1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Jump Threading pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Scalar/JumpThreading.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/CFG.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/DomTreeUpdater.h" 28 #include "llvm/Analysis/GlobalsModRef.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/LazyValueInfo.h" 32 #include "llvm/Analysis/Loads.h" 33 #include "llvm/Analysis/LoopInfo.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/InstrTypes.h" 45 #include "llvm/IR/Instruction.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/MDBuilder.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/PassManager.h" 54 #include "llvm/IR/PatternMatch.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/Use.h" 57 #include "llvm/IR/User.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/InitializePasses.h" 60 #include "llvm/Pass.h" 61 #include "llvm/Support/BlockFrequency.h" 62 #include "llvm/Support/BranchProbability.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Transforms/Scalar.h" 68 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 69 #include "llvm/Transforms/Utils/Cloning.h" 70 #include "llvm/Transforms/Utils/Local.h" 71 #include "llvm/Transforms/Utils/SSAUpdater.h" 72 #include "llvm/Transforms/Utils/ValueMapper.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstddef> 76 #include <cstdint> 77 #include <iterator> 78 #include <memory> 79 #include <utility> 80 81 using namespace llvm; 82 using namespace jumpthreading; 83 84 #define DEBUG_TYPE "jump-threading" 85 86 STATISTIC(NumThreads, "Number of jumps threaded"); 87 STATISTIC(NumFolds, "Number of terminators folded"); 88 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 89 90 static cl::opt<unsigned> 91 BBDuplicateThreshold("jump-threading-threshold", 92 cl::desc("Max block size to duplicate for jump threading"), 93 cl::init(6), cl::Hidden); 94 95 static cl::opt<unsigned> 96 ImplicationSearchThreshold( 97 "jump-threading-implication-search-threshold", 98 cl::desc("The number of predecessors to search for a stronger " 99 "condition to use to thread over a weaker condition"), 100 cl::init(3), cl::Hidden); 101 102 static cl::opt<bool> PrintLVIAfterJumpThreading( 103 "print-lvi-after-jump-threading", 104 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false), 105 cl::Hidden); 106 107 static cl::opt<bool> ThreadAcrossLoopHeaders( 108 "jump-threading-across-loop-headers", 109 cl::desc("Allow JumpThreading to thread across loop headers, for testing"), 110 cl::init(false), cl::Hidden); 111 112 113 namespace { 114 115 /// This pass performs 'jump threading', which looks at blocks that have 116 /// multiple predecessors and multiple successors. If one or more of the 117 /// predecessors of the block can be proven to always jump to one of the 118 /// successors, we forward the edge from the predecessor to the successor by 119 /// duplicating the contents of this block. 120 /// 121 /// An example of when this can occur is code like this: 122 /// 123 /// if () { ... 124 /// X = 4; 125 /// } 126 /// if (X < 3) { 127 /// 128 /// In this case, the unconditional branch at the end of the first if can be 129 /// revectored to the false side of the second if. 130 class JumpThreading : public FunctionPass { 131 JumpThreadingPass Impl; 132 133 public: 134 static char ID; // Pass identification 135 136 JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) { 137 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 138 } 139 140 bool runOnFunction(Function &F) override; 141 142 void getAnalysisUsage(AnalysisUsage &AU) const override { 143 AU.addRequired<DominatorTreeWrapperPass>(); 144 AU.addPreserved<DominatorTreeWrapperPass>(); 145 AU.addRequired<AAResultsWrapperPass>(); 146 AU.addRequired<LazyValueInfoWrapperPass>(); 147 AU.addPreserved<LazyValueInfoWrapperPass>(); 148 AU.addPreserved<GlobalsAAWrapperPass>(); 149 AU.addRequired<TargetLibraryInfoWrapperPass>(); 150 } 151 152 void releaseMemory() override { Impl.releaseMemory(); } 153 }; 154 155 } // end anonymous namespace 156 157 char JumpThreading::ID = 0; 158 159 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 160 "Jump Threading", false, false) 161 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 162 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 163 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 164 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 165 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 166 "Jump Threading", false, false) 167 168 // Public interface to the Jump Threading pass 169 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { 170 return new JumpThreading(Threshold); 171 } 172 173 JumpThreadingPass::JumpThreadingPass(int T) { 174 DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 175 } 176 177 // Update branch probability information according to conditional 178 // branch probability. This is usually made possible for cloned branches 179 // in inline instances by the context specific profile in the caller. 180 // For instance, 181 // 182 // [Block PredBB] 183 // [Branch PredBr] 184 // if (t) { 185 // Block A; 186 // } else { 187 // Block B; 188 // } 189 // 190 // [Block BB] 191 // cond = PN([true, %A], [..., %B]); // PHI node 192 // [Branch CondBr] 193 // if (cond) { 194 // ... // P(cond == true) = 1% 195 // } 196 // 197 // Here we know that when block A is taken, cond must be true, which means 198 // P(cond == true | A) = 1 199 // 200 // Given that P(cond == true) = P(cond == true | A) * P(A) + 201 // P(cond == true | B) * P(B) 202 // we get: 203 // P(cond == true ) = P(A) + P(cond == true | B) * P(B) 204 // 205 // which gives us: 206 // P(A) is less than P(cond == true), i.e. 207 // P(t == true) <= P(cond == true) 208 // 209 // In other words, if we know P(cond == true) is unlikely, we know 210 // that P(t == true) is also unlikely. 211 // 212 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) { 213 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 214 if (!CondBr) 215 return; 216 217 uint64_t TrueWeight, FalseWeight; 218 if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight)) 219 return; 220 221 if (TrueWeight + FalseWeight == 0) 222 // Zero branch_weights do not give a hint for getting branch probabilities. 223 // Technically it would result in division by zero denominator, which is 224 // TrueWeight + FalseWeight. 225 return; 226 227 // Returns the outgoing edge of the dominating predecessor block 228 // that leads to the PhiNode's incoming block: 229 auto GetPredOutEdge = 230 [](BasicBlock *IncomingBB, 231 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> { 232 auto *PredBB = IncomingBB; 233 auto *SuccBB = PhiBB; 234 SmallPtrSet<BasicBlock *, 16> Visited; 235 while (true) { 236 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 237 if (PredBr && PredBr->isConditional()) 238 return {PredBB, SuccBB}; 239 Visited.insert(PredBB); 240 auto *SinglePredBB = PredBB->getSinglePredecessor(); 241 if (!SinglePredBB) 242 return {nullptr, nullptr}; 243 244 // Stop searching when SinglePredBB has been visited. It means we see 245 // an unreachable loop. 246 if (Visited.count(SinglePredBB)) 247 return {nullptr, nullptr}; 248 249 SuccBB = PredBB; 250 PredBB = SinglePredBB; 251 } 252 }; 253 254 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 255 Value *PhiOpnd = PN->getIncomingValue(i); 256 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd); 257 258 if (!CI || !CI->getType()->isIntegerTy(1)) 259 continue; 260 261 BranchProbability BP = 262 (CI->isOne() ? BranchProbability::getBranchProbability( 263 TrueWeight, TrueWeight + FalseWeight) 264 : BranchProbability::getBranchProbability( 265 FalseWeight, TrueWeight + FalseWeight)); 266 267 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB); 268 if (!PredOutEdge.first) 269 return; 270 271 BasicBlock *PredBB = PredOutEdge.first; 272 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 273 if (!PredBr) 274 return; 275 276 uint64_t PredTrueWeight, PredFalseWeight; 277 // FIXME: We currently only set the profile data when it is missing. 278 // With PGO, this can be used to refine even existing profile data with 279 // context information. This needs to be done after more performance 280 // testing. 281 if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight)) 282 continue; 283 284 // We can not infer anything useful when BP >= 50%, because BP is the 285 // upper bound probability value. 286 if (BP >= BranchProbability(50, 100)) 287 continue; 288 289 SmallVector<uint32_t, 2> Weights; 290 if (PredBr->getSuccessor(0) == PredOutEdge.second) { 291 Weights.push_back(BP.getNumerator()); 292 Weights.push_back(BP.getCompl().getNumerator()); 293 } else { 294 Weights.push_back(BP.getCompl().getNumerator()); 295 Weights.push_back(BP.getNumerator()); 296 } 297 PredBr->setMetadata(LLVMContext::MD_prof, 298 MDBuilder(PredBr->getParent()->getContext()) 299 .createBranchWeights(Weights)); 300 } 301 } 302 303 /// runOnFunction - Toplevel algorithm. 304 bool JumpThreading::runOnFunction(Function &F) { 305 if (skipFunction(F)) 306 return false; 307 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 308 auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 309 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 310 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 311 DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy); 312 std::unique_ptr<BlockFrequencyInfo> BFI; 313 std::unique_ptr<BranchProbabilityInfo> BPI; 314 if (F.hasProfileData()) { 315 LoopInfo LI{DominatorTree(F)}; 316 BPI.reset(new BranchProbabilityInfo(F, LI, TLI)); 317 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 318 } 319 320 bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, F.hasProfileData(), 321 std::move(BFI), std::move(BPI)); 322 if (PrintLVIAfterJumpThreading) { 323 dbgs() << "LVI for function '" << F.getName() << "':\n"; 324 LVI->printLVI(F, DTU.getDomTree(), dbgs()); 325 } 326 return Changed; 327 } 328 329 PreservedAnalyses JumpThreadingPass::run(Function &F, 330 FunctionAnalysisManager &AM) { 331 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 332 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 333 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 334 auto &AA = AM.getResult<AAManager>(F); 335 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 336 337 std::unique_ptr<BlockFrequencyInfo> BFI; 338 std::unique_ptr<BranchProbabilityInfo> BPI; 339 if (F.hasProfileData()) { 340 LoopInfo LI{DominatorTree(F)}; 341 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI)); 342 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 343 } 344 345 bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, F.hasProfileData(), 346 std::move(BFI), std::move(BPI)); 347 348 if (!Changed) 349 return PreservedAnalyses::all(); 350 PreservedAnalyses PA; 351 PA.preserve<GlobalsAA>(); 352 PA.preserve<DominatorTreeAnalysis>(); 353 PA.preserve<LazyValueAnalysis>(); 354 return PA; 355 } 356 357 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 358 LazyValueInfo *LVI_, AliasAnalysis *AA_, 359 DomTreeUpdater *DTU_, bool HasProfileData_, 360 std::unique_ptr<BlockFrequencyInfo> BFI_, 361 std::unique_ptr<BranchProbabilityInfo> BPI_) { 362 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 363 TLI = TLI_; 364 LVI = LVI_; 365 AA = AA_; 366 DTU = DTU_; 367 BFI.reset(); 368 BPI.reset(); 369 // When profile data is available, we need to update edge weights after 370 // successful jump threading, which requires both BPI and BFI being available. 371 HasProfileData = HasProfileData_; 372 auto *GuardDecl = F.getParent()->getFunction( 373 Intrinsic::getName(Intrinsic::experimental_guard)); 374 HasGuards = GuardDecl && !GuardDecl->use_empty(); 375 if (HasProfileData) { 376 BPI = std::move(BPI_); 377 BFI = std::move(BFI_); 378 } 379 380 // Reduce the number of instructions duplicated when optimizing strictly for 381 // size. 382 if (BBDuplicateThreshold.getNumOccurrences()) 383 BBDupThreshold = BBDuplicateThreshold; 384 else if (F.hasFnAttribute(Attribute::MinSize)) 385 BBDupThreshold = 3; 386 else 387 BBDupThreshold = DefaultBBDupThreshold; 388 389 // JumpThreading must not processes blocks unreachable from entry. It's a 390 // waste of compute time and can potentially lead to hangs. 391 SmallPtrSet<BasicBlock *, 16> Unreachable; 392 assert(DTU && "DTU isn't passed into JumpThreading before using it."); 393 assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed."); 394 DominatorTree &DT = DTU->getDomTree(); 395 for (auto &BB : F) 396 if (!DT.isReachableFromEntry(&BB)) 397 Unreachable.insert(&BB); 398 399 if (!ThreadAcrossLoopHeaders) 400 FindLoopHeaders(F); 401 402 bool EverChanged = false; 403 bool Changed; 404 do { 405 Changed = false; 406 for (auto &BB : F) { 407 if (Unreachable.count(&BB)) 408 continue; 409 while (ProcessBlock(&BB)) // Thread all of the branches we can over BB. 410 Changed = true; 411 412 // Jump threading may have introduced redundant debug values into BB 413 // which should be removed. 414 if (Changed) 415 RemoveRedundantDbgInstrs(&BB); 416 417 // Stop processing BB if it's the entry or is now deleted. The following 418 // routines attempt to eliminate BB and locating a suitable replacement 419 // for the entry is non-trivial. 420 if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB)) 421 continue; 422 423 if (pred_empty(&BB)) { 424 // When ProcessBlock makes BB unreachable it doesn't bother to fix up 425 // the instructions in it. We must remove BB to prevent invalid IR. 426 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName() 427 << "' with terminator: " << *BB.getTerminator() 428 << '\n'); 429 LoopHeaders.erase(&BB); 430 LVI->eraseBlock(&BB); 431 DeleteDeadBlock(&BB, DTU); 432 Changed = true; 433 continue; 434 } 435 436 // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB 437 // is "almost empty", we attempt to merge BB with its sole successor. 438 auto *BI = dyn_cast<BranchInst>(BB.getTerminator()); 439 if (BI && BI->isUnconditional()) { 440 BasicBlock *Succ = BI->getSuccessor(0); 441 if ( 442 // The terminator must be the only non-phi instruction in BB. 443 BB.getFirstNonPHIOrDbg()->isTerminator() && 444 // Don't alter Loop headers and latches to ensure another pass can 445 // detect and transform nested loops later. 