1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/GlobalsModRef.h" 22 #include "llvm/Analysis/CFG.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LazyValueInfo.h" 29 #include "llvm/Analysis/Loads.h" 30 #include "llvm/Analysis/LoopInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/ValueHandle.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 44 #include "llvm/Transforms/Utils/Local.h" 45 #include "llvm/Transforms/Utils/SSAUpdater.h" 46 #include <algorithm> 47 #include <memory> 48 using namespace llvm; 49 50 #define DEBUG_TYPE "jump-threading" 51 52 STATISTIC(NumThreads, "Number of jumps threaded"); 53 STATISTIC(NumFolds, "Number of terminators folded"); 54 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 55 56 static cl::opt<unsigned> 57 BBDuplicateThreshold("jump-threading-threshold", 58 cl::desc("Max block size to duplicate for jump threading"), 59 cl::init(6), cl::Hidden); 60 61 static cl::opt<unsigned> 62 ImplicationSearchThreshold( 63 "jump-threading-implication-search-threshold", 64 cl::desc("The number of predecessors to search for a stronger " 65 "condition to use to thread over a weaker condition"), 66 cl::init(3), cl::Hidden); 67 68 namespace { 69 // These are at global scope so static functions can use them too. 70 typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo; 71 typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy; 72 73 // This is used to keep track of what kind of constant we're currently hoping 74 // to find. 75 enum ConstantPreference { 76 WantInteger, 77 WantBlockAddress 78 }; 79 80 /// This pass performs 'jump threading', which looks at blocks that have 81 /// multiple predecessors and multiple successors. If one or more of the 82 /// predecessors of the block can be proven to always jump to one of the 83 /// successors, we forward the edge from the predecessor to the successor by 84 /// duplicating the contents of this block. 85 /// 86 /// An example of when this can occur is code like this: 87 /// 88 /// if () { ... 89 /// X = 4; 90 /// } 91 /// if (X < 3) { 92 /// 93 /// In this case, the unconditional branch at the end of the first if can be 94 /// revectored to the false side of the second if. 95 /// 96 class JumpThreading : public FunctionPass { 97 TargetLibraryInfo *TLI; 98 LazyValueInfo *LVI; 99 std::unique_ptr<BlockFrequencyInfo> BFI; 100 std::unique_ptr<BranchProbabilityInfo> BPI; 101 bool HasProfileData; 102 #ifdef NDEBUG 103 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 104 #else 105 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 106 #endif 107 DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet; 108 109 unsigned BBDupThreshold; 110 111 // RAII helper for updating the recursion stack. 112 struct RecursionSetRemover { 113 DenseSet<std::pair<Value*, BasicBlock*> > &TheSet; 114 std::pair<Value*, BasicBlock*> ThePair; 115 116 RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S, 117 std::pair<Value*, BasicBlock*> P) 118 : TheSet(S), ThePair(P) { } 119 120 ~RecursionSetRemover() { 121 TheSet.erase(ThePair); 122 } 123 }; 124 public: 125 static char ID; // Pass identification 126 JumpThreading(int T = -1) : FunctionPass(ID) { 127 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 128 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 129 } 130 131 bool runOnFunction(Function &F) override; 132 133 void getAnalysisUsage(AnalysisUsage &AU) const override { 134 AU.addRequired<LazyValueInfo>(); 135 AU.addPreserved<LazyValueInfo>(); 136 AU.addPreserved<GlobalsAAWrapperPass>(); 137 AU.addRequired<TargetLibraryInfoWrapperPass>(); 138 } 139 140 void releaseMemory() override { 141 BFI.reset(); 142 BPI.reset(); 143 } 144 145 void FindLoopHeaders(Function &F); 146 bool ProcessBlock(BasicBlock *BB); 147 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 148 BasicBlock *SuccBB); 149 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 150 const SmallVectorImpl<BasicBlock *> &PredBBs); 151 152 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 153 PredValueInfo &Result, 154 ConstantPreference Preference, 155 Instruction *CxtI = nullptr); 156 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 157 ConstantPreference Preference, 158 Instruction *CxtI = nullptr); 159 160 bool ProcessBranchOnPHI(PHINode *PN); 161 bool ProcessBranchOnXOR(BinaryOperator *BO); 162 bool ProcessImpliedCondition(BasicBlock *BB); 163 164 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 165 bool TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB); 166 bool TryToUnfoldSelectInCurrBB(BasicBlock *BB); 167 168 private: 169 BasicBlock *SplitBlockPreds(BasicBlock *BB, ArrayRef<BasicBlock *> Preds, 170 const char *Suffix); 171 void UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, BasicBlock *BB, 172 BasicBlock *NewBB, BasicBlock *SuccBB); 173 }; 174 } 175 176 char JumpThreading::ID = 0; 177 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 178 "Jump Threading", false, false) 179 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo) 180 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 181 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 182 "Jump Threading", false, false) 183 184 // Public interface to the Jump Threading pass 185 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); } 186 187 /// runOnFunction - Top level algorithm. 188 /// 189 bool JumpThreading::runOnFunction(Function &F) { 190 if (skipOptnoneFunction(F)) 191 return false; 192 193 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 194 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 195 LVI = &getAnalysis<LazyValueInfo>(); 196 BFI.reset(); 197 BPI.reset(); 198 // When profile data is available, we need to update edge weights after 199 // successful jump threading, which requires both BPI and BFI being available. 200 HasProfileData = F.getEntryCount().hasValue(); 201 if (HasProfileData) { 202 LoopInfo LI{DominatorTree(F)}; 203 BPI.reset(new BranchProbabilityInfo(F, LI)); 204 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 205 } 206 207 // Remove unreachable blocks from function as they may result in infinite 208 // loop. We do threading if we found something profitable. Jump threading a 209 // branch can create other opportunities. If these opportunities form a cycle 210 // i.e. if any jump threading is undoing previous threading in the path, then 211 // we will loop forever. We take care of this issue by not jump threading for 212 // back edges. This works for normal cases but not for unreachable blocks as 213 // they may have cycle with no back edge. 214 removeUnreachableBlocks(F); 215 216 FindLoopHeaders(F); 217 218 bool Changed, EverChanged = false; 219 do { 220 Changed = false; 221 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 222 BasicBlock *BB = &*I; 223 // Thread all of the branches we can over this block. 224 while (ProcessBlock(BB)) 225 Changed = true; 226 227 ++I; 228 229 // If the block is trivially dead, zap it. This eliminates the successor 230 // edges which simplifies the CFG. 231 if (pred_empty(BB) && 232 BB != &BB->getParent()->getEntryBlock()) { 233 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 234 << "' with terminator: " << *BB->getTerminator() << '\n'); 235 LoopHeaders.erase(BB); 236 LVI->eraseBlock(BB); 237 DeleteDeadBlock(BB); 238 Changed = true; 239 continue; 240 } 241 242 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 243 244 // Can't thread an unconditional jump, but if the block is "almost 245 // empty", we can replace uses of it with uses of the successor and make 246 // this dead. 247 if (BI && BI->isUnconditional() && 248 BB != &BB->getParent()->getEntryBlock() && 249 // If the terminator is the only non-phi instruction, try to nuke it. 250 BB->getFirstNonPHIOrDbg()->isTerminator()) { 251 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 252 // block, we have to make sure it isn't in the LoopHeaders set. We 253 // reinsert afterward if needed. 254 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 255 BasicBlock *Succ = BI->getSuccessor(0); 256 257 // FIXME: It is always conservatively correct to drop the info 258 // for a block even if it doesn't get erased. This isn't totally 259 // awesome, but it allows us to use AssertingVH to prevent nasty 260 // dangling pointer issues within LazyValueInfo. 261 LVI->eraseBlock(BB); 262 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { 263 Changed = true; 264 // If we deleted BB and BB was the header of a loop, then the 265 // successor is now the header of the loop. 266 BB = Succ; 267 } 268 269 if (ErasedFromLoopHeaders) 270 LoopHeaders.insert(BB); 271 } 272 } 273 EverChanged |= Changed; 274 } while (Changed); 275 276 LoopHeaders.clear(); 277 return EverChanged; 278 } 279 280 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 281 /// thread across it. Stop scanning the block when passing the threshold. 282 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB, 283 unsigned Threshold) { 284 /// Ignore PHI nodes, these will be flattened when duplication happens. 