
2091   BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2092   if (!PredBBBranch || PredBBBranch->isUnconditional())
2093     return false;
2094 
2095   // If PredBB has exactly one incoming edge, we don't gain anything by copying
2096   // PredBB.
2097   if (PredBB->getSinglePredecessor())
2098     return false;
2099 
2100   // Don't thread through PredBB if it contains a successor edge to itself, in
2101   // which case we would infinite loop.  Suppose we are threading an edge from
2102   // PredPredBB through PredBB and BB to SuccBB with PredBB containing a
2103   // successor edge to itself.  If we allowed jump threading in this case, we
2104   // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread.  Since
2105   // PredBB.thread has a successor edge to PredBB, we would immediately come up
2106   // with another jump threading opportunity from PredBB.thread through PredBB
2107   // and BB to SuccBB.  This jump threading would repeatedly occur.  That is, we
2108   // would keep peeling one iteration from PredBB.
2109   if (llvm::is_contained(successors(PredBB), PredBB))
2110     return false;
2111 
2112   // Don't thread across a loop header.
2113   if (LoopHeaders.count(PredBB))
2114     return false;
2115 
2116   // Avoid complication with duplicating EH pads.
2117   if (PredBB->isEHPad())
2118     return false;
2119 
2120   // Find a predecessor that we can thread.  For simplicity, we only consider a
2121   // successor edge out of BB to which we thread exactly one incoming edge into
2122   // PredBB.
2123   unsigned ZeroCount = 0;
2124   unsigned OneCount = 0;
2125   BasicBlock *ZeroPred = nullptr;
2126   BasicBlock *OnePred = nullptr;
2127   for (BasicBlock *P : predecessors(PredBB)) {
2128     if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(
2129             EvaluateOnPredecessorEdge(BB, P, Cond))) {
2130       if (CI->isZero()) {
2131         ZeroCount++;
2132         ZeroPred = P;
2133       } else if (CI->isOne()) {
2134         OneCount++;
2135         OnePred = P;
2136       }
2137     }
2138   }
2139 
2140   // Disregard complicated cases where we have to thread multiple edges.
2141   BasicBlock *PredPredBB;
2142   if (ZeroCount == 1) {
2143     PredPredBB = ZeroPred;
2144   } else if (OneCount == 1) {
2145     PredPredBB = OnePred;
2146   } else {
2147     return false;
2148   }
2149 
2150   BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred);
2151 
2152   // If threading to the same block as we come from, we would infinite loop.
2153   if (SuccBB == BB) {
2154     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2155                       << "' - would thread to self!\n");
2156     return false;
2157   }
2158 
2159   // If threading this would thread across a loop header, don't thread the edge.
2160   // See the comments above FindLoopHeaders for justifications and caveats.
2161   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2162     LLVM_DEBUG({
2163       bool BBIsHeader = LoopHeaders.count(BB);
2164       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2165       dbgs() << "  Not threading across "
2166              << (BBIsHeader ? "loop header BB '" : "block BB '")
2167              << BB->getName() << "' to dest "
2168              << (SuccIsHeader ? "loop header BB '" : "block BB '")
2169              << SuccBB->getName()
2170              << "' - it might create an irreducible loop!\n";
2171     });
2172     return false;
2173   }
2174 
2175   // Compute the cost of duplicating BB and PredBB.
2176   unsigned BBCost =
2177       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2178   unsigned PredBBCost = getJumpThreadDuplicationCost(
2179       PredBB, PredBB->getTerminator(), BBDupThreshold);
2180 
2181   // Give up if costs are too high.  We need to check BBCost and PredBBCost
2182   // individually before checking their sum because getJumpThreadDuplicationCost
2183   // return (unsigned)~0 for those basic blocks that cannot be duplicated.
2184   if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold ||
2185       BBCost + PredBBCost > BBDupThreshold) {
2186     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2187                       << "' - Cost is too high: " << PredBBCost
2188                       << " for PredBB, " << BBCost << "for BB\n");
2189     return false;
2190   }
2191 
2192   // Now we are ready to duplicate PredBB.