446 !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) && 447 TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) { 448 RemoveRedundantDbgInstrs(Succ); 449 // BB is valid for cleanup here because we passed in DTU. F remains 450 // BB's parent until a DTU->getDomTree() event. 451 LVI->eraseBlock(&BB); 452 Changed = true; 453 } 454 } 455 } 456 EverChanged |= Changed; 457 } while (Changed); 458 459 LoopHeaders.clear(); 460 return EverChanged; 461 } 462 463 // Replace uses of Cond with ToVal when safe to do so. If all uses are 464 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond 465 // because we may incorrectly replace uses when guards/assumes are uses of 466 // of `Cond` and we used the guards/assume to reason about the `Cond` value 467 // at the end of block. RAUW unconditionally replaces all uses 468 // including the guards/assumes themselves and the uses before the 469 // guard/assume. 470 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) { 471 assert(Cond->getType() == ToVal->getType()); 472 auto *BB = Cond->getParent(); 473 // We can unconditionally replace all uses in non-local blocks (i.e. uses 474 // strictly dominated by BB), since LVI information is true from the 475 // terminator of BB. 476 replaceNonLocalUsesWith(Cond, ToVal); 477 for (Instruction &I : reverse(*BB)) { 478 // Reached the Cond whose uses we are trying to replace, so there are no 479 // more uses. 480 if (&I == Cond) 481 break; 482 // We only replace uses in instructions that are guaranteed to reach the end 483 // of BB, where we know Cond is ToVal. 484 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 485 break; 486 I.replaceUsesOfWith(Cond, ToVal); 487 } 488 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) 489 Cond->eraseFromParent(); 490 } 491 492 /// Return the cost of duplicating a piece of this block from first non-phi 493 /// and before StopAt instruction to thread across it. Stop scanning the block 494 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 495 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB, 496 Instruction *StopAt, 497 unsigned Threshold) { 498 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 499 /// Ignore PHI nodes, these will be flattened when duplication happens. 500 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 501 502 // FIXME: THREADING will delete values that are just used to compute the 503 // branch, so they shouldn't count against the duplication cost. 504 505 unsigned Bonus = 0; 506 if (BB->getTerminator() == StopAt) { 507 // Threading through a switch statement is particularly profitable. If this 508 // block ends in a switch, decrease its cost to make it more likely to 509 // happen. 510 if (isa<SwitchInst>(StopAt)) 511 Bonus = 6; 512 513 // The same holds for indirect branches, but slightly more so. 514 if (isa<IndirectBrInst>(StopAt)) 515 Bonus = 8; 516 } 517 518 // Bump the threshold up so the early exit from the loop doesn't skip the 519 // terminator-based Size adjustment at the end. 520 Threshold += Bonus; 521 522 // Sum up the cost of each instruction until we get to the terminator. Don't 523 // include the terminator because the copy won't include it. 524 unsigned Size = 0; 525 for (; &*I != StopAt; ++I) { 526 527 // Stop scanning the block if we've reached the threshold. 528 if (Size > Threshold) 529 return Size; 530 531 // Debugger intrinsics don't incur code size. 532 if (isa<DbgInfoIntrinsic>(I)) continue; 533 534 // If this is a pointer->pointer bitcast, it is free. 535 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 536 continue; 537 538 // Bail out if this instruction gives back a token type, it is not possible 539 // to duplicate it if it is used outside this BB. 540 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 541 return ~0U; 542 543 // All other instructions count for at least one unit. 544 ++Size; 545 546 // Calls are more expensive. If they are non-intrinsic calls, we model them 547 // as having cost of 4. If they are a non-vector intrinsic, we model them 548 // as having cost of 2 total, and if they are a vector intrinsic, we model 549 // them as having cost 1. 550 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 551 if (CI->cannotDuplicate() || CI->isConvergent()) 552 // Blocks with NoDuplicate are modelled as having infinite cost, so they 553 // are never duplicated. 554 return ~0U; 555 else if (!isa<IntrinsicInst>(CI)) 556 Size += 3; 557 else if (!CI->getType()->isVectorTy()) 558 Size += 1; 559 } 560 } 561 562 return Size > Bonus ? Size - Bonus : 0; 563 } 564 565 /// FindLoopHeaders - We do not want jump threading to turn proper loop 566 /// structures into irreducible loops. Doing this breaks up the loop nesting 567 /// hierarchy and pessimizes later transformations. To prevent this from 568 /// happening, we first have to find the loop headers. Here we approximate this 569 /// by finding targets of backedges in the CFG. 570 /// 571 /// Note that there definitely are cases when we want to allow threading of 572 /// edges across a loop header. For example, threading a jump from outside the 573 /// loop (the preheader) to an exit block of the loop is definitely profitable. 574 /// It is also almost always profitable to thread backedges from within the loop 575 /// to exit blocks, and is often profitable to thread backedges to other blocks 576 /// within the loop (forming a nested loop). This simple analysis is not rich 577 /// enough to track all of these properties and keep it up-to-date as the CFG 578 /// mutates, so we don't allow any of these transformations. 579 void JumpThreadingPass::FindLoopHeaders(Function &F) { 580 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 581 FindFunctionBackedges(F, Edges); 582 583 for (const auto &Edge : Edges) 584 LoopHeaders.insert(Edge.second); 585 } 586 587 /// getKnownConstant - Helper method to determine if we can thread over a 588 /// terminator with the given value as its condition, and if so what value to 589 /// use for that. What kind of value this is depends on whether we want an 590 /// integer or a block address, but an undef is always accepted. 591 /// Returns null if Val is null or not an appropriate constant. 592 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 593 if (!Val) 594 return nullptr; 595 596 // Undef is "known" enough. 597 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 598 return U; 599 600 if (Preference == WantBlockAddress) 601 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 602 603 return dyn_cast<ConstantInt>(Val); 604 } 605 606 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 607 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 608 /// in any of our predecessors. If so, return the known list of value and pred 609 /// BB in the result vector. 610 /// 611 /// This returns true if there were any known values. 612 bool JumpThreadingPass::ComputeValueKnownInPredecessorsImpl( 613 Value *V, BasicBlock *BB, PredValueInfo &Result, 614 ConstantPreference Preference, DenseSet<Value *> &RecursionSet, 615 Instruction *CxtI) { 616 // This method walks up use-def chains recursively. Because of this, we could 617 // get into an infinite loop going around loops in the use-def chain. To 618 // prevent this, keep track of what (value, block) pairs we've already visited 619 // and terminate the search if we loop back to them 620 if (!RecursionSet.insert(V).second) 621 return false; 622 623 // If V is a constant, then it is known in all predecessors. 624 if (Constant *KC = getKnownConstant(V, Preference)) { 625 for (BasicBlock *Pred : predecessors(BB)) 626 Result.emplace_back(KC, Pred); 627 628 return !Result.empty(); 629 } 630 631 // If V is a non-instruction value, or an instruction in a different block, 632 // then it can't be derived from a PHI. 633 Instruction *I = dyn_cast<Instruction>(V); 634 if (!I || I->getParent() != BB) { 635 636 // Okay, if this is a live-in value, see if it has a known value at the end 637 // of any of our predecessors. 638 // 639 // FIXME: This should be an edge property, not a block end property. 640 /// TODO: Per PR2563, we could infer value range information about a 641 /// predecessor based on its terminator. 642 // 643 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 644 // "I" is a non-local compare-with-a-constant instruction. This would be 645 // able to handle value inequalities better, for example if the compare is 646 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 647 // Perhaps getConstantOnEdge should be smart enough to do this? 648 for (BasicBlock *P : predecessors(BB)) { 649 // If the value is known by LazyValueInfo to be a constant in a 650 // predecessor, use that information to try to thread this block. 651 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 652 if (Constant *KC = getKnownConstant(PredCst, Preference)) 653 Result.emplace_back(KC, P); 654 } 655 656 return !Result.empty(); 657 } 658 659 /// If I is a PHI node, then we know the incoming values for any constants. 660 if (PHINode *PN = dyn_cast<PHINode>(I)) { 661 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 662 Value *InVal = PN->getIncomingValue(i); 663 if (Constant *KC = getKnownConstant(InVal, Preference)) { 664 Result.emplace_back(KC, PN->getIncomingBlock(i)); 665 } else { 666 Constant *CI = LVI->getConstantOnEdge(InVal, 667 PN->getIncomingBlock(i), 668 BB, CxtI); 669 if (Constant *KC = getKnownConstant(CI, Preference)) 670 Result.emplace_back(KC, PN->getIncomingBlock(i)); 671 } 672 } 673 674 return !Result.empty(); 675 } 676 677 // Handle Cast instructions. Only see through Cast when the source operand is 678 // PHI, Cmp, or Freeze to save the compilation time. 679 if (CastInst *CI = dyn_cast<CastInst>(I)) { 680 Value *Source = CI->getOperand(0); 681 if (!isa<PHINode>(Source) && !isa<CmpInst>(Source) && 682 !isa<FreezeInst>(Source)) 683 return false; 684 ComputeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, 685 RecursionSet, CxtI); 686 if (Result.empty()) 687 return false; 688 689 // Convert the known values. 690 for (auto &R : Result) 691 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 692 693 return true; 694 } 695 696 // Handle Freeze instructions, in a manner similar to Cast. 697 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 698 Value *Source = FI->getOperand(0); 699 if (!isa<PHINode>(Source) && !isa<CmpInst>(Source) && 700 !isa<CastInst>(Source)) 701 return false; 702 ComputeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, 703 RecursionSet, CxtI); 704 705 erase_if(Result, [](auto &Pair) { 706 return !isGuaranteedNotToBeUndefOrPoison(Pair.first); 707 }); 708 709 return !Result.empty(); 710 } 711 712 // Handle some boolean conditions. 713 if (I->getType()->getPrimitiveSizeInBits() == 1) { 714 assert(Preference == WantInteger && "One-bit non-integer type?"); 715 // X | true -> true 716 // X & false -> false 717 if (I->getOpcode() == Instruction::Or || 718 I->getOpcode() == Instruction::And) { 719 PredValueInfoTy LHSVals, RHSVals; 720 721 ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, 722 WantInteger, RecursionSet, CxtI); 723 ComputeValueKnownInPredecessorsImpl(I->getOperand(1), BB, RHSVals, 724 WantInteger, RecursionSet, CxtI); 725 726 if (LHSVals.empty() && RHSVals.empty()) 727 return false; 728 729 ConstantInt *InterestingVal; 730 if (I->getOpcode() == Instruction::Or) 731 InterestingVal = ConstantInt::getTrue(I->getContext()); 732 else 733 InterestingVal = ConstantInt::getFalse(I->getContext()); 734 735 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 736 737 // Scan for the sentinel. If we find an undef, force it to the 738 // interesting value: x|undef -> true and x&undef -> false. 739 for (const auto &LHSVal : LHSVals) 740 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 741 Result.emplace_back(InterestingVal, LHSVal.second); 742 LHSKnownBBs.insert(LHSVal.second); 743 } 744 for (const auto &RHSVal : RHSVals) 745 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 746 // If we already inferred a value for this block on the LHS, don't 747 // re-add it. 748 if (!LHSKnownBBs.count(RHSVal.second)) 749 Result.emplace_back(InterestingVal, RHSVal.second); 750 } 751 752 return !Result.empty(); 753 } 754 755 // Handle the NOT form of XOR. 756 if (I->getOpcode() == Instruction::Xor && 757 isa<ConstantInt>(I->getOperand(1)) && 758 cast<ConstantInt>(I->getOperand(1))->isOne()) { 759 ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result, 760 WantInteger, RecursionSet, CxtI); 761 if (Result.empty()) 762 return false; 763 764 // Invert the known values. 765 for (auto &R : Result) 766 R.first = ConstantExpr::getNot(R.first); 767 768 return true; 769 } 770 771 // Try to simplify some other binary operator values. 772 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 773 assert(Preference != WantBlockAddress 774 && "A binary operator creating a block address?"); 775 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 776 PredValueInfoTy LHSVals; 777 ComputeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals, 778 WantInteger, RecursionSet, CxtI); 779 780 // Try to use constant folding to simplify the binary operator. 781 for (const auto &LHSVal : LHSVals) { 782 Constant *V = LHSVal.first; 783 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 784 785 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 786 Result.emplace_back(KC, LHSVal.second); 787 } 788 } 789 790 return !Result.empty(); 791 } 792 793 // Handle compare with phi operand, where the PHI is defined in this block. 794 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 795 assert(Preference == WantInteger && "Compares only produce integers"); 796 Type *CmpType = Cmp->getType(); 797 Value *CmpLHS = Cmp->getOperand(0); 798 Value *CmpRHS = Cmp->getOperand(1); 799 CmpInst::Predicate Pred = Cmp->getPredicate(); 800 801 PHINode *PN = dyn_cast<PHINode>(CmpLHS); 802 if (!PN) 803 PN = dyn_cast<PHINode>(CmpRHS); 804 if (PN && PN->getParent() == BB) { 805 const DataLayout &DL = PN->getModule()->getDataLayout(); 806 // We can do this simplification if any comparisons fold to true or false. 