1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Jump Threading pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Scalar/JumpThreading.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/BlockFrequencyInfo.h" 23 #include "llvm/Analysis/BranchProbabilityInfo.h" 24 #include "llvm/Analysis/CFG.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/GlobalsModRef.h" 27 #include "llvm/Analysis/GuardUtils.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/LazyValueInfo.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/MemoryLocation.h" 33 #include "llvm/Analysis/PostDominators.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DebugInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/InstrTypes.h" 47 #include "llvm/IR/Instruction.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/IntrinsicInst.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/MDBuilder.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/PassManager.h" 56 #include "llvm/IR/PatternMatch.h" 57 #include "llvm/IR/ProfDataUtils.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Use.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/InitializePasses.h" 62 #include "llvm/Pass.h" 63 #include "llvm/Support/BlockFrequency.h" 64 #include "llvm/Support/BranchProbability.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Transforms/Scalar.h" 70 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 71 #include "llvm/Transforms/Utils/Cloning.h" 72 #include "llvm/Transforms/Utils/Local.h" 73 #include "llvm/Transforms/Utils/SSAUpdater.h" 74 #include "llvm/Transforms/Utils/ValueMapper.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstdint> 78 #include <iterator> 79 #include <memory> 80 #include <utility> 81 82 using namespace llvm; 83 using namespace jumpthreading; 84 85 #define DEBUG_TYPE "jump-threading" 86 87 STATISTIC(NumThreads, "Number of jumps threaded"); 88 STATISTIC(NumFolds, "Number of terminators folded"); 89 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 90 91 static cl::opt<unsigned> 92 BBDuplicateThreshold("jump-threading-threshold", 93 cl::desc("Max block size to duplicate for jump threading"), 94 cl::init(6), cl::Hidden); 95 96 static cl::opt<unsigned> 97 ImplicationSearchThreshold( 98 "jump-threading-implication-search-threshold", 99 cl::desc("The number of predecessors to search for a stronger " 100 "condition to use to thread over a weaker condition"), 101 cl::init(3), cl::Hidden); 102 103 static cl::opt<unsigned> PhiDuplicateThreshold( 104 "jump-threading-phi-threshold", 105 cl::desc("Max PHIs in BB to duplicate for jump threading"), cl::init(76), 106 cl::Hidden); 107 108 static cl::opt<bool> PrintLVIAfterJumpThreading( 109 "print-lvi-after-jump-threading", 110 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false), 111 cl::Hidden); 112 113 static cl::opt<bool> ThreadAcrossLoopHeaders( 114 "jump-threading-across-loop-headers", 115 cl::desc("Allow JumpThreading to thread across loop headers, for testing"), 116 cl::init(false), cl::Hidden); 117 118 119 namespace { 120 121 /// This pass performs 'jump threading', which looks at blocks that have 122 /// multiple predecessors and multiple successors. If one or more of the 123 /// predecessors of the block can be proven to always jump to one of the 124 /// successors, we forward the edge from the predecessor to the successor by 125 /// duplicating the contents of this block. 126 /// 127 /// An example of when this can occur is code like this: 128 /// 129 /// if () { ... 130 /// X = 4; 131 /// } 132 /// if (X < 3) { 133 /// 134 /// In this case, the unconditional branch at the end of the first if can be 135 /// revectored to the false side of the second if. 136 class JumpThreading : public FunctionPass { 137 public: 138 static char ID; // Pass identification 139 140 JumpThreading(int T = -1) : FunctionPass(ID) { 141 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 142 } 143 144 bool runOnFunction(Function &F) override; 145 146 void getAnalysisUsage(AnalysisUsage &AU) const override { 147 AU.addRequired<DominatorTreeWrapperPass>(); 148 AU.addPreserved<DominatorTreeWrapperPass>(); 149 AU.addRequired<AAResultsWrapperPass>(); 150 AU.addRequired<LazyValueInfoWrapperPass>(); 151 AU.addPreserved<LazyValueInfoWrapperPass>(); 152 AU.addPreserved<GlobalsAAWrapperPass>(); 153 AU.addRequired<TargetLibraryInfoWrapperPass>(); 154 AU.addRequired<TargetTransformInfoWrapperPass>(); 155 } 156 }; 157 158 } // end anonymous namespace 159 160 char JumpThreading::ID = 0; 161 162 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 163 "Jump Threading", false, false) 164 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 165 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 166 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 167 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 168 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 169 "Jump Threading", false, false) 170 171 // Public interface to the Jump Threading pass 172 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { 173 return new JumpThreading(Threshold); 174 } 175 176 JumpThreadingPass::JumpThreadingPass(int T) { 177 DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 178 } 179 180 // Update branch probability information according to conditional 181 // branch probability. This is usually made possible for cloned branches 182 // in inline instances by the context specific profile in the caller. 183 // For instance, 184 // 185 // [Block PredBB] 186 // [Branch PredBr] 187 // if (t) { 188 // Block A; 189 // } else { 190 // Block B; 191 // } 192 // 193 // [Block BB] 194 // cond = PN([true, %A], [..., %B]); // PHI node 195 // [Branch CondBr] 196 // if (cond) { 197 // ... // P(cond == true) = 1% 198 // } 199 // 200 // Here we know that when block A is taken, cond must be true, which means 201 // P(cond == true | A) = 1 202 // 203 // Given that P(cond == true) = P(cond == true | A) * P(A) + 204 // P(cond == true | B) * P(B) 205 // we get: 206 // P(cond == true ) = P(A) + P(cond == true | B) * P(B) 207 // 208 // which gives us: 209 // P(A) is less than P(cond == true), i.e. 210 // P(t == true) <= P(cond == true) 211 // 212 // In other words, if we know P(cond == true) is unlikely, we know 213 // that P(t == true) is also unlikely. 214 // 215 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) { 216 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 217 if (!CondBr) 218 return; 219 220 uint64_t TrueWeight, FalseWeight; 221 if (!extractBranchWeights(*CondBr, TrueWeight, FalseWeight)) 222 return; 223 224 if (TrueWeight + FalseWeight == 0) 225 // Zero branch_weights do not give a hint for getting branch probabilities. 226 // Technically it would result in division by zero denominator, which is 227 // TrueWeight + FalseWeight. 228 return; 229 230 // Returns the outgoing edge of the dominating predecessor block 231 // that leads to the PhiNode's incoming block: 232 auto GetPredOutEdge = 233 [](BasicBlock *IncomingBB, 234 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> { 235 auto *PredBB = IncomingBB; 236 auto *SuccBB = PhiBB; 237 SmallPtrSet<BasicBlock *, 16> Visited; 238 while (true) { 239 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 240 if (PredBr && PredBr->isConditional()) 241 return {PredBB, SuccBB}; 242 Visited.insert(PredBB); 243 auto *SinglePredBB = PredBB->getSinglePredecessor(); 244 if (!SinglePredBB) 245 return {nullptr, nullptr}; 246 247 // Stop searching when SinglePredBB has been visited. It means we see 248 // an unreachable loop. 249 if (Visited.count(SinglePredBB)) 250 return {nullptr, nullptr}; 251 252 SuccBB = PredBB; 253 PredBB = SinglePredBB; 254 } 255 }; 256 257 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 258 Value *PhiOpnd = PN->getIncomingValue(i); 259 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd); 260 261 if (!CI || !CI->getType()->isIntegerTy(1)) 262 continue; 263 264 BranchProbability BP = 265 (CI->isOne() ? BranchProbability::getBranchProbability( 266 TrueWeight, TrueWeight + FalseWeight) 267 : BranchProbability::getBranchProbability( 268 FalseWeight, TrueWeight + FalseWeight)); 269 270 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB); 271 if (!PredOutEdge.first) 272 return; 273 274 BasicBlock *PredBB = PredOutEdge.first; 275 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 276 if (!PredBr) 277 return; 278 279 uint64_t PredTrueWeight, PredFalseWeight; 280 // FIXME: We currently only set the profile data when it is missing. 281 // With PGO, this can be used to refine even existing profile data with 282 // context information. This needs to be done after more performance 283 // testing. 284 if (extractBranchWeights(*PredBr, PredTrueWeight, PredFalseWeight)) 285 continue; 286 287 // We can not infer anything useful when BP >= 50%, because BP is the 288 // upper bound probability value. 289 if (BP >= BranchProbability(50, 100)) 290 continue; 291 292 SmallVector<uint32_t, 2> Weights; 293 if (PredBr->getSuccessor(0) == PredOutEdge.second) { 294 Weights.push_back(BP.getNumerator()); 295 Weights.push_back(BP.getCompl().getNumerator()); 296 } else { 297 Weights.push_back(BP.getCompl().getNumerator()); 298 Weights.push_back(BP.getNumerator()); 299 } 300 PredBr->setMetadata(LLVMContext::MD_prof, 301 MDBuilder(PredBr->getParent()->getContext()) 302 .createBranchWeights(Weights)); 303 } 304 } 305 306 /// runOnFunction - Toplevel algorithm. 307 bool JumpThreading::runOnFunction(Function &F) { 308 if (skipFunction(F)) 309 return false; 310 auto TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 311 // Jump Threading has no sense for the targets with divergent CF 312 if (TTI->hasBranchDivergence()) 313 return false; 314 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 315 auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 316 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 317 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 318 std::unique_ptr<BlockFrequencyInfo> BFI; 319 std::unique_ptr<BranchProbabilityInfo> BPI; 320 if (F.hasProfileData()) { 321 LoopInfo LI{*DT}; 322 BPI.reset(new BranchProbabilityInfo(F, LI, TLI)); 323 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 324 } 325 326 JumpThreadingPass Impl; 327 bool Changed = Impl.runImpl(F, nullptr, TLI, TTI, LVI, AA, 328 std::make_unique<DomTreeUpdater>( 329 DT, DomTreeUpdater::UpdateStrategy::Lazy), 330 BFI.get(), BPI.get()); 331 if (PrintLVIAfterJumpThreading) { 332 dbgs() << "LVI for function '" << F.getName() << "':\n"; 333 LVI->printLVI(F, Impl.getDomTreeUpdater()->getDomTree(), dbgs()); 334 } 335 return Changed; 336 } 337 338 PreservedAnalyses JumpThreadingPass::run(Function &F, 339 FunctionAnalysisManager &AM) { 340 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 341 // Jump Threading has no sense for the targets with divergent CF 342 if (TTI.hasBranchDivergence()) 343 return PreservedAnalyses::all(); 344 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 345 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 346 auto &AA = AM.getResult<AAManager>(F); 347 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 348 349 bool Changed = 350 runImpl(F, &AM, &TLI, &TTI, &LVI, &AA, 351 std::make_unique<DomTreeUpdater>( 352 &DT, nullptr, DomTreeUpdater::UpdateStrategy::Lazy), 353 std::nullopt, std::nullopt); 354 355 if (PrintLVIAfterJumpThreading) { 356 dbgs() << "LVI for function '" << F.getName() << "':\n"; 357 LVI.printLVI(F, getDomTreeUpdater()->getDomTree(), dbgs()); 358 } 359 360 if (!Changed) 361 return PreservedAnalyses::all(); 362 363 364 getDomTreeUpdater()->flush(); 365 366 #if defined(EXPENSIVE_CHECKS) 367 assert(getDomTreeUpdater()->getDomTree().verify( 368 DominatorTree::VerificationLevel::Full) && 369 "DT broken after JumpThreading"); 370 assert((!getDomTreeUpdater()->hasPostDomTree() || 371 getDomTreeUpdater()->getPostDomTree().verify( 372 PostDominatorTree::VerificationLevel::Full)) && 373 "PDT broken after JumpThreading"); 374 #else 375 assert(getDomTreeUpdater()->getDomTree().verify( 376 DominatorTree::VerificationLevel::Fast) && 377 "DT broken after JumpThreading"); 378 assert((!getDomTreeUpdater()->hasPostDomTree() || 379 getDomTreeUpdater()->getPostDomTree().verify( 380 PostDominatorTree::VerificationLevel::Fast)) && 381 "PDT broken after JumpThreading"); 382 #endif 383 384 return getPreservedAnalysis(); 385 } 386 387 bool JumpThreadingPass::runImpl(Function &F_, FunctionAnalysisManager *FAM_, 388 TargetLibraryInfo *TLI_, 389 TargetTransformInfo *TTI_, LazyValueInfo *LVI_, 390 AliasAnalysis *AA_, 391 std::unique_ptr<DomTreeUpdater> DTU_, 392 std::optional<BlockFrequencyInfo *> BFI_, 393 std::optional<BranchProbabilityInfo *> BPI_) { 394 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F_.getName() << "'\n"); 395 F = &F_; 396 FAM = FAM_; 397 TLI = TLI_; 398 TTI = TTI_; 399 LVI = LVI_; 400 AA = AA_; 401 DTU = std::move(DTU_); 402 BFI = BFI_; 403 BPI = BPI_; 404 auto *GuardDecl = F->getParent()->getFunction( 405 Intrinsic::getName(Intrinsic::experimental_guard)); 406 HasGuards = GuardDecl && !GuardDecl->use_empty(); 407 408 // Reduce the number of instructions duplicated when optimizing strictly for 409 // size. 410 if (BBDuplicateThreshold.getNumOccurrences()) 411 BBDupThreshold = BBDuplicateThreshold; 412 else if (F->hasFnAttribute(Attribute::MinSize)) 413 BBDupThreshold = 3; 414 else 415 BBDupThreshold = DefaultBBDupThreshold; 416 417 // JumpThreading must not processes blocks unreachable from entry. It's a 418 // waste of compute time and can potentially lead to hangs. 419 SmallPtrSet<BasicBlock *, 16> Unreachable; 420 assert(DTU && "DTU isn't passed into JumpThreading before using it."); 421 assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed."); 422 DominatorTree &DT = DTU->getDomTree(); 423 for (auto &BB : *F) 424 if (!DT.isReachableFromEntry(&BB)) 425 Unreachable.insert(&BB); 426 427 if (!ThreadAcrossLoopHeaders) 428 findLoopHeaders(*F); 429 430 bool EverChanged = false; 431 bool Changed; 432 do { 433 Changed = false; 434 for (auto &BB : *F) { 435 if (Unreachable.count(&BB)) 436 continue; 437 while (processBlock(&BB)) // Thread all of the branches we can over BB. 438 Changed = ChangedSinceLastAnalysisUpdate = true; 439 440 // Jump threading may have introduced redundant debug values into BB 441 // which should be removed. 442 if (Changed) 443 RemoveRedundantDbgInstrs(&BB); 444 445 // Stop processing BB if it's the entry or is now deleted. The following 446 // routines attempt to eliminate BB and locating a suitable replacement 447 // for the entry is non-trivial. 448 if (&BB == &F->getEntryBlock() || DTU->isBBPendingDeletion(&BB)) 449 continue; 450 451 if (pred_empty(&BB)) { 452 // When processBlock makes BB unreachable it doesn't bother to fix up 453 // the instructions in it. We must remove BB to prevent invalid IR. 454 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName() 455 << "' with terminator: " << *BB.getTerminator() 456 << '\n'); 457 LoopHeaders.erase(&BB); 458 LVI->eraseBlock(&BB); 459 DeleteDeadBlock(&BB, DTU.get()); 460 Changed = ChangedSinceLastAnalysisUpdate = true; 461 continue; 462 } 463 464 // processBlock doesn't thread BBs with unconditional TIs. However, if BB 465 // is "almost empty", we attempt to merge BB with its sole successor. 466 auto *BI = dyn_cast<BranchInst>(BB.getTerminator()); 467 if (BI && BI->isUnconditional()) { 468 BasicBlock *Succ = BI->getSuccessor(0); 469 if ( 470 // The terminator must be the only non-phi instruction in BB. 471 BB.getFirstNonPHIOrDbg(true)->isTerminator() && 472 // Don't alter Loop headers and latches to ensure another pass can 473 // detect and transform nested loops later. 