2193   ThreadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB);
2194   return true;
2195 }
2196 
2197 void JumpThreadingPass::ThreadThroughTwoBasicBlocks(BasicBlock *PredPredBB,
2198                                                     BasicBlock *PredBB,
2199                                                     BasicBlock *BB,
2200                                                     BasicBlock *SuccBB) {
2201   LLVM_DEBUG(dbgs() << "  Threading through '" << PredBB->getName() << "' and '"
2202                     << BB->getName() << "'\n");
2203 
2204   BranchInst *CondBr = cast<BranchInst>(BB->getTerminator());
2205   BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator());
2206 
2207   BasicBlock *NewBB =
2208       BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread",
2209                          PredBB->getParent(), PredBB);
2210   NewBB->moveAfter(PredBB);
2211 
2212   // Set the block frequency of NewBB.
2213   if (HasProfileData) {
2214     auto NewBBFreq = BFI->getBlockFreq(PredPredBB) *
2215                      BPI->getEdgeProbability(PredPredBB, PredBB);
2216     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2217   }
2218 
2219   // We are going to have to map operands from the original BB block to the new
2220   // copy of the block 'NewBB'.  If there are PHI nodes in PredBB, evaluate them
2221   // to account for entry from PredPredBB.
2222   DenseMap<Instruction *, Value *> ValueMapping =
2223       CloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB);
2224 
2225   // Update the terminator of PredPredBB to jump to NewBB instead of PredBB.
2226   // This eliminates predecessors from PredPredBB, which requires us to simplify
2227   // any PHI nodes in PredBB.
2228   Instruction *PredPredTerm = PredPredBB->getTerminator();
2229   for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i)
2230     if (PredPredTerm->getSuccessor(i) == PredBB) {
2231       PredBB->removePredecessor(PredPredBB, true);
2232       PredPredTerm->setSuccessor(i, NewBB);
2233     }
2234 
2235   AddPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB,
2236                                   ValueMapping);
2237   AddPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB,
2238                                   ValueMapping);
2239 
2240   DTU->applyUpdatesPermissive(
2241       {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)},
2242        {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)},
2243        {DominatorTree::Insert, PredPredBB, NewBB},
2244        {DominatorTree::Delete, PredPredBB, PredBB}});
2245 
2246   UpdateSSA(PredBB, NewBB, ValueMapping);
2247 
2248   // Clean up things like PHI nodes with single operands, dead instructions,
2249   // etc.
2250   SimplifyInstructionsInBlock(NewBB, TLI);
2251   SimplifyInstructionsInBlock(PredBB, TLI);
2252 
2253   SmallVector<BasicBlock *, 1> PredsToFactor;
2254   PredsToFactor.push_back(NewBB);
2255   ThreadEdge(BB, PredsToFactor, SuccBB);
2256 }
2257 
2258 /// TryThreadEdge - Thread an edge if it's safe and profitable to do so.
2259 bool JumpThreadingPass::TryThreadEdge(
2260     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs,
2261     BasicBlock *SuccBB) {
2262   // If threading to the same block as we come from, we would infinite loop.
2263   if (SuccBB == BB) {
2264     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2265                       << "' - would thread to self!\n");
2266     return false;
2267   }
2268 
2269   // If threading this would thread across a loop header, don't thread the edge.
2270   // See the comments above FindLoopHeaders for justifications and caveats.
2271   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2272     LLVM_DEBUG({
2273       bool BBIsHeader = LoopHeaders.count(BB);
2274       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2275       dbgs() << "  Not threading across "
2276           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
2277           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
2278           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
2279     });
2280     return false;
2281   }
2282 
2283   unsigned JumpThreadCost =
2284       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2285   if (JumpThreadCost > BBDupThreshold) {
2286     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2287                       << "' - Cost is too high: " << JumpThreadCost << "\n");
2288     return false;
2289   }
2290 
2291   ThreadEdge(BB, PredBBs, SuccBB);
2292   return true;
2293 }
2294 
2295 /// ThreadEdge - We have decided that it is safe and profitable to factor the
2296 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
2297 /// across BB.  Transform the IR to reflect this change.