807 // See if any do. 808 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 809 BasicBlock *PredBB = PN->getIncomingBlock(i); 810 Value *LHS, *RHS; 811 if (PN == CmpLHS) { 812 LHS = PN->getIncomingValue(i); 813 RHS = CmpRHS->DoPHITranslation(BB, PredBB); 814 } else { 815 LHS = CmpLHS->DoPHITranslation(BB, PredBB); 816 RHS = PN->getIncomingValue(i); 817 } 818 Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL}); 819 if (!Res) { 820 if (!isa<Constant>(RHS)) 821 continue; 822 823 // getPredicateOnEdge call will make no sense if LHS is defined in BB. 824 auto LHSInst = dyn_cast<Instruction>(LHS); 825 if (LHSInst && LHSInst->getParent() == BB) 826 continue; 827 828 LazyValueInfo::Tristate 829 ResT = LVI->getPredicateOnEdge(Pred, LHS, 830 cast<Constant>(RHS), PredBB, BB, 831 CxtI ? CxtI : Cmp); 832 if (ResT == LazyValueInfo::Unknown) 833 continue; 834 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 835 } 836 837 if (Constant *KC = getKnownConstant(Res, WantInteger)) 838 Result.emplace_back(KC, PredBB); 839 } 840 841 return !Result.empty(); 842 } 843 844 // If comparing a live-in value against a constant, see if we know the 845 // live-in value on any predecessors. 846 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) { 847 Constant *CmpConst = cast<Constant>(CmpRHS); 848 849 if (!isa<Instruction>(CmpLHS) || 850 cast<Instruction>(CmpLHS)->getParent() != BB) { 851 for (BasicBlock *P : predecessors(BB)) { 852 // If the value is known by LazyValueInfo to be a constant in a 853 // predecessor, use that information to try to thread this block. 854 LazyValueInfo::Tristate Res = 855 LVI->getPredicateOnEdge(Pred, CmpLHS, 856 CmpConst, P, BB, CxtI ? CxtI : Cmp); 857 if (Res == LazyValueInfo::Unknown) 858 continue; 859 860 Constant *ResC = ConstantInt::get(CmpType, Res); 861 Result.emplace_back(ResC, P); 862 } 863 864 return !Result.empty(); 865 } 866 867 // InstCombine can fold some forms of constant range checks into 868 // (icmp (add (x, C1)), C2). See if we have we have such a thing with 869 // x as a live-in. 870 { 871 using namespace PatternMatch; 872 873 Value *AddLHS; 874 ConstantInt *AddConst; 875 if (isa<ConstantInt>(CmpConst) && 876 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { 877 if (!isa<Instruction>(AddLHS) || 878 cast<Instruction>(AddLHS)->getParent() != BB) { 879 for (BasicBlock *P : predecessors(BB)) { 880 // If the value is known by LazyValueInfo to be a ConstantRange in 881 // a predecessor, use that information to try to thread this 882 // block. 883 ConstantRange CR = LVI->getConstantRangeOnEdge( 884 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS)); 885 // Propagate the range through the addition. 886 CR = CR.add(AddConst->getValue()); 887 888 // Get the range where the compare returns true. 889 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( 890 Pred, cast<ConstantInt>(CmpConst)->getValue()); 891 892 Constant *ResC; 893 if (CmpRange.contains(CR)) 894 ResC = ConstantInt::getTrue(CmpType); 895 else if (CmpRange.inverse().contains(CR)) 896 ResC = ConstantInt::getFalse(CmpType); 897 else 898 continue; 899 900 Result.emplace_back(ResC, P); 901 } 902 903 return !Result.empty(); 904 } 905 } 906 } 907 908 // Try to find a constant value for the LHS of a comparison, 909 // and evaluate it statically if we can. 910 PredValueInfoTy LHSVals; 911 ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, 912 WantInteger, RecursionSet, CxtI); 913 914 for (const auto &LHSVal : LHSVals) { 915 Constant *V = LHSVal.first; 916 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst); 917 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 918 Result.emplace_back(KC, LHSVal.second); 919 } 920 921 return !Result.empty(); 922 } 923 } 924 925 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 926 // Handle select instructions where at least one operand is a known constant 927 // and we can figure out the condition value for any predecessor block. 928 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 929 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 930 PredValueInfoTy Conds; 931 if ((TrueVal || FalseVal) && 932 ComputeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds, 933 WantInteger, RecursionSet, CxtI)) { 934 for (auto &C : Conds) { 935 Constant *Cond = C.first; 936 937 // Figure out what value to use for the condition. 938 bool KnownCond; 939 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 940 // A known boolean. 941 KnownCond = CI->isOne(); 942 } else { 943 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 944 // Either operand will do, so be sure to pick the one that's a known 945 // constant. 946 // FIXME: Do this more cleverly if both values are known constants? 947 KnownCond = (TrueVal != nullptr); 948 } 949 950 // See if the select has a known constant value for this predecessor. 951 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 952 Result.emplace_back(Val, C.second); 953 } 954 955 return !Result.empty(); 956 } 957 } 958 959 // If all else fails, see if LVI can figure out a constant value for us. 960 Constant *CI = LVI->getConstant(V, BB, CxtI); 961 if (Constant *KC = getKnownConstant(CI, Preference)) { 962 for (BasicBlock *Pred : predecessors(BB)) 963 Result.emplace_back(KC, Pred); 964 } 965 966 return !Result.empty(); 967 } 968 969 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 970 /// in an undefined jump, decide which block is best to revector to. 971 /// 972 /// Since we can pick an arbitrary destination, we pick the successor with the 973 /// fewest predecessors. This should reduce the in-degree of the others. 974 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 975 Instruction *BBTerm = BB->getTerminator(); 976 unsigned MinSucc = 0; 977 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 978 // Compute the successor with the minimum number of predecessors. 979 unsigned MinNumPreds = pred_size(TestBB); 980 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 981 TestBB = BBTerm->getSuccessor(i); 982 unsigned NumPreds = pred_size(TestBB); 983 if (NumPreds < MinNumPreds) { 984 MinSucc = i; 985 MinNumPreds = NumPreds; 986 } 987 } 988 989 return MinSucc; 990 } 991 992 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 993 if (!BB->hasAddressTaken()) return false; 994 995 // If the block has its address taken, it may be a tree of dead constants 996 // hanging off of it. These shouldn't keep the block alive. 997 BlockAddress *BA = BlockAddress::get(BB); 998 BA->removeDeadConstantUsers(); 999 return !BA->use_empty(); 1000 } 1001 1002 /// ProcessBlock - If there are any predecessors whose control can be threaded 1003 /// through to a successor, transform them now. 1004 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) { 1005 // If the block is trivially dead, just return and let the caller nuke it. 1006 // This simplifies other transformations. 1007 if (DTU->isBBPendingDeletion(BB) || 1008 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock())) 1009 return false; 1010 1011 // If this block has a single predecessor, and if that pred has a single 1012 // successor, merge the blocks. This encourages recursive jump threading 1013 // because now the condition in this block can be threaded through 1014 // predecessors of our predecessor block. 1015 if (MaybeMergeBasicBlockIntoOnlyPred(BB)) 1016 return true; 1017 1018 if (TryToUnfoldSelectInCurrBB(BB)) 1019 return true; 1020 1021 // Look if we can propagate guards to predecessors. 1022 if (HasGuards && ProcessGuards(BB)) 1023 return true; 1024 1025 // What kind of constant we're looking for. 1026 ConstantPreference Preference = WantInteger; 1027 1028 // Look to see if the terminator is a conditional branch, switch or indirect 1029 // branch, if not we can't thread it. 1030 Value *Condition; 1031 Instruction *Terminator = BB->getTerminator(); 1032 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 1033 // Can't thread an unconditional jump. 1034 if (BI->isUnconditional()) return false; 1035 Condition = BI->getCondition(); 1036 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 1037 Condition = SI->getCondition(); 1038 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 1039 // Can't thread indirect branch with no successors. 1040 if (IB->getNumSuccessors() == 0) return false; 1041 Condition = IB->getAddress()->stripPointerCasts(); 1042 Preference = WantBlockAddress; 1043 } else { 1044 return false; // Must be an invoke or callbr. 1045 } 1046 1047 // Run constant folding to see if we can reduce the condition to a simple 1048 // constant. 1049 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 1050 Value *SimpleVal = 1051 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 1052 if (SimpleVal) { 1053 I->replaceAllUsesWith(SimpleVal); 1054 if (isInstructionTriviallyDead(I, TLI)) 1055 I->eraseFromParent(); 1056 Condition = SimpleVal; 1057 } 1058 } 1059 1060 // If the terminator is branching on an undef or freeze undef, we can pick any 1061 // of the successors to branch to. Let GetBestDestForJumpOnUndef decide. 1062 auto *FI = dyn_cast<FreezeInst>(Condition); 1063 if (isa<UndefValue>(Condition) || 1064 (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) { 1065 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 1066 std::vector<DominatorTree::UpdateType> Updates; 1067 1068 // Fold the branch/switch. 1069 Instruction *BBTerm = BB->getTerminator(); 1070 Updates.reserve(BBTerm->getNumSuccessors()); 1071 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1072 if (i == BestSucc) continue; 1073 BasicBlock *Succ = BBTerm->getSuccessor(i); 1074 Succ->removePredecessor(BB, true); 1075 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1076 } 1077 1078 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1079 << "' folding undef terminator: " << *BBTerm << '\n'); 1080 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 1081 BBTerm->eraseFromParent(); 1082 DTU->applyUpdatesPermissive(Updates); 1083 if (FI) 1084 FI->eraseFromParent(); 1085 return true; 1086 } 1087 1088 // If the terminator of this block is branching on a constant, simplify the 1089 // terminator to an unconditional branch. This can occur due to threading in 1090 // other blocks. 1091 if (getKnownConstant(Condition, Preference)) { 1092 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1093 << "' folding terminator: " << *BB->getTerminator() 1094 << '\n'); 1095 ++NumFolds; 1096 ConstantFoldTerminator(BB, true, nullptr, DTU); 1097 return true; 1098 } 1099 1100 Instruction *CondInst = dyn_cast<Instruction>(Condition); 1101 1102 // All the rest of our checks depend on the condition being an instruction. 1103 if (!CondInst) { 1104 // FIXME: Unify this with code below. 1105 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 1106 return true; 1107 return false; 1108 } 1109 1110 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 1111 // If we're branching on a conditional, LVI might be able to determine 1112 // it's value at the branch instruction. We only handle comparisons 1113 // against a constant at this time. 1114 // TODO: This should be extended to handle switches as well. 1115 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1116 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 1117 if (CondBr && CondConst) { 1118 // We should have returned as soon as we turn a conditional branch to 1119 // unconditional. Because its no longer interesting as far as jump 1120 // threading is concerned. 1121 assert(CondBr->isConditional() && "Threading on unconditional terminator"); 1122 1123 LazyValueInfo::Tristate Ret = 1124 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 1125 CondConst, CondBr); 1126 if (Ret != LazyValueInfo::Unknown) { 1127 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 1128 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 1129 BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove); 1130 ToRemoveSucc->removePredecessor(BB, true); 1131 BranchInst *UncondBr = 1132 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 1133 UncondBr->setDebugLoc(CondBr->getDebugLoc()); 1134 CondBr->eraseFromParent(); 1135 if (CondCmp->use_empty()) 1136 CondCmp->eraseFromParent(); 1137 // We can safely replace *some* uses of the CondInst if it has 1138 // exactly one value as returned by LVI. RAUW is incorrect in the 1139 // presence of guards and assumes, that have the `Cond` as the use. This 1140 // is because we use the guards/assume to reason about the `Cond` value 1141 // at the end of block, but RAUW unconditionally replaces all uses 1142 // including the guards/assumes themselves and the uses before the 1143 // guard/assume. 1144 else if (CondCmp->getParent() == BB) { 1145 auto *CI = Ret == LazyValueInfo::True ? 1146 ConstantInt::getTrue(CondCmp->getType()) : 1147 ConstantInt::getFalse(CondCmp->getType()); 1148 ReplaceFoldableUses(CondCmp, CI); 1149 } 1150 DTU->applyUpdatesPermissive( 1151 {{DominatorTree::Delete, BB, ToRemoveSucc}}); 1152 return true; 1153 } 1154 1155 // We did not manage to simplify this branch, try to see whether 1156 // CondCmp depends on a known phi-select pattern. 1157 if (TryToUnfoldSelect(CondCmp, BB)) 1158 return true; 1159 } 1160 } 1161 1162 if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 1163 if (TryToUnfoldSelect(SI, BB)) 1164 return true; 1165 1166 // Check for some cases that are worth simplifying. Right now we want to look 1167 // for loads that are used by a switch or by the condition for the branch. If 1168 // we see one, check to see if it's partially redundant. If so, insert a PHI 1169 // which can then be used to thread the values. 1170 Value *SimplifyValue = CondInst; 1171 1172 if (auto *FI = dyn_cast<FreezeInst>(SimplifyValue)) 1173 // Look into freeze's operand 1174 SimplifyValue = FI->getOperand(0); 1175 1176 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 1177 if (isa<Constant>(CondCmp->getOperand(1))) 1178 SimplifyValue = CondCmp->getOperand(0); 1179 1180 // TODO: There are other places where load PRE would be profitable, such as 1181 // more complex comparisons. 1182 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue)) 1183 if (SimplifyPartiallyRedundantLoad(LoadI)) 1184 return true; 1185 1186 // Before threading, try to propagate profile data backwards: 1187 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1188 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1189 updatePredecessorProfileMetadata(PN, BB); 1190 1191 // Handle a variety of cases where we are branching on something derived from 1192 // a PHI node in the current block. If we can prove that any predecessors 1193 // compute a predictable value based on a PHI node, thread those predecessors. 