285 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 286 287 // FIXME: THREADING will delete values that are just used to compute the 288 // branch, so they shouldn't count against the duplication cost. 289 290 unsigned Bonus = 0; 291 const TerminatorInst *BBTerm = BB->getTerminator(); 292 // Threading through a switch statement is particularly profitable. If this 293 // block ends in a switch, decrease its cost to make it more likely to happen. 294 if (isa<SwitchInst>(BBTerm)) 295 Bonus = 6; 296 297 // The same holds for indirect branches, but slightly more so. 298 if (isa<IndirectBrInst>(BBTerm)) 299 Bonus = 8; 300 301 // Bump the threshold up so the early exit from the loop doesn't skip the 302 // terminator-based Size adjustment at the end. 303 Threshold += Bonus; 304 305 // Sum up the cost of each instruction until we get to the terminator. Don't 306 // include the terminator because the copy won't include it. 307 unsigned Size = 0; 308 for (; !isa<TerminatorInst>(I); ++I) { 309 310 // Stop scanning the block if we've reached the threshold. 311 if (Size > Threshold) 312 return Size; 313 314 // Debugger intrinsics don't incur code size. 315 if (isa<DbgInfoIntrinsic>(I)) continue; 316 317 // If this is a pointer->pointer bitcast, it is free. 318 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 319 continue; 320 321 // Bail out if this instruction gives back a token type, it is not possible 322 // to duplicate it if it is used outside this BB. 323 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 324 return ~0U; 325 326 // All other instructions count for at least one unit. 327 ++Size; 328 329 // Calls are more expensive. If they are non-intrinsic calls, we model them 330 // as having cost of 4. If they are a non-vector intrinsic, we model them 331 // as having cost of 2 total, and if they are a vector intrinsic, we model 332 // them as having cost 1. 333 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 334 if (CI->cannotDuplicate() || CI->isConvergent()) 335 // Blocks with NoDuplicate are modelled as having infinite cost, so they 336 // are never duplicated. 337 return ~0U; 338 else if (!isa<IntrinsicInst>(CI)) 339 Size += 3; 340 else if (!CI->getType()->isVectorTy()) 341 Size += 1; 342 } 343 } 344 345 return Size > Bonus ? Size - Bonus : 0; 346 } 347 348 /// FindLoopHeaders - We do not want jump threading to turn proper loop 349 /// structures into irreducible loops. Doing this breaks up the loop nesting 350 /// hierarchy and pessimizes later transformations. To prevent this from 351 /// happening, we first have to find the loop headers. Here we approximate this 352 /// by finding targets of backedges in the CFG. 353 /// 354 /// Note that there definitely are cases when we want to allow threading of 355 /// edges across a loop header. For example, threading a jump from outside the 356 /// loop (the preheader) to an exit block of the loop is definitely profitable. 357 /// It is also almost always profitable to thread backedges from within the loop 358 /// to exit blocks, and is often profitable to thread backedges to other blocks 359 /// within the loop (forming a nested loop). This simple analysis is not rich 360 /// enough to track all of these properties and keep it up-to-date as the CFG 361 /// mutates, so we don't allow any of these transformations. 362 /// 363 void JumpThreading::FindLoopHeaders(Function &F) { 364 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 365 FindFunctionBackedges(F, Edges); 366 367 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 368 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 369 } 370 371 /// getKnownConstant - Helper method to determine if we can thread over a 372 /// terminator with the given value as its condition, and if so what value to 373 /// use for that. What kind of value this is depends on whether we want an 374 /// integer or a block address, but an undef is always accepted. 375 /// Returns null if Val is null or not an appropriate constant. 376 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 377 if (!Val) 378 return nullptr; 379 380 // Undef is "known" enough. 381 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 382 return U; 383 384 if (Preference == WantBlockAddress) 385 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 386 387 return dyn_cast<ConstantInt>(Val); 388 } 389 390 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 391 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 392 /// in any of our predecessors. If so, return the known list of value and pred 393 /// BB in the result vector. 394 /// 395 /// This returns true if there were any known values. 396 /// 397 bool JumpThreading:: 398 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result, 399 ConstantPreference Preference, 400 Instruction *CxtI) { 401 // This method walks up use-def chains recursively. Because of this, we could 402 // get into an infinite loop going around loops in the use-def chain. To 403 // prevent this, keep track of what (value, block) pairs we've already visited 404 // and terminate the search if we loop back to them 405 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 406 return false; 407 408 // An RAII help to remove this pair from the recursion set once the recursion 409 // stack pops back out again. 410 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 411 412 // If V is a constant, then it is known in all predecessors. 413 if (Constant *KC = getKnownConstant(V, Preference)) { 414 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 415 Result.push_back(std::make_pair(KC, *PI)); 416 417 return true; 418 } 419 420 // If V is a non-instruction value, or an instruction in a different block, 421 // then it can't be derived from a PHI. 422 Instruction *I = dyn_cast<Instruction>(V); 423 if (!I || I->getParent() != BB) { 424 425 // Okay, if this is a live-in value, see if it has a known value at the end 426 // of any of our predecessors. 427 // 428 // FIXME: This should be an edge property, not a block end property. 429 /// TODO: Per PR2563, we could infer value range information about a 430 /// predecessor based on its terminator. 431 // 432 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 433 // "I" is a non-local compare-with-a-constant instruction. This would be 434 // able to handle value inequalities better, for example if the compare is 435 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 436 // Perhaps getConstantOnEdge should be smart enough to do this? 437 438 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 439 BasicBlock *P = *PI; 440 // If the value is known by LazyValueInfo to be a constant in a 441 // predecessor, use that information to try to thread this block. 442 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 443 if (Constant *KC = getKnownConstant(PredCst, Preference)) 444 Result.push_back(std::make_pair(KC, P)); 445 } 446 447 return !Result.empty(); 448 } 449 450 /// If I is a PHI node, then we know the incoming values for any constants. 451 if (PHINode *PN = dyn_cast<PHINode>(I)) { 452 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 453 Value *InVal = PN->getIncomingValue(i); 454 if (Constant *KC = getKnownConstant(InVal, Preference)) { 455 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 456 } else { 457 Constant *CI = LVI->getConstantOnEdge(InVal, 458 PN->getIncomingBlock(i), 459 BB, CxtI); 460 if (Constant *KC = getKnownConstant(CI, Preference)) 461 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 462 } 463 } 464 465 return !Result.empty(); 466 } 467 468 PredValueInfoTy LHSVals, RHSVals; 469 470 // Handle some boolean conditions. 471 if (I->getType()->getPrimitiveSizeInBits() == 1) { 472 assert(Preference == WantInteger && "One-bit non-integer type?"); 473 // X | true -> true 474 // X & false -> false 475 if (I->getOpcode() == Instruction::Or || 476 I->getOpcode() == Instruction::And) { 477 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 478 WantInteger, CxtI); 479 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 480 WantInteger, CxtI); 481 482 if (LHSVals.empty() && RHSVals.empty()) 483 return false; 484 485 ConstantInt *InterestingVal; 486 if (I->getOpcode() == Instruction::Or) 487 InterestingVal = ConstantInt::getTrue(I->getContext()); 488 else 489 InterestingVal = ConstantInt::getFalse(I->getContext()); 490 491 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 492 493 // Scan for the sentinel. If we find an undef, force it to the 494 // interesting value: x|undef -> true and x&undef -> false. 495 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 496 if (LHSVals[i].first == InterestingVal || 497 isa<UndefValue>(LHSVals[i].first)) { 498 Result.push_back(LHSVals[i]); 499 Result.back().first = InterestingVal; 500 LHSKnownBBs.insert(LHSVals[i].second); 501 } 502 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 503 if (RHSVals[i].first == InterestingVal || 504 isa<UndefValue>(RHSVals[i].first)) { 505 // If we already inferred a value for this block on the LHS, don't 506 // re-add it. 507 if (!LHSKnownBBs.count(RHSVals[i].second)) { 508 Result.push_back(RHSVals[i]); 509 Result.back().first = InterestingVal; 510 } 511 } 512 513 return !Result.empty(); 514 } 515 516 // Handle the NOT form of XOR. 517 if (I->getOpcode() == Instruction::Xor && 518 isa<ConstantInt>(I->getOperand(1)) && 519 cast<ConstantInt>(I->getOperand(1))->isOne()) { 520 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 521 WantInteger, CxtI); 522 if (Result.empty()) 523 return false; 524 525 // Invert the known values. 