2298 void JumpThreadingPass::ThreadEdge(BasicBlock *BB,
2299                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
2300                                    BasicBlock *SuccBB) {
2301   assert(SuccBB != BB && "Don't create an infinite loop");
2302 
2303   assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) &&
2304          "Don't thread across loop headers");
2305 
2306   // And finally, do it!  Start by factoring the predecessors if needed.
2307   BasicBlock *PredBB;
2308   if (PredBBs.size() == 1)
2309     PredBB = PredBBs[0];
2310   else {
2311     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2312                       << " common predecessors.\n");
2313     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
2314   }
2315 
2316   // And finally, do it!
2317   LLVM_DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName()
2318                     << "' to '" << SuccBB->getName()
2319                     << ", across block:\n    " << *BB << "\n");
2320 
2321   LVI->threadEdge(PredBB, BB, SuccBB);
2322 
2323   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
2324                                          BB->getName()+".thread",
2325                                          BB->getParent(), BB);
2326   NewBB->moveAfter(PredBB);
2327 
2328   // Set the block frequency of NewBB.
2329   if (HasProfileData) {
2330     auto NewBBFreq =
2331         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
2332     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2333   }
2334 
2335   // Copy all the instructions from BB to NewBB except the terminator.
2336   DenseMap<Instruction *, Value *> ValueMapping =
2337       CloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB);
2338 
2339   // We didn't copy the terminator from BB over to NewBB, because there is now
2340   // an unconditional jump to SuccBB.  Insert the unconditional jump.
2341   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
2342   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2343 
2344   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2345   // PHI nodes for NewBB now.
2346   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2347 
2348   // Update the terminator of PredBB to jump to NewBB instead of BB.  This
2349   // eliminates predecessors from BB, which requires us to simplify any PHI
2350   // nodes in BB.
2351   Instruction *PredTerm = PredBB->getTerminator();
2352   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2353     if (PredTerm->getSuccessor(i) == BB) {
2354       BB->removePredecessor(PredBB, true);
2355       PredTerm->setSuccessor(i, NewBB);
2356     }
2357 
2358   // Enqueue required DT updates.
2359   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB},
2360                                {DominatorTree::Insert, PredBB, NewBB},
2361                                {DominatorTree::Delete, PredBB, BB}});
2362 
2363   UpdateSSA(BB, NewBB, ValueMapping);
2364 
2365   // At this point, the IR is fully up to date and consistent.  Do a quick scan
2366   // over the new instructions and zap any that are constants or dead.  This
2367   // frequently happens because of phi translation.
2368   SimplifyInstructionsInBlock(NewBB, TLI);
2369 
2370   // Update the edge weight from BB to SuccBB, which should be less than before.
2371   UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
2372 
2373   // Threaded an edge!
2374   ++NumThreads;
2375 }
2376 
2377 /// Create a new basic block that will be the predecessor of BB and successor of
2378 /// all blocks in Preds. When profile data is available, update the frequency of
2379 /// this new block.
2380 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
2381                                                ArrayRef<BasicBlock *> Preds,
2382                                                const char *Suffix) {
2383   SmallVector<BasicBlock *, 2> NewBBs;
2384 
2385   // Collect the frequencies of all predecessors of BB, which will be used to
2386   // update the edge weight of the result of splitting predecessors.
2387   DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2388   if (HasProfileData)
2389     for (auto Pred : Preds)
2390       FreqMap.insert(std::make_pair(
2391           Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2392 
2393   // In the case when BB is a LandingPad block we create 2 new predecessors
2394   // instead of just one.
2395   if (BB->isLandingPad()) {
2396     std::string NewName = std::string(Suffix) + ".split-lp";
2397     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2398   } else {
2399     NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2400   }
2401 
2402   std::vector<DominatorTree::UpdateType> Updates;
2403   Updates.reserve((2 * Preds.size()) + NewBBs.size());
2404   for (auto NewBB : NewBBs) {
2405     BlockFrequency NewBBFreq(0);
2406     Updates.push_back({DominatorTree::Insert, NewBB, BB});
2407     for (auto Pred : predecessors(NewBB)) {
2408       Updates.push_back({DominatorTree::Delete, Pred, BB});
2409       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2410       if (HasProfileData) // Update frequencies between Pred -> NewBB.
