1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LazyValueInfo.h" 25 #include "llvm/Analysis/Loads.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/ValueHandle.h" 30 #include "llvm/Pass.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetLibraryInfo.h" 35 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 36 #include "llvm/Transforms/Utils/Local.h" 37 #include "llvm/Transforms/Utils/SSAUpdater.h" 38 using namespace llvm; 39 40 #define DEBUG_TYPE "jump-threading" 41 42 STATISTIC(NumThreads, "Number of jumps threaded"); 43 STATISTIC(NumFolds, "Number of terminators folded"); 44 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 45 46 static cl::opt<unsigned> 47 Threshold("jump-threading-threshold", 48 cl::desc("Max block size to duplicate for jump threading"), 49 cl::init(6), cl::Hidden); 50 51 namespace { 52 // These are at global scope so static functions can use them too. 53 typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo; 54 typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy; 55 56 // This is used to keep track of what kind of constant we're currently hoping 57 // to find. 58 enum ConstantPreference { 59 WantInteger, 60 WantBlockAddress 61 }; 62 63 /// This pass performs 'jump threading', which looks at blocks that have 64 /// multiple predecessors and multiple successors. If one or more of the 65 /// predecessors of the block can be proven to always jump to one of the 66 /// successors, we forward the edge from the predecessor to the successor by 67 /// duplicating the contents of this block. 68 /// 69 /// An example of when this can occur is code like this: 70 /// 71 /// if () { ... 72 /// X = 4; 73 /// } 74 /// if (X < 3) { 75 /// 76 /// In this case, the unconditional branch at the end of the first if can be 77 /// revectored to the false side of the second if. 78 /// 79 class JumpThreading : public FunctionPass { 80 const DataLayout *DL; 81 TargetLibraryInfo *TLI; 82 LazyValueInfo *LVI; 83 #ifdef NDEBUG 84 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 85 #else 86 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 87 #endif 88 DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet; 89 90 // RAII helper for updating the recursion stack. 91 struct RecursionSetRemover { 92 DenseSet<std::pair<Value*, BasicBlock*> > &TheSet; 93 std::pair<Value*, BasicBlock*> ThePair; 94 95 RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S, 96 std::pair<Value*, BasicBlock*> P) 97 : TheSet(S), ThePair(P) { } 98 99 ~RecursionSetRemover() { 100 TheSet.erase(ThePair); 101 } 102 }; 103 public: 104 static char ID; // Pass identification 105 JumpThreading() : FunctionPass(ID) { 106 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 107 } 108 109 bool runOnFunction(Function &F) override; 110 111 void getAnalysisUsage(AnalysisUsage &AU) const override { 112 AU.addRequired<LazyValueInfo>(); 113 AU.addPreserved<LazyValueInfo>(); 114 AU.addRequired<TargetLibraryInfo>(); 115 } 116 117 void FindLoopHeaders(Function &F); 118 bool ProcessBlock(BasicBlock *BB); 119 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 120 BasicBlock *SuccBB); 121 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 122 const SmallVectorImpl<BasicBlock *> &PredBBs); 123 124 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 125 PredValueInfo &Result, 126 ConstantPreference Preference); 127 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 128 ConstantPreference Preference); 129 130 bool ProcessBranchOnPHI(PHINode *PN); 131 bool ProcessBranchOnXOR(BinaryOperator *BO); 132 133 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 134 bool TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB); 135 }; 136 } 137 138 char JumpThreading::ID = 0; 139 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 140 "Jump Threading", false, false) 141 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo) 142 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 143 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 144 "Jump Threading", false, false) 145 146 // Public interface to the Jump Threading pass 147 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); } 148 149 /// runOnFunction - Top level algorithm. 150 /// 151 bool JumpThreading::runOnFunction(Function &F) { 152 if (skipOptnoneFunction(F)) 153 return false; 154 155 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 156 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 157 DL = DLP ? &DLP->getDataLayout() : nullptr; 158 TLI = &getAnalysis<TargetLibraryInfo>(); 159 LVI = &getAnalysis<LazyValueInfo>(); 160 161 // Remove unreachable blocks from function as they may result in infinite 162 // loop. We do threading if we found something profitable. Jump threading a 163 // branch can create other opportunities. If these opportunities form a cycle 164 // i.e. if any jump treading is undoing previous threading in the path, then 165 // we will loop forever. We take care of this issue by not jump threading for 166 // back edges. This works for normal cases but not for unreachable blocks as 167 // they may have cycle with no back edge. 168 removeUnreachableBlocks(F); 169 170 FindLoopHeaders(F); 171 172 bool Changed, EverChanged = false; 173 do { 174 Changed = false; 175 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 176 BasicBlock *BB = I; 177 // Thread all of the branches we can over this block. 178 while (ProcessBlock(BB)) 179 Changed = true; 180 181 ++I; 182 183 // If the block is trivially dead, zap it. This eliminates the successor 184 // edges which simplifies the CFG. 185 if (pred_begin(BB) == pred_end(BB) && 186 BB != &BB->getParent()->getEntryBlock()) { 187 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 188 << "' with terminator: " << *BB->getTerminator() << '\n'); 189 LoopHeaders.erase(BB); 190 LVI->eraseBlock(BB); 191 DeleteDeadBlock(BB); 192 Changed = true; 193 continue; 194 } 195 196 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 197 198 // Can't thread an unconditional jump, but if the block is "almost 199 // empty", we can replace uses of it with uses of the successor and make 200 // this dead. 201 if (BI && BI->isUnconditional() && 202 BB != &BB->getParent()->getEntryBlock() && 203 // If the terminator is the only non-phi instruction, try to nuke it. 204 BB->getFirstNonPHIOrDbg()->isTerminator()) { 205 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 206 // block, we have to make sure it isn't in the LoopHeaders set. We 207 // reinsert afterward if needed. 208 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 209 BasicBlock *Succ = BI->getSuccessor(0); 210 211 // FIXME: It is always conservatively correct to drop the info 212 // for a block even if it doesn't get erased. This isn't totally 213 // awesome, but it allows us to use AssertingVH to prevent nasty 214 // dangling pointer issues within LazyValueInfo. 215 LVI->eraseBlock(BB); 216 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { 217 Changed = true; 218 // If we deleted BB and BB was the header of a loop, then the 219 // successor is now the header of the loop. 220 BB = Succ; 221 } 222 223 if (ErasedFromLoopHeaders) 224 LoopHeaders.insert(BB); 225 } 226 } 227 EverChanged |= Changed; 228 } while (Changed); 229 230 LoopHeaders.clear(); 231 return EverChanged; 232 } 233 234 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 235 /// thread across it. Stop scanning the block when passing the threshold. 236 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB, 237 unsigned Threshold) { 238 /// Ignore PHI nodes, these will be flattened when duplication happens. 239 BasicBlock::const_iterator I = BB->getFirstNonPHI(); 240 241 // FIXME: THREADING will delete values that are just used to compute the 242 // branch, so they shouldn't count against the duplication cost. 243 244 // Sum up the cost of each instruction until we get to the terminator. Don't 245 // include the terminator because the copy won't include it. 246 unsigned Size = 0; 247 for (; !isa<TerminatorInst>(I); ++I) { 248 249 // Stop scanning the block if we've reached the threshold. 