526 for (unsigned i = 0, e = Result.size(); i != e; ++i) 527 Result[i].first = ConstantExpr::getNot(Result[i].first); 528 529 return true; 530 } 531 532 // Try to simplify some other binary operator values. 533 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 534 assert(Preference != WantBlockAddress 535 && "A binary operator creating a block address?"); 536 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 537 PredValueInfoTy LHSVals; 538 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 539 WantInteger, CxtI); 540 541 // Try to use constant folding to simplify the binary operator. 542 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 543 Constant *V = LHSVals[i].first; 544 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 545 546 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 547 Result.push_back(std::make_pair(KC, LHSVals[i].second)); 548 } 549 } 550 551 return !Result.empty(); 552 } 553 554 // Handle compare with phi operand, where the PHI is defined in this block. 555 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 556 assert(Preference == WantInteger && "Compares only produce integers"); 557 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 558 if (PN && PN->getParent() == BB) { 559 const DataLayout &DL = PN->getModule()->getDataLayout(); 560 // We can do this simplification if any comparisons fold to true or false. 561 // See if any do. 562 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 563 BasicBlock *PredBB = PN->getIncomingBlock(i); 564 Value *LHS = PN->getIncomingValue(i); 565 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 566 567 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL); 568 if (!Res) { 569 if (!isa<Constant>(RHS)) 570 continue; 571 572 LazyValueInfo::Tristate 573 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 574 cast<Constant>(RHS), PredBB, BB, 575 CxtI ? CxtI : Cmp); 576 if (ResT == LazyValueInfo::Unknown) 577 continue; 578 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 579 } 580 581 if (Constant *KC = getKnownConstant(Res, WantInteger)) 582 Result.push_back(std::make_pair(KC, PredBB)); 583 } 584 585 return !Result.empty(); 586 } 587 588 // If comparing a live-in value against a constant, see if we know the 589 // live-in value on any predecessors. 590 if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) { 591 if (!isa<Instruction>(Cmp->getOperand(0)) || 592 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) { 593 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 594 595 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){ 596 BasicBlock *P = *PI; 597 // If the value is known by LazyValueInfo to be a constant in a 598 // predecessor, use that information to try to thread this block. 599 LazyValueInfo::Tristate Res = 600 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 601 RHSCst, P, BB, CxtI ? CxtI : Cmp); 602 if (Res == LazyValueInfo::Unknown) 603 continue; 604 605 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 606 Result.push_back(std::make_pair(ResC, P)); 607 } 608 609 return !Result.empty(); 610 } 611 612 // Try to find a constant value for the LHS of a comparison, 613 // and evaluate it statically if we can. 614 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) { 615 PredValueInfoTy LHSVals; 616 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 617 WantInteger, CxtI); 618 619 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 620 Constant *V = LHSVals[i].first; 621 Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(), 622 V, CmpConst); 623 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 624 Result.push_back(std::make_pair(KC, LHSVals[i].second)); 625 } 626 627 return !Result.empty(); 628 } 629 } 630 } 631 632 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 633 // Handle select instructions where at least one operand is a known constant 634 // and we can figure out the condition value for any predecessor block. 635 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 636 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 637 PredValueInfoTy Conds; 638 if ((TrueVal || FalseVal) && 639 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 640 WantInteger, CxtI)) { 641 for (unsigned i = 0, e = Conds.size(); i != e; ++i) { 642 Constant *Cond = Conds[i].first; 643 644 // Figure out what value to use for the condition. 645 bool KnownCond; 646 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 647 // A known boolean. 648 KnownCond = CI->isOne(); 649 } else { 650 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 651 // Either operand will do, so be sure to pick the one that's a known 652 // constant. 653 // FIXME: Do this more cleverly if both values are known constants? 654 KnownCond = (TrueVal != nullptr); 655 } 656 657 // See if the select has a known constant value for this predecessor. 658 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 659 Result.push_back(std::make_pair(Val, Conds[i].second)); 660 } 661 662 return !Result.empty(); 663 } 664 } 665 666 // If all else fails, see if LVI can figure out a constant value for us. 667 Constant *CI = LVI->getConstant(V, BB, CxtI); 668 if (Constant *KC = getKnownConstant(CI, Preference)) { 669 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 670 Result.push_back(std::make_pair(KC, *PI)); 671 } 672 673 return !Result.empty(); 674 } 675 676 677 678 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 679 /// in an undefined jump, decide which block is best to revector to. 680 /// 681 /// Since we can pick an arbitrary destination, we pick the successor with the 682 /// fewest predecessors. This should reduce the in-degree of the others. 683 /// 684 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 685 TerminatorInst *BBTerm = BB->getTerminator(); 686 unsigned MinSucc = 0; 687 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 688 // Compute the successor with the minimum number of predecessors. 689 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 690 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 691 TestBB = BBTerm->getSuccessor(i); 692 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 693 if (NumPreds < MinNumPreds) { 694 MinSucc = i; 695 MinNumPreds = NumPreds; 696 } 697 } 698 699 return MinSucc; 700 } 701 702 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 703 if (!BB->hasAddressTaken()) return false; 704 705 // If the block has its address taken, it may be a tree of dead constants 706 // hanging off of it. These shouldn't keep the block alive. 707 BlockAddress *BA = BlockAddress::get(BB); 708 BA->removeDeadConstantUsers(); 709 return !BA->use_empty(); 710 } 711 712 /// ProcessBlock - If there are any predecessors whose control can be threaded 713 /// through to a successor, transform them now. 714 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 715 // If the block is trivially dead, just return and let the caller nuke it. 716 // This simplifies other transformations. 717 if (pred_empty(BB) && 718 BB != &BB->getParent()->getEntryBlock()) 719 return false; 720 721 // If this block has a single predecessor, and if that pred has a single 722 // successor, merge the blocks. This encourages recursive jump threading 723 // because now the condition in this block can be threaded through 724 // predecessors of our predecessor block. 725 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 726 const TerminatorInst *TI = SinglePred->getTerminator(); 727 if (!TI->isExceptional() && TI->getNumSuccessors() == 1 && 728 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 729 // If SinglePred was a loop header, BB becomes one. 730 if (LoopHeaders.erase(SinglePred)) 731 LoopHeaders.insert(BB); 732 733 LVI->eraseBlock(SinglePred); 734 MergeBasicBlockIntoOnlyPred(BB); 735 736 return true; 737 } 738 } 739 740 if (TryToUnfoldSelectInCurrBB(BB)) 741 return true; 742 743 // What kind of constant we're looking for. 744 ConstantPreference Preference = WantInteger; 745 746 // Look to see if the terminator is a conditional branch, switch or indirect 747 // branch, if not we can't thread it. 748 Value *Condition; 749 Instruction *Terminator = BB->getTerminator(); 750 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 751 // Can't thread an unconditional jump. 752 if (BI->isUnconditional()) return false; 753 Condition = BI->getCondition(); 754 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 755 Condition = SI->getCondition(); 756 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 757 // Can't thread indirect branch with no successors. 758 if (IB->getNumSuccessors() == 0) return false; 759 Condition = IB->getAddress()->stripPointerCasts(); 760 Preference = WantBlockAddress; 761 } else { 762 return false; // Must be an invoke. 763 } 764 765 // Run constant folding to see if we can reduce the condition to a simple 766 // constant. 