474 !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) && 475 TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU.get())) { 476 RemoveRedundantDbgInstrs(Succ); 477 // BB is valid for cleanup here because we passed in DTU. F remains 478 // BB's parent until a DTU->getDomTree() event. 479 LVI->eraseBlock(&BB); 480 Changed = ChangedSinceLastAnalysisUpdate = true; 481 } 482 } 483 } 484 EverChanged |= Changed; 485 } while (Changed); 486 487 LoopHeaders.clear(); 488 return EverChanged; 489 } 490 491 // Replace uses of Cond with ToVal when safe to do so. If all uses are 492 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond 493 // because we may incorrectly replace uses when guards/assumes are uses of 494 // of `Cond` and we used the guards/assume to reason about the `Cond` value 495 // at the end of block. RAUW unconditionally replaces all uses 496 // including the guards/assumes themselves and the uses before the 497 // guard/assume. 498 static bool replaceFoldableUses(Instruction *Cond, Value *ToVal, 499 BasicBlock *KnownAtEndOfBB) { 500 bool Changed = false; 501 assert(Cond->getType() == ToVal->getType()); 502 // We can unconditionally replace all uses in non-local blocks (i.e. uses 503 // strictly dominated by BB), since LVI information is true from the 504 // terminator of BB. 505 if (Cond->getParent() == KnownAtEndOfBB) 506 Changed |= replaceNonLocalUsesWith(Cond, ToVal); 507 for (Instruction &I : reverse(*KnownAtEndOfBB)) { 508 // Reached the Cond whose uses we are trying to replace, so there are no 509 // more uses. 510 if (&I == Cond) 511 break; 512 // We only replace uses in instructions that are guaranteed to reach the end 513 // of BB, where we know Cond is ToVal. 514 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 515 break; 516 Changed |= I.replaceUsesOfWith(Cond, ToVal); 517 } 518 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) { 519 Cond->eraseFromParent(); 520 Changed = true; 521 } 522 return Changed; 523 } 524 525 /// Return the cost of duplicating a piece of this block from first non-phi 526 /// and before StopAt instruction to thread across it. Stop scanning the block 527 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 528 static unsigned getJumpThreadDuplicationCost(const TargetTransformInfo *TTI, 529 BasicBlock *BB, 530 Instruction *StopAt, 531 unsigned Threshold) { 532 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 533 534 // Do not duplicate the BB if it has a lot of PHI nodes. 535 // If a threadable chain is too long then the number of PHI nodes can add up, 536 // leading to a substantial increase in compile time when rewriting the SSA. 537 unsigned PhiCount = 0; 538 Instruction *FirstNonPHI = nullptr; 539 for (Instruction &I : *BB) { 540 if (!isa<PHINode>(&I)) { 541 FirstNonPHI = &I; 542 break; 543 } 544 if (++PhiCount > PhiDuplicateThreshold) 545 return ~0U; 546 } 547 548 /// Ignore PHI nodes, these will be flattened when duplication happens. 549 BasicBlock::const_iterator I(FirstNonPHI); 550 551 // FIXME: THREADING will delete values that are just used to compute the 552 // branch, so they shouldn't count against the duplication cost. 553 554 unsigned Bonus = 0; 555 if (BB->getTerminator() == StopAt) { 556 // Threading through a switch statement is particularly profitable. If this 557 // block ends in a switch, decrease its cost to make it more likely to 558 // happen. 559 if (isa<SwitchInst>(StopAt)) 560 Bonus = 6; 561 562 // The same holds for indirect branches, but slightly more so. 563 if (isa<IndirectBrInst>(StopAt)) 564 Bonus = 8; 565 } 566 567 // Bump the threshold up so the early exit from the loop doesn't skip the 568 // terminator-based Size adjustment at the end. 569 Threshold += Bonus; 570 571 // Sum up the cost of each instruction until we get to the terminator. Don't 572 // include the terminator because the copy won't include it. 573 unsigned Size = 0; 574 for (; &*I != StopAt; ++I) { 575 576 // Stop scanning the block if we've reached the threshold. 577 if (Size > Threshold) 578 return Size; 579 580 // Bail out if this instruction gives back a token type, it is not possible 581 // to duplicate it if it is used outside this BB. 582 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 583 return ~0U; 584 585 // Blocks with NoDuplicate are modelled as having infinite cost, so they 586 // are never duplicated. 587 if (const CallInst *CI = dyn_cast<CallInst>(I)) 588 if (CI->cannotDuplicate() || CI->isConvergent()) 589 return ~0U; 590 591 if (TTI->getInstructionCost(&*I, TargetTransformInfo::TCK_SizeAndLatency) == 592 TargetTransformInfo::TCC_Free) 593 continue; 594 595 // All other instructions count for at least one unit. 596 ++Size; 597 598 // Calls are more expensive. If they are non-intrinsic calls, we model them 599 // as having cost of 4. If they are a non-vector intrinsic, we model them 600 // as having cost of 2 total, and if they are a vector intrinsic, we model 601 // them as having cost 1. 602 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 603 if (!isa<IntrinsicInst>(CI)) 604 Size += 3; 605 else if (!CI->getType()->isVectorTy()) 606 Size += 1; 607 } 608 } 609 610 return Size > Bonus ? Size - Bonus : 0; 611 } 612 613 /// findLoopHeaders - We do not want jump threading to turn proper loop 614 /// structures into irreducible loops. Doing this breaks up the loop nesting 615 /// hierarchy and pessimizes later transformations. To prevent this from 616 /// happening, we first have to find the loop headers. Here we approximate this 617 /// by finding targets of backedges in the CFG. 618 /// 619 /// Note that there definitely are cases when we want to allow threading of 620 /// edges across a loop header. For example, threading a jump from outside the 621 /// loop (the preheader) to an exit block of the loop is definitely profitable. 622 /// It is also almost always profitable to thread backedges from within the loop 623 /// to exit blocks, and is often profitable to thread backedges to other blocks 624 /// within the loop (forming a nested loop). This simple analysis is not rich 625 /// enough to track all of these properties and keep it up-to-date as the CFG 626 /// mutates, so we don't allow any of these transformations. 627 void JumpThreadingPass::findLoopHeaders(Function &F) { 628 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 629 FindFunctionBackedges(F, Edges); 630 631 for (const auto &Edge : Edges) 632 LoopHeaders.insert(Edge.second); 633 } 634 635 /// getKnownConstant - Helper method to determine if we can thread over a 636 /// terminator with the given value as its condition, and if so what value to 637 /// use for that. What kind of value this is depends on whether we want an 638 /// integer or a block address, but an undef is always accepted. 639 /// Returns null if Val is null or not an appropriate constant. 640 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 641 if (!Val) 642 return nullptr; 643 644 // Undef is "known" enough. 645 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 646 return U; 647 648 if (Preference == WantBlockAddress) 649 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 650 651 return dyn_cast<ConstantInt>(Val); 652 } 653 654 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see 655 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 656 /// in any of our predecessors. If so, return the known list of value and pred 657 /// BB in the result vector. 658 /// 659 /// This returns true if there were any known values. 660 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl( 661 Value *V, BasicBlock *BB, PredValueInfo &Result, 662 ConstantPreference Preference, DenseSet<Value *> &RecursionSet, 663 Instruction *CxtI) { 664 // This method walks up use-def chains recursively. Because of this, we could 665 // get into an infinite loop going around loops in the use-def chain. To 666 // prevent this, keep track of what (value, block) pairs we've already visited 667 // and terminate the search if we loop back to them 668 if (!RecursionSet.insert(V).second) 669 return false; 670 671 // If V is a constant, then it is known in all predecessors. 672 if (Constant *KC = getKnownConstant(V, Preference)) { 673 for (BasicBlock *Pred : predecessors(BB)) 674 Result.emplace_back(KC, Pred); 675 676 return !Result.empty(); 677 } 678 679 // If V is a non-instruction value, or an instruction in a different block, 680 // then it can't be derived from a PHI. 681 Instruction *I = dyn_cast<Instruction>(V); 682 if (!I || I->getParent() != BB) { 683 684 // Okay, if this is a live-in value, see if it has a known value at the any 685 // edge from our predecessors. 686 for (BasicBlock *P : predecessors(BB)) { 687 using namespace PatternMatch; 688 // If the value is known by LazyValueInfo to be a constant in a 689 // predecessor, use that information to try to thread this block. 690 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 691 // If I is a non-local compare-with-constant instruction, use more-rich 692 // 'getPredicateOnEdge' method. This would be able to handle value 693 // inequalities better, for example if the compare is "X < 4" and "X < 3" 694 // is known true but "X < 4" itself is not available. 695 CmpInst::Predicate Pred; 696 Value *Val; 697 Constant *Cst; 698 if (!PredCst && match(V, m_Cmp(Pred, m_Value(Val), m_Constant(Cst)))) { 699 auto Res = LVI->getPredicateOnEdge(Pred, Val, Cst, P, BB, CxtI); 700 if (Res != LazyValueInfo::Unknown) 701 PredCst = ConstantInt::getBool(V->getContext(), Res); 702 } 703 if (Constant *KC = getKnownConstant(PredCst, Preference)) 704 Result.emplace_back(KC, P); 705 } 706 707 return !Result.empty(); 708 } 709 710 /// If I is a PHI node, then we know the incoming values for any constants. 711 if (PHINode *PN = dyn_cast<PHINode>(I)) { 712 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 713 Value *InVal = PN->getIncomingValue(i); 714 if (Constant *KC = getKnownConstant(InVal, Preference)) { 715 Result.emplace_back(KC, PN->getIncomingBlock(i)); 716 } else { 717 Constant *CI = LVI->getConstantOnEdge(InVal, 718 PN->getIncomingBlock(i), 719 BB, CxtI); 720 if (Constant *KC = getKnownConstant(CI, Preference)) 721 Result.emplace_back(KC, PN->getIncomingBlock(i)); 722 } 723 } 724 725 return !Result.empty(); 726 } 727 728 // Handle Cast instructions. 729 if (CastInst *CI = dyn_cast<CastInst>(I)) { 730 Value *Source = CI->getOperand(0); 731 computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, 732 RecursionSet, CxtI); 733 if (Result.empty()) 734 return false; 735 736 // Convert the known values. 737 for (auto &R : Result) 738 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 739 740 return true; 741 } 742 743 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 744 Value *Source = FI->getOperand(0); 745 computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, 746 RecursionSet, CxtI); 747 748 erase_if(Result, [](auto &Pair) { 749 return !isGuaranteedNotToBeUndefOrPoison(Pair.first); 750 }); 751 752 return !Result.empty(); 753 } 754 755 // Handle some boolean conditions. 756 if (I->getType()->getPrimitiveSizeInBits() == 1) { 757 using namespace PatternMatch; 758 if (Preference != WantInteger) 759 return false; 760 // X | true -> true 761 // X & false -> false 762 Value *Op0, *Op1; 763 if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 764 match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 765 PredValueInfoTy LHSVals, RHSVals; 766 767 computeValueKnownInPredecessorsImpl(Op0, BB, LHSVals, WantInteger, 768 RecursionSet, CxtI); 769 computeValueKnownInPredecessorsImpl(Op1, BB, RHSVals, WantInteger, 770 RecursionSet, CxtI); 771 772 if (LHSVals.empty() && RHSVals.empty()) 773 return false; 774 775 ConstantInt *InterestingVal; 776 if (match(I, m_LogicalOr())) 777 InterestingVal = ConstantInt::getTrue(I->getContext()); 778 else 779 InterestingVal = ConstantInt::getFalse(I->getContext()); 780 781 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 782 783 // Scan for the sentinel. If we find an undef, force it to the 784 // interesting value: x|undef -> true and x&undef -> false. 785 for (const auto &LHSVal : LHSVals) 786 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 787 Result.emplace_back(InterestingVal, LHSVal.second); 788 LHSKnownBBs.insert(LHSVal.second); 789 } 790 for (const auto &RHSVal : RHSVals) 791 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 792 // If we already inferred a value for this block on the LHS, don't 793 // re-add it. 794 if (!LHSKnownBBs.count(RHSVal.second)) 795 Result.emplace_back(InterestingVal, RHSVal.second); 796 } 797 798 return !Result.empty(); 799 } 800 801 // Handle the NOT form of XOR. 802 if (I->getOpcode() == Instruction::Xor && 803 isa<ConstantInt>(I->getOperand(1)) && 804 cast<ConstantInt>(I->getOperand(1))->isOne()) { 805 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result, 806 WantInteger, RecursionSet, CxtI); 807 if (Result.empty()) 808 return false; 809 810 // Invert the known values. 811 for (auto &R : Result) 812 R.first = ConstantExpr::getNot(R.first); 813 814 return true; 815 } 816 817 // Try to simplify some other binary operator values. 818 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 819 if (Preference != WantInteger) 820 return false; 821 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 822 const DataLayout &DL = BO->getModule()->getDataLayout(); 823 PredValueInfoTy LHSVals; 824 computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals, 825 WantInteger, RecursionSet, CxtI); 826 827 // Try to use constant folding to simplify the binary operator. 828 for (const auto &LHSVal : LHSVals) { 829 Constant *V = LHSVal.first; 830 Constant *Folded = 831 ConstantFoldBinaryOpOperands(BO->getOpcode(), V, CI, DL); 832 833 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 834 Result.emplace_back(KC, LHSVal.second); 835 } 836 } 837 838 return !Result.empty(); 839 } 840 841 // Handle compare with phi operand, where the PHI is defined in this block. 842 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 843 if (Preference != WantInteger) 844 return false; 845 Type *CmpType = Cmp->getType(); 846 Value *CmpLHS = Cmp->getOperand(0); 847 Value *CmpRHS = Cmp->getOperand(1); 848 CmpInst::Predicate Pred = Cmp->getPredicate(); 849 850 PHINode *PN = dyn_cast<PHINode>(CmpLHS); 851 if (!PN) 852 PN = dyn_cast<PHINode>(CmpRHS); 853 if (PN && PN->getParent() == BB) { 854 const DataLayout &DL = PN->getModule()->getDataLayout(); 855 // We can do this simplification if any comparisons fold to true or false. 856 // See if any do. 857 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 858 BasicBlock *PredBB = PN->getIncomingBlock(i); 859 Value *LHS, *RHS; 860 if (PN == CmpLHS) { 861 LHS = PN->getIncomingValue(i); 862 RHS = CmpRHS->DoPHITranslation(BB, PredBB); 863 } else { 864 LHS = CmpLHS->DoPHITranslation(BB, PredBB); 865 RHS = PN->getIncomingValue(i); 866 } 867 Value *Res = simplifyCmpInst(Pred, LHS, RHS, {DL}); 868 if (!Res) { 869 if (!isa<Constant>(RHS)) 870 continue; 871 872 // getPredicateOnEdge call will make no sense if LHS is defined in BB. 873 auto LHSInst = dyn_cast<Instruction>(LHS); 874 if (LHSInst && LHSInst->getParent() == BB) 875 continue; 876 877 LazyValueInfo::Tristate 878 ResT = LVI->getPredicateOnEdge(Pred, LHS, 879 cast<Constant>(RHS), PredBB, BB, 880 CxtI ? CxtI : Cmp); 881 if (ResT == LazyValueInfo::Unknown) 882 continue; 883 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 884 } 885 886 if (Constant *KC = getKnownConstant(Res, WantInteger)) 887 Result.emplace_back(KC, PredBB); 888 } 889 890 return !Result.empty(); 891 } 892 893 // If comparing a live-in value against a constant, see if we know the 894 // live-in value on any predecessors. 