2411         NewBBFreq += FreqMap.lookup(Pred);
2412     }
2413     if (HasProfileData) // Apply the summed frequency to NewBB.
2414       BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2415   }
2416 
2417   DTU->applyUpdatesPermissive(Updates);
2418   return NewBBs[0];
2419 }
2420 
2421 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2422   const Instruction *TI = BB->getTerminator();
2423   assert(TI->getNumSuccessors() > 1 && "not a split");
2424 
2425   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
2426   if (!WeightsNode)
2427     return false;
2428 
2429   MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
2430   if (MDName->getString() != "branch_weights")
2431     return false;
2432 
2433   // Ensure there are weights for all of the successors. Note that the first
2434   // operand to the metadata node is a name, not a weight.
2435   return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
2436 }
2437 
2438 /// Update the block frequency of BB and branch weight and the metadata on the
2439 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2440 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2441 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2442                                                      BasicBlock *BB,
2443                                                      BasicBlock *NewBB,
2444                                                      BasicBlock *SuccBB) {
2445   if (!HasProfileData)
2446     return;
2447 
2448   assert(BFI && BPI && "BFI & BPI should have been created here");
2449 
2450   // As the edge from PredBB to BB is deleted, we have to update the block
2451   // frequency of BB.
2452   auto BBOrigFreq = BFI->getBlockFreq(BB);
2453   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2454   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2455   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2456   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2457 
2458   // Collect updated outgoing edges' frequencies from BB and use them to update
2459   // edge probabilities.
2460   SmallVector<uint64_t, 4> BBSuccFreq;
2461   for (BasicBlock *Succ : successors(BB)) {
2462     auto SuccFreq = (Succ == SuccBB)
2463                         ? BB2SuccBBFreq - NewBBFreq
2464                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2465     BBSuccFreq.push_back(SuccFreq.getFrequency());
2466   }
2467 
2468   uint64_t MaxBBSuccFreq =
2469       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2470 
2471   SmallVector<BranchProbability, 4> BBSuccProbs;
2472   if (MaxBBSuccFreq == 0)
2473     BBSuccProbs.assign(BBSuccFreq.size(),
2474                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2475   else {
2476     for (uint64_t Freq : BBSuccFreq)
2477       BBSuccProbs.push_back(
2478           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2479     // Normalize edge probabilities so that they sum up to one.
2480     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2481                                               BBSuccProbs.end());
2482   }
2483 
2484   // Update edge probabilities in BPI.
2485   BPI->setEdgeProbability(BB, BBSuccProbs);
2486 
2487   // Update the profile metadata as well.
2488   //
2489   // Don't do this if the profile of the transformed blocks was statically
2490   // estimated.  (This could occur despite the function having an entry
2491   // frequency in completely cold parts of the CFG.)
2492   //
2493   // In this case we don't want to suggest to subsequent passes that the
2494   // calculated weights are fully consistent.  Consider this graph:
2495   //
2496   //                 check_1
2497   //             50% /  |
2498   //             eq_1   | 50%
2499   //                 \  |
2500   //                 check_2
2501   //             50% /  |
2502   //             eq_2   | 50%
2503   //                 \  |
2504   //                 check_3
2505   //             50% /  |
2506   //             eq_3   | 50%
2507   //                 \  |
2508   //
2509   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2510   // the overall probabilities are inconsistent; the total probability that the
2511   // value is either 1, 2 or 3 is 150%.
2512   //
2513   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2514   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2515   // the loop exit edge.  Then based solely on static estimation we would assume
2516   // the loop was extremely hot.
2517   //
2518   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2519   // shouldn't make edges extremely likely or unlikely based solely on static
2520   // estimation.