250 if (Size > Threshold) 251 return Size; 252 253 // Debugger intrinsics don't incur code size. 254 if (isa<DbgInfoIntrinsic>(I)) continue; 255 256 // If this is a pointer->pointer bitcast, it is free. 257 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 258 continue; 259 260 // All other instructions count for at least one unit. 261 ++Size; 262 263 // Calls are more expensive. If they are non-intrinsic calls, we model them 264 // as having cost of 4. If they are a non-vector intrinsic, we model them 265 // as having cost of 2 total, and if they are a vector intrinsic, we model 266 // them as having cost 1. 267 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 268 if (CI->cannotDuplicate()) 269 // Blocks with NoDuplicate are modelled as having infinite cost, so they 270 // are never duplicated. 271 return ~0U; 272 else if (!isa<IntrinsicInst>(CI)) 273 Size += 3; 274 else if (!CI->getType()->isVectorTy()) 275 Size += 1; 276 } 277 } 278 279 // Threading through a switch statement is particularly profitable. If this 280 // block ends in a switch, decrease its cost to make it more likely to happen. 281 if (isa<SwitchInst>(I)) 282 Size = Size > 6 ? Size-6 : 0; 283 284 // The same holds for indirect branches, but slightly more so. 285 if (isa<IndirectBrInst>(I)) 286 Size = Size > 8 ? Size-8 : 0; 287 288 return Size; 289 } 290 291 /// FindLoopHeaders - We do not want jump threading to turn proper loop 292 /// structures into irreducible loops. Doing this breaks up the loop nesting 293 /// hierarchy and pessimizes later transformations. To prevent this from 294 /// happening, we first have to find the loop headers. Here we approximate this 295 /// by finding targets of backedges in the CFG. 296 /// 297 /// Note that there definitely are cases when we want to allow threading of 298 /// edges across a loop header. For example, threading a jump from outside the 299 /// loop (the preheader) to an exit block of the loop is definitely profitable. 300 /// It is also almost always profitable to thread backedges from within the loop 301 /// to exit blocks, and is often profitable to thread backedges to other blocks 302 /// within the loop (forming a nested loop). This simple analysis is not rich 303 /// enough to track all of these properties and keep it up-to-date as the CFG 304 /// mutates, so we don't allow any of these transformations. 305 /// 306 void JumpThreading::FindLoopHeaders(Function &F) { 307 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 308 FindFunctionBackedges(F, Edges); 309 310 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 311 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 312 } 313 314 /// getKnownConstant - Helper method to determine if we can thread over a 315 /// terminator with the given value as its condition, and if so what value to 316 /// use for that. What kind of value this is depends on whether we want an 317 /// integer or a block address, but an undef is always accepted. 318 /// Returns null if Val is null or not an appropriate constant. 319 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 320 if (!Val) 321 return nullptr; 322 323 // Undef is "known" enough. 324 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 325 return U; 326 327 if (Preference == WantBlockAddress) 328 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 329 330 return dyn_cast<ConstantInt>(Val); 331 } 332 333 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 334 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 335 /// in any of our predecessors. If so, return the known list of value and pred 336 /// BB in the result vector. 337 /// 338 /// This returns true if there were any known values. 339 /// 340 bool JumpThreading:: 341 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result, 342 ConstantPreference Preference) { 343 // This method walks up use-def chains recursively. Because of this, we could 344 // get into an infinite loop going around loops in the use-def chain. To 345 // prevent this, keep track of what (value, block) pairs we've already visited 346 // and terminate the search if we loop back to them 347 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 348 return false; 349 350 // An RAII help to remove this pair from the recursion set once the recursion 351 // stack pops back out again. 352 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 353 354 // If V is a constant, then it is known in all predecessors. 355 if (Constant *KC = getKnownConstant(V, Preference)) { 356 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 357 Result.push_back(std::make_pair(KC, *PI)); 358 359 return true; 360 } 361 362 // If V is a non-instruction value, or an instruction in a different block, 363 // then it can't be derived from a PHI. 364 Instruction *I = dyn_cast<Instruction>(V); 365 if (!I || I->getParent() != BB) { 366 367 // Okay, if this is a live-in value, see if it has a known value at the end 368 // of any of our predecessors. 369 // 370 // FIXME: This should be an edge property, not a block end property. 371 /// TODO: Per PR2563, we could infer value range information about a 372 /// predecessor based on its terminator. 373 // 374 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 375 // "I" is a non-local compare-with-a-constant instruction. This would be 376 // able to handle value inequalities better, for example if the compare is 377 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 378 // Perhaps getConstantOnEdge should be smart enough to do this? 379 380 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 381 BasicBlock *P = *PI; 382 // If the value is known by LazyValueInfo to be a constant in a 383 // predecessor, use that information to try to thread this block. 384 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB); 385 if (Constant *KC = getKnownConstant(PredCst, Preference)) 386 Result.push_back(std::make_pair(KC, P)); 387 } 388 389 return !Result.empty(); 390 } 391 392 /// If I is a PHI node, then we know the incoming values for any constants. 393 if (PHINode *PN = dyn_cast<PHINode>(I)) { 394 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 395 Value *InVal = PN->getIncomingValue(i); 396 if (Constant *KC = getKnownConstant(InVal, Preference)) { 397 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 398 } else { 399 Constant *CI = LVI->getConstantOnEdge(InVal, 400 PN->getIncomingBlock(i), BB); 401 if (Constant *KC = getKnownConstant(CI, Preference)) 402 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 403 } 404 } 405 406 return !Result.empty(); 407 } 408 409 PredValueInfoTy LHSVals, RHSVals; 410 411 // Handle some boolean conditions. 412 if (I->getType()->getPrimitiveSizeInBits() == 1) { 413 assert(Preference == WantInteger && "One-bit non-integer type?"); 414 // X | true -> true 415 // X & false -> false 416 if (I->getOpcode() == Instruction::Or || 417 I->getOpcode() == Instruction::And) { 418 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 419 WantInteger); 420 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 421 WantInteger); 422 423 if (LHSVals.empty() && RHSVals.empty()) 424 return false; 425 426 ConstantInt *InterestingVal; 427 if (I->getOpcode() == Instruction::Or) 428 InterestingVal = ConstantInt::getTrue(I->getContext()); 429 else 430 InterestingVal = ConstantInt::getFalse(I->getContext()); 431 432 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 433 434 // Scan for the sentinel. If we find an undef, force it to the 435 // interesting value: x|undef -> true and x&undef -> false. 