895 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) { 896 Constant *CmpConst = cast<Constant>(CmpRHS); 897 898 if (!isa<Instruction>(CmpLHS) || 899 cast<Instruction>(CmpLHS)->getParent() != BB) { 900 for (BasicBlock *P : predecessors(BB)) { 901 // If the value is known by LazyValueInfo to be a constant in a 902 // predecessor, use that information to try to thread this block. 903 LazyValueInfo::Tristate Res = 904 LVI->getPredicateOnEdge(Pred, CmpLHS, 905 CmpConst, P, BB, CxtI ? CxtI : Cmp); 906 if (Res == LazyValueInfo::Unknown) 907 continue; 908 909 Constant *ResC = ConstantInt::get(CmpType, Res); 910 Result.emplace_back(ResC, P); 911 } 912 913 return !Result.empty(); 914 } 915 916 // InstCombine can fold some forms of constant range checks into 917 // (icmp (add (x, C1)), C2). See if we have we have such a thing with 918 // x as a live-in. 919 { 920 using namespace PatternMatch; 921 922 Value *AddLHS; 923 ConstantInt *AddConst; 924 if (isa<ConstantInt>(CmpConst) && 925 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { 926 if (!isa<Instruction>(AddLHS) || 927 cast<Instruction>(AddLHS)->getParent() != BB) { 928 for (BasicBlock *P : predecessors(BB)) { 929 // If the value is known by LazyValueInfo to be a ConstantRange in 930 // a predecessor, use that information to try to thread this 931 // block. 932 ConstantRange CR = LVI->getConstantRangeOnEdge( 933 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS)); 934 // Propagate the range through the addition. 935 CR = CR.add(AddConst->getValue()); 936 937 // Get the range where the compare returns true. 938 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( 939 Pred, cast<ConstantInt>(CmpConst)->getValue()); 940 941 Constant *ResC; 942 if (CmpRange.contains(CR)) 943 ResC = ConstantInt::getTrue(CmpType); 944 else if (CmpRange.inverse().contains(CR)) 945 ResC = ConstantInt::getFalse(CmpType); 946 else 947 continue; 948 949 Result.emplace_back(ResC, P); 950 } 951 952 return !Result.empty(); 953 } 954 } 955 } 956 957 // Try to find a constant value for the LHS of a comparison, 958 // and evaluate it statically if we can. 959 PredValueInfoTy LHSVals; 960 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, 961 WantInteger, RecursionSet, CxtI); 962 963 for (const auto &LHSVal : LHSVals) { 964 Constant *V = LHSVal.first; 965 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst); 966 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 967 Result.emplace_back(KC, LHSVal.second); 968 } 969 970 return !Result.empty(); 971 } 972 } 973 974 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 975 // Handle select instructions where at least one operand is a known constant 976 // and we can figure out the condition value for any predecessor block. 977 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 978 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 979 PredValueInfoTy Conds; 980 if ((TrueVal || FalseVal) && 981 computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds, 982 WantInteger, RecursionSet, CxtI)) { 983 for (auto &C : Conds) { 984 Constant *Cond = C.first; 985 986 // Figure out what value to use for the condition. 987 bool KnownCond; 988 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 989 // A known boolean. 990 KnownCond = CI->isOne(); 991 } else { 992 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 993 // Either operand will do, so be sure to pick the one that's a known 994 // constant. 995 // FIXME: Do this more cleverly if both values are known constants? 996 KnownCond = (TrueVal != nullptr); 997 } 998 999 // See if the select has a known constant value for this predecessor. 1000 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 1001 Result.emplace_back(Val, C.second); 1002 } 1003 1004 return !Result.empty(); 1005 } 1006 } 1007 1008 // If all else fails, see if LVI can figure out a constant value for us. 1009 assert(CxtI->getParent() == BB && "CxtI should be in BB"); 1010 Constant *CI = LVI->getConstant(V, CxtI); 1011 if (Constant *KC = getKnownConstant(CI, Preference)) { 1012 for (BasicBlock *Pred : predecessors(BB)) 1013 Result.emplace_back(KC, Pred); 1014 } 1015 1016 return !Result.empty(); 1017 } 1018 1019 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 1020 /// in an undefined jump, decide which block is best to revector to. 1021 /// 1022 /// Since we can pick an arbitrary destination, we pick the successor with the 1023 /// fewest predecessors. This should reduce the in-degree of the others. 1024 static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) { 1025 Instruction *BBTerm = BB->getTerminator(); 1026 unsigned MinSucc = 0; 1027 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 1028 // Compute the successor with the minimum number of predecessors. 1029 unsigned MinNumPreds = pred_size(TestBB); 1030 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1031 TestBB = BBTerm->getSuccessor(i); 1032 unsigned NumPreds = pred_size(TestBB); 1033 if (NumPreds < MinNumPreds) { 1034 MinSucc = i; 1035 MinNumPreds = NumPreds; 1036 } 1037 } 1038 1039 return MinSucc; 1040 } 1041 1042 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 1043 if (!BB->hasAddressTaken()) return false; 1044 1045 // If the block has its address taken, it may be a tree of dead constants 1046 // hanging off of it. These shouldn't keep the block alive. 1047 BlockAddress *BA = BlockAddress::get(BB); 1048 BA->removeDeadConstantUsers(); 1049 return !BA->use_empty(); 1050 } 1051 1052 /// processBlock - If there are any predecessors whose control can be threaded 1053 /// through to a successor, transform them now. 1054 bool JumpThreadingPass::processBlock(BasicBlock *BB) { 1055 // If the block is trivially dead, just return and let the caller nuke it. 1056 // This simplifies other transformations. 1057 if (DTU->isBBPendingDeletion(BB) || 1058 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock())) 1059 return false; 1060 1061 // If this block has a single predecessor, and if that pred has a single 1062 // successor, merge the blocks. This encourages recursive jump threading 1063 // because now the condition in this block can be threaded through 1064 // predecessors of our predecessor block. 1065 if (maybeMergeBasicBlockIntoOnlyPred(BB)) 1066 return true; 1067 1068 if (tryToUnfoldSelectInCurrBB(BB)) 1069 return true; 1070 1071 // Look if we can propagate guards to predecessors. 1072 if (HasGuards && processGuards(BB)) 1073 return true; 1074 1075 // What kind of constant we're looking for. 1076 ConstantPreference Preference = WantInteger; 1077 1078 // Look to see if the terminator is a conditional branch, switch or indirect 1079 // branch, if not we can't thread it. 1080 Value *Condition; 1081 Instruction *Terminator = BB->getTerminator(); 1082 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 1083 // Can't thread an unconditional jump. 1084 if (BI->isUnconditional()) return false; 1085 Condition = BI->getCondition(); 1086 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 1087 Condition = SI->getCondition(); 1088 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 1089 // Can't thread indirect branch with no successors. 1090 if (IB->getNumSuccessors() == 0) return false; 1091 Condition = IB->getAddress()->stripPointerCasts(); 1092 Preference = WantBlockAddress; 1093 } else { 1094 return false; // Must be an invoke or callbr. 1095 } 1096 1097 // Keep track if we constant folded the condition in this invocation. 1098 bool ConstantFolded = false; 1099 1100 // Run constant folding to see if we can reduce the condition to a simple 1101 // constant. 1102 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 1103 Value *SimpleVal = 1104 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 1105 if (SimpleVal) { 1106 I->replaceAllUsesWith(SimpleVal); 1107 if (isInstructionTriviallyDead(I, TLI)) 1108 I->eraseFromParent(); 1109 Condition = SimpleVal; 1110 ConstantFolded = true; 1111 } 1112 } 1113 1114 // If the terminator is branching on an undef or freeze undef, we can pick any 1115 // of the successors to branch to. Let getBestDestForJumpOnUndef decide. 1116 auto *FI = dyn_cast<FreezeInst>(Condition); 1117 if (isa<UndefValue>(Condition) || 1118 (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) { 1119 unsigned BestSucc = getBestDestForJumpOnUndef(BB); 1120 std::vector<DominatorTree::UpdateType> Updates; 1121 1122 // Fold the branch/switch. 1123 Instruction *BBTerm = BB->getTerminator(); 1124 Updates.reserve(BBTerm->getNumSuccessors()); 1125 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1126 if (i == BestSucc) continue; 1127 BasicBlock *Succ = BBTerm->getSuccessor(i); 1128 Succ->removePredecessor(BB, true); 1129 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1130 } 1131 1132 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1133 << "' folding undef terminator: " << *BBTerm << '\n'); 1134 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 1135 ++NumFolds; 1136 BBTerm->eraseFromParent(); 1137 DTU->applyUpdatesPermissive(Updates); 1138 if (FI) 1139 FI->eraseFromParent(); 1140 return true; 1141 } 1142 1143 // If the terminator of this block is branching on a constant, simplify the 1144 // terminator to an unconditional branch. This can occur due to threading in 1145 // other blocks. 1146 if (getKnownConstant(Condition, Preference)) { 1147 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1148 << "' folding terminator: " << *BB->getTerminator() 1149 << '\n'); 1150 ++NumFolds; 1151 ConstantFoldTerminator(BB, true, nullptr, DTU.get()); 1152 if (auto *BPI = getBPI()) 1153 BPI->eraseBlock(BB); 1154 return true; 1155 } 1156 1157 Instruction *CondInst = dyn_cast<Instruction>(Condition); 1158 1159 // All the rest of our checks depend on the condition being an instruction. 1160 if (!CondInst) { 1161 // FIXME: Unify this with code below. 1162 if (processThreadableEdges(Condition, BB, Preference, Terminator)) 1163 return true; 1164 return ConstantFolded; 1165 } 1166 1167 // Some of the following optimization can safely work on the unfrozen cond. 1168 Value *CondWithoutFreeze = CondInst; 1169 if (auto *FI = dyn_cast<FreezeInst>(CondInst)) 1170 CondWithoutFreeze = FI->getOperand(0); 1171 1172 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondWithoutFreeze)) { 1173 // If we're branching on a conditional, LVI might be able to determine 1174 // it's value at the branch instruction. We only handle comparisons 1175 // against a constant at this time. 1176 if (Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1))) { 1177 LazyValueInfo::Tristate Ret = 1178 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 1179 CondConst, BB->getTerminator(), 1180 /*UseBlockValue=*/false); 1181 if (Ret != LazyValueInfo::Unknown) { 1182 // We can safely replace *some* uses of the CondInst if it has 1183 // exactly one value as returned by LVI. RAUW is incorrect in the 1184 // presence of guards and assumes, that have the `Cond` as the use. This 1185 // is because we use the guards/assume to reason about the `Cond` value 1186 // at the end of block, but RAUW unconditionally replaces all uses 1187 // including the guards/assumes themselves and the uses before the 1188 // guard/assume. 1189 auto *CI = Ret == LazyValueInfo::True ? 1190 ConstantInt::getTrue(CondCmp->getType()) : 1191 ConstantInt::getFalse(CondCmp->getType()); 1192 if (replaceFoldableUses(CondCmp, CI, BB)) 1193 return true; 1194 } 1195 1196 // We did not manage to simplify this branch, try to see whether 1197 // CondCmp depends on a known phi-select pattern. 1198 if (tryToUnfoldSelect(CondCmp, BB)) 1199 return true; 1200 } 1201 } 1202 1203 if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 1204 if (tryToUnfoldSelect(SI, BB)) 1205 return true; 1206 1207 // Check for some cases that are worth simplifying. Right now we want to look 1208 // for loads that are used by a switch or by the condition for the branch. If 1209 // we see one, check to see if it's partially redundant. If so, insert a PHI 1210 // which can then be used to thread the values. 1211 Value *SimplifyValue = CondWithoutFreeze; 1212 1213 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 1214 if (isa<Constant>(CondCmp->getOperand(1))) 1215 SimplifyValue = CondCmp->getOperand(0); 1216 1217 // TODO: There are other places where load PRE would be profitable, such as 1218 // more complex comparisons. 1219 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue)) 1220 if (simplifyPartiallyRedundantLoad(LoadI)) 1221 return true; 1222 1223 // Before threading, try to propagate profile data backwards: 1224 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1225 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1226 updatePredecessorProfileMetadata(PN, BB); 1227 1228 // Handle a variety of cases where we are branching on something derived from 1229 // a PHI node in the current block. If we can prove that any predecessors 1230 // compute a predictable value based on a PHI node, thread those predecessors. 1231 if (processThreadableEdges(CondInst, BB, Preference, Terminator)) 1232 return true; 1233 1234 // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in 1235 // the current block, see if we can simplify. 1236 PHINode *PN = dyn_cast<PHINode>(CondWithoutFreeze); 1237 if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1238 return processBranchOnPHI(PN); 1239 1240 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 1241 if (CondInst->getOpcode() == Instruction::Xor && 1242 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1243 return processBranchOnXOR(cast<BinaryOperator>(CondInst)); 1244 1245 // Search for a stronger dominating condition that can be used to simplify a 1246 // conditional branch leaving BB. 1247 if (processImpliedCondition(BB)) 1248 return true; 1249 1250 return false; 1251 } 1252 1253 bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) { 1254 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1255 if (!BI || !BI->isConditional()) 1256 return false; 1257 1258 Value *Cond = BI->getCondition(); 1259 // Assuming that predecessor's branch was taken, if pred's branch condition 1260 // (V) implies Cond, Cond can be either true, undef, or poison. In this case, 1261 // freeze(Cond) is either true or a nondeterministic value. 1262 // If freeze(Cond) has only one use, we can freely fold freeze(Cond) to true 1263 // without affecting other instructions. 1264 auto *FICond = dyn_cast<FreezeInst>(Cond); 1265 if (FICond && FICond->hasOneUse()) 1266 Cond = FICond->getOperand(0); 1267 else 1268 FICond = nullptr; 1269 1270 BasicBlock *CurrentBB = BB; 1271 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 1272 unsigned Iter = 0; 1273 1274 auto &DL = BB->getModule()->getDataLayout(); 1275 1276 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 1277 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 1278 if (!PBI || !PBI->isConditional()) 1279 return false; 1280 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 1281 return false; 1282 1283 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; 1284 std::optional<bool> Implication = 1285 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); 1286 1287 // If the branch condition of BB (which is Cond) and CurrentPred are 1288 // exactly the same freeze instruction, Cond can be folded into CondIsTrue. 