2521   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2522     SmallVector<uint32_t, 4> Weights;
2523     for (auto Prob : BBSuccProbs)
2524       Weights.push_back(Prob.getNumerator());
2525 
2526     auto TI = BB->getTerminator();
2527     TI->setMetadata(
2528         LLVMContext::MD_prof,
2529         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2530   }
2531 }
2532 
2533 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2534 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2535 /// If we can duplicate the contents of BB up into PredBB do so now, this
2536 /// improves the odds that the branch will be on an analyzable instruction like
2537 /// a compare.
2538 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred(
2539     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2540   assert(!PredBBs.empty() && "Can't handle an empty set");
2541 
2542   // If BB is a loop header, then duplicating this block outside the loop would
2543   // cause us to transform this into an irreducible loop, don't do this.
2544   // See the comments above FindLoopHeaders for justifications and caveats.
2545   if (LoopHeaders.count(BB)) {
2546     LLVM_DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2547                       << "' into predecessor block '" << PredBBs[0]->getName()
2548                       << "' - it might create an irreducible loop!\n");
2549     return false;
2550   }
2551 
2552   unsigned DuplicationCost =
2553       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2554   if (DuplicationCost > BBDupThreshold) {
2555     LLVM_DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2556                       << "' - Cost is too high: " << DuplicationCost << "\n");
2557     return false;
2558   }
2559 
2560   // And finally, do it!  Start by factoring the predecessors if needed.
2561   std::vector<DominatorTree::UpdateType> Updates;
2562   BasicBlock *PredBB;
2563   if (PredBBs.size() == 1)
2564     PredBB = PredBBs[0];
2565   else {
2566     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2567                       << " common predecessors.\n");
2568     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
2569   }
2570   Updates.push_back({DominatorTree::Delete, PredBB, BB});
2571 
2572   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2573   // of PredBB.
2574   LLVM_DEBUG(dbgs() << "  Duplicating block '" << BB->getName()
2575                     << "' into end of '" << PredBB->getName()
2576                     << "' to eliminate branch on phi.  Cost: "
2577                     << DuplicationCost << " block is:" << *BB << "\n");
2578 
2579   // Unless PredBB ends with an unconditional branch, split the edge so that we
2580   // can just clone the bits from BB into the end of the new PredBB.
2581   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2582 
2583   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2584     BasicBlock *OldPredBB = PredBB;
2585     PredBB = SplitEdge(OldPredBB, BB);
2586     Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2587     Updates.push_back({DominatorTree::Insert, PredBB, BB});
2588     Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2589     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2590   }
2591 
2592   // We are going to have to map operands from the original BB block into the
2593   // PredBB block.  Evaluate PHI nodes in BB.
2594   DenseMap<Instruction*, Value*> ValueMapping;
2595 
2596   BasicBlock::iterator BI = BB->begin();
2597   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2598     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2599   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2600   // mapping and using it to remap operands in the cloned instructions.
2601   for (; BI != BB->end(); ++BI) {
2602     Instruction *New = BI->clone();
2603 
2604     // Remap operands to patch up intra-block references.
2605     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2606       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2607         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2608         if (I != ValueMapping.end())
2609           New->setOperand(i, I->second);
2610       }
2611 
2612     // If this instruction can be simplified after the operands are updated,
2613     // just use the simplified value instead.  This frequently happens due to
2614     // phi translation.
2615     if (Value *IV = SimplifyInstruction(
2616             New,
2617             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2618       ValueMapping[&*BI] = IV;
2619       if (!New->mayHaveSideEffects()) {
2620         New->deleteValue();
2621         New = nullptr;
2622       }
2623     } else {
2624       ValueMapping[&*BI] = New;
2625     }
2626     if (New) {
2627       // Otherwise, insert the new instruction into the block.
2628       New->setName(BI->getName());
2629       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2630       // Update Dominance from simplified New instruction operands.
2631       for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2632         if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2633           Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2634     }
2635   }
2636 
2637   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2638   // add entries to the PHI nodes for branch from PredBB now.
2639   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2640   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2641                                   ValueMapping);
2642   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2643                                   ValueMapping);
2644 
2645   UpdateSSA(BB, PredBB, ValueMapping);
2646 
2647   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2648   // that we nuked.
2649   BB->removePredecessor(PredBB, true);
2650 
2651   // Remove the unconditional branch at the end of the PredBB block.