436 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 437 if (LHSVals[i].first == InterestingVal || 438 isa<UndefValue>(LHSVals[i].first)) { 439 Result.push_back(LHSVals[i]); 440 Result.back().first = InterestingVal; 441 LHSKnownBBs.insert(LHSVals[i].second); 442 } 443 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 444 if (RHSVals[i].first == InterestingVal || 445 isa<UndefValue>(RHSVals[i].first)) { 446 // If we already inferred a value for this block on the LHS, don't 447 // re-add it. 448 if (!LHSKnownBBs.count(RHSVals[i].second)) { 449 Result.push_back(RHSVals[i]); 450 Result.back().first = InterestingVal; 451 } 452 } 453 454 return !Result.empty(); 455 } 456 457 // Handle the NOT form of XOR. 458 if (I->getOpcode() == Instruction::Xor && 459 isa<ConstantInt>(I->getOperand(1)) && 460 cast<ConstantInt>(I->getOperand(1))->isOne()) { 461 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 462 WantInteger); 463 if (Result.empty()) 464 return false; 465 466 // Invert the known values. 467 for (unsigned i = 0, e = Result.size(); i != e; ++i) 468 Result[i].first = ConstantExpr::getNot(Result[i].first); 469 470 return true; 471 } 472 473 // Try to simplify some other binary operator values. 474 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 475 assert(Preference != WantBlockAddress 476 && "A binary operator creating a block address?"); 477 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 478 PredValueInfoTy LHSVals; 479 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 480 WantInteger); 481 482 // Try to use constant folding to simplify the binary operator. 483 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 484 Constant *V = LHSVals[i].first; 485 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 486 487 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 488 Result.push_back(std::make_pair(KC, LHSVals[i].second)); 489 } 490 } 491 492 return !Result.empty(); 493 } 494 495 // Handle compare with phi operand, where the PHI is defined in this block. 496 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 497 assert(Preference == WantInteger && "Compares only produce integers"); 498 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 499 if (PN && PN->getParent() == BB) { 500 // We can do this simplification if any comparisons fold to true or false. 501 // See if any do. 502 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 503 BasicBlock *PredBB = PN->getIncomingBlock(i); 504 Value *LHS = PN->getIncomingValue(i); 505 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 506 507 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL); 508 if (!Res) { 509 if (!isa<Constant>(RHS)) 510 continue; 511 512 LazyValueInfo::Tristate 513 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 514 cast<Constant>(RHS), PredBB, BB); 515 if (ResT == LazyValueInfo::Unknown) 516 continue; 517 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 518 } 519 520 if (Constant *KC = getKnownConstant(Res, WantInteger)) 521 Result.push_back(std::make_pair(KC, PredBB)); 522 } 523 524 return !Result.empty(); 525 } 526 527 528 // If comparing a live-in value against a constant, see if we know the 529 // live-in value on any predecessors. 530 if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) { 531 if (!isa<Instruction>(Cmp->getOperand(0)) || 532 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) { 533 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 534 535 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){ 536 BasicBlock *P = *PI; 537 // If the value is known by LazyValueInfo to be a constant in a 538 // predecessor, use that information to try to thread this block. 539 LazyValueInfo::Tristate Res = 540 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 541 RHSCst, P, BB); 542 if (Res == LazyValueInfo::Unknown) 543 continue; 544 545 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 546 Result.push_back(std::make_pair(ResC, P)); 547 } 548 549 return !Result.empty(); 550 } 551 552 // Try to find a constant value for the LHS of a comparison, 553 // and evaluate it statically if we can. 554 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) { 555 PredValueInfoTy LHSVals; 556 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 557 WantInteger); 558 559 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 560 Constant *V = LHSVals[i].first; 561 Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(), 562 V, CmpConst); 563 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 564 Result.push_back(std::make_pair(KC, LHSVals[i].second)); 565 } 566 567 return !Result.empty(); 568 } 569 } 570 } 571 572 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 573 // Handle select instructions where at least one operand is a known constant 574 // and we can figure out the condition value for any predecessor block. 575 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 576 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 577 PredValueInfoTy Conds; 578 if ((TrueVal || FalseVal) && 579 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 580 WantInteger)) { 581 for (unsigned i = 0, e = Conds.size(); i != e; ++i) { 582 Constant *Cond = Conds[i].first; 583 584 // Figure out what value to use for the condition. 585 bool KnownCond; 586 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 587 // A known boolean. 588 KnownCond = CI->isOne(); 589 } else { 590 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 591 // Either operand will do, so be sure to pick the one that's a known 592 // constant. 593 // FIXME: Do this more cleverly if both values are known constants? 594 KnownCond = (TrueVal != nullptr); 595 } 596 597 // See if the select has a known constant value for this predecessor. 598 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 599 Result.push_back(std::make_pair(Val, Conds[i].second)); 600 } 601 602 return !Result.empty(); 603 } 604 } 605 606 // If all else fails, see if LVI can figure out a constant value for us. 607 Constant *CI = LVI->getConstant(V, BB); 608 if (Constant *KC = getKnownConstant(CI, Preference)) { 609 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 610 Result.push_back(std::make_pair(KC, *PI)); 611 } 612 613 return !Result.empty(); 614 } 615 616 617 618 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 619 /// in an undefined jump, decide which block is best to revector to. 620 /// 621 /// Since we can pick an arbitrary destination, we pick the successor with the 622 /// fewest predecessors. This should reduce the in-degree of the others. 623 /// 624 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 625 TerminatorInst *BBTerm = BB->getTerminator(); 626 unsigned MinSucc = 0; 627 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 628 // Compute the successor with the minimum number of predecessors. 629 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 630 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 631 TestBB = BBTerm->getSuccessor(i); 632 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 633 if (NumPreds < MinNumPreds) { 634 MinSucc = i; 635 MinNumPreds = NumPreds; 636 } 637 } 638 639 return MinSucc; 640 } 641 642 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 643 if (!BB->hasAddressTaken()) return false; 644 645 // If the block has its address taken, it may be a tree of dead constants 646 // hanging off of it. These shouldn't keep the block alive. 647 BlockAddress *BA = BlockAddress::get(BB); 648 BA->removeDeadConstantUsers(); 649 return !BA->use_empty(); 650 } 651 652 /// ProcessBlock - If there are any predecessors whose control can be threaded 653 /// through to a successor, transform them now. 654 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 655 // If the block is trivially dead, just return and let the caller nuke it. 656 // This simplifies other transformations. 657 if (pred_begin(BB) == pred_end(BB) && 658 BB != &BB->getParent()->getEntryBlock()) 659 return false; 660 661 // If this block has a single predecessor, and if that pred has a single 662 // successor, merge the blocks. This encourages recursive jump threading 663 // because now the condition in this block can be threaded through 664 // predecessors of our predecessor block. 