1289 if (!Implication && FICond && isa<FreezeInst>(PBI->getCondition())) { 1290 if (cast<FreezeInst>(PBI->getCondition())->getOperand(0) == 1291 FICond->getOperand(0)) 1292 Implication = CondIsTrue; 1293 } 1294 1295 if (Implication) { 1296 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1); 1297 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0); 1298 RemoveSucc->removePredecessor(BB); 1299 BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI); 1300 UncondBI->setDebugLoc(BI->getDebugLoc()); 1301 ++NumFolds; 1302 BI->eraseFromParent(); 1303 if (FICond) 1304 FICond->eraseFromParent(); 1305 1306 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}}); 1307 if (auto *BPI = getBPI()) 1308 BPI->eraseBlock(BB); 1309 return true; 1310 } 1311 CurrentBB = CurrentPred; 1312 CurrentPred = CurrentBB->getSinglePredecessor(); 1313 } 1314 1315 return false; 1316 } 1317 1318 /// Return true if Op is an instruction defined in the given block. 1319 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { 1320 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1321 if (OpInst->getParent() == BB) 1322 return true; 1323 return false; 1324 } 1325 1326 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially 1327 /// redundant load instruction, eliminate it by replacing it with a PHI node. 1328 /// This is an important optimization that encourages jump threading, and needs 1329 /// to be run interlaced with other jump threading tasks. 1330 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) { 1331 // Don't hack volatile and ordered loads. 1332 if (!LoadI->isUnordered()) return false; 1333 1334 // If the load is defined in a block with exactly one predecessor, it can't be 1335 // partially redundant. 1336 BasicBlock *LoadBB = LoadI->getParent(); 1337 if (LoadBB->getSinglePredecessor()) 1338 return false; 1339 1340 // If the load is defined in an EH pad, it can't be partially redundant, 1341 // because the edges between the invoke and the EH pad cannot have other 1342 // instructions between them. 1343 if (LoadBB->isEHPad()) 1344 return false; 1345 1346 Value *LoadedPtr = LoadI->getOperand(0); 1347 1348 // If the loaded operand is defined in the LoadBB and its not a phi, 1349 // it can't be available in predecessors. 1350 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) 1351 return false; 1352 1353 // Scan a few instructions up from the load, to see if it is obviously live at 1354 // the entry to its block. 1355 BasicBlock::iterator BBIt(LoadI); 1356 bool IsLoadCSE; 1357 if (Value *AvailableVal = FindAvailableLoadedValue( 1358 LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1359 // If the value of the load is locally available within the block, just use 1360 // it. This frequently occurs for reg2mem'd allocas. 1361 1362 if (IsLoadCSE) { 1363 LoadInst *NLoadI = cast<LoadInst>(AvailableVal); 1364 combineMetadataForCSE(NLoadI, LoadI, false); 1365 }; 1366 1367 // If the returned value is the load itself, replace with poison. This can 1368 // only happen in dead loops. 1369 if (AvailableVal == LoadI) 1370 AvailableVal = PoisonValue::get(LoadI->getType()); 1371 if (AvailableVal->getType() != LoadI->getType()) 1372 AvailableVal = CastInst::CreateBitOrPointerCast( 1373 AvailableVal, LoadI->getType(), "", LoadI); 1374 LoadI->replaceAllUsesWith(AvailableVal); 1375 LoadI->eraseFromParent(); 1376 return true; 1377 } 1378 1379 // Otherwise, if we scanned the whole block and got to the top of the block, 1380 // we know the block is locally transparent to the load. If not, something 1381 // might clobber its value. 1382 if (BBIt != LoadBB->begin()) 1383 return false; 1384 1385 // If all of the loads and stores that feed the value have the same AA tags, 1386 // then we can propagate them onto any newly inserted loads. 1387 AAMDNodes AATags = LoadI->getAAMetadata(); 1388 1389 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1390 1391 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>; 1392 1393 AvailablePredsTy AvailablePreds; 1394 BasicBlock *OneUnavailablePred = nullptr; 1395 SmallVector<LoadInst*, 8> CSELoads; 1396 1397 // If we got here, the loaded value is transparent through to the start of the 1398 // block. Check to see if it is available in any of the predecessor blocks. 1399 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1400 // If we already scanned this predecessor, skip it. 1401 if (!PredsScanned.insert(PredBB).second) 1402 continue; 1403 1404 BBIt = PredBB->end(); 1405 unsigned NumScanedInst = 0; 1406 Value *PredAvailable = nullptr; 1407 // NOTE: We don't CSE load that is volatile or anything stronger than 1408 // unordered, that should have been checked when we entered the function. 1409 assert(LoadI->isUnordered() && 1410 "Attempting to CSE volatile or atomic loads"); 1411 // If this is a load on a phi pointer, phi-translate it and search 1412 // for available load/store to the pointer in predecessors. 1413 Type *AccessTy = LoadI->getType(); 1414 const auto &DL = LoadI->getModule()->getDataLayout(); 1415 MemoryLocation Loc(LoadedPtr->DoPHITranslation(LoadBB, PredBB), 1416 LocationSize::precise(DL.getTypeStoreSize(AccessTy)), 1417 AATags); 1418 PredAvailable = findAvailablePtrLoadStore(Loc, AccessTy, LoadI->isAtomic(), 1419 PredBB, BBIt, DefMaxInstsToScan, 1420 AA, &IsLoadCSE, &NumScanedInst); 1421 1422 // If PredBB has a single predecessor, continue scanning through the 1423 // single predecessor. 1424 BasicBlock *SinglePredBB = PredBB; 1425 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1426 NumScanedInst < DefMaxInstsToScan) { 1427 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1428 if (SinglePredBB) { 1429 BBIt = SinglePredBB->end(); 1430 PredAvailable = findAvailablePtrLoadStore( 1431 Loc, AccessTy, LoadI->isAtomic(), SinglePredBB, BBIt, 1432 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE, 1433 &NumScanedInst); 1434 } 1435 } 1436 1437 if (!PredAvailable) { 1438 OneUnavailablePred = PredBB; 1439 continue; 1440 } 1441 1442 if (IsLoadCSE) 1443 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1444 1445 // If so, this load is partially redundant. Remember this info so that we 1446 // can create a PHI node. 1447 AvailablePreds.emplace_back(PredBB, PredAvailable); 1448 } 1449 1450 // If the loaded value isn't available in any predecessor, it isn't partially 1451 // redundant. 1452 if (AvailablePreds.empty()) return false; 1453 1454 // Okay, the loaded value is available in at least one (and maybe all!) 1455 // predecessors. If the value is unavailable in more than one unique 1456 // predecessor, we want to insert a merge block for those common predecessors. 1457 // This ensures that we only have to insert one reload, thus not increasing 1458 // code size. 1459 BasicBlock *UnavailablePred = nullptr; 1460 1461 // If the value is unavailable in one of predecessors, we will end up 1462 // inserting a new instruction into them. It is only valid if all the 1463 // instructions before LoadI are guaranteed to pass execution to its 1464 // successor, or if LoadI is safe to speculate. 1465 // TODO: If this logic becomes more complex, and we will perform PRE insertion 1466 // farther than to a predecessor, we need to reuse the code from GVN's PRE. 1467 // It requires domination tree analysis, so for this simple case it is an 1468 // overkill. 1469 if (PredsScanned.size() != AvailablePreds.size() && 1470 !isSafeToSpeculativelyExecute(LoadI)) 1471 for (auto I = LoadBB->begin(); &*I != LoadI; ++I) 1472 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 1473 return false; 1474 1475 // If there is exactly one predecessor where the value is unavailable, the 1476 // already computed 'OneUnavailablePred' block is it. If it ends in an 1477 // unconditional branch, we know that it isn't a critical edge. 1478 if (PredsScanned.size() == AvailablePreds.size()+1 && 1479 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1480 UnavailablePred = OneUnavailablePred; 1481 } else if (PredsScanned.size() != AvailablePreds.size()) { 1482 // Otherwise, we had multiple unavailable predecessors or we had a critical 1483 // edge from the one. 1484 SmallVector<BasicBlock*, 8> PredsToSplit; 1485 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1486 1487 for (const auto &AvailablePred : AvailablePreds) 1488 AvailablePredSet.insert(AvailablePred.first); 1489 1490 // Add all the unavailable predecessors to the PredsToSplit list. 1491 for (BasicBlock *P : predecessors(LoadBB)) { 1492 // If the predecessor is an indirect goto, we can't split the edge. 1493 if (isa<IndirectBrInst>(P->getTerminator())) 1494 return false; 1495 1496 if (!AvailablePredSet.count(P)) 1497 PredsToSplit.push_back(P); 1498 } 1499 1500 // Split them out to their own block. 1501 UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1502 } 1503 1504 // If the value isn't available in all predecessors, then there will be 1505 // exactly one where it isn't available. Insert a load on that edge and add 1506 // it to the AvailablePreds list. 1507 if (UnavailablePred) { 1508 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1509 "Can't handle critical edge here!"); 1510 LoadInst *NewVal = new LoadInst( 1511 LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), 1512 LoadI->getName() + ".pr", false, LoadI->getAlign(), 1513 LoadI->getOrdering(), LoadI->getSyncScopeID(), 1514 UnavailablePred->getTerminator()); 1515 NewVal->setDebugLoc(LoadI->getDebugLoc()); 1516 if (AATags) 1517 NewVal->setAAMetadata(AATags); 1518 1519 AvailablePreds.emplace_back(UnavailablePred, NewVal); 1520 } 1521 1522 // Now we know that each predecessor of this block has a value in 1523 // AvailablePreds, sort them for efficient access as we're walking the preds. 1524 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1525 1526 // Create a PHI node at the start of the block for the PRE'd load value. 1527 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1528 PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "", 1529 &LoadBB->front()); 1530 PN->takeName(LoadI); 1531 PN->setDebugLoc(LoadI->getDebugLoc()); 1532 1533 // Insert new entries into the PHI for each predecessor. A single block may 1534 // have multiple entries here. 1535 for (pred_iterator PI = PB; PI != PE; ++PI) { 1536 BasicBlock *P = *PI; 1537 AvailablePredsTy::iterator I = 1538 llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr)); 1539 1540 assert(I != AvailablePreds.end() && I->first == P && 1541 "Didn't find entry for predecessor!"); 1542 1543 // If we have an available predecessor but it requires casting, insert the 1544 // cast in the predecessor and use the cast. Note that we have to update the 1545 // AvailablePreds vector as we go so that all of the PHI entries for this 1546 // predecessor use the same bitcast. 1547 Value *&PredV = I->second; 1548 if (PredV->getType() != LoadI->getType()) 1549 PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "", 1550 P->getTerminator()); 1551 1552 PN->addIncoming(PredV, I->first); 1553 } 1554 1555 for (LoadInst *PredLoadI : CSELoads) { 1556 combineMetadataForCSE(PredLoadI, LoadI, true); 1557 } 1558 1559 LoadI->replaceAllUsesWith(PN); 1560 LoadI->eraseFromParent(); 1561 1562 return true; 1563 } 1564 1565 /// findMostPopularDest - The specified list contains multiple possible 1566 /// threadable destinations. Pick the one that occurs the most frequently in 1567 /// the list. 1568 static BasicBlock * 1569 findMostPopularDest(BasicBlock *BB, 1570 const SmallVectorImpl<std::pair<BasicBlock *, 1571 BasicBlock *>> &PredToDestList) { 1572 assert(!PredToDestList.empty()); 1573 1574 // Determine popularity. If there are multiple possible destinations, we 1575 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1576 // blocks with known and real destinations to threading undef. We'll handle 1577 // them later if interesting. 1578 MapVector<BasicBlock *, unsigned> DestPopularity; 1579 1580 // Populate DestPopularity with the successors in the order they appear in the 1581 // successor list. This way, we ensure determinism by iterating it in the 1582 // same order in std::max_element below. We map nullptr to 0 so that we can 1583 // return nullptr when PredToDestList contains nullptr only. 1584 DestPopularity[nullptr] = 0; 1585 for (auto *SuccBB : successors(BB)) 1586 DestPopularity[SuccBB] = 0; 1587 1588 for (const auto &PredToDest : PredToDestList) 1589 if (PredToDest.second) 1590 DestPopularity[PredToDest.second]++; 1591 1592 // Find the most popular dest. 1593 auto MostPopular = std::max_element( 1594 DestPopularity.begin(), DestPopularity.end(), llvm::less_second()); 1595 1596 // Okay, we have finally picked the most popular destination. 1597 return MostPopular->first; 1598 } 1599 1600 // Try to evaluate the value of V when the control flows from PredPredBB to 1601 // BB->getSinglePredecessor() and then on to BB. 1602 Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB, 1603 BasicBlock *PredPredBB, 1604 Value *V) { 1605 BasicBlock *PredBB = BB->getSinglePredecessor(); 1606 assert(PredBB && "Expected a single predecessor"); 1607 1608 if (Constant *Cst = dyn_cast<Constant>(V)) { 1609 return Cst; 1610 } 1611 1612 // Consult LVI if V is not an instruction in BB or PredBB. 1613 Instruction *I = dyn_cast<Instruction>(V); 1614 if (!I || (I->getParent() != BB && I->getParent() != PredBB)) { 1615 return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr); 1616 } 1617 1618 // Look into a PHI argument. 1619 if (PHINode *PHI = dyn_cast<PHINode>(V)) { 1620 if (PHI->getParent() == PredBB) 1621 return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB)); 1622 return nullptr; 1623 } 1624 1625 // If we have a CmpInst, try to fold it for each incoming edge into PredBB. 1626 if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) { 1627 if (CondCmp->getParent() == BB) { 1628 Constant *Op0 = 1629 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0)); 1630 Constant *Op1 = 1631 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1)); 1632 if (Op0 && Op1) { 1633 return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1); 1634 } 1635 } 1636 return nullptr; 1637 } 1638 1639 return nullptr; 1640 } 1641 1642 bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB, 1643 ConstantPreference Preference, 1644 Instruction *CxtI) { 1645 // If threading this would thread across a loop header, don't even try to 1646 // thread the edge. 1647 if (LoopHeaders.count(BB)) 1648 return false; 1649 1650 PredValueInfoTy PredValues; 1651 if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference, 1652 CxtI)) { 1653 // We don't have known values in predecessors. See if we can thread through 1654 // BB and its sole predecessor. 1655 return maybethreadThroughTwoBasicBlocks(BB, Cond); 1656 } 1657 1658 assert(!PredValues.empty() && 1659 "computeValueKnownInPredecessors returned true with no values"); 1660 1661 LLVM_DEBUG(dbgs() << "IN BB: " << *BB; 1662 for (const auto &PredValue : PredValues) { 1663 dbgs() << " BB '" << BB->getName() 1664 << "': FOUND condition = " << *PredValue.first 1665 << " for pred '" << PredValue.second->getName() << "'.\n"; 1666 }); 1667 1668 // Decide what we want to thread through. Convert our list of known values to 1669 // a list of known destinations for each pred. This also discards duplicate 1670 // predecessors and keeps track of the undefined inputs (which are represented 1671 // as a null dest in the PredToDestList). 