767 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 768 Value *SimpleVal = 769 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 770 if (SimpleVal) { 771 I->replaceAllUsesWith(SimpleVal); 772 I->eraseFromParent(); 773 Condition = SimpleVal; 774 } 775 } 776 777 // If the terminator is branching on an undef, we can pick any of the 778 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 779 if (isa<UndefValue>(Condition)) { 780 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 781 782 // Fold the branch/switch. 783 TerminatorInst *BBTerm = BB->getTerminator(); 784 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 785 if (i == BestSucc) continue; 786 BBTerm->getSuccessor(i)->removePredecessor(BB, true); 787 } 788 789 DEBUG(dbgs() << " In block '" << BB->getName() 790 << "' folding undef terminator: " << *BBTerm << '\n'); 791 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 792 BBTerm->eraseFromParent(); 793 return true; 794 } 795 796 // If the terminator of this block is branching on a constant, simplify the 797 // terminator to an unconditional branch. This can occur due to threading in 798 // other blocks. 799 if (getKnownConstant(Condition, Preference)) { 800 DEBUG(dbgs() << " In block '" << BB->getName() 801 << "' folding terminator: " << *BB->getTerminator() << '\n'); 802 ++NumFolds; 803 ConstantFoldTerminator(BB, true); 804 return true; 805 } 806 807 Instruction *CondInst = dyn_cast<Instruction>(Condition); 808 809 // All the rest of our checks depend on the condition being an instruction. 810 if (!CondInst) { 811 // FIXME: Unify this with code below. 812 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 813 return true; 814 return false; 815 } 816 817 818 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 819 // If we're branching on a conditional, LVI might be able to determine 820 // it's value at the branch instruction. We only handle comparisons 821 // against a constant at this time. 822 // TODO: This should be extended to handle switches as well. 823 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 824 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 825 if (CondBr && CondConst && CondBr->isConditional()) { 826 LazyValueInfo::Tristate Ret = 827 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 828 CondConst, CondBr); 829 if (Ret != LazyValueInfo::Unknown) { 830 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 831 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 832 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 833 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 834 CondBr->eraseFromParent(); 835 if (CondCmp->use_empty()) 836 CondCmp->eraseFromParent(); 837 else if (CondCmp->getParent() == BB) { 838 // If the fact we just learned is true for all uses of the 839 // condition, replace it with a constant value 840 auto *CI = Ret == LazyValueInfo::True ? 841 ConstantInt::getTrue(CondCmp->getType()) : 842 ConstantInt::getFalse(CondCmp->getType()); 843 CondCmp->replaceAllUsesWith(CI); 844 CondCmp->eraseFromParent(); 845 } 846 return true; 847 } 848 } 849 850 if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB)) 851 return true; 852 } 853 854 // Check for some cases that are worth simplifying. Right now we want to look 855 // for loads that are used by a switch or by the condition for the branch. If 856 // we see one, check to see if it's partially redundant. If so, insert a PHI 857 // which can then be used to thread the values. 858 // 859 Value *SimplifyValue = CondInst; 860 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 861 if (isa<Constant>(CondCmp->getOperand(1))) 862 SimplifyValue = CondCmp->getOperand(0); 863 864 // TODO: There are other places where load PRE would be profitable, such as 865 // more complex comparisons. 866 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 867 if (SimplifyPartiallyRedundantLoad(LI)) 868 return true; 869 870 871 // Handle a variety of cases where we are branching on something derived from 872 // a PHI node in the current block. If we can prove that any predecessors 873 // compute a predictable value based on a PHI node, thread those predecessors. 874 // 875 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 876 return true; 877 878 // If this is an otherwise-unfoldable branch on a phi node in the current 879 // block, see if we can simplify. 880 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 881 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 882 return ProcessBranchOnPHI(PN); 883 884 885 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 886 if (CondInst->getOpcode() == Instruction::Xor && 887 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 888 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 889 890 // Search for a stronger dominating condition that can be used to simplify a 891 // conditional branch leaving BB. 892 if (ProcessImpliedCondition(BB)) 893 return true; 894 895 return false; 896 } 897 898 bool JumpThreading::ProcessImpliedCondition(BasicBlock *BB) { 899 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 900 if (!BI || !BI->isConditional()) 901 return false; 902 903 Value *Cond = BI->getCondition(); 904 BasicBlock *CurrentBB = BB; 905 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 906 unsigned Iter = 0; 907 908 auto &DL = BB->getModule()->getDataLayout(); 909 910 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 911 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 912 if (!PBI || !PBI->isConditional() || PBI->getSuccessor(0) != CurrentBB) 913 return false; 914 915 if (isImpliedCondition(PBI->getCondition(), Cond, DL)) { 916 BI->getSuccessor(1)->removePredecessor(BB); 917 BranchInst::Create(BI->getSuccessor(0), BI); 918 BI->eraseFromParent(); 919 return true; 920 } 921 CurrentBB = CurrentPred; 922 CurrentPred = CurrentBB->getSinglePredecessor(); 923 } 924 925 return false; 926 } 927 928 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 929 /// load instruction, eliminate it by replacing it with a PHI node. This is an 930 /// important optimization that encourages jump threading, and needs to be run 931 /// interlaced with other jump threading tasks. 932 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 933 // Don't hack volatile/atomic loads. 934 if (!LI->isSimple()) return false; 935 936 // If the load is defined in a block with exactly one predecessor, it can't be 937 // partially redundant. 938 BasicBlock *LoadBB = LI->getParent(); 939 if (LoadBB->getSinglePredecessor()) 940 return false; 941 942 // If the load is defined in an EH pad, it can't be partially redundant, 943 // because the edges between the invoke and the EH pad cannot have other 944 // instructions between them. 945 if (LoadBB->isEHPad()) 946 return false; 947 948 Value *LoadedPtr = LI->getOperand(0); 949 950 // If the loaded operand is defined in the LoadBB, it can't be available. 951 // TODO: Could do simple PHI translation, that would be fun :) 952 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 953 if (PtrOp->getParent() == LoadBB) 954 return false; 955 956 // Scan a few instructions up from the load, to see if it is obviously live at 957 // the entry to its block. 958 BasicBlock::iterator BBIt(LI); 959 960 if (Value *AvailableVal = 961 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, DefMaxInstsToScan)) { 962 // If the value of the load is locally available within the block, just use 963 // it. This frequently occurs for reg2mem'd allocas. 964 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 965 966 // If the returned value is the load itself, replace with an undef. This can 967 // only happen in dead loops. 968 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 969 if (AvailableVal->getType() != LI->getType()) 970 AvailableVal = 971 CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI); 972 LI->replaceAllUsesWith(AvailableVal); 973 LI->eraseFromParent(); 974 return true; 975 } 976 977 // Otherwise, if we scanned the whole block and got to the top of the block, 978 // we know the block is locally transparent to the load. If not, something 979 // might clobber its value. 980 if (BBIt != LoadBB->begin()) 981 return false; 982 983 // If all of the loads and stores that feed the value have the same AA tags, 984 // then we can propagate them onto any newly inserted loads. 985 AAMDNodes AATags; 986 LI->getAAMetadata(AATags); 987 988 SmallPtrSet<BasicBlock*, 8> PredsScanned; 989 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 990 AvailablePredsTy AvailablePreds; 991 BasicBlock *OneUnavailablePred = nullptr; 992 993 // If we got here, the loaded value is transparent through to the start of the 994 // block. Check to see if it is available in any of the predecessor blocks. 995 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 996 PI != PE; ++PI) { 997 BasicBlock *PredBB = *PI; 998 999 // If we already scanned this predecessor, skip it. 1000 if (!PredsScanned.insert(PredBB).second) 1001 continue; 1002 1003 // Scan the predecessor to see if the value is available in the pred. 1004 BBIt = PredBB->end(); 1005 AAMDNodes ThisAATags; 1006 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 1007 DefMaxInstsToScan, 1008 nullptr, &ThisAATags); 1009 if (!PredAvailable) { 1010 OneUnavailablePred = PredBB; 1011 continue; 1012 } 1013 1014 // If AA tags disagree or are not present, forget about them. 1015 if (AATags != ThisAATags) AATags = AAMDNodes(); 1016 1017 // If so, this load is partially redundant. Remember this info so that we 1018 // can create a PHI node. 1019 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 1020 } 1021 1022 // If the loaded value isn't available in any predecessor, it isn't partially 1023 // redundant. 