665 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 666 if (SinglePred->getTerminator()->getNumSuccessors() == 1 && 667 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 668 // If SinglePred was a loop header, BB becomes one. 669 if (LoopHeaders.erase(SinglePred)) 670 LoopHeaders.insert(BB); 671 672 LVI->eraseBlock(SinglePred); 673 MergeBasicBlockIntoOnlyPred(BB); 674 675 return true; 676 } 677 } 678 679 // What kind of constant we're looking for. 680 ConstantPreference Preference = WantInteger; 681 682 // Look to see if the terminator is a conditional branch, switch or indirect 683 // branch, if not we can't thread it. 684 Value *Condition; 685 Instruction *Terminator = BB->getTerminator(); 686 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 687 // Can't thread an unconditional jump. 688 if (BI->isUnconditional()) return false; 689 Condition = BI->getCondition(); 690 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 691 Condition = SI->getCondition(); 692 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 693 // Can't thread indirect branch with no successors. 694 if (IB->getNumSuccessors() == 0) return false; 695 Condition = IB->getAddress()->stripPointerCasts(); 696 Preference = WantBlockAddress; 697 } else { 698 return false; // Must be an invoke. 699 } 700 701 // Run constant folding to see if we can reduce the condition to a simple 702 // constant. 703 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 704 Value *SimpleVal = ConstantFoldInstruction(I, DL, TLI); 705 if (SimpleVal) { 706 I->replaceAllUsesWith(SimpleVal); 707 I->eraseFromParent(); 708 Condition = SimpleVal; 709 } 710 } 711 712 // If the terminator is branching on an undef, we can pick any of the 713 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 714 if (isa<UndefValue>(Condition)) { 715 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 716 717 // Fold the branch/switch. 718 TerminatorInst *BBTerm = BB->getTerminator(); 719 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 720 if (i == BestSucc) continue; 721 BBTerm->getSuccessor(i)->removePredecessor(BB, true); 722 } 723 724 DEBUG(dbgs() << " In block '" << BB->getName() 725 << "' folding undef terminator: " << *BBTerm << '\n'); 726 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 727 BBTerm->eraseFromParent(); 728 return true; 729 } 730 731 // If the terminator of this block is branching on a constant, simplify the 732 // terminator to an unconditional branch. This can occur due to threading in 733 // other blocks. 734 if (getKnownConstant(Condition, Preference)) { 735 DEBUG(dbgs() << " In block '" << BB->getName() 736 << "' folding terminator: " << *BB->getTerminator() << '\n'); 737 ++NumFolds; 738 ConstantFoldTerminator(BB, true); 739 return true; 740 } 741 742 Instruction *CondInst = dyn_cast<Instruction>(Condition); 743 744 // All the rest of our checks depend on the condition being an instruction. 745 if (!CondInst) { 746 // FIXME: Unify this with code below. 747 if (ProcessThreadableEdges(Condition, BB, Preference)) 748 return true; 749 return false; 750 } 751 752 753 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 754 // For a comparison where the LHS is outside this block, it's possible 755 // that we've branched on it before. Used LVI to see if we can simplify 756 // the branch based on that. 757 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 758 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 759 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 760 if (CondBr && CondConst && CondBr->isConditional() && PI != PE && 761 (!isa<Instruction>(CondCmp->getOperand(0)) || 762 cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) { 763 // For predecessor edge, determine if the comparison is true or false 764 // on that edge. If they're all true or all false, we can simplify the 765 // branch. 766 // FIXME: We could handle mixed true/false by duplicating code. 767 LazyValueInfo::Tristate Baseline = 768 LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0), 769 CondConst, *PI, BB); 770 if (Baseline != LazyValueInfo::Unknown) { 771 // Check that all remaining incoming values match the first one. 772 while (++PI != PE) { 773 LazyValueInfo::Tristate Ret = 774 LVI->getPredicateOnEdge(CondCmp->getPredicate(), 775 CondCmp->getOperand(0), CondConst, *PI, BB); 776 if (Ret != Baseline) break; 777 } 778 779 // If we terminated early, then one of the values didn't match. 780 if (PI == PE) { 781 unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0; 782 unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1; 783 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 784 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 785 CondBr->eraseFromParent(); 786 return true; 787 } 788 } 789 790 } 791 792 if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB)) 793 return true; 794 } 795 796 // Check for some cases that are worth simplifying. Right now we want to look 797 // for loads that are used by a switch or by the condition for the branch. If 798 // we see one, check to see if it's partially redundant. If so, insert a PHI 799 // which can then be used to thread the values. 800 // 801 Value *SimplifyValue = CondInst; 802 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 803 if (isa<Constant>(CondCmp->getOperand(1))) 804 SimplifyValue = CondCmp->getOperand(0); 805 806 // TODO: There are other places where load PRE would be profitable, such as 807 // more complex comparisons. 808 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 809 if (SimplifyPartiallyRedundantLoad(LI)) 810 return true; 811 812 813 // Handle a variety of cases where we are branching on something derived from 814 // a PHI node in the current block. If we can prove that any predecessors 815 // compute a predictable value based on a PHI node, thread those predecessors. 816 // 817 if (ProcessThreadableEdges(CondInst, BB, Preference)) 818 return true; 819 820 // If this is an otherwise-unfoldable branch on a phi node in the current 821 // block, see if we can simplify. 822 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 823 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 824 return ProcessBranchOnPHI(PN); 825 826 827 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 828 if (CondInst->getOpcode() == Instruction::Xor && 829 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 830 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 831 832 833 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 834 // "(X == 4)", thread through this block. 835 836 return false; 837 } 838 839 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 840 /// load instruction, eliminate it by replacing it with a PHI node. This is an 841 /// important optimization that encourages jump threading, and needs to be run 842 /// interlaced with other jump threading tasks. 843 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 844 // Don't hack volatile/atomic loads. 845 if (!LI->isSimple()) return false; 846 847 // If the load is defined in a block with exactly one predecessor, it can't be 848 // partially redundant. 849 BasicBlock *LoadBB = LI->getParent(); 850 if (LoadBB->getSinglePredecessor()) 851 return false; 852 853 // If the load is defined in a landing pad, it can't be partially redundant, 854 // because the edges between the invoke and the landing pad cannot have other 855 // instructions between them. 856 if (LoadBB->isLandingPad()) 857 return false; 858 859 Value *LoadedPtr = LI->getOperand(0); 860 861 // If the loaded operand is defined in the LoadBB, it can't be available. 862 // TODO: Could do simple PHI translation, that would be fun :) 863 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 864 if (PtrOp->getParent() == LoadBB) 865 return false; 866 867 // Scan a few instructions up from the load, to see if it is obviously live at 868 // the entry to its block. 869 BasicBlock::iterator BBIt = LI; 870 871 if (Value *AvailableVal = 872 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) { 873 // If the value if the load is locally available within the block, just use 874 // it. This frequently occurs for reg2mem'd allocas. 875 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 876 877 // If the returned value is the load itself, replace with an undef. This can 878 // only happen in dead loops. 