1672 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1673 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1674 1675 BasicBlock *OnlyDest = nullptr; 1676 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1677 Constant *OnlyVal = nullptr; 1678 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; 1679 1680 for (const auto &PredValue : PredValues) { 1681 BasicBlock *Pred = PredValue.second; 1682 if (!SeenPreds.insert(Pred).second) 1683 continue; // Duplicate predecessor entry. 1684 1685 Constant *Val = PredValue.first; 1686 1687 BasicBlock *DestBB; 1688 if (isa<UndefValue>(Val)) 1689 DestBB = nullptr; 1690 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 1691 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1692 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1693 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1694 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1695 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); 1696 } else { 1697 assert(isa<IndirectBrInst>(BB->getTerminator()) 1698 && "Unexpected terminator"); 1699 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); 1700 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1701 } 1702 1703 // If we have exactly one destination, remember it for efficiency below. 1704 if (PredToDestList.empty()) { 1705 OnlyDest = DestBB; 1706 OnlyVal = Val; 1707 } else { 1708 if (OnlyDest != DestBB) 1709 OnlyDest = MultipleDestSentinel; 1710 // It possible we have same destination, but different value, e.g. default 1711 // case in switchinst. 1712 if (Val != OnlyVal) 1713 OnlyVal = MultipleVal; 1714 } 1715 1716 // If the predecessor ends with an indirect goto, we can't change its 1717 // destination. 1718 if (isa<IndirectBrInst>(Pred->getTerminator())) 1719 continue; 1720 1721 PredToDestList.emplace_back(Pred, DestBB); 1722 } 1723 1724 // If all edges were unthreadable, we fail. 1725 if (PredToDestList.empty()) 1726 return false; 1727 1728 // If all the predecessors go to a single known successor, we want to fold, 1729 // not thread. By doing so, we do not need to duplicate the current block and 1730 // also miss potential opportunities in case we dont/cant duplicate. 1731 if (OnlyDest && OnlyDest != MultipleDestSentinel) { 1732 if (BB->hasNPredecessors(PredToDestList.size())) { 1733 bool SeenFirstBranchToOnlyDest = false; 1734 std::vector <DominatorTree::UpdateType> Updates; 1735 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1); 1736 for (BasicBlock *SuccBB : successors(BB)) { 1737 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) { 1738 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. 1739 } else { 1740 SuccBB->removePredecessor(BB, true); // This is unreachable successor. 1741 Updates.push_back({DominatorTree::Delete, BB, SuccBB}); 1742 } 1743 } 1744 1745 // Finally update the terminator. 1746 Instruction *Term = BB->getTerminator(); 1747 BranchInst::Create(OnlyDest, Term); 1748 ++NumFolds; 1749 Term->eraseFromParent(); 1750 DTU->applyUpdatesPermissive(Updates); 1751 if (auto *BPI = getBPI()) 1752 BPI->eraseBlock(BB); 1753 1754 // If the condition is now dead due to the removal of the old terminator, 1755 // erase it. 1756 if (auto *CondInst = dyn_cast<Instruction>(Cond)) { 1757 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) 1758 CondInst->eraseFromParent(); 1759 // We can safely replace *some* uses of the CondInst if it has 1760 // exactly one value as returned by LVI. RAUW is incorrect in the 1761 // presence of guards and assumes, that have the `Cond` as the use. This 1762 // is because we use the guards/assume to reason about the `Cond` value 1763 // at the end of block, but RAUW unconditionally replaces all uses 1764 // including the guards/assumes themselves and the uses before the 1765 // guard/assume. 1766 else if (OnlyVal && OnlyVal != MultipleVal) 1767 replaceFoldableUses(CondInst, OnlyVal, BB); 1768 } 1769 return true; 1770 } 1771 } 1772 1773 // Determine which is the most common successor. If we have many inputs and 1774 // this block is a switch, we want to start by threading the batch that goes 1775 // to the most popular destination first. If we only know about one 1776 // threadable destination (the common case) we can avoid this. 1777 BasicBlock *MostPopularDest = OnlyDest; 1778 1779 if (MostPopularDest == MultipleDestSentinel) { 1780 // Remove any loop headers from the Dest list, threadEdge conservatively 1781 // won't process them, but we might have other destination that are eligible 1782 // and we still want to process. 1783 erase_if(PredToDestList, 1784 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) { 1785 return LoopHeaders.contains(PredToDest.second); 1786 }); 1787 1788 if (PredToDestList.empty()) 1789 return false; 1790 1791 MostPopularDest = findMostPopularDest(BB, PredToDestList); 1792 } 1793 1794 // Now that we know what the most popular destination is, factor all 1795 // predecessors that will jump to it into a single predecessor. 1796 SmallVector<BasicBlock*, 16> PredsToFactor; 1797 for (const auto &PredToDest : PredToDestList) 1798 if (PredToDest.second == MostPopularDest) { 1799 BasicBlock *Pred = PredToDest.first; 1800 1801 // This predecessor may be a switch or something else that has multiple 1802 // edges to the block. Factor each of these edges by listing them 1803 // according to # occurrences in PredsToFactor. 1804 for (BasicBlock *Succ : successors(Pred)) 1805 if (Succ == BB) 1806 PredsToFactor.push_back(Pred); 1807 } 1808 1809 // If the threadable edges are branching on an undefined value, we get to pick 1810 // the destination that these predecessors should get to. 1811 if (!MostPopularDest) 1812 MostPopularDest = BB->getTerminator()-> 1813 getSuccessor(getBestDestForJumpOnUndef(BB)); 1814 1815 // Ok, try to thread it! 1816 return tryThreadEdge(BB, PredsToFactor, MostPopularDest); 1817 } 1818 1819 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on 1820 /// a PHI node (or freeze PHI) in the current block. See if there are any 1821 /// simplifications we can do based on inputs to the phi node. 1822 bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) { 1823 BasicBlock *BB = PN->getParent(); 1824 1825 // TODO: We could make use of this to do it once for blocks with common PHI 1826 // values. 1827 SmallVector<BasicBlock*, 1> PredBBs; 1828 PredBBs.resize(1); 1829 1830 // If any of the predecessor blocks end in an unconditional branch, we can 1831 // *duplicate* the conditional branch into that block in order to further 1832 // encourage jump threading and to eliminate cases where we have branch on a 1833 // phi of an icmp (branch on icmp is much better). 1834 // This is still beneficial when a frozen phi is used as the branch condition 1835 // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp)) 1836 // to br(icmp(freeze ...)). 1837 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1838 BasicBlock *PredBB = PN->getIncomingBlock(i); 1839 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1840 if (PredBr->isUnconditional()) { 1841 PredBBs[0] = PredBB; 1842 // Try to duplicate BB into PredBB. 1843 if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1844 return true; 1845 } 1846 } 1847 1848 return false; 1849 } 1850 1851 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on 1852 /// a xor instruction in the current block. See if there are any 1853 /// simplifications we can do based on inputs to the xor. 1854 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) { 1855 BasicBlock *BB = BO->getParent(); 1856 1857 // If either the LHS or RHS of the xor is a constant, don't do this 1858 // optimization. 1859 if (isa<ConstantInt>(BO->getOperand(0)) || 1860 isa<ConstantInt>(BO->getOperand(1))) 1861 return false; 1862 1863 // If the first instruction in BB isn't a phi, we won't be able to infer 1864 // anything special about any particular predecessor. 1865 if (!isa<PHINode>(BB->front())) 1866 return false; 1867 1868 // If this BB is a landing pad, we won't be able to split the edge into it. 1869 if (BB->isEHPad()) 1870 return false; 1871 1872 // If we have a xor as the branch input to this block, and we know that the 1873 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1874 // the condition into the predecessor and fix that value to true, saving some 1875 // logical ops on that path and encouraging other paths to simplify. 1876 // 1877 // This copies something like this: 1878 // 1879 // BB: 1880 // %X = phi i1 [1], [%X'] 1881 // %Y = icmp eq i32 %A, %B 1882 // %Z = xor i1 %X, %Y 1883 // br i1 %Z, ... 1884 // 1885 // Into: 1886 // BB': 1887 // %Y = icmp ne i32 %A, %B 1888 // br i1 %Y, ... 1889 1890 PredValueInfoTy XorOpValues; 1891 bool isLHS = true; 1892 if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1893 WantInteger, BO)) { 1894 assert(XorOpValues.empty()); 1895 if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1896 WantInteger, BO)) 1897 return false; 1898 isLHS = false; 1899 } 1900 1901 assert(!XorOpValues.empty() && 1902 "computeValueKnownInPredecessors returned true with no values"); 1903 1904 // Scan the information to see which is most popular: true or false. The 1905 // predecessors can be of the set true, false, or undef. 1906 unsigned NumTrue = 0, NumFalse = 0; 1907 for (const auto &XorOpValue : XorOpValues) { 1908 if (isa<UndefValue>(XorOpValue.first)) 1909 // Ignore undefs for the count. 1910 continue; 1911 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1912 ++NumFalse; 1913 else 1914 ++NumTrue; 1915 } 1916 1917 // Determine which value to split on, true, false, or undef if neither. 1918 ConstantInt *SplitVal = nullptr; 1919 if (NumTrue > NumFalse) 1920 SplitVal = ConstantInt::getTrue(BB->getContext()); 1921 else if (NumTrue != 0 || NumFalse != 0) 1922 SplitVal = ConstantInt::getFalse(BB->getContext()); 1923 1924 // Collect all of the blocks that this can be folded into so that we can 1925 // factor this once and clone it once. 1926 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1927 for (const auto &XorOpValue : XorOpValues) { 1928 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1929 continue; 1930 1931 BlocksToFoldInto.push_back(XorOpValue.second); 1932 } 1933 1934 // If we inferred a value for all of the predecessors, then duplication won't 1935 // help us. However, we can just replace the LHS or RHS with the constant. 1936 if (BlocksToFoldInto.size() == 1937 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1938 if (!SplitVal) { 1939 // If all preds provide undef, just nuke the xor, because it is undef too. 1940 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1941 BO->eraseFromParent(); 1942 } else if (SplitVal->isZero() && BO != BO->getOperand(isLHS)) { 1943 // If all preds provide 0, replace the xor with the other input. 1944 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1945 BO->eraseFromParent(); 1946 } else { 1947 // If all preds provide 1, set the computed value to 1. 1948 BO->setOperand(!isLHS, SplitVal); 1949 } 1950 1951 return true; 1952 } 1953 1954 // If any of predecessors end with an indirect goto, we can't change its 1955 // destination. 1956 if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) { 1957 return isa<IndirectBrInst>(Pred->getTerminator()); 1958 })) 1959 return false; 1960 1961 // Try to duplicate BB into PredBB. 1962 return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1963 } 1964 1965 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1966 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1967 /// NewPred using the entries from OldPred (suitably mapped). 1968 static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1969 BasicBlock *OldPred, 1970 BasicBlock *NewPred, 1971 DenseMap<Instruction*, Value*> &ValueMap) { 1972 for (PHINode &PN : PHIBB->phis()) { 1973 // Ok, we have a PHI node. Figure out what the incoming value was for the 1974 // DestBlock. 1975 Value *IV = PN.getIncomingValueForBlock(OldPred); 1976 1977 // Remap the value if necessary. 1978 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1979 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1980 if (I != ValueMap.end()) 1981 IV = I->second; 1982 } 1983 1984 PN.addIncoming(IV, NewPred); 1985 } 1986 } 1987 1988 /// Merge basic block BB into its sole predecessor if possible. 1989 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) { 1990 BasicBlock *SinglePred = BB->getSinglePredecessor(); 1991 if (!SinglePred) 1992 return false; 1993 1994 const Instruction *TI = SinglePred->getTerminator(); 1995 if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 || 1996 SinglePred == BB || hasAddressTakenAndUsed(BB)) 1997 return false; 1998 1999 // If SinglePred was a loop header, BB becomes one. 2000 if (LoopHeaders.erase(SinglePred)) 2001 LoopHeaders.insert(BB); 2002 2003 LVI->eraseBlock(SinglePred); 2004 MergeBasicBlockIntoOnlyPred(BB, DTU.get()); 2005 2006 // Now that BB is merged into SinglePred (i.e. SinglePred code followed by 2007 // BB code within one basic block `BB`), we need to invalidate the LVI 2008 // information associated with BB, because the LVI information need not be 2009 // true for all of BB after the merge. For example, 2010 // Before the merge, LVI info and code is as follows: 2011 // SinglePred: <LVI info1 for %p val> 2012 // %y = use of %p 2013 // call @exit() // need not transfer execution to successor. 2014 // assume(%p) // from this point on %p is true 2015 // br label %BB 2016 // BB: <LVI info2 for %p val, i.e. %p is true> 2017 // %x = use of %p 2018 // br label exit 2019 // 2020 // Note that this LVI info for blocks BB and SinglPred is correct for %p 2021 // (info2 and info1 respectively). After the merge and the deletion of the 2022 // LVI info1 for SinglePred. We have the following code: 2023 // BB: <LVI info2 for %p val> 2024 // %y = use of %p 2025 // call @exit() 2026 // assume(%p) 2027 // %x = use of %p <-- LVI info2 is correct from here onwards. 2028 // br label exit 2029 // LVI info2 for BB is incorrect at the beginning of BB. 2030 2031 // Invalidate LVI information for BB if the LVI is not provably true for 2032 // all of BB. 2033 if (!isGuaranteedToTransferExecutionToSuccessor(BB)) 2034 LVI->eraseBlock(BB); 2035 return true; 2036 } 2037 2038 /// Update the SSA form. NewBB contains instructions that are copied from BB. 2039 /// ValueMapping maps old values in BB to new ones in NewBB. 2040 void JumpThreadingPass::updateSSA( 2041 BasicBlock *BB, BasicBlock *NewBB, 2042 DenseMap<Instruction *, Value *> &ValueMapping) { 2043 // If there were values defined in BB that are used outside the block, then we 2044 // now have to update all uses of the value to use either the original value, 2045 // the cloned value, or some PHI derived value. This can require arbitrary 2046 // PHI insertion, of which we are prepared to do, clean these up now. 2047 SSAUpdater SSAUpdate; 2048 SmallVector<Use *, 16> UsesToRename; 2049 SmallVector<DbgValueInst *, 4> DbgValues; 2050 2051 for (Instruction &I : *BB) { 2052 // Scan all uses of this instruction to see if it is used outside of its 2053 // block, and if so, record them in UsesToRename. 