xref: /llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp (revision 9d9812a63657195e4a807ae7090a27a3dfbfa451)
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "jump-threading"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/IntrinsicInst.h"
17 #include "llvm/LLVMContext.h"
18 #include "llvm/Pass.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LazyValueInfo.h"
21 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
22 #include "llvm/Transforms/Utils/Local.h"
23 #include "llvm/Transforms/Utils/SSAUpdater.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 using namespace llvm;
34 
35 STATISTIC(NumThreads, "Number of jumps threaded");
36 STATISTIC(NumFolds,   "Number of terminators folded");
37 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
38 
39 static cl::opt<unsigned>
40 Threshold("jump-threading-threshold",
41           cl::desc("Max block size to duplicate for jump threading"),
42           cl::init(6), cl::Hidden);
43 
44 // Turn on use of LazyValueInfo.
45 static cl::opt<bool>
46 EnableLVI("enable-jump-threading-lvi", cl::ReallyHidden);
47 
48 
49 
50 namespace {
51   /// This pass performs 'jump threading', which looks at blocks that have
52   /// multiple predecessors and multiple successors.  If one or more of the
53   /// predecessors of the block can be proven to always jump to one of the
54   /// successors, we forward the edge from the predecessor to the successor by
55   /// duplicating the contents of this block.
56   ///
57   /// An example of when this can occur is code like this:
58   ///
59   ///   if () { ...
60   ///     X = 4;
61   ///   }
62   ///   if (X < 3) {
63   ///
64   /// In this case, the unconditional branch at the end of the first if can be
65   /// revectored to the false side of the second if.
66   ///
67   class JumpThreading : public FunctionPass {
68     TargetData *TD;
69     LazyValueInfo *LVI;
70 #ifdef NDEBUG
71     SmallPtrSet<BasicBlock*, 16> LoopHeaders;
72 #else
73     SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
74 #endif
75   public:
76     static char ID; // Pass identification
77     JumpThreading() : FunctionPass(&ID) {}
78 
79     bool runOnFunction(Function &F);
80 
81     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
82       if (EnableLVI)
83         AU.addRequired<LazyValueInfo>();
84     }
85 
86     void FindLoopHeaders(Function &F);
87     bool ProcessBlock(BasicBlock *BB);
88     bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
89                     BasicBlock *SuccBB);
90     bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
91                                           BasicBlock *PredBB);
92 
93     typedef SmallVectorImpl<std::pair<ConstantInt*,
94                                       BasicBlock*> > PredValueInfo;
95 
96     bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
97                                          PredValueInfo &Result);
98     bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB);
99 
100 
101     bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
102     bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
103 
104     bool ProcessJumpOnPHI(PHINode *PN);
105 
106     bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
107   };
108 }
109 
110 char JumpThreading::ID = 0;
111 static RegisterPass<JumpThreading>
112 X("jump-threading", "Jump Threading");
113 
114 // Public interface to the Jump Threading pass
115 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
116 
117 /// runOnFunction - Top level algorithm.
118 ///
119 bool JumpThreading::runOnFunction(Function &F) {
120   DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n");
121   TD = getAnalysisIfAvailable<TargetData>();
122   LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0;
123 
124   FindLoopHeaders(F);
125 
126   bool AnotherIteration = true, EverChanged = false;
127   while (AnotherIteration) {
128     AnotherIteration = false;
129     bool Changed = false;
130     for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
131       BasicBlock *BB = I;
132       // Thread all of the branches we can over this block.
133       while (ProcessBlock(BB))
134         Changed = true;
135 
136       ++I;
137 
138       // If the block is trivially dead, zap it.  This eliminates the successor
139       // edges which simplifies the CFG.
140       if (pred_begin(BB) == pred_end(BB) &&
141           BB != &BB->getParent()->getEntryBlock()) {
142         DEBUG(errs() << "  JT: Deleting dead block '" << BB->getName()
143               << "' with terminator: " << *BB->getTerminator() << '\n');
144         LoopHeaders.erase(BB);
145         DeleteDeadBlock(BB);
146         Changed = true;
147       } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
148         // Can't thread an unconditional jump, but if the block is "almost
149         // empty", we can replace uses of it with uses of the successor and make
150         // this dead.
151         if (BI->isUnconditional() &&
152             BB != &BB->getParent()->getEntryBlock()) {
153           BasicBlock::iterator BBI = BB->getFirstNonPHI();
154           // Ignore dbg intrinsics.