879 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 880 LI->replaceAllUsesWith(AvailableVal); 881 LI->eraseFromParent(); 882 return true; 883 } 884 885 // Otherwise, if we scanned the whole block and got to the top of the block, 886 // we know the block is locally transparent to the load. If not, something 887 // might clobber its value. 888 if (BBIt != LoadBB->begin()) 889 return false; 890 891 // If all of the loads and stores that feed the value have the same TBAA tag, 892 // then we can propagate it onto any newly inserted loads. 893 MDNode *TBAATag = LI->getMetadata(LLVMContext::MD_tbaa); 894 895 SmallPtrSet<BasicBlock*, 8> PredsScanned; 896 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 897 AvailablePredsTy AvailablePreds; 898 BasicBlock *OneUnavailablePred = nullptr; 899 900 // If we got here, the loaded value is transparent through to the start of the 901 // block. Check to see if it is available in any of the predecessor blocks. 902 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 903 PI != PE; ++PI) { 904 BasicBlock *PredBB = *PI; 905 906 // If we already scanned this predecessor, skip it. 907 if (!PredsScanned.insert(PredBB)) 908 continue; 909 910 // Scan the predecessor to see if the value is available in the pred. 911 BBIt = PredBB->end(); 912 MDNode *ThisTBAATag = nullptr; 913 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6, 914 nullptr, &ThisTBAATag); 915 if (!PredAvailable) { 916 OneUnavailablePred = PredBB; 917 continue; 918 } 919 920 // If tbaa tags disagree or are not present, forget about them. 921 if (TBAATag != ThisTBAATag) TBAATag = nullptr; 922 923 // If so, this load is partially redundant. Remember this info so that we 924 // can create a PHI node. 925 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 926 } 927 928 // If the loaded value isn't available in any predecessor, it isn't partially 929 // redundant. 930 if (AvailablePreds.empty()) return false; 931 932 // Okay, the loaded value is available in at least one (and maybe all!) 933 // predecessors. If the value is unavailable in more than one unique 934 // predecessor, we want to insert a merge block for those common predecessors. 935 // This ensures that we only have to insert one reload, thus not increasing 936 // code size. 937 BasicBlock *UnavailablePred = nullptr; 938 939 // If there is exactly one predecessor where the value is unavailable, the 940 // already computed 'OneUnavailablePred' block is it. If it ends in an 941 // unconditional branch, we know that it isn't a critical edge. 942 if (PredsScanned.size() == AvailablePreds.size()+1 && 943 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 944 UnavailablePred = OneUnavailablePred; 945 } else if (PredsScanned.size() != AvailablePreds.size()) { 946 // Otherwise, we had multiple unavailable predecessors or we had a critical 947 // edge from the one. 948 SmallVector<BasicBlock*, 8> PredsToSplit; 949 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 950 951 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 952 AvailablePredSet.insert(AvailablePreds[i].first); 953 954 // Add all the unavailable predecessors to the PredsToSplit list. 955 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 956 PI != PE; ++PI) { 957 BasicBlock *P = *PI; 958 // If the predecessor is an indirect goto, we can't split the edge. 959 if (isa<IndirectBrInst>(P->getTerminator())) 960 return false; 961 962 if (!AvailablePredSet.count(P)) 963 PredsToSplit.push_back(P); 964 } 965 966 // Split them out to their own block. 967 UnavailablePred = 968 SplitBlockPredecessors(LoadBB, PredsToSplit, "thread-pre-split", this); 969 } 970 971 // If the value isn't available in all predecessors, then there will be 972 // exactly one where it isn't available. Insert a load on that edge and add 973 // it to the AvailablePreds list. 974 if (UnavailablePred) { 975 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 976 "Can't handle critical edge here!"); 977 LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, 978 LI->getAlignment(), 979 UnavailablePred->getTerminator()); 980 NewVal->setDebugLoc(LI->getDebugLoc()); 981 if (TBAATag) 982 NewVal->setMetadata(LLVMContext::MD_tbaa, TBAATag); 983 984 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 985 } 986 987 // Now we know that each predecessor of this block has a value in 988 // AvailablePreds, sort them for efficient access as we're walking the preds. 989 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 990 991 // Create a PHI node at the start of the block for the PRE'd load value. 992 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 993 PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "", 994 LoadBB->begin()); 995 PN->takeName(LI); 996 PN->setDebugLoc(LI->getDebugLoc()); 997 998 // Insert new entries into the PHI for each predecessor. A single block may 999 // have multiple entries here. 1000 for (pred_iterator PI = PB; PI != PE; ++PI) { 1001 BasicBlock *P = *PI; 1002 AvailablePredsTy::iterator I = 1003 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1004 std::make_pair(P, (Value*)nullptr)); 1005 1006 assert(I != AvailablePreds.end() && I->first == P && 1007 "Didn't find entry for predecessor!"); 1008 1009 PN->addIncoming(I->second, I->first); 1010 } 1011 1012 //cerr << "PRE: " << *LI << *PN << "\n"; 1013 1014 LI->replaceAllUsesWith(PN); 1015 LI->eraseFromParent(); 1016 1017 return true; 1018 } 1019 1020 /// FindMostPopularDest - The specified list contains multiple possible 1021 /// threadable destinations. Pick the one that occurs the most frequently in 1022 /// the list. 1023 static BasicBlock * 1024 FindMostPopularDest(BasicBlock *BB, 1025 const SmallVectorImpl<std::pair<BasicBlock*, 1026 BasicBlock*> > &PredToDestList) { 1027 assert(!PredToDestList.empty()); 1028 1029 // Determine popularity. If there are multiple possible destinations, we 1030 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1031 // blocks with known and real destinations to threading undef. We'll handle 1032 // them later if interesting. 1033 DenseMap<BasicBlock*, unsigned> DestPopularity; 1034 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1035 if (PredToDestList[i].second) 1036 DestPopularity[PredToDestList[i].second]++; 1037 1038 // Find the most popular dest. 1039 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1040 BasicBlock *MostPopularDest = DPI->first; 1041 unsigned Popularity = DPI->second; 1042 SmallVector<BasicBlock*, 4> SamePopularity; 1043 1044 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1045 // If the popularity of this entry isn't higher than the popularity we've 1046 // seen so far, ignore it. 1047 if (DPI->second < Popularity) 1048 ; // ignore. 1049 else if (DPI->second == Popularity) { 1050 // If it is the same as what we've seen so far, keep track of it. 1051 SamePopularity.push_back(DPI->first); 1052 } else { 1053 // If it is more popular, remember it. 1054 SamePopularity.clear(); 1055 MostPopularDest = DPI->first; 1056 Popularity = DPI->second; 1057 } 1058 } 1059 1060 // Okay, now we know the most popular destination. If there is more than one 1061 // destination, we need to determine one. This is arbitrary, but we need 1062 // to make a deterministic decision. Pick the first one that appears in the 1063 // successor list. 1064 if (!SamePopularity.empty()) { 1065 SamePopularity.push_back(MostPopularDest); 1066 TerminatorInst *TI = BB->getTerminator(); 1067 for (unsigned i = 0; ; ++i) { 1068 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1069 1070 if (std::find(SamePopularity.begin(), SamePopularity.end(), 1071 TI->getSuccessor(i)) == SamePopularity.end()) 1072 continue; 1073 1074 MostPopularDest = TI->getSuccessor(i); 1075 break; 1076 } 1077 } 1078 1079 // Okay, we have finally picked the most popular destination. 