2652   OldPredBranch->eraseFromParent();
2653   DTU->applyUpdatesPermissive(Updates);
2654 
2655   ++NumDupes;
2656   return true;
2657 }
2658 
2659 // Pred is a predecessor of BB with an unconditional branch to BB. SI is
2660 // a Select instruction in Pred. BB has other predecessors and SI is used in
2661 // a PHI node in BB. SI has no other use.
2662 // A new basic block, NewBB, is created and SI is converted to compare and
2663 // conditional branch. SI is erased from parent.
2664 void JumpThreadingPass::UnfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
2665                                           SelectInst *SI, PHINode *SIUse,
2666                                           unsigned Idx) {
2667   // Expand the select.
2668   //
2669   // Pred --
2670   //  |    v
2671   //  |  NewBB
2672   //  |    |
2673   //  |-----
2674   //  v
2675   // BB
2676   BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator());
2677   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2678                                          BB->getParent(), BB);
2679   // Move the unconditional branch to NewBB.
2680   PredTerm->removeFromParent();
2681   NewBB->getInstList().insert(NewBB->end(), PredTerm);
2682   // Create a conditional branch and update PHI nodes.
2683   BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2684   SIUse->setIncomingValue(Idx, SI->getFalseValue());
2685   SIUse->addIncoming(SI->getTrueValue(), NewBB);
2686 
2687   // The select is now dead.
2688   SI->eraseFromParent();
2689   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB},
2690                                {DominatorTree::Insert, Pred, NewBB}});
2691 
2692   // Update any other PHI nodes in BB.
2693   for (BasicBlock::iterator BI = BB->begin();
2694        PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2695     if (Phi != SIUse)
2696       Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2697 }
2698 
2699 bool JumpThreadingPass::TryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
2700   PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
2701 
2702   if (!CondPHI || CondPHI->getParent() != BB)
2703     return false;
2704 
2705   for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
2706     BasicBlock *Pred = CondPHI->getIncomingBlock(I);
2707     SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
2708 
2709     // The second and third condition can be potentially relaxed. Currently
2710     // the conditions help to simplify the code and allow us to reuse existing
2711     // code, developed for TryToUnfoldSelect(CmpInst *, BasicBlock *)
2712     if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
2713       continue;
2714 
2715     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2716     if (!PredTerm || !PredTerm->isUnconditional())
2717       continue;
2718 
2719     UnfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
2720     return true;
2721   }
2722   return false;
2723 }
2724 
2725 /// TryToUnfoldSelect - Look for blocks of the form
2726 /// bb1:
2727 ///   %a = select
2728 ///   br bb2
2729 ///
2730 /// bb2:
2731 ///   %p = phi [%a, %bb1] ...
2732 ///   %c = icmp %p
2733 ///   br i1 %c
2734 ///
2735 /// And expand the select into a branch structure if one of its arms allows %c
2736 /// to be folded. This later enables threading from bb1 over bb2.
2737 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2738   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2739   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2740   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2741 
2742   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2743       CondLHS->getParent() != BB)
2744     return false;
2745 
2746   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2747     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2748     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2749 
2750     // Look if one of the incoming values is a select in the corresponding
2751     // predecessor.
2752     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2753       continue;
2754 
2755     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2756     if (!PredTerm || !PredTerm->isUnconditional())
2757       continue;
2758 
2759     // Now check if one of the select values would allow us to constant fold the
2760     // terminator in BB. We don't do the transform if both sides fold, those
2761     // cases will be threaded in any case.
2762     LazyValueInfo::Tristate LHSFolds =
2763         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2764                                 CondRHS, Pred, BB, CondCmp);
2765     LazyValueInfo::Tristate RHSFolds =
2766         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2767                                 CondRHS, Pred, BB, CondCmp);
2768     if ((LHSFolds != LazyValueInfo::Unknown ||
2769          RHSFolds != LazyValueInfo::Unknown) &&
2770         LHSFolds != RHSFolds) {
2771       UnfoldSelectInstr(Pred, BB, SI, CondLHS, I);
2772       return true;
2773     }
2774   }
2775   return false;
2776 }
2777 
2778 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2779 /// same BB in the form
2780 /// bb:
2781 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2782 ///   %s = select %p, trueval, falseval
2783 ///
2784 /// or
2785 ///
2786 /// bb:
2787 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2788 ///   %c = cmp %p, 0
2789 ///   %s = select %c, trueval, falseval
2790 ///
2791 /// And expand the select into a branch structure. This later enables
2792 /// jump-threading over bb in this pass.