1194 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 1195 return true; 1196 1197 // If this is an otherwise-unfoldable branch on a phi node in the current 1198 // block, see if we can simplify. 1199 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1200 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1201 return ProcessBranchOnPHI(PN); 1202 1203 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 1204 if (CondInst->getOpcode() == Instruction::Xor && 1205 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1206 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 1207 1208 // Search for a stronger dominating condition that can be used to simplify a 1209 // conditional branch leaving BB. 1210 if (ProcessImpliedCondition(BB)) 1211 return true; 1212 1213 return false; 1214 } 1215 1216 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) { 1217 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1218 if (!BI || !BI->isConditional()) 1219 return false; 1220 1221 Value *Cond = BI->getCondition(); 1222 BasicBlock *CurrentBB = BB; 1223 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 1224 unsigned Iter = 0; 1225 1226 auto &DL = BB->getModule()->getDataLayout(); 1227 1228 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 1229 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 1230 if (!PBI || !PBI->isConditional()) 1231 return false; 1232 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 1233 return false; 1234 1235 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; 1236 Optional<bool> Implication = 1237 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); 1238 if (Implication) { 1239 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1); 1240 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0); 1241 RemoveSucc->removePredecessor(BB); 1242 BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI); 1243 UncondBI->setDebugLoc(BI->getDebugLoc()); 1244 BI->eraseFromParent(); 1245 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}}); 1246 return true; 1247 } 1248 CurrentBB = CurrentPred; 1249 CurrentPred = CurrentBB->getSinglePredecessor(); 1250 } 1251 1252 return false; 1253 } 1254 1255 /// Return true if Op is an instruction defined in the given block. 1256 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { 1257 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1258 if (OpInst->getParent() == BB) 1259 return true; 1260 return false; 1261 } 1262 1263 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially 1264 /// redundant load instruction, eliminate it by replacing it with a PHI node. 1265 /// This is an important optimization that encourages jump threading, and needs 1266 /// to be run interlaced with other jump threading tasks. 1267 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) { 1268 // Don't hack volatile and ordered loads. 1269 if (!LoadI->isUnordered()) return false; 1270 1271 // If the load is defined in a block with exactly one predecessor, it can't be 1272 // partially redundant. 1273 BasicBlock *LoadBB = LoadI->getParent(); 1274 if (LoadBB->getSinglePredecessor()) 1275 return false; 1276 1277 // If the load is defined in an EH pad, it can't be partially redundant, 1278 // because the edges between the invoke and the EH pad cannot have other 1279 // instructions between them. 1280 if (LoadBB->isEHPad()) 1281 return false; 1282 1283 Value *LoadedPtr = LoadI->getOperand(0); 1284 1285 // If the loaded operand is defined in the LoadBB and its not a phi, 1286 // it can't be available in predecessors. 1287 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) 1288 return false; 1289 1290 // Scan a few instructions up from the load, to see if it is obviously live at 1291 // the entry to its block. 1292 BasicBlock::iterator BBIt(LoadI); 1293 bool IsLoadCSE; 1294 if (Value *AvailableVal = FindAvailableLoadedValue( 1295 LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1296 // If the value of the load is locally available within the block, just use 1297 // it. This frequently occurs for reg2mem'd allocas. 1298 1299 if (IsLoadCSE) { 1300 LoadInst *NLoadI = cast<LoadInst>(AvailableVal); 1301 combineMetadataForCSE(NLoadI, LoadI, false); 1302 }; 1303 1304 // If the returned value is the load itself, replace with an undef. This can 1305 // only happen in dead loops. 1306 if (AvailableVal == LoadI) 1307 AvailableVal = UndefValue::get(LoadI->getType()); 1308 if (AvailableVal->getType() != LoadI->getType()) 1309 AvailableVal = CastInst::CreateBitOrPointerCast( 1310 AvailableVal, LoadI->getType(), "", LoadI); 1311 LoadI->replaceAllUsesWith(AvailableVal); 1312 LoadI->eraseFromParent(); 1313 return true; 1314 } 1315 1316 // Otherwise, if we scanned the whole block and got to the top of the block, 1317 // we know the block is locally transparent to the load. If not, something 1318 // might clobber its value. 1319 if (BBIt != LoadBB->begin()) 1320 return false; 1321 1322 // If all of the loads and stores that feed the value have the same AA tags, 1323 // then we can propagate them onto any newly inserted loads. 1324 AAMDNodes AATags; 1325 LoadI->getAAMetadata(AATags); 1326 1327 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1328 1329 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>; 1330 1331 AvailablePredsTy AvailablePreds; 1332 BasicBlock *OneUnavailablePred = nullptr; 1333 SmallVector<LoadInst*, 8> CSELoads; 1334 1335 // If we got here, the loaded value is transparent through to the start of the 1336 // block. Check to see if it is available in any of the predecessor blocks. 1337 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1338 // If we already scanned this predecessor, skip it. 1339 if (!PredsScanned.insert(PredBB).second) 1340 continue; 1341 1342 BBIt = PredBB->end(); 1343 unsigned NumScanedInst = 0; 1344 Value *PredAvailable = nullptr; 1345 // NOTE: We don't CSE load that is volatile or anything stronger than 1346 // unordered, that should have been checked when we entered the function. 1347 assert(LoadI->isUnordered() && 1348 "Attempting to CSE volatile or atomic loads"); 1349 // If this is a load on a phi pointer, phi-translate it and search 1350 // for available load/store to the pointer in predecessors. 1351 Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB); 1352 PredAvailable = FindAvailablePtrLoadStore( 1353 Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt, 1354 DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst); 1355 1356 // If PredBB has a single predecessor, continue scanning through the 1357 // single predecessor. 1358 BasicBlock *SinglePredBB = PredBB; 1359 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1360 NumScanedInst < DefMaxInstsToScan) { 1361 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1362 if (SinglePredBB) { 1363 BBIt = SinglePredBB->end(); 1364 PredAvailable = FindAvailablePtrLoadStore( 1365 Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt, 1366 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE, 1367 &NumScanedInst); 1368 } 1369 } 1370 1371 if (!PredAvailable) { 1372 OneUnavailablePred = PredBB; 1373 continue; 1374 } 1375 1376 if (IsLoadCSE) 1377 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1378 1379 // If so, this load is partially redundant. Remember this info so that we 1380 // can create a PHI node. 1381 AvailablePreds.emplace_back(PredBB, PredAvailable); 1382 } 1383 1384 // If the loaded value isn't available in any predecessor, it isn't partially 1385 // redundant. 1386 if (AvailablePreds.empty()) return false; 1387 1388 // Okay, the loaded value is available in at least one (and maybe all!) 1389 // predecessors. If the value is unavailable in more than one unique 1390 // predecessor, we want to insert a merge block for those common predecessors. 1391 // This ensures that we only have to insert one reload, thus not increasing 1392 // code size. 1393 BasicBlock *UnavailablePred = nullptr; 1394 1395 // If the value is unavailable in one of predecessors, we will end up 1396 // inserting a new instruction into them. It is only valid if all the 1397 // instructions before LoadI are guaranteed to pass execution to its 1398 // successor, or if LoadI is safe to speculate. 1399 // TODO: If this logic becomes more complex, and we will perform PRE insertion 1400 // farther than to a predecessor, we need to reuse the code from GVN's PRE. 1401 // It requires domination tree analysis, so for this simple case it is an 1402 // overkill. 1403 if (PredsScanned.size() != AvailablePreds.size() && 1404 !isSafeToSpeculativelyExecute(LoadI)) 1405 for (auto I = LoadBB->begin(); &*I != LoadI; ++I) 1406 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 1407 return false; 1408 1409 // If there is exactly one predecessor where the value is unavailable, the 1410 // already computed 'OneUnavailablePred' block is it. If it ends in an 1411 // unconditional branch, we know that it isn't a critical edge. 1412 if (PredsScanned.size() == AvailablePreds.size()+1 && 1413 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1414 UnavailablePred = OneUnavailablePred; 1415 } else if (PredsScanned.size() != AvailablePreds.size()) { 1416 // Otherwise, we had multiple unavailable predecessors or we had a critical 1417 // edge from the one. 1418 SmallVector<BasicBlock*, 8> PredsToSplit; 1419 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1420 1421 for (const auto &AvailablePred : AvailablePreds) 1422 AvailablePredSet.insert(AvailablePred.first); 1423 1424 // Add all the unavailable predecessors to the PredsToSplit list. 1425 for (BasicBlock *P : predecessors(LoadBB)) { 1426 // If the predecessor is an indirect goto, we can't split the edge. 1427 // Same for CallBr. 1428 if (isa<IndirectBrInst>(P->getTerminator()) || 1429 isa<CallBrInst>(P->getTerminator())) 1430 return false; 1431 1432 if (!AvailablePredSet.count(P)) 1433 PredsToSplit.push_back(P); 1434 } 1435 1436 // Split them out to their own block. 1437 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1438 } 1439 1440 // If the value isn't available in all predecessors, then there will be 1441 // exactly one where it isn't available. Insert a load on that edge and add 1442 // it to the AvailablePreds list. 1443 if (UnavailablePred) { 1444 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1445 "Can't handle critical edge here!"); 1446 LoadInst *NewVal = new LoadInst( 1447 LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), 1448 LoadI->getName() + ".pr", false, LoadI->getAlign(), 1449 LoadI->getOrdering(), LoadI->getSyncScopeID(), 1450 UnavailablePred->getTerminator()); 1451 NewVal->setDebugLoc(LoadI->getDebugLoc()); 1452 if (AATags) 1453 NewVal->setAAMetadata(AATags); 1454 1455 AvailablePreds.emplace_back(UnavailablePred, NewVal); 1456 } 1457 1458 // Now we know that each predecessor of this block has a value in 1459 // AvailablePreds, sort them for efficient access as we're walking the preds. 1460 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1461 1462 // Create a PHI node at the start of the block for the PRE'd load value. 1463 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1464 PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "", 1465 &LoadBB->front()); 1466 PN->takeName(LoadI); 1467 PN->setDebugLoc(LoadI->getDebugLoc()); 1468 1469 // Insert new entries into the PHI for each predecessor. A single block may 1470 // have multiple entries here. 1471 for (pred_iterator PI = PB; PI != PE; ++PI) { 1472 BasicBlock *P = *PI; 1473 AvailablePredsTy::iterator I = 1474 llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr)); 1475 1476 assert(I != AvailablePreds.end() && I->first == P && 1477 "Didn't find entry for predecessor!"); 1478 1479 // If we have an available predecessor but it requires casting, insert the 1480 // cast in the predecessor and use the cast. Note that we have to update the 1481 // AvailablePreds vector as we go so that all of the PHI entries for this 1482 // predecessor use the same bitcast. 1483 Value *&PredV = I->second; 1484 if (PredV->getType() != LoadI->getType()) 1485 PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "", 1486 P->getTerminator()); 1487 1488 PN->addIncoming(PredV, I->first); 1489 } 1490 1491 for (LoadInst *PredLoadI : CSELoads) { 1492 combineMetadataForCSE(PredLoadI, LoadI, true); 1493 } 1494 1495 LoadI->replaceAllUsesWith(PN); 1496 LoadI->eraseFromParent(); 1497 1498 return true; 1499 } 1500 1501 /// FindMostPopularDest - The specified list contains multiple possible 1502 /// threadable destinations. Pick the one that occurs the most frequently in 1503 /// the list. 1504 static BasicBlock * 1505 FindMostPopularDest(BasicBlock *BB, 1506 const SmallVectorImpl<std::pair<BasicBlock *, 1507 BasicBlock *>> &PredToDestList) { 1508 assert(!PredToDestList.empty()); 1509 1510 // Determine popularity. If there are multiple possible destinations, we 1511 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1512 // blocks with known and real destinations to threading undef. We'll handle 1513 // them later if interesting. 1514 MapVector<BasicBlock *, unsigned> DestPopularity; 1515 1516 // Populate DestPopularity with the successors in the order they appear in the 1517 // successor list. This way, we ensure determinism by iterating it in the 1518 // same order in std::max_element below. We map nullptr to 0 so that we can 1519 // return nullptr when PredToDestList contains nullptr only. 1520 DestPopularity[nullptr] = 0; 1521 for (auto *SuccBB : successors(BB)) 1522 DestPopularity[SuccBB] = 0; 1523 1524 for (const auto &PredToDest : PredToDestList) 1525 if (PredToDest.second) 1526 DestPopularity[PredToDest.second]++; 1527 1528 // Find the most popular dest. 1529 using VT = decltype(DestPopularity)::value_type; 1530 auto MostPopular = std::max_element( 1531 DestPopularity.begin(), DestPopularity.end(), 1532 [](const VT &L, const VT &R) { return L.second < R.second; }); 1533 1534 // Okay, we have finally picked the most popular destination. 