2054 for (Use &U : I.uses()) { 2055 Instruction *User = cast<Instruction>(U.getUser()); 2056 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 2057 if (UserPN->getIncomingBlock(U) == BB) 2058 continue; 2059 } else if (User->getParent() == BB) 2060 continue; 2061 2062 UsesToRename.push_back(&U); 2063 } 2064 2065 // Find debug values outside of the block 2066 findDbgValues(DbgValues, &I); 2067 DbgValues.erase(remove_if(DbgValues, 2068 [&](const DbgValueInst *DbgVal) { 2069 return DbgVal->getParent() == BB; 2070 }), 2071 DbgValues.end()); 2072 2073 // If there are no uses outside the block, we're done with this instruction. 2074 if (UsesToRename.empty() && DbgValues.empty()) 2075 continue; 2076 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 2077 2078 // We found a use of I outside of BB. Rename all uses of I that are outside 2079 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 2080 // with the two values we know. 2081 SSAUpdate.Initialize(I.getType(), I.getName()); 2082 SSAUpdate.AddAvailableValue(BB, &I); 2083 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 2084 2085 while (!UsesToRename.empty()) 2086 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2087 if (!DbgValues.empty()) { 2088 SSAUpdate.UpdateDebugValues(&I, DbgValues); 2089 DbgValues.clear(); 2090 } 2091 2092 LLVM_DEBUG(dbgs() << "\n"); 2093 } 2094 } 2095 2096 /// Clone instructions in range [BI, BE) to NewBB. For PHI nodes, we only clone 2097 /// arguments that come from PredBB. Return the map from the variables in the 2098 /// source basic block to the variables in the newly created basic block. 2099 DenseMap<Instruction *, Value *> 2100 JumpThreadingPass::cloneInstructions(BasicBlock::iterator BI, 2101 BasicBlock::iterator BE, BasicBlock *NewBB, 2102 BasicBlock *PredBB) { 2103 // We are going to have to map operands from the source basic block to the new 2104 // copy of the block 'NewBB'. If there are PHI nodes in the source basic 2105 // block, evaluate them to account for entry from PredBB. 2106 DenseMap<Instruction *, Value *> ValueMapping; 2107 2108 // Retargets llvm.dbg.value to any renamed variables. 2109 auto RetargetDbgValueIfPossible = [&](Instruction *NewInst) -> bool { 2110 auto DbgInstruction = dyn_cast<DbgValueInst>(NewInst); 2111 if (!DbgInstruction) 2112 return false; 2113 2114 SmallSet<std::pair<Value *, Value *>, 16> OperandsToRemap; 2115 for (auto DbgOperand : DbgInstruction->location_ops()) { 2116 auto DbgOperandInstruction = dyn_cast<Instruction>(DbgOperand); 2117 if (!DbgOperandInstruction) 2118 continue; 2119 2120 auto I = ValueMapping.find(DbgOperandInstruction); 2121 if (I != ValueMapping.end()) { 2122 OperandsToRemap.insert( 2123 std::pair<Value *, Value *>(DbgOperand, I->second)); 2124 } 2125 } 2126 2127 for (auto &[OldOp, MappedOp] : OperandsToRemap) 2128 DbgInstruction->replaceVariableLocationOp(OldOp, MappedOp); 2129 return true; 2130 }; 2131 2132 // Clone the phi nodes of the source basic block into NewBB. The resulting 2133 // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater 2134 // might need to rewrite the operand of the cloned phi. 2135 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2136 PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB); 2137 NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB); 2138 ValueMapping[PN] = NewPN; 2139 } 2140 2141 // Clone noalias scope declarations in the threaded block. When threading a 2142 // loop exit, we would otherwise end up with two idential scope declarations 2143 // visible at the same time. 2144 SmallVector<MDNode *> NoAliasScopes; 2145 DenseMap<MDNode *, MDNode *> ClonedScopes; 2146 LLVMContext &Context = PredBB->getContext(); 2147 identifyNoAliasScopesToClone(BI, BE, NoAliasScopes); 2148 cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context); 2149 2150 // Clone the non-phi instructions of the source basic block into NewBB, 2151 // keeping track of the mapping and using it to remap operands in the cloned 2152 // instructions. 2153 for (; BI != BE; ++BI) { 2154 Instruction *New = BI->clone(); 2155 New->setName(BI->getName()); 2156 New->insertInto(NewBB, NewBB->end()); 2157 ValueMapping[&*BI] = New; 2158 adaptNoAliasScopes(New, ClonedScopes, Context); 2159 2160 if (RetargetDbgValueIfPossible(New)) 2161 continue; 2162 2163 // Remap operands to patch up intra-block references. 2164 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2165 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2166 DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst); 2167 if (I != ValueMapping.end()) 2168 New->setOperand(i, I->second); 2169 } 2170 } 2171 2172 return ValueMapping; 2173 } 2174 2175 /// Attempt to thread through two successive basic blocks. 2176 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB, 2177 Value *Cond) { 2178 // Consider: 2179 // 2180 // PredBB: 2181 // %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ] 2182 // %tobool = icmp eq i32 %cond, 0 2183 // br i1 %tobool, label %BB, label ... 2184 // 2185 // BB: 2186 // %cmp = icmp eq i32* %var, null 2187 // br i1 %cmp, label ..., label ... 2188 // 2189 // We don't know the value of %var at BB even if we know which incoming edge 2190 // we take to BB. However, once we duplicate PredBB for each of its incoming 2191 // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of 2192 // PredBB. Then we can thread edges PredBB1->BB and PredBB2->BB through BB. 2193 2194 // Require that BB end with a Branch for simplicity. 2195 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2196 if (!CondBr) 2197 return false; 2198 2199 // BB must have exactly one predecessor. 2200 BasicBlock *PredBB = BB->getSinglePredecessor(); 2201 if (!PredBB) 2202 return false; 2203 2204 // Require that PredBB end with a conditional Branch. If PredBB ends with an 2205 // unconditional branch, we should be merging PredBB and BB instead. For 2206 // simplicity, we don't deal with a switch. 2207 BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2208 if (!PredBBBranch || PredBBBranch->isUnconditional()) 2209 return false; 2210 2211 // If PredBB has exactly one incoming edge, we don't gain anything by copying 2212 // PredBB. 2213 if (PredBB->getSinglePredecessor()) 2214 return false; 2215 2216 // Don't thread through PredBB if it contains a successor edge to itself, in 2217 // which case we would infinite loop. Suppose we are threading an edge from 2218 // PredPredBB through PredBB and BB to SuccBB with PredBB containing a 2219 // successor edge to itself. If we allowed jump threading in this case, we 2220 // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread. Since 2221 // PredBB.thread has a successor edge to PredBB, we would immediately come up 2222 // with another jump threading opportunity from PredBB.thread through PredBB 2223 // and BB to SuccBB. This jump threading would repeatedly occur. That is, we 2224 // would keep peeling one iteration from PredBB. 2225 if (llvm::is_contained(successors(PredBB), PredBB)) 2226 return false; 2227 2228 // Don't thread across a loop header. 2229 if (LoopHeaders.count(PredBB)) 2230 return false; 2231 2232 // Avoid complication with duplicating EH pads. 2233 if (PredBB->isEHPad()) 2234 return false; 2235 2236 // Find a predecessor that we can thread. For simplicity, we only consider a 2237 // successor edge out of BB to which we thread exactly one incoming edge into 2238 // PredBB. 2239 unsigned ZeroCount = 0; 2240 unsigned OneCount = 0; 2241 BasicBlock *ZeroPred = nullptr; 2242 BasicBlock *OnePred = nullptr; 2243 for (BasicBlock *P : predecessors(PredBB)) { 2244 // If PredPred ends with IndirectBrInst, we can't handle it. 2245 if (isa<IndirectBrInst>(P->getTerminator())) 2246 continue; 2247 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>( 2248 evaluateOnPredecessorEdge(BB, P, Cond))) { 2249 if (CI->isZero()) { 2250 ZeroCount++; 2251 ZeroPred = P; 2252 } else if (CI->isOne()) { 2253 OneCount++; 2254 OnePred = P; 2255 } 2256 } 2257 } 2258 2259 // Disregard complicated cases where we have to thread multiple edges. 2260 BasicBlock *PredPredBB; 2261 if (ZeroCount == 1) { 2262 PredPredBB = ZeroPred; 2263 } else if (OneCount == 1) { 2264 PredPredBB = OnePred; 2265 } else { 2266 return false; 2267 } 2268 2269 BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred); 2270 2271 // If threading to the same block as we come from, we would infinite loop. 2272 if (SuccBB == BB) { 2273 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 2274 << "' - would thread to self!\n"); 2275 return false; 2276 } 2277 2278 // If threading this would thread across a loop header, don't thread the edge. 2279 // See the comments above findLoopHeaders for justifications and caveats. 2280 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 2281 LLVM_DEBUG({ 2282 bool BBIsHeader = LoopHeaders.count(BB); 2283 bool SuccIsHeader = LoopHeaders.count(SuccBB); 2284 dbgs() << " Not threading across " 2285 << (BBIsHeader ? "loop header BB '" : "block BB '") 2286 << BB->getName() << "' to dest " 2287 << (SuccIsHeader ? "loop header BB '" : "block BB '") 2288 << SuccBB->getName() 2289 << "' - it might create an irreducible loop!\n"; 2290 }); 2291 return false; 2292 } 2293 2294 // Compute the cost of duplicating BB and PredBB. 2295 unsigned BBCost = getJumpThreadDuplicationCost( 2296 TTI, BB, BB->getTerminator(), BBDupThreshold); 2297 unsigned PredBBCost = getJumpThreadDuplicationCost( 2298 TTI, PredBB, PredBB->getTerminator(), BBDupThreshold); 2299 2300 // Give up if costs are too high. We need to check BBCost and PredBBCost 2301 // individually before checking their sum because getJumpThreadDuplicationCost 2302 // return (unsigned)~0 for those basic blocks that cannot be duplicated. 2303 if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold || 2304 BBCost + PredBBCost > BBDupThreshold) { 2305 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 2306 << "' - Cost is too high: " << PredBBCost 2307 << " for PredBB, " << BBCost << "for BB\n"); 2308 return false; 2309 } 2310 2311 // Now we are ready to duplicate PredBB. 2312 threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB); 2313 return true; 2314 } 2315 2316 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB, 2317 BasicBlock *PredBB, 2318 BasicBlock *BB, 2319 BasicBlock *SuccBB) { 2320 LLVM_DEBUG(dbgs() << " Threading through '" << PredBB->getName() << "' and '" 2321 << BB->getName() << "'\n"); 2322 2323 // Build BPI/BFI before any changes are made to IR. 2324 bool HasProfile = doesBlockHaveProfileData(BB); 2325 auto *BFI = getOrCreateBFI(HasProfile); 2326 auto *BPI = getOrCreateBPI(BFI != nullptr); 2327 2328 BranchInst *CondBr = cast<BranchInst>(BB->getTerminator()); 2329 BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator()); 2330 2331 BasicBlock *NewBB = 2332 BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread", 2333 PredBB->getParent(), PredBB); 2334 NewBB->moveAfter(PredBB); 2335 2336 // Set the block frequency of NewBB. 2337 if (BFI) { 2338 assert(BPI && "It's expected BPI to exist along with BFI"); 2339 auto NewBBFreq = BFI->getBlockFreq(PredPredBB) * 2340 BPI->getEdgeProbability(PredPredBB, PredBB); 2341 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2342 } 2343 2344 // We are going to have to map operands from the original BB block to the new 2345 // copy of the block 'NewBB'. If there are PHI nodes in PredBB, evaluate them 2346 // to account for entry from PredPredBB. 2347 DenseMap<Instruction *, Value *> ValueMapping = 2348 cloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB); 2349 2350 // Copy the edge probabilities from PredBB to NewBB. 2351 if (BPI) 2352 BPI->copyEdgeProbabilities(PredBB, NewBB); 2353 2354 // Update the terminator of PredPredBB to jump to NewBB instead of PredBB. 2355 // This eliminates predecessors from PredPredBB, which requires us to simplify 2356 // any PHI nodes in PredBB. 2357 Instruction *PredPredTerm = PredPredBB->getTerminator(); 2358 for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i) 2359 if (PredPredTerm->getSuccessor(i) == PredBB) { 2360 PredBB->removePredecessor(PredPredBB, true); 2361 PredPredTerm->setSuccessor(i, NewBB); 2362 } 2363 2364 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB, 2365 ValueMapping); 2366 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB, 2367 ValueMapping); 2368 2369 DTU->applyUpdatesPermissive( 2370 {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)}, 2371 {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)}, 2372 {DominatorTree::Insert, PredPredBB, NewBB}, 2373 {DominatorTree::Delete, PredPredBB, PredBB}}); 2374 2375 updateSSA(PredBB, NewBB, ValueMapping); 2376 2377 // Clean up things like PHI nodes with single operands, dead instructions, 2378 // etc. 2379 SimplifyInstructionsInBlock(NewBB, TLI); 2380 SimplifyInstructionsInBlock(PredBB, TLI); 2381 2382 SmallVector<BasicBlock *, 1> PredsToFactor; 2383 PredsToFactor.push_back(NewBB); 2384 threadEdge(BB, PredsToFactor, SuccBB); 2385 } 2386 2387 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so. 2388 bool JumpThreadingPass::tryThreadEdge( 2389 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs, 2390 BasicBlock *SuccBB) { 2391 // If threading to the same block as we come from, we would infinite loop. 2392 if (SuccBB == BB) { 2393 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 2394 << "' - would thread to self!\n"); 2395 return false; 2396 } 2397 2398 // If threading this would thread across a loop header, don't thread the edge. 2399 // See the comments above findLoopHeaders for justifications and caveats. 2400 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 2401 LLVM_DEBUG({ 2402 bool BBIsHeader = LoopHeaders.count(BB); 2403 bool SuccIsHeader = LoopHeaders.count(SuccBB); 2404 dbgs() << " Not threading across " 2405 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() 2406 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") 2407 << SuccBB->getName() << "' - it might create an irreducible loop!\n"; 2408 }); 2409 return false; 2410 } 2411 2412 unsigned JumpThreadCost = getJumpThreadDuplicationCost( 2413 TTI, BB, BB->getTerminator(), BBDupThreshold); 2414 if (JumpThreadCost > BBDupThreshold) { 2415 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 2416 << "' - Cost is too high: " << JumpThreadCost << "\n"); 2417 return false; 2418 } 2419 2420 threadEdge(BB, PredBBs, SuccBB); 2421 return true; 2422 } 2423 2424 /// threadEdge - We have decided that it is safe and profitable to factor the 2425 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 2426 /// across BB. Transform the IR to reflect this change. 2427 void JumpThreadingPass::threadEdge(BasicBlock *BB, 2428 const SmallVectorImpl<BasicBlock *> &PredBBs, 2429 BasicBlock *SuccBB) { 2430 assert(SuccBB != BB && "Don't create an infinite loop"); 2431 2432 assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) && 2433 "Don't thread across loop headers"); 2434 2435 // Build BPI/BFI before any changes are made to IR. 2436 bool HasProfile = doesBlockHaveProfileData(BB); 2437 auto *BFI = getOrCreateBFI(HasProfile); 2438 auto *BPI = getOrCreateBPI(BFI != nullptr); 2439 2440 // And finally, do it! Start by factoring the predecessors if needed. 2441 BasicBlock *PredBB; 2442 if (PredBBs.size() == 1) 2443 PredBB = PredBBs[0]; 2444 else { 2445 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2446 << " common predecessors.\n"); 2447 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm"); 2448 } 2449 2450 // And finally, do it! 2451 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() 2452 << "' to '" << SuccBB->getName() 2453 << ", across block:\n " << *BB << "\n"); 2454 2455 LVI->threadEdge(PredBB, BB, SuccBB); 2456 2457 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 2458 BB->getName()+".thread", 2459 BB->getParent(), BB); 2460 NewBB->moveAfter(PredBB); 2461 2462 // Set the block frequency of NewBB. 