1080 return MostPopularDest; 1081 } 1082 1083 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1084 ConstantPreference Preference) { 1085 // If threading this would thread across a loop header, don't even try to 1086 // thread the edge. 1087 if (LoopHeaders.count(BB)) 1088 return false; 1089 1090 PredValueInfoTy PredValues; 1091 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference)) 1092 return false; 1093 1094 assert(!PredValues.empty() && 1095 "ComputeValueKnownInPredecessors returned true with no values"); 1096 1097 DEBUG(dbgs() << "IN BB: " << *BB; 1098 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1099 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1100 << *PredValues[i].first 1101 << " for pred '" << PredValues[i].second->getName() << "'.\n"; 1102 }); 1103 1104 // Decide what we want to thread through. Convert our list of known values to 1105 // a list of known destinations for each pred. This also discards duplicate 1106 // predecessors and keeps track of the undefined inputs (which are represented 1107 // as a null dest in the PredToDestList). 1108 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1109 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1110 1111 BasicBlock *OnlyDest = nullptr; 1112 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1113 1114 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1115 BasicBlock *Pred = PredValues[i].second; 1116 if (!SeenPreds.insert(Pred)) 1117 continue; // Duplicate predecessor entry. 1118 1119 // If the predecessor ends with an indirect goto, we can't change its 1120 // destination. 1121 if (isa<IndirectBrInst>(Pred->getTerminator())) 1122 continue; 1123 1124 Constant *Val = PredValues[i].first; 1125 1126 BasicBlock *DestBB; 1127 if (isa<UndefValue>(Val)) 1128 DestBB = nullptr; 1129 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1130 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1131 else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1132 DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor(); 1133 } else { 1134 assert(isa<IndirectBrInst>(BB->getTerminator()) 1135 && "Unexpected terminator"); 1136 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1137 } 1138 1139 // If we have exactly one destination, remember it for efficiency below. 1140 if (PredToDestList.empty()) 1141 OnlyDest = DestBB; 1142 else if (OnlyDest != DestBB) 1143 OnlyDest = MultipleDestSentinel; 1144 1145 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1146 } 1147 1148 // If all edges were unthreadable, we fail. 1149 if (PredToDestList.empty()) 1150 return false; 1151 1152 // Determine which is the most common successor. If we have many inputs and 1153 // this block is a switch, we want to start by threading the batch that goes 1154 // to the most popular destination first. If we only know about one 1155 // threadable destination (the common case) we can avoid this. 1156 BasicBlock *MostPopularDest = OnlyDest; 1157 1158 if (MostPopularDest == MultipleDestSentinel) 1159 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1160 1161 // Now that we know what the most popular destination is, factor all 1162 // predecessors that will jump to it into a single predecessor. 1163 SmallVector<BasicBlock*, 16> PredsToFactor; 1164 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1165 if (PredToDestList[i].second == MostPopularDest) { 1166 BasicBlock *Pred = PredToDestList[i].first; 1167 1168 // This predecessor may be a switch or something else that has multiple 1169 // edges to the block. Factor each of these edges by listing them 1170 // according to # occurrences in PredsToFactor. 1171 TerminatorInst *PredTI = Pred->getTerminator(); 1172 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 1173 if (PredTI->getSuccessor(i) == BB) 1174 PredsToFactor.push_back(Pred); 1175 } 1176 1177 // If the threadable edges are branching on an undefined value, we get to pick 1178 // the destination that these predecessors should get to. 1179 if (!MostPopularDest) 1180 MostPopularDest = BB->getTerminator()-> 1181 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1182 1183 // Ok, try to thread it! 1184 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1185 } 1186 1187 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1188 /// a PHI node in the current block. See if there are any simplifications we 1189 /// can do based on inputs to the phi node. 1190 /// 1191 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) { 1192 BasicBlock *BB = PN->getParent(); 1193 1194 // TODO: We could make use of this to do it once for blocks with common PHI 1195 // values. 1196 SmallVector<BasicBlock*, 1> PredBBs; 1197 PredBBs.resize(1); 1198 1199 // If any of the predecessor blocks end in an unconditional branch, we can 1200 // *duplicate* the conditional branch into that block in order to further 1201 // encourage jump threading and to eliminate cases where we have branch on a 1202 // phi of an icmp (branch on icmp is much better). 1203 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1204 BasicBlock *PredBB = PN->getIncomingBlock(i); 1205 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1206 if (PredBr->isUnconditional()) { 1207 PredBBs[0] = PredBB; 1208 // Try to duplicate BB into PredBB. 1209 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1210 return true; 1211 } 1212 } 1213 1214 return false; 1215 } 1216 1217 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1218 /// a xor instruction in the current block. See if there are any 1219 /// simplifications we can do based on inputs to the xor. 1220 /// 1221 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) { 1222 BasicBlock *BB = BO->getParent(); 1223 1224 // If either the LHS or RHS of the xor is a constant, don't do this 1225 // optimization. 1226 if (isa<ConstantInt>(BO->getOperand(0)) || 1227 isa<ConstantInt>(BO->getOperand(1))) 1228 return false; 1229 1230 // If the first instruction in BB isn't a phi, we won't be able to infer 1231 // anything special about any particular predecessor. 1232 if (!isa<PHINode>(BB->front())) 1233 return false; 1234 1235 // If we have a xor as the branch input to this block, and we know that the 1236 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1237 // the condition into the predecessor and fix that value to true, saving some 1238 // logical ops on that path and encouraging other paths to simplify. 1239 // 1240 // This copies something like this: 1241 // 1242 // BB: 1243 // %X = phi i1 [1], [%X'] 1244 // %Y = icmp eq i32 %A, %B 1245 // %Z = xor i1 %X, %Y 1246 // br i1 %Z, ... 1247 // 1248 // Into: 1249 // BB': 1250 // %Y = icmp ne i32 %A, %B 1251 // br i1 %Z, ... 1252 1253 PredValueInfoTy XorOpValues; 1254 bool isLHS = true; 1255 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1256 WantInteger)) { 1257 assert(XorOpValues.empty()); 1258 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1259 WantInteger)) 1260 return false; 1261 isLHS = false; 1262 } 1263 1264 assert(!XorOpValues.empty() && 1265 "ComputeValueKnownInPredecessors returned true with no values"); 1266 1267 // Scan the information to see which is most popular: true or false. The 1268 // predecessors can be of the set true, false, or undef. 1269 unsigned NumTrue = 0, NumFalse = 0; 1270 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1271 if (isa<UndefValue>(XorOpValues[i].first)) 1272 // Ignore undefs for the count. 1273 continue; 1274 if (cast<ConstantInt>(XorOpValues[i].first)->isZero()) 1275 ++NumFalse; 1276 else 1277 ++NumTrue; 1278 } 1279 1280 // Determine which value to split on, true, false, or undef if neither. 1281 ConstantInt *SplitVal = nullptr; 1282 if (NumTrue > NumFalse) 1283 SplitVal = ConstantInt::getTrue(BB->getContext()); 1284 else if (NumTrue != 0 || NumFalse != 0) 1285 SplitVal = ConstantInt::getFalse(BB->getContext()); 1286 1287 // Collect all of the blocks that this can be folded into so that we can 1288 // factor this once and clone it once. 1289 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1290 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1291 if (XorOpValues[i].first != SplitVal && 1292 !isa<UndefValue>(XorOpValues[i].first)) 1293 continue; 1294 1295 BlocksToFoldInto.push_back(XorOpValues[i].second); 1296 } 1297 1298 // If we inferred a value for all of the predecessors, then duplication won't 1299 // help us. However, we can just replace the LHS or RHS with the constant. 