155           while (isa<DbgInfoIntrinsic>(BBI))
156             ++BBI;
157           // If the terminator is the only non-phi instruction, try to nuke it.
158           if (BBI->isTerminator()) {
159             // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
160             // block, we have to make sure it isn't in the LoopHeaders set.  We
161             // reinsert afterward in the rare case when the block isn't deleted.
162             bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
163 
164             if (TryToSimplifyUncondBranchFromEmptyBlock(BB))
165               Changed = true;
166             else if (ErasedFromLoopHeaders)
167               LoopHeaders.insert(BB);
168           }
169         }
170       }
171     }
172     AnotherIteration = Changed;
173     EverChanged |= Changed;
174   }
175 
176   LoopHeaders.clear();
177   return EverChanged;
178 }
179 
180 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
181 /// thread across it.
182 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
183   /// Ignore PHI nodes, these will be flattened when duplication happens.
184   BasicBlock::const_iterator I = BB->getFirstNonPHI();
185 
186   // FIXME: THREADING will delete values that are just used to compute the
187   // branch, so they shouldn't count against the duplication cost.
188 
189 
190   // Sum up the cost of each instruction until we get to the terminator.  Don't
191   // include the terminator because the copy won't include it.
192   unsigned Size = 0;
193   for (; !isa<TerminatorInst>(I); ++I) {
194     // Debugger intrinsics don't incur code size.
195     if (isa<DbgInfoIntrinsic>(I)) continue;
196 
197     // If this is a pointer->pointer bitcast, it is free.
198     if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
199       continue;
200 
201     // All other instructions count for at least one unit.
202     ++Size;
203 
204     // Calls are more expensive.  If they are non-intrinsic calls, we model them
205     // as having cost of 4.  If they are a non-vector intrinsic, we model them
206     // as having cost of 2 total, and if they are a vector intrinsic, we model
207     // them as having cost 1.
208     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
209       if (!isa<IntrinsicInst>(CI))
210         Size += 3;
211       else if (!isa<VectorType>(CI->getType()))
212         Size += 1;
213     }
214   }
215 
216   // Threading through a switch statement is particularly profitable.  If this
217   // block ends in a switch, decrease its cost to make it more likely to happen.
218   if (isa<SwitchInst>(I))
219     Size = Size > 6 ? Size-6 : 0;
220 
221   return Size;
222 }
223 
224 /// FindLoopHeaders - We do not want jump threading to turn proper loop
225 /// structures into irreducible loops.  Doing this breaks up the loop nesting
226 /// hierarchy and pessimizes later transformations.  To prevent this from
227 /// happening, we first have to find the loop headers.  Here we approximate this
228 /// by finding targets of backedges in the CFG.
229 ///
230 /// Note that there definitely are cases when we want to allow threading of
231 /// edges across a loop header.  For example, threading a jump from outside the
232 /// loop (the preheader) to an exit block of the loop is definitely profitable.
233 /// It is also almost always profitable to thread backedges from within the loop
234 /// to exit blocks, and is often profitable to thread backedges to other blocks
235 /// within the loop (forming a nested loop).  This simple analysis is not rich
236 /// enough to track all of these properties and keep it up-to-date as the CFG
237 /// mutates, so we don't allow any of these transformations.
238 ///
239 void JumpThreading::FindLoopHeaders(Function &F) {
240   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
241   FindFunctionBackedges(F, Edges);
242 
243   for (unsigned i = 0, e = Edges.size(); i != e; ++i)
244     LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
245 }
246 
247 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
248 /// if we can infer that the value is a known ConstantInt in any of our
249 /// predecessors.  If so, return the known list of value and pred BB in the
250 /// result vector.  If a value is known to be undef, it is returned as null.
251 ///
252 /// This returns true if there were any known values.
253 ///
254 bool JumpThreading::
255 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
256   // If V is a constantint, then it is known in all predecessors.
257   if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
258     ConstantInt *CI = dyn_cast<ConstantInt>(V);
259 
260     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
261       Result.push_back(std::make_pair(CI, *PI));
262     return true;
263   }
264 
265   // If V is a non-instruction value, or an instruction in a different block,
266   // then it can't be derived from a PHI.