2463 if (BFI) { 2464 assert(BPI && "It's expected BPI to exist along with BFI"); 2465 auto NewBBFreq = 2466 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 2467 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2468 } 2469 2470 // Copy all the instructions from BB to NewBB except the terminator. 2471 DenseMap<Instruction *, Value *> ValueMapping = 2472 cloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB); 2473 2474 // We didn't copy the terminator from BB over to NewBB, because there is now 2475 // an unconditional jump to SuccBB. Insert the unconditional jump. 2476 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 2477 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 2478 2479 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 2480 // PHI nodes for NewBB now. 2481 addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 2482 2483 // Update the terminator of PredBB to jump to NewBB instead of BB. This 2484 // eliminates predecessors from BB, which requires us to simplify any PHI 2485 // nodes in BB. 2486 Instruction *PredTerm = PredBB->getTerminator(); 2487 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 2488 if (PredTerm->getSuccessor(i) == BB) { 2489 BB->removePredecessor(PredBB, true); 2490 PredTerm->setSuccessor(i, NewBB); 2491 } 2492 2493 // Enqueue required DT updates. 2494 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB}, 2495 {DominatorTree::Insert, PredBB, NewBB}, 2496 {DominatorTree::Delete, PredBB, BB}}); 2497 2498 updateSSA(BB, NewBB, ValueMapping); 2499 2500 // At this point, the IR is fully up to date and consistent. Do a quick scan 2501 // over the new instructions and zap any that are constants or dead. This 2502 // frequently happens because of phi translation. 2503 SimplifyInstructionsInBlock(NewBB, TLI); 2504 2505 // Update the edge weight from BB to SuccBB, which should be less than before. 2506 updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB, BFI, BPI, HasProfile); 2507 2508 // Threaded an edge! 2509 ++NumThreads; 2510 } 2511 2512 /// Create a new basic block that will be the predecessor of BB and successor of 2513 /// all blocks in Preds. When profile data is available, update the frequency of 2514 /// this new block. 2515 BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB, 2516 ArrayRef<BasicBlock *> Preds, 2517 const char *Suffix) { 2518 SmallVector<BasicBlock *, 2> NewBBs; 2519 2520 // Collect the frequencies of all predecessors of BB, which will be used to 2521 // update the edge weight of the result of splitting predecessors. 2522 DenseMap<BasicBlock *, BlockFrequency> FreqMap; 2523 auto *BFI = getBFI(); 2524 if (BFI) { 2525 auto *BPI = getOrCreateBPI(true); 2526 for (auto *Pred : Preds) 2527 FreqMap.insert(std::make_pair( 2528 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB))); 2529 } 2530 2531 // In the case when BB is a LandingPad block we create 2 new predecessors 2532 // instead of just one. 2533 if (BB->isLandingPad()) { 2534 std::string NewName = std::string(Suffix) + ".split-lp"; 2535 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs); 2536 } else { 2537 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix)); 2538 } 2539 2540 std::vector<DominatorTree::UpdateType> Updates; 2541 Updates.reserve((2 * Preds.size()) + NewBBs.size()); 2542 for (auto *NewBB : NewBBs) { 2543 BlockFrequency NewBBFreq(0); 2544 Updates.push_back({DominatorTree::Insert, NewBB, BB}); 2545 for (auto *Pred : predecessors(NewBB)) { 2546 Updates.push_back({DominatorTree::Delete, Pred, BB}); 2547 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 2548 if (BFI) // Update frequencies between Pred -> NewBB. 2549 NewBBFreq += FreqMap.lookup(Pred); 2550 } 2551 if (BFI) // Apply the summed frequency to NewBB. 2552 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2553 } 2554 2555 DTU->applyUpdatesPermissive(Updates); 2556 return NewBBs[0]; 2557 } 2558 2559 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 2560 const Instruction *TI = BB->getTerminator(); 2561 if (!TI || TI->getNumSuccessors() < 2) 2562 return false; 2563 2564 return hasValidBranchWeightMD(*TI); 2565 } 2566 2567 /// Update the block frequency of BB and branch weight and the metadata on the 2568 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 2569 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 2570 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 2571 BasicBlock *BB, 2572 BasicBlock *NewBB, 2573 BasicBlock *SuccBB, 2574 BlockFrequencyInfo *BFI, 2575 BranchProbabilityInfo *BPI, 2576 bool HasProfile) { 2577 assert(((BFI && BPI) || (!BFI && !BFI)) && 2578 "Both BFI & BPI should either be set or unset"); 2579 2580 if (!BFI) { 2581 assert(!HasProfile && 2582 "It's expected to have BFI/BPI when profile info exists"); 2583 return; 2584 } 2585 2586 // As the edge from PredBB to BB is deleted, we have to update the block 2587 // frequency of BB. 2588 auto BBOrigFreq = BFI->getBlockFreq(BB); 2589 auto NewBBFreq = BFI->getBlockFreq(NewBB); 2590 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 2591 auto BBNewFreq = BBOrigFreq - NewBBFreq; 2592 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 2593 2594 // Collect updated outgoing edges' frequencies from BB and use them to update 2595 // edge probabilities. 2596 SmallVector<uint64_t, 4> BBSuccFreq; 2597 for (BasicBlock *Succ : successors(BB)) { 2598 auto SuccFreq = (Succ == SuccBB) 2599 ? BB2SuccBBFreq - NewBBFreq 2600 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 2601 BBSuccFreq.push_back(SuccFreq.getFrequency()); 2602 } 2603 2604 uint64_t MaxBBSuccFreq = 2605 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 2606 2607 SmallVector<BranchProbability, 4> BBSuccProbs; 2608 if (MaxBBSuccFreq == 0) 2609 BBSuccProbs.assign(BBSuccFreq.size(), 2610 {1, static_cast<unsigned>(BBSuccFreq.size())}); 2611 else { 2612 for (uint64_t Freq : BBSuccFreq) 2613 BBSuccProbs.push_back( 2614 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 2615 // Normalize edge probabilities so that they sum up to one. 2616 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 2617 BBSuccProbs.end()); 2618 } 2619 2620 // Update edge probabilities in BPI. 2621 BPI->setEdgeProbability(BB, BBSuccProbs); 2622 2623 // Update the profile metadata as well. 2624 // 2625 // Don't do this if the profile of the transformed blocks was statically 2626 // estimated. (This could occur despite the function having an entry 2627 // frequency in completely cold parts of the CFG.) 2628 // 2629 // In this case we don't want to suggest to subsequent passes that the 2630 // calculated weights are fully consistent. Consider this graph: 2631 // 2632 // check_1 2633 // 50% / | 2634 // eq_1 | 50% 2635 // \ | 2636 // check_2 2637 // 50% / | 2638 // eq_2 | 50% 2639 // \ | 2640 // check_3 2641 // 50% / | 2642 // eq_3 | 50% 2643 // \ | 2644 // 2645 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 2646 // the overall probabilities are inconsistent; the total probability that the 2647 // value is either 1, 2 or 3 is 150%. 2648 // 2649 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 2650 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 2651 // the loop exit edge. Then based solely on static estimation we would assume 2652 // the loop was extremely hot. 2653 // 2654 // FIXME this locally as well so that BPI and BFI are consistent as well. We 2655 // shouldn't make edges extremely likely or unlikely based solely on static 2656 // estimation. 2657 if (BBSuccProbs.size() >= 2 && HasProfile) { 2658 SmallVector<uint32_t, 4> Weights; 2659 for (auto Prob : BBSuccProbs) 2660 Weights.push_back(Prob.getNumerator()); 2661 2662 auto TI = BB->getTerminator(); 2663 TI->setMetadata( 2664 LLVMContext::MD_prof, 2665 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 2666 } 2667 } 2668 2669 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 2670 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 2671 /// If we can duplicate the contents of BB up into PredBB do so now, this 2672 /// improves the odds that the branch will be on an analyzable instruction like 2673 /// a compare. 2674 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred( 2675 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 2676 assert(!PredBBs.empty() && "Can't handle an empty set"); 2677 2678 // If BB is a loop header, then duplicating this block outside the loop would 2679 // cause us to transform this into an irreducible loop, don't do this. 2680 // See the comments above findLoopHeaders for justifications and caveats. 2681 if (LoopHeaders.count(BB)) { 2682 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 2683 << "' into predecessor block '" << PredBBs[0]->getName() 2684 << "' - it might create an irreducible loop!\n"); 2685 return false; 2686 } 2687 2688 unsigned DuplicationCost = getJumpThreadDuplicationCost( 2689 TTI, BB, BB->getTerminator(), BBDupThreshold); 2690 if (DuplicationCost > BBDupThreshold) { 2691 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 2692 << "' - Cost is too high: " << DuplicationCost << "\n"); 2693 return false; 2694 } 2695 2696 // And finally, do it! Start by factoring the predecessors if needed. 2697 std::vector<DominatorTree::UpdateType> Updates; 2698 BasicBlock *PredBB; 2699 if (PredBBs.size() == 1) 2700 PredBB = PredBBs[0]; 2701 else { 2702 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2703 << " common predecessors.\n"); 2704 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm"); 2705 } 2706 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2707 2708 // Okay, we decided to do this! Clone all the instructions in BB onto the end 2709 // of PredBB. 2710 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName() 2711 << "' into end of '" << PredBB->getName() 2712 << "' to eliminate branch on phi. Cost: " 2713 << DuplicationCost << " block is:" << *BB << "\n"); 2714 2715 // Unless PredBB ends with an unconditional branch, split the edge so that we 2716 // can just clone the bits from BB into the end of the new PredBB. 2717 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2718 2719 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 2720 BasicBlock *OldPredBB = PredBB; 2721 PredBB = SplitEdge(OldPredBB, BB); 2722 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB}); 2723 Updates.push_back({DominatorTree::Insert, PredBB, BB}); 2724 Updates.push_back({DominatorTree::Delete, OldPredBB, BB}); 2725 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 2726 } 2727 2728 // We are going to have to map operands from the original BB block into the 2729 // PredBB block. Evaluate PHI nodes in BB. 2730 DenseMap<Instruction*, Value*> ValueMapping; 2731 2732 BasicBlock::iterator BI = BB->begin(); 2733 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 2734 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 2735 // Clone the non-phi instructions of BB into PredBB, keeping track of the 2736 // mapping and using it to remap operands in the cloned instructions. 2737 for (; BI != BB->end(); ++BI) { 2738 Instruction *New = BI->clone(); 2739 2740 // Remap operands to patch up intra-block references. 2741 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2742 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2743 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 2744 if (I != ValueMapping.end()) 2745 New->setOperand(i, I->second); 2746 } 2747 2748 // If this instruction can be simplified after the operands are updated, 2749 // just use the simplified value instead. This frequently happens due to 2750 // phi translation. 2751 if (Value *IV = simplifyInstruction( 2752 New, 2753 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) { 2754 ValueMapping[&*BI] = IV; 2755 if (!New->mayHaveSideEffects()) { 2756 New->deleteValue(); 2757 New = nullptr; 2758 } 2759 } else { 2760 ValueMapping[&*BI] = New; 2761 } 2762 if (New) { 2763 // Otherwise, insert the new instruction into the block. 2764 New->setName(BI->getName()); 2765 New->insertInto(PredBB, OldPredBranch->getIterator()); 2766 // Update Dominance from simplified New instruction operands. 2767 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2768 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i))) 2769 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB}); 2770 } 2771 } 2772 2773 // Check to see if the targets of the branch had PHI nodes. If so, we need to 2774 // add entries to the PHI nodes for branch from PredBB now. 2775 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 2776 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 2777 ValueMapping); 2778 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 2779 ValueMapping); 2780 2781 updateSSA(BB, PredBB, ValueMapping); 2782 2783 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 2784 // that we nuked. 2785 BB->removePredecessor(PredBB, true); 2786 2787 // Remove the unconditional branch at the end of the PredBB block. 2788 OldPredBranch->eraseFromParent(); 2789 if (auto *BPI = getBPI()) 2790 BPI->copyEdgeProbabilities(BB, PredBB); 2791 DTU->applyUpdatesPermissive(Updates); 2792 2793 ++NumDupes; 2794 return true; 2795 } 2796 2797 // Pred is a predecessor of BB with an unconditional branch to BB. SI is 2798 // a Select instruction in Pred. BB has other predecessors and SI is used in 2799 // a PHI node in BB. SI has no other use. 2800 // A new basic block, NewBB, is created and SI is converted to compare and 2801 // conditional branch. SI is erased from parent. 2802 void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB, 2803 SelectInst *SI, PHINode *SIUse, 2804 unsigned Idx) { 2805 // Expand the select. 2806 // 2807 // Pred -- 2808 // | v 2809 // | NewBB 2810 // | | 2811 // |----- 2812 // v 2813 // BB 2814 BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator()); 2815 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 2816 BB->getParent(), BB); 2817 // Move the unconditional branch to NewBB. 2818 PredTerm->removeFromParent(); 2819 PredTerm->insertInto(NewBB, NewBB->end()); 2820 // Create a conditional branch and update PHI nodes. 2821 auto *BI = BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 2822 BI->applyMergedLocation(PredTerm->getDebugLoc(), SI->getDebugLoc()); 2823 BI->copyMetadata(*SI, {LLVMContext::MD_prof}); 2824 SIUse->setIncomingValue(Idx, SI->getFalseValue()); 2825 SIUse->addIncoming(SI->getTrueValue(), NewBB); 2826 2827 uint64_t TrueWeight = 1; 2828 uint64_t FalseWeight = 1; 2829 // Copy probabilities from 'SI' to created conditional branch in 'Pred'. 2830 if (extractBranchWeights(*SI, TrueWeight, FalseWeight) && 2831 (TrueWeight + FalseWeight) != 0) { 2832 SmallVector<BranchProbability, 2> BP; 2833 BP.emplace_back(BranchProbability::getBranchProbability( 2834 TrueWeight, TrueWeight + FalseWeight)); 2835 BP.emplace_back(BranchProbability::getBranchProbability( 2836 FalseWeight, TrueWeight + FalseWeight)); 2837 // Update BPI if exists. 2838 if (auto *BPI = getBPI()) 2839 BPI->setEdgeProbability(Pred, BP); 2840 } 2841 // Set the block frequency of NewBB. 