2793 ///
2794 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2795 /// select if the associated PHI has at least one constant.  If the unfolded
2796 /// select is not jump-threaded, it will be folded again in the later
2797 /// optimizations.
2798 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2799   // This transform can introduce a UB (a conditional branch that depends on a
2800   // poison value) that was not present in the original program. See
2801   // @TryToUnfoldSelectInCurrBB test in test/Transforms/JumpThreading/select.ll.
2802   // Disable this transform under MemorySanitizer.
2803   // FIXME: either delete it or replace with a valid transform. This issue is
2804   // not limited to MemorySanitizer (but has only been observed as an MSan false
2805   // positive in practice so far).
2806   if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
2807     return false;
2808 
2809   // If threading this would thread across a loop header, don't thread the edge.
2810   // See the comments above FindLoopHeaders for justifications and caveats.
2811   if (LoopHeaders.count(BB))
2812     return false;
2813 
2814   for (BasicBlock::iterator BI = BB->begin();
2815        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2816     // Look for a Phi having at least one constant incoming value.
2817     if (llvm::all_of(PN->incoming_values(),
2818                      [](Value *V) { return !isa<ConstantInt>(V); }))
2819       continue;
2820 
2821     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2822       // Check if SI is in BB and use V as condition.
2823       if (SI->getParent() != BB)
2824         return false;
2825       Value *Cond = SI->getCondition();
2826       return (Cond && Cond == V && Cond->getType()->isIntegerTy(1));
2827     };
2828 
2829     SelectInst *SI = nullptr;
2830     for (Use &U : PN->uses()) {
2831       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2832         // Look for a ICmp in BB that compares PN with a constant and is the
2833         // condition of a Select.
2834         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2835             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2836           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2837             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2838               SI = SelectI;
2839               break;
2840             }
2841       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2842         // Look for a Select in BB that uses PN as condition.
2843         if (isUnfoldCandidate(SelectI, U.get())) {
2844           SI = SelectI;
2845           break;
2846         }
2847       }
2848     }
2849 
2850     if (!SI)
2851       continue;
2852     // Expand the select.
2853     Instruction *Term =
2854         SplitBlockAndInsertIfThen(SI->getCondition(), SI, false);
2855     BasicBlock *SplitBB = SI->getParent();
2856     BasicBlock *NewBB = Term->getParent();
2857     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2858     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2859     NewPN->addIncoming(SI->getFalseValue(), BB);
2860     SI->replaceAllUsesWith(NewPN);
2861     SI->eraseFromParent();
2862     // NewBB and SplitBB are newly created blocks which require insertion.
2863     std::vector<DominatorTree::UpdateType> Updates;
2864     Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2865     Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2866     Updates.push_back({DominatorTree::Insert, BB, NewBB});
2867     Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2868     // BB's successors were moved to SplitBB, update DTU accordingly.
2869     for (auto *Succ : successors(SplitBB)) {
2870       Updates.push_back({DominatorTree::Delete, BB, Succ});
2871       Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2872     }
2873     DTU->applyUpdatesPermissive(Updates);
2874     return true;
2875   }
2876   return false;
2877 }
2878 
2879 /// Try to propagate a guard from the current BB into one of its predecessors
2880 /// in case if another branch of execution implies that the condition of this
2881 /// guard is always true. Currently we only process the simplest case that
2882 /// looks like:
2883 ///
2884 /// Start:
2885 ///   %cond = ...
2886 ///   br i1 %cond, label %T1, label %F1
2887 /// T1:
2888 ///   br label %Merge
2889 /// F1:
2890 ///   br label %Merge
2891 /// Merge:
2892 ///   %condGuard = ...