1535 return MostPopular->first; 1536 } 1537 1538 // Try to evaluate the value of V when the control flows from PredPredBB to 1539 // BB->getSinglePredecessor() and then on to BB. 1540 Constant *JumpThreadingPass::EvaluateOnPredecessorEdge(BasicBlock *BB, 1541 BasicBlock *PredPredBB, 1542 Value *V) { 1543 BasicBlock *PredBB = BB->getSinglePredecessor(); 1544 assert(PredBB && "Expected a single predecessor"); 1545 1546 if (Constant *Cst = dyn_cast<Constant>(V)) { 1547 return Cst; 1548 } 1549 1550 // Consult LVI if V is not an instruction in BB or PredBB. 1551 Instruction *I = dyn_cast<Instruction>(V); 1552 if (!I || (I->getParent() != BB && I->getParent() != PredBB)) { 1553 return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr); 1554 } 1555 1556 // Look into a PHI argument. 1557 if (PHINode *PHI = dyn_cast<PHINode>(V)) { 1558 if (PHI->getParent() == PredBB) 1559 return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB)); 1560 return nullptr; 1561 } 1562 1563 // If we have a CmpInst, try to fold it for each incoming edge into PredBB. 1564 if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) { 1565 if (CondCmp->getParent() == BB) { 1566 Constant *Op0 = 1567 EvaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0)); 1568 Constant *Op1 = 1569 EvaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1)); 1570 if (Op0 && Op1) { 1571 return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1); 1572 } 1573 } 1574 return nullptr; 1575 } 1576 1577 return nullptr; 1578 } 1579 1580 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1581 ConstantPreference Preference, 1582 Instruction *CxtI) { 1583 // If threading this would thread across a loop header, don't even try to 1584 // thread the edge. 1585 if (LoopHeaders.count(BB)) 1586 return false; 1587 1588 PredValueInfoTy PredValues; 1589 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, 1590 CxtI)) { 1591 // We don't have known values in predecessors. See if we can thread through 1592 // BB and its sole predecessor. 1593 return MaybeThreadThroughTwoBasicBlocks(BB, Cond); 1594 } 1595 1596 assert(!PredValues.empty() && 1597 "ComputeValueKnownInPredecessors returned true with no values"); 1598 1599 LLVM_DEBUG(dbgs() << "IN BB: " << *BB; 1600 for (const auto &PredValue : PredValues) { 1601 dbgs() << " BB '" << BB->getName() 1602 << "': FOUND condition = " << *PredValue.first 1603 << " for pred '" << PredValue.second->getName() << "'.\n"; 1604 }); 1605 1606 // Decide what we want to thread through. Convert our list of known values to 1607 // a list of known destinations for each pred. This also discards duplicate 1608 // predecessors and keeps track of the undefined inputs (which are represented 1609 // as a null dest in the PredToDestList). 1610 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1611 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1612 1613 BasicBlock *OnlyDest = nullptr; 1614 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1615 Constant *OnlyVal = nullptr; 1616 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; 1617 1618 for (const auto &PredValue : PredValues) { 1619 BasicBlock *Pred = PredValue.second; 1620 if (!SeenPreds.insert(Pred).second) 1621 continue; // Duplicate predecessor entry. 1622 1623 Constant *Val = PredValue.first; 1624 1625 BasicBlock *DestBB; 1626 if (isa<UndefValue>(Val)) 1627 DestBB = nullptr; 1628 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 1629 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1630 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1631 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1632 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1633 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); 1634 } else { 1635 assert(isa<IndirectBrInst>(BB->getTerminator()) 1636 && "Unexpected terminator"); 1637 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); 1638 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1639 } 1640 1641 // If we have exactly one destination, remember it for efficiency below. 1642 if (PredToDestList.empty()) { 1643 OnlyDest = DestBB; 1644 OnlyVal = Val; 1645 } else { 1646 if (OnlyDest != DestBB) 1647 OnlyDest = MultipleDestSentinel; 1648 // It possible we have same destination, but different value, e.g. default 1649 // case in switchinst. 1650 if (Val != OnlyVal) 1651 OnlyVal = MultipleVal; 1652 } 1653 1654 // If the predecessor ends with an indirect goto, we can't change its 1655 // destination. Same for CallBr. 1656 if (isa<IndirectBrInst>(Pred->getTerminator()) || 1657 isa<CallBrInst>(Pred->getTerminator())) 1658 continue; 1659 1660 PredToDestList.emplace_back(Pred, DestBB); 1661 } 1662 1663 // If all edges were unthreadable, we fail. 1664 if (PredToDestList.empty()) 1665 return false; 1666 1667 // If all the predecessors go to a single known successor, we want to fold, 1668 // not thread. By doing so, we do not need to duplicate the current block and 1669 // also miss potential opportunities in case we dont/cant duplicate. 1670 if (OnlyDest && OnlyDest != MultipleDestSentinel) { 1671 if (BB->hasNPredecessors(PredToDestList.size())) { 1672 bool SeenFirstBranchToOnlyDest = false; 1673 std::vector <DominatorTree::UpdateType> Updates; 1674 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1); 1675 for (BasicBlock *SuccBB : successors(BB)) { 1676 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) { 1677 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. 1678 } else { 1679 SuccBB->removePredecessor(BB, true); // This is unreachable successor. 1680 Updates.push_back({DominatorTree::Delete, BB, SuccBB}); 1681 } 1682 } 1683 1684 // Finally update the terminator. 1685 Instruction *Term = BB->getTerminator(); 1686 BranchInst::Create(OnlyDest, Term); 1687 Term->eraseFromParent(); 1688 DTU->applyUpdatesPermissive(Updates); 1689 1690 // If the condition is now dead due to the removal of the old terminator, 1691 // erase it. 1692 if (auto *CondInst = dyn_cast<Instruction>(Cond)) { 1693 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) 1694 CondInst->eraseFromParent(); 1695 // We can safely replace *some* uses of the CondInst if it has 1696 // exactly one value as returned by LVI. RAUW is incorrect in the 1697 // presence of guards and assumes, that have the `Cond` as the use. This 1698 // is because we use the guards/assume to reason about the `Cond` value 1699 // at the end of block, but RAUW unconditionally replaces all uses 1700 // including the guards/assumes themselves and the uses before the 1701 // guard/assume. 1702 else if (OnlyVal && OnlyVal != MultipleVal && 1703 CondInst->getParent() == BB) 1704 ReplaceFoldableUses(CondInst, OnlyVal); 1705 } 1706 return true; 1707 } 1708 } 1709 1710 // Determine which is the most common successor. If we have many inputs and 1711 // this block is a switch, we want to start by threading the batch that goes 1712 // to the most popular destination first. If we only know about one 1713 // threadable destination (the common case) we can avoid this. 1714 BasicBlock *MostPopularDest = OnlyDest; 1715 1716 if (MostPopularDest == MultipleDestSentinel) { 1717 // Remove any loop headers from the Dest list, ThreadEdge conservatively 1718 // won't process them, but we might have other destination that are eligible 1719 // and we still want to process. 1720 erase_if(PredToDestList, 1721 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) { 1722 return LoopHeaders.count(PredToDest.second) != 0; 1723 }); 1724 1725 if (PredToDestList.empty()) 1726 return false; 1727 1728 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1729 } 1730 1731 // Now that we know what the most popular destination is, factor all 1732 // predecessors that will jump to it into a single predecessor. 1733 SmallVector<BasicBlock*, 16> PredsToFactor; 1734 for (const auto &PredToDest : PredToDestList) 1735 if (PredToDest.second == MostPopularDest) { 1736 BasicBlock *Pred = PredToDest.first; 1737 1738 // This predecessor may be a switch or something else that has multiple 1739 // edges to the block. Factor each of these edges by listing them 1740 // according to # occurrences in PredsToFactor. 1741 for (BasicBlock *Succ : successors(Pred)) 1742 if (Succ == BB) 1743 PredsToFactor.push_back(Pred); 1744 } 1745 1746 // If the threadable edges are branching on an undefined value, we get to pick 1747 // the destination that these predecessors should get to. 1748 if (!MostPopularDest) 1749 MostPopularDest = BB->getTerminator()-> 1750 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1751 1752 // Ok, try to thread it! 1753 return TryThreadEdge(BB, PredsToFactor, MostPopularDest); 1754 } 1755 1756 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1757 /// a PHI node in the current block. See if there are any simplifications we 1758 /// can do based on inputs to the phi node. 1759 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) { 1760 BasicBlock *BB = PN->getParent(); 1761 1762 // TODO: We could make use of this to do it once for blocks with common PHI 1763 // values. 1764 SmallVector<BasicBlock*, 1> PredBBs; 1765 PredBBs.resize(1); 1766 1767 // If any of the predecessor blocks end in an unconditional branch, we can 1768 // *duplicate* the conditional branch into that block in order to further 1769 // encourage jump threading and to eliminate cases where we have branch on a 1770 // phi of an icmp (branch on icmp is much better). 1771 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1772 BasicBlock *PredBB = PN->getIncomingBlock(i); 1773 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1774 if (PredBr->isUnconditional()) { 1775 PredBBs[0] = PredBB; 1776 // Try to duplicate BB into PredBB. 1777 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1778 return true; 1779 } 1780 } 1781 1782 return false; 1783 } 1784 1785 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1786 /// a xor instruction in the current block. See if there are any 1787 /// simplifications we can do based on inputs to the xor. 1788 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) { 1789 BasicBlock *BB = BO->getParent(); 1790 1791 // If either the LHS or RHS of the xor is a constant, don't do this 1792 // optimization. 1793 if (isa<ConstantInt>(BO->getOperand(0)) || 1794 isa<ConstantInt>(BO->getOperand(1))) 1795 return false; 1796 1797 // If the first instruction in BB isn't a phi, we won't be able to infer 1798 // anything special about any particular predecessor. 1799 if (!isa<PHINode>(BB->front())) 1800 return false; 1801 1802 // If this BB is a landing pad, we won't be able to split the edge into it. 1803 if (BB->isEHPad()) 1804 return false; 1805 1806 // If we have a xor as the branch input to this block, and we know that the 1807 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1808 // the condition into the predecessor and fix that value to true, saving some 1809 // logical ops on that path and encouraging other paths to simplify. 1810 // 1811 // This copies something like this: 1812 // 1813 // BB: 1814 // %X = phi i1 [1], [%X'] 1815 // %Y = icmp eq i32 %A, %B 1816 // %Z = xor i1 %X, %Y 1817 // br i1 %Z, ... 1818 // 1819 // Into: 1820 // BB': 1821 // %Y = icmp ne i32 %A, %B 1822 // br i1 %Y, ... 1823 1824 PredValueInfoTy XorOpValues; 1825 bool isLHS = true; 1826 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1827 WantInteger, BO)) { 1828 assert(XorOpValues.empty()); 1829 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1830 WantInteger, BO)) 1831 return false; 1832 isLHS = false; 1833 } 1834 1835 assert(!XorOpValues.empty() && 1836 "ComputeValueKnownInPredecessors returned true with no values"); 1837 1838 // Scan the information to see which is most popular: true or false. The 1839 // predecessors can be of the set true, false, or undef. 1840 unsigned NumTrue = 0, NumFalse = 0; 1841 for (const auto &XorOpValue : XorOpValues) { 1842 if (isa<UndefValue>(XorOpValue.first)) 1843 // Ignore undefs for the count. 1844 continue; 1845 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1846 ++NumFalse; 1847 else 1848 ++NumTrue; 1849 } 1850 1851 // Determine which value to split on, true, false, or undef if neither. 1852 ConstantInt *SplitVal = nullptr; 1853 if (NumTrue > NumFalse) 1854 SplitVal = ConstantInt::getTrue(BB->getContext()); 1855 else if (NumTrue != 0 || NumFalse != 0) 1856 SplitVal = ConstantInt::getFalse(BB->getContext()); 1857 1858 // Collect all of the blocks that this can be folded into so that we can 1859 // factor this once and clone it once. 1860 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1861 for (const auto &XorOpValue : XorOpValues) { 1862 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1863 continue; 1864 1865 BlocksToFoldInto.push_back(XorOpValue.second); 1866 } 1867 1868 // If we inferred a value for all of the predecessors, then duplication won't 1869 // help us. However, we can just replace the LHS or RHS with the constant. 1870 if (BlocksToFoldInto.size() == 1871 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1872 if (!SplitVal) { 1873 // If all preds provide undef, just nuke the xor, because it is undef too. 1874 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1875 BO->eraseFromParent(); 1876 } else if (SplitVal->isZero()) { 1877 // If all preds provide 0, replace the xor with the other input. 1878 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1879 BO->eraseFromParent(); 1880 } else { 1881 // If all preds provide 1, set the computed value to 1. 1882 BO->setOperand(!isLHS, SplitVal); 1883 } 1884 1885 return true; 1886 } 1887 1888 // If any of predecessors end with an indirect goto, we can't change its 1889 // destination. Same for CallBr. 1890 if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) { 1891 return isa<IndirectBrInst>(Pred->getTerminator()) || 1892 isa<CallBrInst>(Pred->getTerminator()); 1893 })) 1894 return false; 1895 1896 // Try to duplicate BB into PredBB. 1897 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1898 } 1899 1900 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1901 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1902 /// NewPred using the entries from OldPred (suitably mapped). 1903 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1904 BasicBlock *OldPred, 1905 BasicBlock *NewPred, 1906 DenseMap<Instruction*, Value*> &ValueMap) { 1907 for (PHINode &PN : PHIBB->phis()) { 1908 // Ok, we have a PHI node. Figure out what the incoming value was for the 1909 // DestBlock. 1910 Value *IV = PN.getIncomingValueForBlock(OldPred); 1911 1912 // Remap the value if necessary. 