1024 if (AvailablePreds.empty()) return false; 1025 1026 // Okay, the loaded value is available in at least one (and maybe all!) 1027 // predecessors. If the value is unavailable in more than one unique 1028 // predecessor, we want to insert a merge block for those common predecessors. 1029 // This ensures that we only have to insert one reload, thus not increasing 1030 // code size. 1031 BasicBlock *UnavailablePred = nullptr; 1032 1033 // If there is exactly one predecessor where the value is unavailable, the 1034 // already computed 'OneUnavailablePred' block is it. If it ends in an 1035 // unconditional branch, we know that it isn't a critical edge. 1036 if (PredsScanned.size() == AvailablePreds.size()+1 && 1037 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1038 UnavailablePred = OneUnavailablePred; 1039 } else if (PredsScanned.size() != AvailablePreds.size()) { 1040 // Otherwise, we had multiple unavailable predecessors or we had a critical 1041 // edge from the one. 1042 SmallVector<BasicBlock*, 8> PredsToSplit; 1043 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1044 1045 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 1046 AvailablePredSet.insert(AvailablePreds[i].first); 1047 1048 // Add all the unavailable predecessors to the PredsToSplit list. 1049 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 1050 PI != PE; ++PI) { 1051 BasicBlock *P = *PI; 1052 // If the predecessor is an indirect goto, we can't split the edge. 1053 if (isa<IndirectBrInst>(P->getTerminator())) 1054 return false; 1055 1056 if (!AvailablePredSet.count(P)) 1057 PredsToSplit.push_back(P); 1058 } 1059 1060 // Split them out to their own block. 1061 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1062 } 1063 1064 // If the value isn't available in all predecessors, then there will be 1065 // exactly one where it isn't available. Insert a load on that edge and add 1066 // it to the AvailablePreds list. 1067 if (UnavailablePred) { 1068 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1069 "Can't handle critical edge here!"); 1070 LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, 1071 LI->getAlignment(), 1072 UnavailablePred->getTerminator()); 1073 NewVal->setDebugLoc(LI->getDebugLoc()); 1074 if (AATags) 1075 NewVal->setAAMetadata(AATags); 1076 1077 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1078 } 1079 1080 // Now we know that each predecessor of this block has a value in 1081 // AvailablePreds, sort them for efficient access as we're walking the preds. 1082 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1083 1084 // Create a PHI node at the start of the block for the PRE'd load value. 1085 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1086 PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "", 1087 &LoadBB->front()); 1088 PN->takeName(LI); 1089 PN->setDebugLoc(LI->getDebugLoc()); 1090 1091 // Insert new entries into the PHI for each predecessor. A single block may 1092 // have multiple entries here. 1093 for (pred_iterator PI = PB; PI != PE; ++PI) { 1094 BasicBlock *P = *PI; 1095 AvailablePredsTy::iterator I = 1096 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1097 std::make_pair(P, (Value*)nullptr)); 1098 1099 assert(I != AvailablePreds.end() && I->first == P && 1100 "Didn't find entry for predecessor!"); 1101 1102 // If we have an available predecessor but it requires casting, insert the 1103 // cast in the predecessor and use the cast. Note that we have to update the 1104 // AvailablePreds vector as we go so that all of the PHI entries for this 1105 // predecessor use the same bitcast. 1106 Value *&PredV = I->second; 1107 if (PredV->getType() != LI->getType()) 1108 PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "", 1109 P->getTerminator()); 1110 1111 PN->addIncoming(PredV, I->first); 1112 } 1113 1114 //cerr << "PRE: " << *LI << *PN << "\n"; 1115 1116 LI->replaceAllUsesWith(PN); 1117 LI->eraseFromParent(); 1118 1119 return true; 1120 } 1121 1122 /// FindMostPopularDest - The specified list contains multiple possible 1123 /// threadable destinations. Pick the one that occurs the most frequently in 1124 /// the list. 1125 static BasicBlock * 1126 FindMostPopularDest(BasicBlock *BB, 1127 const SmallVectorImpl<std::pair<BasicBlock*, 1128 BasicBlock*> > &PredToDestList) { 1129 assert(!PredToDestList.empty()); 1130 1131 // Determine popularity. If there are multiple possible destinations, we 1132 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1133 // blocks with known and real destinations to threading undef. We'll handle 1134 // them later if interesting. 1135 DenseMap<BasicBlock*, unsigned> DestPopularity; 1136 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1137 if (PredToDestList[i].second) 1138 DestPopularity[PredToDestList[i].second]++; 1139 1140 // Find the most popular dest. 1141 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1142 BasicBlock *MostPopularDest = DPI->first; 1143 unsigned Popularity = DPI->second; 1144 SmallVector<BasicBlock*, 4> SamePopularity; 1145 1146 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1147 // If the popularity of this entry isn't higher than the popularity we've 1148 // seen so far, ignore it. 1149 if (DPI->second < Popularity) 1150 ; // ignore. 1151 else if (DPI->second == Popularity) { 1152 // If it is the same as what we've seen so far, keep track of it. 1153 SamePopularity.push_back(DPI->first); 1154 } else { 1155 // If it is more popular, remember it. 1156 SamePopularity.clear(); 1157 MostPopularDest = DPI->first; 1158 Popularity = DPI->second; 1159 } 1160 } 1161 1162 // Okay, now we know the most popular destination. If there is more than one 1163 // destination, we need to determine one. This is arbitrary, but we need 1164 // to make a deterministic decision. Pick the first one that appears in the 1165 // successor list. 1166 if (!SamePopularity.empty()) { 1167 SamePopularity.push_back(MostPopularDest); 1168 TerminatorInst *TI = BB->getTerminator(); 1169 for (unsigned i = 0; ; ++i) { 1170 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1171 1172 if (std::find(SamePopularity.begin(), SamePopularity.end(), 1173 TI->getSuccessor(i)) == SamePopularity.end()) 1174 continue; 1175 1176 MostPopularDest = TI->getSuccessor(i); 1177 break; 1178 } 1179 } 1180 1181 // Okay, we have finally picked the most popular destination. 1182 return MostPopularDest; 1183 } 1184 1185 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1186 ConstantPreference Preference, 1187 Instruction *CxtI) { 1188 // If threading this would thread across a loop header, don't even try to 1189 // thread the edge. 1190 if (LoopHeaders.count(BB)) 1191 return false; 1192 1193 PredValueInfoTy PredValues; 1194 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1195 return false; 1196 1197 assert(!PredValues.empty() && 1198 "ComputeValueKnownInPredecessors returned true with no values"); 1199 1200 DEBUG(dbgs() << "IN BB: " << *BB; 1201 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1202 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1203 << *PredValues[i].first 1204 << " for pred '" << PredValues[i].second->getName() << "'.\n"; 1205 }); 1206 1207 // Decide what we want to thread through. Convert our list of known values to 1208 // a list of known destinations for each pred. This also discards duplicate 1209 // predecessors and keeps track of the undefined inputs (which are represented 1210 // as a null dest in the PredToDestList). 1211 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1212 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1213 1214 BasicBlock *OnlyDest = nullptr; 1215 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1216 1217 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1218 BasicBlock *Pred = PredValues[i].second; 1219 if (!SeenPreds.insert(Pred).second) 1220 continue; // Duplicate predecessor entry. 1221 1222 // If the predecessor ends with an indirect goto, we can't change its 1223 // destination. 1224 if (isa<IndirectBrInst>(Pred->getTerminator())) 1225 continue; 1226 1227 Constant *Val = PredValues[i].first; 1228 1229 BasicBlock *DestBB; 1230 if (isa<UndefValue>(Val)) 1231 DestBB = nullptr; 1232 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1233 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1234 else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1235 DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor(); 1236 } else { 1237 assert(isa<IndirectBrInst>(BB->getTerminator()) 1238 && "Unexpected terminator"); 1239 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1240 } 1241 1242 // If we have exactly one destination, remember it for efficiency below. 