2893 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2894 ///
2895 /// And cond either implies condGuard or !condGuard. In this case all the
2896 /// instructions before the guard can be duplicated in both branches, and the
2897 /// guard is then threaded to one of them.
2898 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) {
2899   using namespace PatternMatch;
2900 
2901   // We only want to deal with two predecessors.
2902   BasicBlock *Pred1, *Pred2;
2903   auto PI = pred_begin(BB), PE = pred_end(BB);
2904   if (PI == PE)
2905     return false;
2906   Pred1 = *PI++;
2907   if (PI == PE)
2908     return false;
2909   Pred2 = *PI++;
2910   if (PI != PE)
2911     return false;
2912   if (Pred1 == Pred2)
2913     return false;
2914 
2915   // Try to thread one of the guards of the block.
2916   // TODO: Look up deeper than to immediate predecessor?
2917   auto *Parent = Pred1->getSinglePredecessor();
2918   if (!Parent || Parent != Pred2->getSinglePredecessor())
2919     return false;
2920 
2921   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2922     for (auto &I : *BB)
2923       if (isGuard(&I) && ThreadGuard(BB, cast<IntrinsicInst>(&I), BI))
2924         return true;
2925 
2926   return false;
2927 }
2928 
2929 /// Try to propagate the guard from BB which is the lower block of a diamond
2930 /// to one of its branches, in case if diamond's condition implies guard's
2931 /// condition.
2932 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard,
2933                                     BranchInst *BI) {
2934   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
2935   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
2936   Value *GuardCond = Guard->getArgOperand(0);
2937   Value *BranchCond = BI->getCondition();
2938   BasicBlock *TrueDest = BI->getSuccessor(0);
2939   BasicBlock *FalseDest = BI->getSuccessor(1);
2940 
2941   auto &DL = BB->getModule()->getDataLayout();
2942   bool TrueDestIsSafe = false;
2943   bool FalseDestIsSafe = false;
2944 
2945   // True dest is safe if BranchCond => GuardCond.
2946   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
2947   if (Impl && *Impl)
2948     TrueDestIsSafe = true;
2949   else {
2950     // False dest is safe if !BranchCond => GuardCond.
2951     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
2952     if (Impl && *Impl)
2953       FalseDestIsSafe = true;
2954   }
2955 
2956   if (!TrueDestIsSafe && !FalseDestIsSafe)
2957     return false;
2958 
2959   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
2960   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
2961 
2962   ValueToValueMapTy UnguardedMapping, GuardedMapping;
2963   Instruction *AfterGuard = Guard->getNextNode();
2964   unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
2965   if (Cost > BBDupThreshold)
2966     return false;
2967   // Duplicate all instructions before the guard and the guard itself to the
2968   // branch where implication is not proved.
2969   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
2970       BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
2971   assert(GuardedBlock && "Could not create the guarded block?");
2972   // Duplicate all instructions before the guard in the unguarded branch.
2973   // Since we have successfully duplicated the guarded block and this block
2974   // has fewer instructions, we expect it to succeed.
2975   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
2976       BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
2977   assert(UnguardedBlock && "Could not create the unguarded block?");
2978   LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
2979                     << GuardedBlock->getName() << "\n");
2980   // Some instructions before the guard may still have uses. For them, we need
2981   // to create Phi nodes merging their copies in both guarded and unguarded
2982   // branches. Those instructions that have no uses can be just removed.
2983   SmallVector<Instruction *, 4> ToRemove;
2984   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
2985     if (!isa<PHINode>(&*BI))
2986       ToRemove.push_back(&*BI);
2987 
2988   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
2989   assert(InsertionPoint && "Empty block?");
2990   // Substitute with Phis & remove.
2991   for (auto *Inst : reverse(ToRemove)) {
2992     if (!Inst->use_empty()) {
2993       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
2994       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
2995       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
2996       NewPN->insertBefore(InsertionPoint);
2997       Inst->replaceAllUsesWith(NewPN);
2998     }
2999     Inst->eraseFromParent();
3000   }
3001   return true;
3002 }
3003