1913 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1914 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1915 if (I != ValueMap.end()) 1916 IV = I->second; 1917 } 1918 1919 PN.addIncoming(IV, NewPred); 1920 } 1921 } 1922 1923 /// Merge basic block BB into its sole predecessor if possible. 1924 bool JumpThreadingPass::MaybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) { 1925 BasicBlock *SinglePred = BB->getSinglePredecessor(); 1926 if (!SinglePred) 1927 return false; 1928 1929 const Instruction *TI = SinglePred->getTerminator(); 1930 if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 || 1931 SinglePred == BB || hasAddressTakenAndUsed(BB)) 1932 return false; 1933 1934 // If SinglePred was a loop header, BB becomes one. 1935 if (LoopHeaders.erase(SinglePred)) 1936 LoopHeaders.insert(BB); 1937 1938 LVI->eraseBlock(SinglePred); 1939 MergeBasicBlockIntoOnlyPred(BB, DTU); 1940 1941 // Now that BB is merged into SinglePred (i.e. SinglePred code followed by 1942 // BB code within one basic block `BB`), we need to invalidate the LVI 1943 // information associated with BB, because the LVI information need not be 1944 // true for all of BB after the merge. For example, 1945 // Before the merge, LVI info and code is as follows: 1946 // SinglePred: <LVI info1 for %p val> 1947 // %y = use of %p 1948 // call @exit() // need not transfer execution to successor. 1949 // assume(%p) // from this point on %p is true 1950 // br label %BB 1951 // BB: <LVI info2 for %p val, i.e. %p is true> 1952 // %x = use of %p 1953 // br label exit 1954 // 1955 // Note that this LVI info for blocks BB and SinglPred is correct for %p 1956 // (info2 and info1 respectively). After the merge and the deletion of the 1957 // LVI info1 for SinglePred. We have the following code: 1958 // BB: <LVI info2 for %p val> 1959 // %y = use of %p 1960 // call @exit() 1961 // assume(%p) 1962 // %x = use of %p <-- LVI info2 is correct from here onwards. 1963 // br label exit 1964 // LVI info2 for BB is incorrect at the beginning of BB. 1965 1966 // Invalidate LVI information for BB if the LVI is not provably true for 1967 // all of BB. 1968 if (!isGuaranteedToTransferExecutionToSuccessor(BB)) 1969 LVI->eraseBlock(BB); 1970 return true; 1971 } 1972 1973 /// Update the SSA form. NewBB contains instructions that are copied from BB. 1974 /// ValueMapping maps old values in BB to new ones in NewBB. 1975 void JumpThreadingPass::UpdateSSA( 1976 BasicBlock *BB, BasicBlock *NewBB, 1977 DenseMap<Instruction *, Value *> &ValueMapping) { 1978 // If there were values defined in BB that are used outside the block, then we 1979 // now have to update all uses of the value to use either the original value, 1980 // the cloned value, or some PHI derived value. This can require arbitrary 1981 // PHI insertion, of which we are prepared to do, clean these up now. 1982 SSAUpdater SSAUpdate; 1983 SmallVector<Use *, 16> UsesToRename; 1984 1985 for (Instruction &I : *BB) { 1986 // Scan all uses of this instruction to see if it is used outside of its 1987 // block, and if so, record them in UsesToRename. 1988 for (Use &U : I.uses()) { 1989 Instruction *User = cast<Instruction>(U.getUser()); 1990 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1991 if (UserPN->getIncomingBlock(U) == BB) 1992 continue; 1993 } else if (User->getParent() == BB) 1994 continue; 1995 1996 UsesToRename.push_back(&U); 1997 } 1998 1999 // If there are no uses outside the block, we're done with this instruction. 2000 if (UsesToRename.empty()) 2001 continue; 2002 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 2003 2004 // We found a use of I outside of BB. Rename all uses of I that are outside 2005 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 2006 // with the two values we know. 2007 SSAUpdate.Initialize(I.getType(), I.getName()); 2008 SSAUpdate.AddAvailableValue(BB, &I); 2009 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 2010 2011 while (!UsesToRename.empty()) 2012 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2013 LLVM_DEBUG(dbgs() << "\n"); 2014 } 2015 } 2016 2017 /// Clone instructions in range [BI, BE) to NewBB. For PHI nodes, we only clone 2018 /// arguments that come from PredBB. Return the map from the variables in the 2019 /// source basic block to the variables in the newly created basic block. 2020 DenseMap<Instruction *, Value *> 2021 JumpThreadingPass::CloneInstructions(BasicBlock::iterator BI, 2022 BasicBlock::iterator BE, BasicBlock *NewBB, 2023 BasicBlock *PredBB) { 2024 // We are going to have to map operands from the source basic block to the new 2025 // copy of the block 'NewBB'. If there are PHI nodes in the source basic 2026 // block, evaluate them to account for entry from PredBB. 2027 DenseMap<Instruction *, Value *> ValueMapping; 2028 2029 // Clone the phi nodes of the source basic block into NewBB. The resulting 2030 // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater 2031 // might need to rewrite the operand of the cloned phi. 2032 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2033 PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB); 2034 NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB); 2035 ValueMapping[PN] = NewPN; 2036 } 2037 2038 // Clone the non-phi instructions of the source basic block into NewBB, 2039 // keeping track of the mapping and using it to remap operands in the cloned 2040 // instructions. 2041 for (; BI != BE; ++BI) { 2042 Instruction *New = BI->clone(); 2043 New->setName(BI->getName()); 2044 NewBB->getInstList().push_back(New); 2045 ValueMapping[&*BI] = New; 2046 2047 // Remap operands to patch up intra-block references. 2048 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2049 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2050 DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst); 2051 if (I != ValueMapping.end()) 2052 New->setOperand(i, I->second); 2053 } 2054 } 2055 2056 return ValueMapping; 2057 } 2058 2059 /// Attempt to thread through two successive basic blocks. 2060 bool JumpThreadingPass::MaybeThreadThroughTwoBasicBlocks(BasicBlock *BB, 2061 Value *Cond) { 2062 // Consider: 2063 // 2064 // PredBB: 2065 // %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ] 2066 // %tobool = icmp eq i32 %cond, 0 2067 // br i1 %tobool, label %BB, label ... 2068 // 2069 // BB: 2070 // %cmp = icmp eq i32* %var, null 2071 // br i1 %cmp, label ..., label ... 2072 // 2073 // We don't know the value of %var at BB even if we know which incoming edge 2074 // we take to BB. However, once we duplicate PredBB for each of its incoming 2075 // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of 2076 // PredBB. Then we can thread edges PredBB1->BB and PredBB2->BB through BB. 2077 2078 // Require that BB end with a Branch for simplicity. 2079 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2080 if (!CondBr) 2081 return false; 2082 2083 // BB must have exactly one predecessor. 2084 BasicBlock *PredBB = BB->getSinglePredecessor(); 2085 if (!PredBB) 2086 return false; 2087 2088 // Require that PredBB end with a conditional Branch. If PredBB ends with an 2089 // unconditional branch, we should be merging PredBB and BB instead. For 2090 // simplicity, we don't deal with a switch. 2091 BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2092 if (!PredBBBranch || PredBBBranch->isUnconditional()) 2093 return false; 2094 2095 // If PredBB has exactly one incoming edge, we don't gain anything by copying 2096 // PredBB. 2097 if (PredBB->getSinglePredecessor()) 2098 return false; 2099 2100 // Don't thread through PredBB if it contains a successor edge to itself, in 2101 // which case we would infinite loop. Suppose we are threading an edge from 2102 // PredPredBB through PredBB and BB to SuccBB with PredBB containing a 2103 // successor edge to itself. If we allowed jump threading in this case, we 2104 // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread. Since 2105 // PredBB.thread has a successor edge to PredBB, we would immediately come up 2106 // with another jump threading opportunity from PredBB.thread through PredBB 2107 // and BB to SuccBB. This jump threading would repeatedly occur. That is, we 2108 // would keep peeling one iteration from PredBB. 2109 if (llvm::is_contained(successors(PredBB), PredBB)) 2110 return false; 2111 2112 // Don't thread across a loop header. 2113 if (LoopHeaders.count(PredBB)) 2114 return false; 2115 2116 // Avoid complication with duplicating EH pads. 2117 if (PredBB->isEHPad()) 2118 return false; 2119 2120 // Find a predecessor that we can thread. For simplicity, we only consider a 2121 // successor edge out of BB to which we thread exactly one incoming edge into 2122 // PredBB. 2123 unsigned ZeroCount = 0; 2124 unsigned OneCount = 0; 2125 BasicBlock *ZeroPred = nullptr; 2126 BasicBlock *OnePred = nullptr; 2127 for (BasicBlock *P : predecessors(PredBB)) { 2128 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>( 2129 EvaluateOnPredecessorEdge(BB, P, Cond))) { 2130 if (CI->isZero()) { 2131 ZeroCount++; 2132 ZeroPred = P; 2133 } else if (CI->isOne()) { 2134 OneCount++; 2135 OnePred = P; 2136 } 2137 } 2138 } 2139 2140 // Disregard complicated cases where we have to thread multiple edges. 2141 BasicBlock *PredPredBB; 2142 if (ZeroCount == 1) { 2143 PredPredBB = ZeroPred; 2144 } else if (OneCount == 1) { 2145 PredPredBB = OnePred; 2146 } else { 2147 return false; 2148 } 2149 2150 BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred); 2151 2152 // If threading to the same block as we come from, we would infinite loop. 2153 if (SuccBB == BB) { 2154 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 2155 << "' - would thread to self!\n"); 2156 return false; 2157 } 2158 2159 // If threading this would thread across a loop header, don't thread the edge. 2160 // See the comments above FindLoopHeaders for justifications and caveats. 2161 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 2162 LLVM_DEBUG({ 2163 bool BBIsHeader = LoopHeaders.count(BB); 2164 bool SuccIsHeader = LoopHeaders.count(SuccBB); 2165 dbgs() << " Not threading across " 2166 << (BBIsHeader ? "loop header BB '" : "block BB '") 2167 << BB->getName() << "' to dest " 2168 << (SuccIsHeader ? "loop header BB '" : "block BB '") 2169 << SuccBB->getName() 2170 << "' - it might create an irreducible loop!\n"; 2171 }); 2172 return false; 2173 } 2174 2175 // Compute the cost of duplicating BB and PredBB. 2176 unsigned BBCost = 2177 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2178 unsigned PredBBCost = getJumpThreadDuplicationCost( 2179 PredBB, PredBB->getTerminator(), BBDupThreshold); 2180 2181 // Give up if costs are too high. We need to check BBCost and PredBBCost 2182 // individually before checking their sum because getJumpThreadDuplicationCost 2183 // return (unsigned)~0 for those basic blocks that cannot be duplicated. 2184 if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold || 2185 BBCost + PredBBCost > BBDupThreshold) { 2186 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 2187 << "' - Cost is too high: " << PredBBCost 2188 << " for PredBB, " << BBCost << "for BB\n"); 2189 return false; 2190 } 2191 2192 // Now we are ready to duplicate PredBB. 2193 ThreadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB); 2194 return true; 2195 } 2196 2197 void JumpThreadingPass::ThreadThroughTwoBasicBlocks(BasicBlock *PredPredBB, 2198 BasicBlock *PredBB, 2199 BasicBlock *BB, 2200 BasicBlock *SuccBB) { 2201 LLVM_DEBUG(dbgs() << " Threading through '" << PredBB->getName() << "' and '" 2202 << BB->getName() << "'\n"); 2203 2204 BranchInst *CondBr = cast<BranchInst>(BB->getTerminator()); 2205 BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator()); 2206 2207 BasicBlock *NewBB = 2208 BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread", 2209 PredBB->getParent(), PredBB); 2210 NewBB->moveAfter(PredBB); 2211 2212 // Set the block frequency of NewBB. 2213 if (HasProfileData) { 2214 auto NewBBFreq = BFI->getBlockFreq(PredPredBB) * 2215 BPI->getEdgeProbability(PredPredBB, PredBB); 2216 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2217 } 2218 2219 // We are going to have to map operands from the original BB block to the new 2220 // copy of the block 'NewBB'. If there are PHI nodes in PredBB, evaluate them 2221 // to account for entry from PredPredBB. 2222 DenseMap<Instruction *, Value *> ValueMapping = 2223 CloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB); 2224 2225 // Update the terminator of PredPredBB to jump to NewBB instead of PredBB. 2226 // This eliminates predecessors from PredPredBB, which requires us to simplify 2227 // any PHI nodes in PredBB. 2228 Instruction *PredPredTerm = PredPredBB->getTerminator(); 2229 for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i) 2230 if (PredPredTerm->getSuccessor(i) == PredBB) { 2231 PredBB->removePredecessor(PredPredBB, true); 2232 PredPredTerm->setSuccessor(i, NewBB); 2233 } 2234 2235 AddPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB, 2236 ValueMapping); 2237 AddPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB, 2238 ValueMapping); 2239 2240 DTU->applyUpdatesPermissive( 2241 {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)}, 2242 {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)}, 2243 {DominatorTree::Insert, PredPredBB, NewBB}, 2244 {DominatorTree::Delete, PredPredBB, PredBB}}); 2245 2246 UpdateSSA(PredBB, NewBB, ValueMapping); 2247 2248 // Clean up things like PHI nodes with single operands, dead instructions, 2249 // etc. 2250 SimplifyInstructionsInBlock(NewBB, TLI); 2251 SimplifyInstructionsInBlock(PredBB, TLI); 2252 2253 SmallVector<BasicBlock *, 1> PredsToFactor; 2254 PredsToFactor.push_back(NewBB); 2255 ThreadEdge(BB, PredsToFactor, SuccBB); 2256 } 2257 2258 /// TryThreadEdge - Thread an edge if it's safe and profitable to do so. 2259 bool JumpThreadingPass::TryThreadEdge( 2260 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs, 2261 BasicBlock *SuccBB) { 2262 // If threading to the same block as we come from, we would infinite loop. 2263 if (SuccBB == BB) { 2264 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 2265 << "' - would thread to self!\n"); 2266 return false; 2267 } 2268 2269 // If threading this would thread across a loop header, don't thread the edge. 2270 // See the comments above FindLoopHeaders for justifications and caveats. 