2842 if (auto *BFI = getBFI()) { 2843 if ((TrueWeight + FalseWeight) == 0) { 2844 TrueWeight = 1; 2845 FalseWeight = 1; 2846 } 2847 BranchProbability PredToNewBBProb = BranchProbability::getBranchProbability( 2848 TrueWeight, TrueWeight + FalseWeight); 2849 auto NewBBFreq = BFI->getBlockFreq(Pred) * PredToNewBBProb; 2850 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2851 } 2852 2853 // The select is now dead. 2854 SI->eraseFromParent(); 2855 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB}, 2856 {DominatorTree::Insert, Pred, NewBB}}); 2857 2858 // Update any other PHI nodes in BB. 2859 for (BasicBlock::iterator BI = BB->begin(); 2860 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 2861 if (Phi != SIUse) 2862 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 2863 } 2864 2865 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) { 2866 PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition()); 2867 2868 if (!CondPHI || CondPHI->getParent() != BB) 2869 return false; 2870 2871 for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) { 2872 BasicBlock *Pred = CondPHI->getIncomingBlock(I); 2873 SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I)); 2874 2875 // The second and third condition can be potentially relaxed. Currently 2876 // the conditions help to simplify the code and allow us to reuse existing 2877 // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *) 2878 if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse()) 2879 continue; 2880 2881 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2882 if (!PredTerm || !PredTerm->isUnconditional()) 2883 continue; 2884 2885 unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I); 2886 return true; 2887 } 2888 return false; 2889 } 2890 2891 /// tryToUnfoldSelect - Look for blocks of the form 2892 /// bb1: 2893 /// %a = select 2894 /// br bb2 2895 /// 2896 /// bb2: 2897 /// %p = phi [%a, %bb1] ... 2898 /// %c = icmp %p 2899 /// br i1 %c 2900 /// 2901 /// And expand the select into a branch structure if one of its arms allows %c 2902 /// to be folded. This later enables threading from bb1 over bb2. 2903 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 2904 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2905 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 2906 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 2907 2908 if (!CondBr || !CondBr->isConditional() || !CondLHS || 2909 CondLHS->getParent() != BB) 2910 return false; 2911 2912 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 2913 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 2914 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 2915 2916 // Look if one of the incoming values is a select in the corresponding 2917 // predecessor. 2918 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 2919 continue; 2920 2921 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2922 if (!PredTerm || !PredTerm->isUnconditional()) 2923 continue; 2924 2925 // Now check if one of the select values would allow us to constant fold the 2926 // terminator in BB. We don't do the transform if both sides fold, those 2927 // cases will be threaded in any case. 2928 LazyValueInfo::Tristate LHSFolds = 2929 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 2930 CondRHS, Pred, BB, CondCmp); 2931 LazyValueInfo::Tristate RHSFolds = 2932 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 2933 CondRHS, Pred, BB, CondCmp); 2934 if ((LHSFolds != LazyValueInfo::Unknown || 2935 RHSFolds != LazyValueInfo::Unknown) && 2936 LHSFolds != RHSFolds) { 2937 unfoldSelectInstr(Pred, BB, SI, CondLHS, I); 2938 return true; 2939 } 2940 } 2941 return false; 2942 } 2943 2944 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the 2945 /// same BB in the form 2946 /// bb: 2947 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 2948 /// %s = select %p, trueval, falseval 2949 /// 2950 /// or 2951 /// 2952 /// bb: 2953 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... 2954 /// %c = cmp %p, 0 2955 /// %s = select %c, trueval, falseval 2956 /// 2957 /// And expand the select into a branch structure. This later enables 2958 /// jump-threading over bb in this pass. 2959 /// 2960 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2961 /// select if the associated PHI has at least one constant. If the unfolded 2962 /// select is not jump-threaded, it will be folded again in the later 2963 /// optimizations. 2964 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2965 // This transform would reduce the quality of msan diagnostics. 2966 // Disable this transform under MemorySanitizer. 2967 if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 2968 return false; 2969 2970 // If threading this would thread across a loop header, don't thread the edge. 2971 // See the comments above findLoopHeaders for justifications and caveats. 2972 if (LoopHeaders.count(BB)) 2973 return false; 2974 2975 for (BasicBlock::iterator BI = BB->begin(); 2976 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2977 // Look for a Phi having at least one constant incoming value. 2978 if (llvm::all_of(PN->incoming_values(), 2979 [](Value *V) { return !isa<ConstantInt>(V); })) 2980 continue; 2981 2982 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { 2983 using namespace PatternMatch; 2984 2985 // Check if SI is in BB and use V as condition. 2986 if (SI->getParent() != BB) 2987 return false; 2988 Value *Cond = SI->getCondition(); 2989 bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr())); 2990 return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr; 2991 }; 2992 2993 SelectInst *SI = nullptr; 2994 for (Use &U : PN->uses()) { 2995 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2996 // Look for a ICmp in BB that compares PN with a constant and is the 2997 // condition of a Select. 2998 if (Cmp->getParent() == BB && Cmp->hasOneUse() && 2999 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo()))) 3000 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back())) 3001 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { 3002 SI = SelectI; 3003 break; 3004 } 3005 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) { 3006 // Look for a Select in BB that uses PN as condition. 3007 if (isUnfoldCandidate(SelectI, U.get())) { 3008 SI = SelectI; 3009 break; 3010 } 3011 } 3012 } 3013 3014 if (!SI) 3015 continue; 3016 // Expand the select. 3017 Value *Cond = SI->getCondition(); 3018 if (!isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI)) 3019 Cond = new FreezeInst(Cond, "cond.fr", SI); 3020 Instruction *Term = SplitBlockAndInsertIfThen(Cond, SI, false); 3021 BasicBlock *SplitBB = SI->getParent(); 3022 BasicBlock *NewBB = Term->getParent(); 3023 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 3024 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 3025 NewPN->addIncoming(SI->getFalseValue(), BB); 3026 SI->replaceAllUsesWith(NewPN); 3027 SI->eraseFromParent(); 3028 // NewBB and SplitBB are newly created blocks which require insertion. 3029 std::vector<DominatorTree::UpdateType> Updates; 3030 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3); 3031 Updates.push_back({DominatorTree::Insert, BB, SplitBB}); 3032 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 3033 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB}); 3034 // BB's successors were moved to SplitBB, update DTU accordingly. 3035 for (auto *Succ : successors(SplitBB)) { 3036 Updates.push_back({DominatorTree::Delete, BB, Succ}); 3037 Updates.push_back({DominatorTree::Insert, SplitBB, Succ}); 3038 } 3039 DTU->applyUpdatesPermissive(Updates); 3040 return true; 3041 } 3042 return false; 3043 } 3044 3045 /// Try to propagate a guard from the current BB into one of its predecessors 3046 /// in case if another branch of execution implies that the condition of this 3047 /// guard is always true. Currently we only process the simplest case that 3048 /// looks like: 3049 /// 3050 /// Start: 3051 /// %cond = ... 3052 /// br i1 %cond, label %T1, label %F1 3053 /// T1: 3054 /// br label %Merge 3055 /// F1: 3056 /// br label %Merge 3057 /// Merge: 3058 /// %condGuard = ... 3059 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 3060 /// 3061 /// And cond either implies condGuard or !condGuard. In this case all the 3062 /// instructions before the guard can be duplicated in both branches, and the 3063 /// guard is then threaded to one of them. 3064 bool JumpThreadingPass::processGuards(BasicBlock *BB) { 3065 using namespace PatternMatch; 3066 3067 // We only want to deal with two predecessors. 3068 BasicBlock *Pred1, *Pred2; 3069 auto PI = pred_begin(BB), PE = pred_end(BB); 3070 if (PI == PE) 3071 return false; 3072 Pred1 = *PI++; 3073 if (PI == PE) 3074 return false; 3075 Pred2 = *PI++; 3076 if (PI != PE) 3077 return false; 3078 if (Pred1 == Pred2) 3079 return false; 3080 3081 // Try to thread one of the guards of the block. 3082 // TODO: Look up deeper than to immediate predecessor? 3083 auto *Parent = Pred1->getSinglePredecessor(); 3084 if (!Parent || Parent != Pred2->getSinglePredecessor()) 3085 return false; 3086 3087 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 3088 for (auto &I : *BB) 3089 if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI)) 3090 return true; 3091 3092 return false; 3093 } 3094 3095 /// Try to propagate the guard from BB which is the lower block of a diamond 3096 /// to one of its branches, in case if diamond's condition implies guard's 3097 /// condition. 3098 bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard, 3099 BranchInst *BI) { 3100 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 3101 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 3102 Value *GuardCond = Guard->getArgOperand(0); 3103 Value *BranchCond = BI->getCondition(); 3104 BasicBlock *TrueDest = BI->getSuccessor(0); 3105 BasicBlock *FalseDest = BI->getSuccessor(1); 3106 3107 auto &DL = BB->getModule()->getDataLayout(); 3108 bool TrueDestIsSafe = false; 3109 bool FalseDestIsSafe = false; 3110 3111 // True dest is safe if BranchCond => GuardCond. 3112 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 3113 if (Impl && *Impl) 3114 TrueDestIsSafe = true; 3115 else { 3116 // False dest is safe if !BranchCond => GuardCond. 3117 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); 3118 if (Impl && *Impl) 3119 FalseDestIsSafe = true; 3120 } 3121 3122 if (!TrueDestIsSafe && !FalseDestIsSafe) 3123 return false; 3124 3125 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 3126 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 3127 3128 ValueToValueMapTy UnguardedMapping, GuardedMapping; 3129 Instruction *AfterGuard = Guard->getNextNode(); 3130 unsigned Cost = 3131 getJumpThreadDuplicationCost(TTI, BB, AfterGuard, BBDupThreshold); 3132 if (Cost > BBDupThreshold) 3133 return false; 3134 // Duplicate all instructions before the guard and the guard itself to the 3135 // branch where implication is not proved. 3136 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween( 3137 BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU); 3138 assert(GuardedBlock && "Could not create the guarded block?"); 3139 // Duplicate all instructions before the guard in the unguarded branch. 3140 // Since we have successfully duplicated the guarded block and this block 3141 // has fewer instructions, we expect it to succeed. 3142 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween( 3143 BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU); 3144 assert(UnguardedBlock && "Could not create the unguarded block?"); 3145 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 3146 << GuardedBlock->getName() << "\n"); 3147 // Some instructions before the guard may still have uses. For them, we need 3148 // to create Phi nodes merging their copies in both guarded and unguarded 3149 // branches. Those instructions that have no uses can be just removed. 3150 SmallVector<Instruction *, 4> ToRemove; 3151 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 3152 if (!isa<PHINode>(&*BI)) 3153 ToRemove.push_back(&*BI); 3154 3155 Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); 3156 assert(InsertionPoint && "Empty block?"); 3157 // Substitute with Phis & remove. 3158 for (auto *Inst : reverse(ToRemove)) { 3159 if (!Inst->use_empty()) { 3160 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 3161 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 3162 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 3163 NewPN->insertBefore(InsertionPoint); 3164 Inst->replaceAllUsesWith(NewPN); 3165 } 3166 Inst->eraseFromParent(); 3167 } 3168 return true; 3169 } 3170 3171 PreservedAnalyses JumpThreadingPass::getPreservedAnalysis() const { 3172 PreservedAnalyses PA; 3173 PA.preserve<LazyValueAnalysis>(); 3174 PA.preserve<DominatorTreeAnalysis>(); 3175 3176 // TODO: We would like to preserve BPI/BFI. Enable once all paths update them. 3177 // TODO: Would be nice to verify BPI/BFI consistency as well. 3178 return PA; 3179 } 3180 3181 template <typename AnalysisT> 3182 typename AnalysisT::Result *JumpThreadingPass::runExternalAnalysis() { 3183 assert(FAM && "Can't run external analysis without FunctionAnalysisManager"); 3184 3185 // If there were no changes since last call to 'runExternalAnalysis' then all 3186 // analysis is either up to date or explicitly invalidated. Just go ahead and 3187 // run the "external" analysis. 3188 if (!ChangedSinceLastAnalysisUpdate) { 3189 assert(!DTU->hasPendingUpdates() && 3190 "Lost update of 'ChangedSinceLastAnalysisUpdate'?"); 3191 // Run the "external" analysis. 3192 return &FAM->getResult<AnalysisT>(*F); 3193 } 3194 ChangedSinceLastAnalysisUpdate = false; 3195 3196 auto PA = getPreservedAnalysis(); 3197 // TODO: This shouldn't be needed once 'getPreservedAnalysis' reports BPI/BFI 3198 // as preserved. 3199 PA.preserve<BranchProbabilityAnalysis>(); 3200 PA.preserve<BlockFrequencyAnalysis>(); 3201 // Report everything except explicitly preserved as invalid. 3202 FAM->invalidate(*F, PA); 3203 // Update DT/PDT. 3204 DTU->flush(); 3205 // Make sure DT/PDT are valid before running "external" analysis. 3206 assert(DTU->getDomTree().verify(DominatorTree::VerificationLevel::Fast)); 3207 assert((!DTU->hasPostDomTree() || 3208 DTU->getPostDomTree().verify( 3209 PostDominatorTree::VerificationLevel::Fast))); 3210 // Run the "external" analysis. 3211 auto *Result = &FAM->getResult<AnalysisT>(*F); 3212 // Update analysis JumpThreading depends on and not explicitly preserved. 3213 TTI = &FAM->getResult<TargetIRAnalysis>(*F); 3214 TLI = &FAM->getResult<TargetLibraryAnalysis>(*F); 3215 AA = &FAM->getResult<AAManager>(*F); 3216 3217 return Result; 3218 } 3219 3220 BranchProbabilityInfo *JumpThreadingPass::getBPI() { 3221 if (!BPI) { 3222 assert(FAM && "Can't create BPI without FunctionAnalysisManager"); 3223 BPI = FAM->getCachedResult<BranchProbabilityAnalysis>(*F); 3224 } 3225 return *BPI; 3226 } 3227 3228 BlockFrequencyInfo *JumpThreadingPass::getBFI() { 3229 if (!BFI) { 3230 assert(FAM && "Can't create BFI without FunctionAnalysisManager"); 3231 BFI = FAM->getCachedResult<BlockFrequencyAnalysis>(*F); 3232 } 3233 return *BFI; 3234 } 3235 3236 // Important note on validity of BPI/BFI. JumpThreading tries to preserve 3237 // BPI/BFI as it goes. Thus if cached instance exists it will be updated. 3238 // Otherwise, new instance of BPI/BFI is created (up to date by definition). 3239 BranchProbabilityInfo *JumpThreadingPass::getOrCreateBPI(bool Force) { 3240 auto *Res = getBPI(); 3241 if (Res) 3242 return Res; 3243 3244 if (Force) 3245 BPI = runExternalAnalysis<BranchProbabilityAnalysis>(); 3246 3247 return *BPI; 3248 } 3249 3250 BlockFrequencyInfo *JumpThreadingPass::getOrCreateBFI(bool Force) { 3251 auto *Res = getBFI(); 3252 if (Res) 3253 return Res; 3254 3255 if (Force) 3256 BFI = runExternalAnalysis<BlockFrequencyAnalysis>(); 3257 3258 return *BFI; 3259 } 3260