1300 if (BlocksToFoldInto.size() == 1301 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1302 if (!SplitVal) { 1303 // If all preds provide undef, just nuke the xor, because it is undef too. 1304 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1305 BO->eraseFromParent(); 1306 } else if (SplitVal->isZero()) { 1307 // If all preds provide 0, replace the xor with the other input. 1308 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1309 BO->eraseFromParent(); 1310 } else { 1311 // If all preds provide 1, set the computed value to 1. 1312 BO->setOperand(!isLHS, SplitVal); 1313 } 1314 1315 return true; 1316 } 1317 1318 // Try to duplicate BB into PredBB. 1319 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1320 } 1321 1322 1323 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1324 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1325 /// NewPred using the entries from OldPred (suitably mapped). 1326 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1327 BasicBlock *OldPred, 1328 BasicBlock *NewPred, 1329 DenseMap<Instruction*, Value*> &ValueMap) { 1330 for (BasicBlock::iterator PNI = PHIBB->begin(); 1331 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1332 // Ok, we have a PHI node. Figure out what the incoming value was for the 1333 // DestBlock. 1334 Value *IV = PN->getIncomingValueForBlock(OldPred); 1335 1336 // Remap the value if necessary. 1337 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1338 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1339 if (I != ValueMap.end()) 1340 IV = I->second; 1341 } 1342 1343 PN->addIncoming(IV, NewPred); 1344 } 1345 } 1346 1347 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1348 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1349 /// across BB. Transform the IR to reflect this change. 1350 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1351 const SmallVectorImpl<BasicBlock*> &PredBBs, 1352 BasicBlock *SuccBB) { 1353 // If threading to the same block as we come from, we would infinite loop. 1354 if (SuccBB == BB) { 1355 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1356 << "' - would thread to self!\n"); 1357 return false; 1358 } 1359 1360 // If threading this would thread across a loop header, don't thread the edge. 1361 // See the comments above FindLoopHeaders for justifications and caveats. 1362 if (LoopHeaders.count(BB)) { 1363 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1364 << "' to dest BB '" << SuccBB->getName() 1365 << "' - it might create an irreducible loop!\n"); 1366 return false; 1367 } 1368 1369 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, Threshold); 1370 if (JumpThreadCost > Threshold) { 1371 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1372 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1373 return false; 1374 } 1375 1376 // And finally, do it! Start by factoring the predecessors is needed. 1377 BasicBlock *PredBB; 1378 if (PredBBs.size() == 1) 1379 PredBB = PredBBs[0]; 1380 else { 1381 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1382 << " common predecessors.\n"); 1383 PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this); 1384 } 1385 1386 // And finally, do it! 1387 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1388 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1389 << ", across block:\n " 1390 << *BB << "\n"); 1391 1392 LVI->threadEdge(PredBB, BB, SuccBB); 1393 1394 // We are going to have to map operands from the original BB block to the new 1395 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1396 // account for entry from PredBB. 1397 DenseMap<Instruction*, Value*> ValueMapping; 1398 1399 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1400 BB->getName()+".thread", 1401 BB->getParent(), BB); 1402 NewBB->moveAfter(PredBB); 1403 1404 BasicBlock::iterator BI = BB->begin(); 1405 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1406 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1407 1408 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1409 // mapping and using it to remap operands in the cloned instructions. 1410 for (; !isa<TerminatorInst>(BI); ++BI) { 1411 Instruction *New = BI->clone(); 1412 New->setName(BI->getName()); 1413 NewBB->getInstList().push_back(New); 1414 ValueMapping[BI] = New; 1415 1416 // Remap operands to patch up intra-block references. 1417 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1418 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1419 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1420 if (I != ValueMapping.end()) 1421 New->setOperand(i, I->second); 1422 } 1423 } 1424 1425 // We didn't copy the terminator from BB over to NewBB, because there is now 1426 // an unconditional jump to SuccBB. Insert the unconditional jump. 1427 BranchInst *NewBI =BranchInst::Create(SuccBB, NewBB); 1428 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1429 1430 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1431 // PHI nodes for NewBB now. 1432 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1433 1434 // If there were values defined in BB that are used outside the block, then we 1435 // now have to update all uses of the value to use either the original value, 1436 // the cloned value, or some PHI derived value. This can require arbitrary 1437 // PHI insertion, of which we are prepared to do, clean these up now. 1438 SSAUpdater SSAUpdate; 1439 SmallVector<Use*, 16> UsesToRename; 1440 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1441 // Scan all uses of this instruction to see if it is used outside of its 1442 // block, and if so, record them in UsesToRename. 1443 for (Use &U : I->uses()) { 1444 Instruction *User = cast<Instruction>(U.getUser()); 1445 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1446 if (UserPN->getIncomingBlock(U) == BB) 1447 continue; 1448 } else if (User->getParent() == BB) 1449 continue; 1450 1451 UsesToRename.push_back(&U); 1452 } 1453 1454 // If there are no uses outside the block, we're done with this instruction. 1455 if (UsesToRename.empty()) 1456 continue; 1457 1458 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1459 1460 // We found a use of I outside of BB. Rename all uses of I that are outside 1461 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1462 // with the two values we know. 1463 SSAUpdate.Initialize(I->getType(), I->getName()); 1464 SSAUpdate.AddAvailableValue(BB, I); 1465 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); 1466 1467 while (!UsesToRename.empty()) 1468 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1469 DEBUG(dbgs() << "\n"); 1470 } 1471 1472 1473 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1474 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1475 // us to simplify any PHI nodes in BB. 1476 TerminatorInst *PredTerm = PredBB->getTerminator(); 1477 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1478 if (PredTerm->getSuccessor(i) == BB) { 1479 BB->removePredecessor(PredBB, true); 1480 PredTerm->setSuccessor(i, NewBB); 1481 } 1482 1483 // At this point, the IR is fully up to date and consistent. Do a quick scan 1484 // over the new instructions and zap any that are constants or dead. This 1485 // frequently happens because of phi translation. 1486 SimplifyInstructionsInBlock(NewBB, DL, TLI); 1487 1488 // Threaded an edge! 1489 ++NumThreads; 1490 return true; 1491 } 1492 1493 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1494 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1495 /// If we can duplicate the contents of BB up into PredBB do so now, this 1496 /// improves the odds that the branch will be on an analyzable instruction like 1497 /// a compare. 