2271 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 2272 LLVM_DEBUG({ 2273 bool BBIsHeader = LoopHeaders.count(BB); 2274 bool SuccIsHeader = LoopHeaders.count(SuccBB); 2275 dbgs() << " Not threading across " 2276 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() 2277 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") 2278 << SuccBB->getName() << "' - it might create an irreducible loop!\n"; 2279 }); 2280 return false; 2281 } 2282 2283 unsigned JumpThreadCost = 2284 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2285 if (JumpThreadCost > BBDupThreshold) { 2286 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 2287 << "' - Cost is too high: " << JumpThreadCost << "\n"); 2288 return false; 2289 } 2290 2291 ThreadEdge(BB, PredBBs, SuccBB); 2292 return true; 2293 } 2294 2295 /// ThreadEdge - We have decided that it is safe and profitable to factor the 2296 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 2297 /// across BB. Transform the IR to reflect this change. 2298 void JumpThreadingPass::ThreadEdge(BasicBlock *BB, 2299 const SmallVectorImpl<BasicBlock *> &PredBBs, 2300 BasicBlock *SuccBB) { 2301 assert(SuccBB != BB && "Don't create an infinite loop"); 2302 2303 assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) && 2304 "Don't thread across loop headers"); 2305 2306 // And finally, do it! Start by factoring the predecessors if needed. 2307 BasicBlock *PredBB; 2308 if (PredBBs.size() == 1) 2309 PredBB = PredBBs[0]; 2310 else { 2311 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2312 << " common predecessors.\n"); 2313 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 2314 } 2315 2316 // And finally, do it! 2317 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() 2318 << "' to '" << SuccBB->getName() 2319 << ", across block:\n " << *BB << "\n"); 2320 2321 LVI->threadEdge(PredBB, BB, SuccBB); 2322 2323 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 2324 BB->getName()+".thread", 2325 BB->getParent(), BB); 2326 NewBB->moveAfter(PredBB); 2327 2328 // Set the block frequency of NewBB. 2329 if (HasProfileData) { 2330 auto NewBBFreq = 2331 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 2332 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2333 } 2334 2335 // Copy all the instructions from BB to NewBB except the terminator. 2336 DenseMap<Instruction *, Value *> ValueMapping = 2337 CloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB); 2338 2339 // We didn't copy the terminator from BB over to NewBB, because there is now 2340 // an unconditional jump to SuccBB. Insert the unconditional jump. 2341 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 2342 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 2343 2344 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 2345 // PHI nodes for NewBB now. 2346 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 2347 2348 // Update the terminator of PredBB to jump to NewBB instead of BB. This 2349 // eliminates predecessors from BB, which requires us to simplify any PHI 2350 // nodes in BB. 2351 Instruction *PredTerm = PredBB->getTerminator(); 2352 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 2353 if (PredTerm->getSuccessor(i) == BB) { 2354 BB->removePredecessor(PredBB, true); 2355 PredTerm->setSuccessor(i, NewBB); 2356 } 2357 2358 // Enqueue required DT updates. 2359 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB}, 2360 {DominatorTree::Insert, PredBB, NewBB}, 2361 {DominatorTree::Delete, PredBB, BB}}); 2362 2363 UpdateSSA(BB, NewBB, ValueMapping); 2364 2365 // At this point, the IR is fully up to date and consistent. Do a quick scan 2366 // over the new instructions and zap any that are constants or dead. This 2367 // frequently happens because of phi translation. 2368 SimplifyInstructionsInBlock(NewBB, TLI); 2369 2370 // Update the edge weight from BB to SuccBB, which should be less than before. 2371 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 2372 2373 // Threaded an edge! 2374 ++NumThreads; 2375 } 2376 2377 /// Create a new basic block that will be the predecessor of BB and successor of 2378 /// all blocks in Preds. When profile data is available, update the frequency of 2379 /// this new block. 2380 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB, 2381 ArrayRef<BasicBlock *> Preds, 2382 const char *Suffix) { 2383 SmallVector<BasicBlock *, 2> NewBBs; 2384 2385 // Collect the frequencies of all predecessors of BB, which will be used to 2386 // update the edge weight of the result of splitting predecessors. 2387 DenseMap<BasicBlock *, BlockFrequency> FreqMap; 2388 if (HasProfileData) 2389 for (auto Pred : Preds) 2390 FreqMap.insert(std::make_pair( 2391 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB))); 2392 2393 // In the case when BB is a LandingPad block we create 2 new predecessors 2394 // instead of just one. 2395 if (BB->isLandingPad()) { 2396 std::string NewName = std::string(Suffix) + ".split-lp"; 2397 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs); 2398 } else { 2399 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix)); 2400 } 2401 2402 std::vector<DominatorTree::UpdateType> Updates; 2403 Updates.reserve((2 * Preds.size()) + NewBBs.size()); 2404 for (auto NewBB : NewBBs) { 2405 BlockFrequency NewBBFreq(0); 2406 Updates.push_back({DominatorTree::Insert, NewBB, BB}); 2407 for (auto Pred : predecessors(NewBB)) { 2408 Updates.push_back({DominatorTree::Delete, Pred, BB}); 2409 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 2410 if (HasProfileData) // Update frequencies between Pred -> NewBB. 2411 NewBBFreq += FreqMap.lookup(Pred); 2412 } 2413 if (HasProfileData) // Apply the summed frequency to NewBB. 2414 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2415 } 2416 2417 DTU->applyUpdatesPermissive(Updates); 2418 return NewBBs[0]; 2419 } 2420 2421 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 2422 const Instruction *TI = BB->getTerminator(); 2423 assert(TI->getNumSuccessors() > 1 && "not a split"); 2424 2425 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 2426 if (!WeightsNode) 2427 return false; 2428 2429 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0)); 2430 if (MDName->getString() != "branch_weights") 2431 return false; 2432 2433 // Ensure there are weights for all of the successors. Note that the first 2434 // operand to the metadata node is a name, not a weight. 2435 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1; 2436 } 2437 2438 /// Update the block frequency of BB and branch weight and the metadata on the 2439 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 2440 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 2441 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 2442 BasicBlock *BB, 2443 BasicBlock *NewBB, 2444 BasicBlock *SuccBB) { 2445 if (!HasProfileData) 2446 return; 2447 2448 assert(BFI && BPI && "BFI & BPI should have been created here"); 2449 2450 // As the edge from PredBB to BB is deleted, we have to update the block 2451 // frequency of BB. 2452 auto BBOrigFreq = BFI->getBlockFreq(BB); 2453 auto NewBBFreq = BFI->getBlockFreq(NewBB); 2454 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 2455 auto BBNewFreq = BBOrigFreq - NewBBFreq; 2456 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 2457 2458 // Collect updated outgoing edges' frequencies from BB and use them to update 2459 // edge probabilities. 2460 SmallVector<uint64_t, 4> BBSuccFreq; 2461 for (BasicBlock *Succ : successors(BB)) { 2462 auto SuccFreq = (Succ == SuccBB) 2463 ? BB2SuccBBFreq - NewBBFreq 2464 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 2465 BBSuccFreq.push_back(SuccFreq.getFrequency()); 2466 } 2467 2468 uint64_t MaxBBSuccFreq = 2469 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 2470 2471 SmallVector<BranchProbability, 4> BBSuccProbs; 2472 if (MaxBBSuccFreq == 0) 2473 BBSuccProbs.assign(BBSuccFreq.size(), 2474 {1, static_cast<unsigned>(BBSuccFreq.size())}); 2475 else { 2476 for (uint64_t Freq : BBSuccFreq) 2477 BBSuccProbs.push_back( 2478 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 2479 // Normalize edge probabilities so that they sum up to one. 2480 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 2481 BBSuccProbs.end()); 2482 } 2483 2484 // Update edge probabilities in BPI. 2485 BPI->setEdgeProbability(BB, BBSuccProbs); 2486 2487 // Update the profile metadata as well. 2488 // 2489 // Don't do this if the profile of the transformed blocks was statically 2490 // estimated. (This could occur despite the function having an entry 2491 // frequency in completely cold parts of the CFG.) 2492 // 2493 // In this case we don't want to suggest to subsequent passes that the 2494 // calculated weights are fully consistent. Consider this graph: 2495 // 2496 // check_1 2497 // 50% / | 2498 // eq_1 | 50% 2499 // \ | 2500 // check_2 2501 // 50% / | 2502 // eq_2 | 50% 2503 // \ | 2504 // check_3 2505 // 50% / | 2506 // eq_3 | 50% 2507 // \ | 2508 // 2509 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 2510 // the overall probabilities are inconsistent; the total probability that the 2511 // value is either 1, 2 or 3 is 150%. 2512 // 2513 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 2514 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 2515 // the loop exit edge. Then based solely on static estimation we would assume 2516 // the loop was extremely hot. 2517 // 2518 // FIXME this locally as well so that BPI and BFI are consistent as well. We 2519 // shouldn't make edges extremely likely or unlikely based solely on static 2520 // estimation. 2521 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { 2522 SmallVector<uint32_t, 4> Weights; 2523 for (auto Prob : BBSuccProbs) 2524 Weights.push_back(Prob.getNumerator()); 2525 2526 auto TI = BB->getTerminator(); 2527 TI->setMetadata( 2528 LLVMContext::MD_prof, 2529 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 2530 } 2531 } 2532 2533 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 2534 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 2535 /// If we can duplicate the contents of BB up into PredBB do so now, this 2536 /// improves the odds that the branch will be on an analyzable instruction like 2537 /// a compare. 2538 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred( 2539 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 2540 assert(!PredBBs.empty() && "Can't handle an empty set"); 2541 2542 // If BB is a loop header, then duplicating this block outside the loop would 2543 // cause us to transform this into an irreducible loop, don't do this. 2544 // See the comments above FindLoopHeaders for justifications and caveats. 2545 if (LoopHeaders.count(BB)) { 2546 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 2547 << "' into predecessor block '" << PredBBs[0]->getName() 2548 << "' - it might create an irreducible loop!\n"); 2549 return false; 2550 } 2551 2552 unsigned DuplicationCost = 2553 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2554 if (DuplicationCost > BBDupThreshold) { 2555 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 2556 << "' - Cost is too high: " << DuplicationCost << "\n"); 2557 return false; 2558 } 2559 2560 // And finally, do it! Start by factoring the predecessors if needed. 2561 std::vector<DominatorTree::UpdateType> Updates; 2562 BasicBlock *PredBB; 2563 if (PredBBs.size() == 1) 2564 PredBB = PredBBs[0]; 2565 else { 2566 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2567 << " common predecessors.\n"); 2568 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 2569 } 2570 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2571 2572 // Okay, we decided to do this! Clone all the instructions in BB onto the end 2573 // of PredBB. 2574 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName() 2575 << "' into end of '" << PredBB->getName() 2576 << "' to eliminate branch on phi. Cost: " 2577 << DuplicationCost << " block is:" << *BB << "\n"); 2578 2579 // Unless PredBB ends with an unconditional branch, split the edge so that we 2580 // can just clone the bits from BB into the end of the new PredBB. 2581 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2582 2583 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 2584 BasicBlock *OldPredBB = PredBB; 2585 PredBB = SplitEdge(OldPredBB, BB); 2586 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB}); 2587 Updates.push_back({DominatorTree::Insert, PredBB, BB}); 2588 Updates.push_back({DominatorTree::Delete, OldPredBB, BB}); 2589 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 2590 } 2591 2592 // We are going to have to map operands from the original BB block into the 2593 // PredBB block. Evaluate PHI nodes in BB. 2594 DenseMap<Instruction*, Value*> ValueMapping; 2595 2596 BasicBlock::iterator BI = BB->begin(); 2597 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 2598 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 2599 // Clone the non-phi instructions of BB into PredBB, keeping track of the 2600 // mapping and using it to remap operands in the cloned instructions. 2601 for (; BI != BB->end(); ++BI) { 2602 Instruction *New = BI->clone(); 2603 2604 // Remap operands to patch up intra-block references. 2605 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2606 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2607 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 2608 if (I != ValueMapping.end()) 2609 New->setOperand(i, I->second); 2610 } 2611 2612 // If this instruction can be simplified after the operands are updated, 2613 // just use the simplified value instead. This frequently happens due to 2614 // phi translation. 2615 if (Value *IV = SimplifyInstruction( 2616 New, 2617 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) { 2618 ValueMapping[&*BI] = IV; 2619 if (!New->mayHaveSideEffects()) { 2620 New->deleteValue(); 2621 New = nullptr; 2622 } 2623 } else { 2624 ValueMapping[&*BI] = New; 2625 } 2626 if (New) { 2627 // Otherwise, insert the new instruction into the block. 2628 New->setName(BI->getName()); 2629 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 2630 // Update Dominance from simplified New instruction operands. 