1243 if (PredToDestList.empty()) 1244 OnlyDest = DestBB; 1245 else if (OnlyDest != DestBB) 1246 OnlyDest = MultipleDestSentinel; 1247 1248 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1249 } 1250 1251 // If all edges were unthreadable, we fail. 1252 if (PredToDestList.empty()) 1253 return false; 1254 1255 // Determine which is the most common successor. If we have many inputs and 1256 // this block is a switch, we want to start by threading the batch that goes 1257 // to the most popular destination first. If we only know about one 1258 // threadable destination (the common case) we can avoid this. 1259 BasicBlock *MostPopularDest = OnlyDest; 1260 1261 if (MostPopularDest == MultipleDestSentinel) 1262 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1263 1264 // Now that we know what the most popular destination is, factor all 1265 // predecessors that will jump to it into a single predecessor. 1266 SmallVector<BasicBlock*, 16> PredsToFactor; 1267 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1268 if (PredToDestList[i].second == MostPopularDest) { 1269 BasicBlock *Pred = PredToDestList[i].first; 1270 1271 // This predecessor may be a switch or something else that has multiple 1272 // edges to the block. Factor each of these edges by listing them 1273 // according to # occurrences in PredsToFactor. 1274 TerminatorInst *PredTI = Pred->getTerminator(); 1275 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 1276 if (PredTI->getSuccessor(i) == BB) 1277 PredsToFactor.push_back(Pred); 1278 } 1279 1280 // If the threadable edges are branching on an undefined value, we get to pick 1281 // the destination that these predecessors should get to. 1282 if (!MostPopularDest) 1283 MostPopularDest = BB->getTerminator()-> 1284 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1285 1286 // Ok, try to thread it! 1287 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1288 } 1289 1290 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1291 /// a PHI node in the current block. See if there are any simplifications we 1292 /// can do based on inputs to the phi node. 1293 /// 1294 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) { 1295 BasicBlock *BB = PN->getParent(); 1296 1297 // TODO: We could make use of this to do it once for blocks with common PHI 1298 // values. 1299 SmallVector<BasicBlock*, 1> PredBBs; 1300 PredBBs.resize(1); 1301 1302 // If any of the predecessor blocks end in an unconditional branch, we can 1303 // *duplicate* the conditional branch into that block in order to further 1304 // encourage jump threading and to eliminate cases where we have branch on a 1305 // phi of an icmp (branch on icmp is much better). 1306 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1307 BasicBlock *PredBB = PN->getIncomingBlock(i); 1308 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1309 if (PredBr->isUnconditional()) { 1310 PredBBs[0] = PredBB; 1311 // Try to duplicate BB into PredBB. 1312 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1313 return true; 1314 } 1315 } 1316 1317 return false; 1318 } 1319 1320 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1321 /// a xor instruction in the current block. See if there are any 1322 /// simplifications we can do based on inputs to the xor. 1323 /// 1324 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) { 1325 BasicBlock *BB = BO->getParent(); 1326 1327 // If either the LHS or RHS of the xor is a constant, don't do this 1328 // optimization. 1329 if (isa<ConstantInt>(BO->getOperand(0)) || 1330 isa<ConstantInt>(BO->getOperand(1))) 1331 return false; 1332 1333 // If the first instruction in BB isn't a phi, we won't be able to infer 1334 // anything special about any particular predecessor. 1335 if (!isa<PHINode>(BB->front())) 1336 return false; 1337 1338 // If we have a xor as the branch input to this block, and we know that the 1339 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1340 // the condition into the predecessor and fix that value to true, saving some 1341 // logical ops on that path and encouraging other paths to simplify. 1342 // 1343 // This copies something like this: 1344 // 1345 // BB: 1346 // %X = phi i1 [1], [%X'] 1347 // %Y = icmp eq i32 %A, %B 1348 // %Z = xor i1 %X, %Y 1349 // br i1 %Z, ... 1350 // 1351 // Into: 1352 // BB': 1353 // %Y = icmp ne i32 %A, %B 1354 // br i1 %Y, ... 1355 1356 PredValueInfoTy XorOpValues; 1357 bool isLHS = true; 1358 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1359 WantInteger, BO)) { 1360 assert(XorOpValues.empty()); 1361 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1362 WantInteger, BO)) 1363 return false; 1364 isLHS = false; 1365 } 1366 1367 assert(!XorOpValues.empty() && 1368 "ComputeValueKnownInPredecessors returned true with no values"); 1369 1370 // Scan the information to see which is most popular: true or false. The 1371 // predecessors can be of the set true, false, or undef. 1372 unsigned NumTrue = 0, NumFalse = 0; 1373 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1374 if (isa<UndefValue>(XorOpValues[i].first)) 1375 // Ignore undefs for the count. 1376 continue; 1377 if (cast<ConstantInt>(XorOpValues[i].first)->isZero()) 1378 ++NumFalse; 1379 else 1380 ++NumTrue; 1381 } 1382 1383 // Determine which value to split on, true, false, or undef if neither. 1384 ConstantInt *SplitVal = nullptr; 1385 if (NumTrue > NumFalse) 1386 SplitVal = ConstantInt::getTrue(BB->getContext()); 1387 else if (NumTrue != 0 || NumFalse != 0) 1388 SplitVal = ConstantInt::getFalse(BB->getContext()); 1389 1390 // Collect all of the blocks that this can be folded into so that we can 1391 // factor this once and clone it once. 1392 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1393 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1394 if (XorOpValues[i].first != SplitVal && 1395 !isa<UndefValue>(XorOpValues[i].first)) 1396 continue; 1397 1398 BlocksToFoldInto.push_back(XorOpValues[i].second); 1399 } 1400 1401 // If we inferred a value for all of the predecessors, then duplication won't 1402 // help us. However, we can just replace the LHS or RHS with the constant. 1403 if (BlocksToFoldInto.size() == 1404 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1405 if (!SplitVal) { 1406 // If all preds provide undef, just nuke the xor, because it is undef too. 1407 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1408 BO->eraseFromParent(); 1409 } else if (SplitVal->isZero()) { 1410 // If all preds provide 0, replace the xor with the other input. 1411 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1412 BO->eraseFromParent(); 1413 } else { 1414 // If all preds provide 1, set the computed value to 1. 1415 BO->setOperand(!isLHS, SplitVal); 1416 } 1417 1418 return true; 1419 } 1420 1421 // Try to duplicate BB into PredBB. 1422 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1423 } 1424 1425 1426 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1427 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1428 /// NewPred using the entries from OldPred (suitably mapped). 1429 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1430 BasicBlock *OldPred, 1431 BasicBlock *NewPred, 1432 DenseMap<Instruction*, Value*> &ValueMap) { 1433 for (BasicBlock::iterator PNI = PHIBB->begin(); 1434 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1435 // Ok, we have a PHI node. Figure out what the incoming value was for the 1436 // DestBlock. 1437 Value *IV = PN->getIncomingValueForBlock(OldPred); 1438 1439 // Remap the value if necessary. 1440 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1441 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1442 if (I != ValueMap.end()) 1443 IV = I->second; 1444 } 1445 1446 PN->addIncoming(IV, NewPred); 1447 } 1448 } 1449 1450 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1451 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1452 /// across BB. Transform the IR to reflect this change. 1453 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1454 const SmallVectorImpl<BasicBlock*> &PredBBs, 1455 BasicBlock *SuccBB) { 1456 // If threading to the same block as we come from, we would infinite loop. 1457 if (SuccBB == BB) { 1458 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1459 << "' - would thread to self!\n"); 1460 return false; 1461 } 1462 1463 // If threading this would thread across a loop header, don't thread the edge. 1464 // See the comments above FindLoopHeaders for justifications and caveats. 1465 if (LoopHeaders.count(BB)) { 1466 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1467 << "' to dest BB '" << SuccBB->getName() 1468 << "' - it might create an irreducible loop!\n"); 1469 return false; 1470 } 1471 1472 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, BBDupThreshold); 1473 if (JumpThreadCost > BBDupThreshold) { 1474 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1475 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1476 return false; 1477 } 1478 1479 // And finally, do it! Start by factoring the predecessors if needed. 1480 BasicBlock *PredBB; 1481 if (PredBBs.size() == 1) 1482 PredBB = PredBBs[0]; 1483 else { 1484 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1485 << " common predecessors.