1498 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1499 const SmallVectorImpl<BasicBlock *> &PredBBs) { 1500 assert(!PredBBs.empty() && "Can't handle an empty set"); 1501 1502 // If BB is a loop header, then duplicating this block outside the loop would 1503 // cause us to transform this into an irreducible loop, don't do this. 1504 // See the comments above FindLoopHeaders for justifications and caveats. 1505 if (LoopHeaders.count(BB)) { 1506 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1507 << "' into predecessor block '" << PredBBs[0]->getName() 1508 << "' - it might create an irreducible loop!\n"); 1509 return false; 1510 } 1511 1512 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, Threshold); 1513 if (DuplicationCost > Threshold) { 1514 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1515 << "' - Cost is too high: " << DuplicationCost << "\n"); 1516 return false; 1517 } 1518 1519 // And finally, do it! Start by factoring the predecessors is needed. 1520 BasicBlock *PredBB; 1521 if (PredBBs.size() == 1) 1522 PredBB = PredBBs[0]; 1523 else { 1524 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1525 << " common predecessors.\n"); 1526 PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this); 1527 } 1528 1529 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1530 // of PredBB. 1531 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1532 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1533 << DuplicationCost << " block is:" << *BB << "\n"); 1534 1535 // Unless PredBB ends with an unconditional branch, split the edge so that we 1536 // can just clone the bits from BB into the end of the new PredBB. 1537 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 1538 1539 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 1540 PredBB = SplitEdge(PredBB, BB, this); 1541 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1542 } 1543 1544 // We are going to have to map operands from the original BB block into the 1545 // PredBB block. Evaluate PHI nodes in BB. 1546 DenseMap<Instruction*, Value*> ValueMapping; 1547 1548 BasicBlock::iterator BI = BB->begin(); 1549 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1550 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1551 1552 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1553 // mapping and using it to remap operands in the cloned instructions. 1554 for (; BI != BB->end(); ++BI) { 1555 Instruction *New = BI->clone(); 1556 1557 // Remap operands to patch up intra-block references. 1558 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1559 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1560 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1561 if (I != ValueMapping.end()) 1562 New->setOperand(i, I->second); 1563 } 1564 1565 // If this instruction can be simplified after the operands are updated, 1566 // just use the simplified value instead. This frequently happens due to 1567 // phi translation. 1568 if (Value *IV = SimplifyInstruction(New, DL)) { 1569 delete New; 1570 ValueMapping[BI] = IV; 1571 } else { 1572 // Otherwise, insert the new instruction into the block. 1573 New->setName(BI->getName()); 1574 PredBB->getInstList().insert(OldPredBranch, New); 1575 ValueMapping[BI] = New; 1576 } 1577 } 1578 1579 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1580 // add entries to the PHI nodes for branch from PredBB now. 1581 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1582 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1583 ValueMapping); 1584 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1585 ValueMapping); 1586 1587 // If there were values defined in BB that are used outside the block, then we 1588 // now have to update all uses of the value to use either the original value, 1589 // the cloned value, or some PHI derived value. This can require arbitrary 1590 // PHI insertion, of which we are prepared to do, clean these up now. 1591 SSAUpdater SSAUpdate; 1592 SmallVector<Use*, 16> UsesToRename; 1593 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1594 // Scan all uses of this instruction to see if it is used outside of its 1595 // block, and if so, record them in UsesToRename. 1596 for (Use &U : I->uses()) { 1597 Instruction *User = cast<Instruction>(U.getUser()); 1598 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1599 if (UserPN->getIncomingBlock(U) == BB) 1600 continue; 1601 } else if (User->getParent() == BB) 1602 continue; 1603 1604 UsesToRename.push_back(&U); 1605 } 1606 1607 // If there are no uses outside the block, we're done with this instruction. 1608 if (UsesToRename.empty()) 1609 continue; 1610 1611 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1612 1613 // We found a use of I outside of BB. Rename all uses of I that are outside 1614 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1615 // with the two values we know. 1616 SSAUpdate.Initialize(I->getType(), I->getName()); 1617 SSAUpdate.AddAvailableValue(BB, I); 1618 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); 1619 1620 while (!UsesToRename.empty()) 1621 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1622 DEBUG(dbgs() << "\n"); 1623 } 1624 1625 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1626 // that we nuked. 1627 BB->removePredecessor(PredBB, true); 1628 1629 // Remove the unconditional branch at the end of the PredBB block. 1630 OldPredBranch->eraseFromParent(); 1631 1632 ++NumDupes; 1633 return true; 1634 } 1635 1636 /// TryToUnfoldSelect - Look for blocks of the form 1637 /// bb1: 1638 /// %a = select 1639 /// br bb 1640 /// 1641 /// bb2: 1642 /// %p = phi [%a, %bb] ... 1643 /// %c = icmp %p 1644 /// br i1 %c 1645 /// 1646 /// And expand the select into a branch structure if one of its arms allows %c 1647 /// to be folded. This later enables threading from bb1 over bb2. 1648 bool JumpThreading::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 1649 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1650 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 1651 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 1652 1653 if (!CondBr || !CondBr->isConditional() || !CondLHS || 1654 CondLHS->getParent() != BB) 1655 return false; 1656 1657 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 1658 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 1659 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 1660 1661 // Look if one of the incoming values is a select in the corresponding 1662 // predecessor. 1663 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 1664 continue; 1665 1666 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 1667 if (!PredTerm || !PredTerm->isUnconditional()) 1668 continue; 1669 1670 // Now check if one of the select values would allow us to constant fold the 1671 // terminator in BB. We don't do the transform if both sides fold, those 1672 // cases will be threaded in any case. 1673 LazyValueInfo::Tristate LHSFolds = 1674 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 1675 CondRHS, Pred, BB); 1676 LazyValueInfo::Tristate RHSFolds = 1677 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 1678 CondRHS, Pred, BB); 1679 if ((LHSFolds != LazyValueInfo::Unknown || 1680 RHSFolds != LazyValueInfo::Unknown) && 1681 LHSFolds != RHSFolds) { 1682 // Expand the select. 1683 // 1684 // Pred -- 1685 // | v 1686 // | NewBB 1687 // | | 1688 // |----- 1689 // v 1690 // BB 1691 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 1692 BB->getParent(), BB); 1693 // Move the unconditional branch to NewBB. 1694 PredTerm->removeFromParent(); 1695 NewBB->getInstList().insert(NewBB->end(), PredTerm); 1696 // Create a conditional branch and update PHI nodes. 1697 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 1698 CondLHS->setIncomingValue(I, SI->getFalseValue()); 1699 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 1700 // The select is now dead. 1701 SI->eraseFromParent(); 1702 1703 // Update any other PHI nodes in BB. 1704 for (BasicBlock::iterator BI = BB->begin(); 1705 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 1706 if (Phi != CondLHS) 1707 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 1708 return true; 1709 } 1710 } 1711 return false; 1712 } 1713