2631 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2632 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i))) 2633 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB}); 2634 } 2635 } 2636 2637 // Check to see if the targets of the branch had PHI nodes. If so, we need to 2638 // add entries to the PHI nodes for branch from PredBB now. 2639 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 2640 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 2641 ValueMapping); 2642 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 2643 ValueMapping); 2644 2645 UpdateSSA(BB, PredBB, ValueMapping); 2646 2647 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 2648 // that we nuked. 2649 BB->removePredecessor(PredBB, true); 2650 2651 // Remove the unconditional branch at the end of the PredBB block. 2652 OldPredBranch->eraseFromParent(); 2653 DTU->applyUpdatesPermissive(Updates); 2654 2655 ++NumDupes; 2656 return true; 2657 } 2658 2659 // Pred is a predecessor of BB with an unconditional branch to BB. SI is 2660 // a Select instruction in Pred. BB has other predecessors and SI is used in 2661 // a PHI node in BB. SI has no other use. 2662 // A new basic block, NewBB, is created and SI is converted to compare and 2663 // conditional branch. SI is erased from parent. 2664 void JumpThreadingPass::UnfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB, 2665 SelectInst *SI, PHINode *SIUse, 2666 unsigned Idx) { 2667 // Expand the select. 2668 // 2669 // Pred -- 2670 // | v 2671 // | NewBB 2672 // | | 2673 // |----- 2674 // v 2675 // BB 2676 BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator()); 2677 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 2678 BB->getParent(), BB); 2679 // Move the unconditional branch to NewBB. 2680 PredTerm->removeFromParent(); 2681 NewBB->getInstList().insert(NewBB->end(), PredTerm); 2682 // Create a conditional branch and update PHI nodes. 2683 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 2684 SIUse->setIncomingValue(Idx, SI->getFalseValue()); 2685 SIUse->addIncoming(SI->getTrueValue(), NewBB); 2686 2687 // The select is now dead. 2688 SI->eraseFromParent(); 2689 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB}, 2690 {DominatorTree::Insert, Pred, NewBB}}); 2691 2692 // Update any other PHI nodes in BB. 2693 for (BasicBlock::iterator BI = BB->begin(); 2694 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 2695 if (Phi != SIUse) 2696 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 2697 } 2698 2699 bool JumpThreadingPass::TryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) { 2700 PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition()); 2701 2702 if (!CondPHI || CondPHI->getParent() != BB) 2703 return false; 2704 2705 for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) { 2706 BasicBlock *Pred = CondPHI->getIncomingBlock(I); 2707 SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I)); 2708 2709 // The second and third condition can be potentially relaxed. Currently 2710 // the conditions help to simplify the code and allow us to reuse existing 2711 // code, developed for TryToUnfoldSelect(CmpInst *, BasicBlock *) 2712 if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse()) 2713 continue; 2714 2715 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2716 if (!PredTerm || !PredTerm->isUnconditional()) 2717 continue; 2718 2719 UnfoldSelectInstr(Pred, BB, PredSI, CondPHI, I); 2720 return true; 2721 } 2722 return false; 2723 } 2724 2725 /// TryToUnfoldSelect - Look for blocks of the form 2726 /// bb1: 2727 /// %a = select 2728 /// br bb2 2729 /// 2730 /// bb2: 2731 /// %p = phi [%a, %bb1] ... 2732 /// %c = icmp %p 2733 /// br i1 %c 2734 /// 2735 /// And expand the select into a branch structure if one of its arms allows %c 2736 /// to be folded. This later enables threading from bb1 over bb2. 2737 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 2738 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2739 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 2740 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 2741 2742 if (!CondBr || !CondBr->isConditional() || !CondLHS || 2743 CondLHS->getParent() != BB) 2744 return false; 2745 2746 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 2747 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 2748 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 2749 2750 // Look if one of the incoming values is a select in the corresponding 2751 // predecessor. 2752 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 2753 continue; 2754 2755 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2756 if (!PredTerm || !PredTerm->isUnconditional()) 2757 continue; 2758 2759 // Now check if one of the select values would allow us to constant fold the 2760 // terminator in BB. We don't do the transform if both sides fold, those 2761 // cases will be threaded in any case. 2762 LazyValueInfo::Tristate LHSFolds = 2763 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 2764 CondRHS, Pred, BB, CondCmp); 2765 LazyValueInfo::Tristate RHSFolds = 2766 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 2767 CondRHS, Pred, BB, CondCmp); 2768 if ((LHSFolds != LazyValueInfo::Unknown || 2769 RHSFolds != LazyValueInfo::Unknown) && 2770 LHSFolds != RHSFolds) { 2771 UnfoldSelectInstr(Pred, BB, SI, CondLHS, I); 2772 return true; 2773 } 2774 } 2775 return false; 2776 } 2777 2778 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the 2779 /// same BB in the form 2780 /// bb: 2781 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 2782 /// %s = select %p, trueval, falseval 2783 /// 2784 /// or 2785 /// 2786 /// bb: 2787 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... 2788 /// %c = cmp %p, 0 2789 /// %s = select %c, trueval, falseval 2790 /// 2791 /// And expand the select into a branch structure. This later enables 2792 /// jump-threading over bb in this pass. 2793 /// 2794 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2795 /// select if the associated PHI has at least one constant. If the unfolded 2796 /// select is not jump-threaded, it will be folded again in the later 2797 /// optimizations. 2798 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2799 // This transform can introduce a UB (a conditional branch that depends on a 2800 // poison value) that was not present in the original program. See 2801 // @TryToUnfoldSelectInCurrBB test in test/Transforms/JumpThreading/select.ll. 2802 // Disable this transform under MemorySanitizer. 2803 // FIXME: either delete it or replace with a valid transform. This issue is 2804 // not limited to MemorySanitizer (but has only been observed as an MSan false 2805 // positive in practice so far). 2806 if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 2807 return false; 2808 2809 // If threading this would thread across a loop header, don't thread the edge. 2810 // See the comments above FindLoopHeaders for justifications and caveats. 2811 if (LoopHeaders.count(BB)) 2812 return false; 2813 2814 for (BasicBlock::iterator BI = BB->begin(); 2815 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2816 // Look for a Phi having at least one constant incoming value. 2817 if (llvm::all_of(PN->incoming_values(), 2818 [](Value *V) { return !isa<ConstantInt>(V); })) 2819 continue; 2820 2821 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { 2822 // Check if SI is in BB and use V as condition. 2823 if (SI->getParent() != BB) 2824 return false; 2825 Value *Cond = SI->getCondition(); 2826 return (Cond && Cond == V && Cond->getType()->isIntegerTy(1)); 2827 }; 2828 2829 SelectInst *SI = nullptr; 2830 for (Use &U : PN->uses()) { 2831 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2832 // Look for a ICmp in BB that compares PN with a constant and is the 2833 // condition of a Select. 2834 if (Cmp->getParent() == BB && Cmp->hasOneUse() && 2835 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo()))) 2836 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back())) 2837 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { 2838 SI = SelectI; 2839 break; 2840 } 2841 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) { 2842 // Look for a Select in BB that uses PN as condition. 2843 if (isUnfoldCandidate(SelectI, U.get())) { 2844 SI = SelectI; 2845 break; 2846 } 2847 } 2848 } 2849 2850 if (!SI) 2851 continue; 2852 // Expand the select. 2853 Instruction *Term = 2854 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false); 2855 BasicBlock *SplitBB = SI->getParent(); 2856 BasicBlock *NewBB = Term->getParent(); 2857 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 2858 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2859 NewPN->addIncoming(SI->getFalseValue(), BB); 2860 SI->replaceAllUsesWith(NewPN); 2861 SI->eraseFromParent(); 2862 // NewBB and SplitBB are newly created blocks which require insertion. 2863 std::vector<DominatorTree::UpdateType> Updates; 2864 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3); 2865 Updates.push_back({DominatorTree::Insert, BB, SplitBB}); 2866 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 2867 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB}); 2868 // BB's successors were moved to SplitBB, update DTU accordingly. 2869 for (auto *Succ : successors(SplitBB)) { 2870 Updates.push_back({DominatorTree::Delete, BB, Succ}); 2871 Updates.push_back({DominatorTree::Insert, SplitBB, Succ}); 2872 } 2873 DTU->applyUpdatesPermissive(Updates); 2874 return true; 2875 } 2876 return false; 2877 } 2878 2879 /// Try to propagate a guard from the current BB into one of its predecessors 2880 /// in case if another branch of execution implies that the condition of this 2881 /// guard is always true. Currently we only process the simplest case that 2882 /// looks like: 2883 /// 2884 /// Start: 2885 /// %cond = ... 2886 /// br i1 %cond, label %T1, label %F1 2887 /// T1: 2888 /// br label %Merge 2889 /// F1: 2890 /// br label %Merge 2891 /// Merge: 2892 /// %condGuard = ... 2893 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 2894 /// 2895 /// And cond either implies condGuard or !condGuard. In this case all the 2896 /// instructions before the guard can be duplicated in both branches, and the 2897 /// guard is then threaded to one of them. 2898 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) { 2899 using namespace PatternMatch; 2900 2901 // We only want to deal with two predecessors. 2902 BasicBlock *Pred1, *Pred2; 2903 auto PI = pred_begin(BB), PE = pred_end(BB); 2904 if (PI == PE) 2905 return false; 2906 Pred1 = *PI++; 2907 if (PI == PE) 2908 return false; 2909 Pred2 = *PI++; 2910 if (PI != PE) 2911 return false; 2912 if (Pred1 == Pred2) 2913 return false; 2914 2915 // Try to thread one of the guards of the block. 2916 // TODO: Look up deeper than to immediate predecessor? 2917 auto *Parent = Pred1->getSinglePredecessor(); 2918 if (!Parent || Parent != Pred2->getSinglePredecessor()) 2919 return false; 2920 2921 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 2922 for (auto &I : *BB) 2923 if (isGuard(&I) && ThreadGuard(BB, cast<IntrinsicInst>(&I), BI)) 2924 return true; 2925 2926 return false; 2927 } 2928 2929 /// Try to propagate the guard from BB which is the lower block of a diamond 2930 /// to one of its branches, in case if diamond's condition implies guard's 2931 /// condition. 2932 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard, 2933 BranchInst *BI) { 2934 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 2935 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 2936 Value *GuardCond = Guard->getArgOperand(0); 2937 Value *BranchCond = BI->getCondition(); 2938 BasicBlock *TrueDest = BI->getSuccessor(0); 2939 BasicBlock *FalseDest = BI->getSuccessor(1); 2940 2941 auto &DL = BB->getModule()->getDataLayout(); 2942 bool TrueDestIsSafe = false; 2943 bool FalseDestIsSafe = false; 2944 2945 // True dest is safe if BranchCond => GuardCond. 2946 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 2947 if (Impl && *Impl) 2948 TrueDestIsSafe = true; 2949 else { 2950 // False dest is safe if !BranchCond => GuardCond. 2951 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); 2952 if (Impl && *Impl) 2953 FalseDestIsSafe = true; 2954 } 2955 2956 if (!TrueDestIsSafe && !FalseDestIsSafe) 2957 return false; 2958 2959 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 2960 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 2961 2962 ValueToValueMapTy UnguardedMapping, GuardedMapping; 2963 Instruction *AfterGuard = Guard->getNextNode(); 2964 unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold); 2965 if (Cost > BBDupThreshold) 2966 return false; 2967 // Duplicate all instructions before the guard and the guard itself to the 2968 // branch where implication is not proved. 2969 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween( 2970 BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU); 2971 assert(GuardedBlock && "Could not create the guarded block?"); 2972 // Duplicate all instructions before the guard in the unguarded branch. 2973 // Since we have successfully duplicated the guarded block and this block 2974 // has fewer instructions, we expect it to succeed. 2975 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween( 2976 BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU); 2977 assert(UnguardedBlock && "Could not create the unguarded block?"); 2978 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 2979 << GuardedBlock->getName() << "\n"); 2980 // Some instructions before the guard may still have uses. For them, we need 2981 // to create Phi nodes merging their copies in both guarded and unguarded 2982 // branches. Those instructions that have no uses can be just removed. 2983 SmallVector<Instruction *, 4> ToRemove; 2984 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 2985 if (!isa<PHINode>(&*BI)) 2986 ToRemove.push_back(&*BI); 2987 2988 Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); 2989 assert(InsertionPoint && "Empty block?"); 2990 // Substitute with Phis & remove. 2991 for (auto *Inst : reverse(ToRemove)) { 2992 if (!Inst->use_empty()) { 2993 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 2994 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 2995 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 2996 NewPN->insertBefore(InsertionPoint); 2997 Inst->replaceAllUsesWith(NewPN); 2998 } 2999 Inst->eraseFromParent(); 3000 } 3001 return true; 3002 } 3003