\n"); 1486 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1487 } 1488 1489 // And finally, do it! 1490 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1491 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1492 << ", across block:\n " 1493 << *BB << "\n"); 1494 1495 LVI->threadEdge(PredBB, BB, SuccBB); 1496 1497 // We are going to have to map operands from the original BB block to the new 1498 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1499 // account for entry from PredBB. 1500 DenseMap<Instruction*, Value*> ValueMapping; 1501 1502 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1503 BB->getName()+".thread", 1504 BB->getParent(), BB); 1505 NewBB->moveAfter(PredBB); 1506 1507 // Set the block frequency of NewBB. 1508 if (HasProfileData) { 1509 auto NewBBFreq = 1510 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 1511 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 1512 } 1513 1514 BasicBlock::iterator BI = BB->begin(); 1515 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1516 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1517 1518 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1519 // mapping and using it to remap operands in the cloned instructions. 1520 for (; !isa<TerminatorInst>(BI); ++BI) { 1521 Instruction *New = BI->clone(); 1522 New->setName(BI->getName()); 1523 NewBB->getInstList().push_back(New); 1524 ValueMapping[&*BI] = New; 1525 1526 // Remap operands to patch up intra-block references. 1527 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1528 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1529 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1530 if (I != ValueMapping.end()) 1531 New->setOperand(i, I->second); 1532 } 1533 } 1534 1535 // We didn't copy the terminator from BB over to NewBB, because there is now 1536 // an unconditional jump to SuccBB. Insert the unconditional jump. 1537 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 1538 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1539 1540 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1541 // PHI nodes for NewBB now. 1542 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1543 1544 // If there were values defined in BB that are used outside the block, then we 1545 // now have to update all uses of the value to use either the original value, 1546 // the cloned value, or some PHI derived value. This can require arbitrary 1547 // PHI insertion, of which we are prepared to do, clean these up now. 1548 SSAUpdater SSAUpdate; 1549 SmallVector<Use*, 16> UsesToRename; 1550 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1551 // Scan all uses of this instruction to see if it is used outside of its 1552 // block, and if so, record them in UsesToRename. 1553 for (Use &U : I->uses()) { 1554 Instruction *User = cast<Instruction>(U.getUser()); 1555 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1556 if (UserPN->getIncomingBlock(U) == BB) 1557 continue; 1558 } else if (User->getParent() == BB) 1559 continue; 1560 1561 UsesToRename.push_back(&U); 1562 } 1563 1564 // If there are no uses outside the block, we're done with this instruction. 1565 if (UsesToRename.empty()) 1566 continue; 1567 1568 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1569 1570 // We found a use of I outside of BB. Rename all uses of I that are outside 1571 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1572 // with the two values we know. 1573 SSAUpdate.Initialize(I->getType(), I->getName()); 1574 SSAUpdate.AddAvailableValue(BB, &*I); 1575 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&*I]); 1576 1577 while (!UsesToRename.empty()) 1578 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1579 DEBUG(dbgs() << "\n"); 1580 } 1581 1582 1583 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1584 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1585 // us to simplify any PHI nodes in BB. 1586 TerminatorInst *PredTerm = PredBB->getTerminator(); 1587 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1588 if (PredTerm->getSuccessor(i) == BB) { 1589 BB->removePredecessor(PredBB, true); 1590 PredTerm->setSuccessor(i, NewBB); 1591 } 1592 1593 // At this point, the IR is fully up to date and consistent. Do a quick scan 1594 // over the new instructions and zap any that are constants or dead. This 1595 // frequently happens because of phi translation. 1596 SimplifyInstructionsInBlock(NewBB, TLI); 1597 1598 // Update the edge weight from BB to SuccBB, which should be less than before. 1599 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 1600 1601 // Threaded an edge! 1602 ++NumThreads; 1603 return true; 1604 } 1605 1606 /// Create a new basic block that will be the predecessor of BB and successor of 1607 /// all blocks in Preds. When profile data is availble, update the frequency of 1608 /// this new block. 1609 BasicBlock *JumpThreading::SplitBlockPreds(BasicBlock *BB, 1610 ArrayRef<BasicBlock *> Preds, 1611 const char *Suffix) { 1612 // Collect the frequencies of all predecessors of BB, which will be used to 1613 // update the edge weight on BB->SuccBB. 1614 BlockFrequency PredBBFreq(0); 1615 if (HasProfileData) 1616 for (auto Pred : Preds) 1617 PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB); 1618 1619 BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix); 1620 1621 // Set the block frequency of the newly created PredBB, which is the sum of 1622 // frequencies of Preds. 1623 if (HasProfileData) 1624 BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency()); 1625 return PredBB; 1626 } 1627 1628 /// Update the block frequency of BB and branch weight and the metadata on the 1629 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 1630 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 1631 void JumpThreading::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 1632 BasicBlock *BB, 1633 BasicBlock *NewBB, 1634 BasicBlock *SuccBB) { 1635 if (!HasProfileData) 1636 return; 1637 1638 assert(BFI && BPI && "BFI & BPI should have been created here"); 1639 1640 // As the edge from PredBB to BB is deleted, we have to update the block 1641 // frequency of BB. 1642 auto BBOrigFreq = BFI->getBlockFreq(BB); 1643 auto NewBBFreq = BFI->getBlockFreq(NewBB); 1644 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 1645 auto BBNewFreq = BBOrigFreq - NewBBFreq; 1646 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 1647 1648 // Collect updated outgoing edges' frequencies from BB and use them to update 1649 // edge probabilities. 1650 SmallVector<uint64_t, 4> BBSuccFreq; 1651 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I) { 1652 auto SuccFreq = (*I == SuccBB) 1653 ? BB2SuccBBFreq - NewBBFreq 1654 : BBOrigFreq * BPI->getEdgeProbability(BB, *I); 1655 BBSuccFreq.push_back(SuccFreq.getFrequency()); 1656 } 1657 1658 uint64_t MaxBBSuccFreq = 1659 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 1660 1661 SmallVector<BranchProbability, 4> BBSuccProbs; 1662 if (MaxBBSuccFreq == 0) 1663 BBSuccProbs.assign(BBSuccFreq.size(), 1664 {1, static_cast<unsigned>(BBSuccFreq.size())}); 1665 else { 1666 for (uint64_t Freq : BBSuccFreq) 1667 BBSuccProbs.push_back( 1668 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 1669 // Normalize edge probabilities so that they sum up to one. 1670 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 1671 BBSuccProbs.end()); 1672 } 1673 1674 // Update edge probabilities in BPI. 1675 for (int I = 0, E = BBSuccProbs.size(); I < E; I++) 1676 BPI->setEdgeProbability(BB, I, BBSuccProbs[I]); 1677 1678 if (BBSuccProbs.size() >= 2) { 1679 SmallVector<uint32_t, 4> Weights; 1680 for (auto Prob : BBSuccProbs) 1681 Weights.push_back(Prob.getNumerator()); 1682 1683 auto TI = BB->getTerminator(); 1684 TI->setMetadata( 1685 LLVMContext::MD_prof, 1686 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 1687 } 1688 } 1689 1690 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1691 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1692 /// If we can duplicate the contents of BB up into PredBB do so now, this 1693 /// improves the odds that the branch will be on an analyzable instruction like 1694 /// a compare. 1695 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1696 const SmallVectorImpl<BasicBlock *> &PredBBs) { 1697 assert(!PredBBs.empty() && "Can't handle an empty set"); 1698 1699 // If BB is a loop header, then duplicating this block outside the loop would 1700 // cause us to transform this into an irreducible loop, don't do this. 1701 // See the comments above FindLoopHeaders for justifications and caveats. 1702 if (LoopHeaders.count(BB)) { 1703 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1704 << "' into predecessor block '" << PredBBs[0]->getName() 1705 << "' - it might create an irreducible loop!\n"); 1706 return false; 1707 } 1708 1709 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, BBDupThreshold); 1710 if (DuplicationCost > BBDupThreshold) { 1711 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1712 << "' - Cost is too high: " << DuplicationCost << "\n"); 1713 return false; 1714 } 1715 1716 // And finally, do it! Start by factoring the predecessors if needed. 1717 BasicBlock *PredBB; 1718 if (PredBBs.size() == 1) 1719 PredBB = PredBBs[0]; 1720 else { 1721 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1722 << " common predecessors.\n"); 1723 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1724 } 1725 1726 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1727 // of PredBB. 1728 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1729 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1730 << DuplicationCost << " block is:" << *BB << "\n"); 1731 1732 // Unless PredBB ends with an unconditional branch, split the edge so that we 1733 // can just clone the bits from BB into the end of the new PredBB. 1734 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 1735 1736 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 1737 PredBB = SplitEdge(PredBB, BB); 1738 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1739 } 1740 1741 // We are going to have to map operands from the original BB block into the 1742 // PredBB block. Evaluate PHI nodes in BB. 1743 DenseMap<Instruction*, Value*> ValueMapping; 1744 1745 BasicBlock::iterator BI = BB->begin(); 1746 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1747 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1748 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1749 // mapping and using it to remap operands in the cloned instructions. 1750 for (; BI != BB->end(); ++BI) { 1751 Instruction *New = BI->clone(); 1752 1753 // Remap operands to patch up intra-block references. 1754 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1755 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1756 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1757 if (I != ValueMapping.end()) 1758 New->setOperand(i, I->second); 1759 } 1760 1761 // If this instruction can be simplified after the operands are updated, 1762 // just use the simplified value instead. This frequently happens due to 1763 // phi translation. 1764 if (Value *IV = 1765 SimplifyInstruction(New, BB->getModule()->getDataLayout())) { 1766 delete New; 1767 ValueMapping[&*BI] = IV; 1768 } else { 1769 // Otherwise, insert the new instruction into the block. 1770 New->setName(BI->getName()); 1771 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 1772 ValueMapping[&*BI] = New; 1773 } 1774 } 1775 1776 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1777 // add entries to the PHI nodes for branch from PredBB now. 1778 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1779 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1780 ValueMapping); 1781 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1782 ValueMapping); 1783 1784 // If there were values defined in BB that are used outside the block, then we 1785 // now have to update all uses of the value to use either the original value, 1786 // the cloned value, or some PHI derived value. This can require arbitrary 1787 // PHI insertion, of which we are prepared to do, clean these up now. 1788 SSAUpdater SSAUpdate; 1789 SmallVector<Use*, 16> UsesToRename; 1790 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1791 // Scan all uses of this instruction to see if it is used outside of its 1792 // block, and if so, record them in UsesToRename. 1793 for (Use &U : I->uses()) { 1794 Instruction *User = cast<Instruction>(U.getUser()); 1795 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1796 if (UserPN->getIncomingBlock(U) == BB) 1797 continue; 1798 } else if (User->getParent() == BB) 1799 continue; 1800 1801 UsesToRename.push_back(&U); 1802 } 1803 1804 // If there are no uses outside the block, we're done with this instruction. 1805 if (UsesToRename.empty()) 1806 continue; 1807 1808 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1809 1810 // We found a use of I outside of BB. Rename all uses of I that are outside 1811 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1812 // with the two values we know. 1813 SSAUpdate.Initialize(I->getType(), I->getName()); 1814 SSAUpdate.AddAvailableValue(BB, &*I); 1815 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&*I]); 1816 1817 while (!UsesToRename.empty()) 1818 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1819 DEBUG(dbgs() << "\n"); 1820 } 1821 1822 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1823 // that we nuked. 1824 BB->removePredecessor(PredBB, true); 1825 1826 // Remove the unconditional branch at the end of the PredBB block. 1827 OldPredBranch->eraseFromParent(); 1828 1829 ++NumDupes; 1830 return true; 1831 } 1832 1833 /// TryToUnfoldSelect - Look for blocks of the form 1834 /// bb1: 1835 /// %a = select 1836 /// br bb 1837 /// 1838 /// bb2: 1839 /// %p = phi [%a, %bb] ... 1840 /// %c = icmp %p 1841 /// br i1 %c 1842 /// 1843 /// And expand the select into a branch structure if one of its arms allows %c 1844 /// to be folded. This later enables threading from bb1 over bb2. 1845 bool JumpThreading::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 1846 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1847 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 1848 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 1849 1850 if (!CondBr || !CondBr->isConditional() || !CondLHS || 1851 CondLHS->getParent() != BB) 1852 return false; 1853 1854 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 1855 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 1856 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 1857 1858 // Look if one of the incoming values is a select in the corresponding 1859 // predecessor. 1860 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 1861 continue; 1862 1863 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 1864 if (!PredTerm || !PredTerm->isUnconditional()) 1865 continue; 1866 1867 // Now check if one of the select values would allow us to constant fold the 1868 // terminator in BB. We don't do the transform if both sides fold, those 1869 // cases will be threaded in any case. 1870 LazyValueInfo::Tristate LHSFolds = 1871 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 1872 CondRHS, Pred, BB, CondCmp); 1873 LazyValueInfo::Tristate RHSFolds = 1874 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 1875 CondRHS, Pred, BB, CondCmp); 1876 if ((LHSFolds != LazyValueInfo::Unknown || 1877 RHSFolds != LazyValueInfo::Unknown) && 1878 LHSFolds != RHSFolds) { 1879 // Expand the select. 1880 // 1881 // Pred -- 1882 // | v 1883 // | NewBB 1884 // | | 1885 // |----- 1886 // v 1887 // BB 1888 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 1889 BB->getParent(), BB); 1890 // Move the unconditional branch to NewBB. 1891 PredTerm->removeFromParent(); 1892 NewBB->getInstList().insert(NewBB->end(), PredTerm); 1893 // Create a conditional branch and update PHI nodes. 1894 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 1895 CondLHS->setIncomingValue(I, SI->getFalseValue()); 1896 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 1897 // The select is now dead. 1898 SI->eraseFromParent(); 1899 1900 // Update any other PHI nodes in BB. 1901 for (BasicBlock::iterator BI = BB->begin(); 1902 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 1903 if (Phi != CondLHS) 1904 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 1905 return true; 1906 } 1907 } 1908 return false; 1909 } 1910 1911 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select in the same BB of the form 1912 /// bb: 1913 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 1914 /// %s = select p, trueval, falseval 1915 /// 1916 /// And expand the select into a branch structure. This later enables 1917 /// jump-threading over bb in this pass. 1918 /// 1919 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 1920 /// select if the associated PHI has at least one constant. If the unfolded 1921 /// select is not jump-threaded, it will be folded again in the later 1922 /// optimizations. 1923 bool JumpThreading::TryToUnfoldSelectInCurrBB(BasicBlock *BB) { 1924 // If threading this would thread across a loop header, don't thread the edge. 1925 // See the comments above FindLoopHeaders for justifications and caveats. 1926 if (LoopHeaders.count(BB)) 1927 return false; 1928 1929 // Look for a Phi/Select pair in the same basic block. The Phi feeds the 1930 // condition of the Select and at least one of the incoming values is a 1931 // constant. 1932 for (BasicBlock::iterator BI = BB->begin(); 1933 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 1934 unsigned NumPHIValues = PN->getNumIncomingValues(); 1935 if (NumPHIValues == 0 || !PN->hasOneUse()) 1936 continue; 1937 1938 SelectInst *SI = dyn_cast<SelectInst>(PN->user_back()); 1939 if (!SI || SI->getParent() != BB) 1940 continue; 1941 1942 Value *Cond = SI->getCondition(); 1943 if (!Cond || Cond != PN || !Cond->getType()->isIntegerTy(1)) 1944 continue; 1945 1946 bool HasConst = false; 1947 for (unsigned i = 0; i != NumPHIValues; ++i) { 1948 if (PN->getIncomingBlock(i) == BB) 1949 return false; 1950 if (isa<ConstantInt>(PN->getIncomingValue(i))) 1951 HasConst = true; 1952 } 1953 1954 if (HasConst) { 1955 // Expand the select. 1956 TerminatorInst *Term = 1957 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false); 1958 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 1959 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 1960 NewPN->addIncoming(SI->getFalseValue(), BB); 1961 SI->replaceAllUsesWith(NewPN); 1962 SI->eraseFromParent(); 1963 return true; 1964 } 1965 } 1966 1967 return false; 1968 } 1969