267   Instruction *I = dyn_cast<Instruction>(V);
268   if (I == 0 || I->getParent() != BB) {
269 
270     // Okay, if this is a live-in value, see if it has a known value at the end
271     // of any of our predecessors.
272     //
273     // FIXME: This should be an edge property, not a block end property.
274     /// TODO: Per PR2563, we could infer value range information about a
275     /// predecessor based on its terminator.
276     //
277     if (LVI) {
278       // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
279       // "I" is a non-local compare-with-a-constant instruction.  This would be
280       // able to handle value inequalities better, for example if the compare is
281       // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
282       // Perhaps getConstantOnEdge should be smart enough to do this?
283 
284       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
285         // If the value is known by LazyValueInfo to be a constant in a
286         // predecessor, use that information to try to thread this block.
287         Constant *PredCst = LVI->getConstantOnEdge(V, *PI, BB);
288         if (PredCst == 0 ||
289             (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst)))
290           continue;
291 
292         Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), *PI));
293       }
294 
295       return !Result.empty();
296     }
297 
298     return false;
299   }
300 
301   /// If I is a PHI node, then we know the incoming values for any constants.
302   if (PHINode *PN = dyn_cast<PHINode>(I)) {
303     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
304       Value *InVal = PN->getIncomingValue(i);
305       if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
306         ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
307         Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
308       }
309     }
310     return !Result.empty();
311   }
312 
313   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
314 
315   // Handle some boolean conditions.
316   if (I->getType()->getPrimitiveSizeInBits() == 1) {
317     // X | true -> true
318     // X & false -> false
319     if (I->getOpcode() == Instruction::Or ||
320         I->getOpcode() == Instruction::And) {
321       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
322       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
323 
324       if (LHSVals.empty() && RHSVals.empty())
325         return false;
326 
327       ConstantInt *InterestingVal;
328       if (I->getOpcode() == Instruction::Or)
329         InterestingVal = ConstantInt::getTrue(I->getContext());
330       else
331         InterestingVal = ConstantInt::getFalse(I->getContext());
332 
333       // Scan for the sentinel.
334       for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
335         if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0)
336           Result.push_back(LHSVals[i]);
337       for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
338         if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0)
339           Result.push_back(RHSVals[i]);
340       return !Result.empty();
341     }
342 
343     // Handle the NOT form of XOR.
344     if (I->getOpcode() == Instruction::Xor &&
345         isa<ConstantInt>(I->getOperand(1)) &&
346         cast<ConstantInt>(I->getOperand(1))->isOne()) {
347       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result);
348       if (Result.empty())
349         return false;
350 
351       // Invert the known values.
352       for (unsigned i = 0, e = Result.size(); i != e; ++i)
353         if (Result[i].first)
354           Result[i].first =
355             cast<ConstantInt>(ConstantExpr::getNot(Result[i].first));
356       return true;
357     }
358   }
359 
360   // Handle compare with phi operand, where the PHI is defined in this block.
361   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
362     PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
363     if (PN && PN->getParent() == BB) {
364       // We can do this simplification if any comparisons fold to true or false.
365       // See if any do.
366       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
367         BasicBlock *PredBB = PN->getIncomingBlock(i);
368         Value *LHS = PN->getIncomingValue(i);
369         Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
370 
371         Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
372         if (Res == 0) {
373           if (!LVI || !isa<Constant>(RHS))
374             continue;
375 
376           LazyValueInfo::Tristate
377             ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
378                                            cast<Constant>(RHS), PredBB, BB);
379           if (ResT == LazyValueInfo::Unknown)
380             continue;
381           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
382         }
383 
384         if (isa<UndefValue>(Res))
385           Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
386         else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
387           Result.push_back(std::make_pair(CI, PredBB));
388       }
389 
390       return !Result.empty();
391     }
392 
393 
394     // If comparing a live-in value against a constant, see if we know the
395     // live-in value on any predecessors.
396     if (LVI && isa<Constant>(Cmp->getOperand(1)) &&
397         Cmp->getType()->isInteger() && // Not vector compare.
398         (!isa<Instruction>(Cmp->getOperand(0)) ||
399          cast<Instruction>(Cmp->getOperand(0))->getParent() != BB)) {
400       Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
401 
402       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
403         // If the value is known by LazyValueInfo to be a constant in a
404         // predecessor, use that information to try to thread this block.
405         LazyValueInfo::Tristate
406           Res = LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
407                                         RHSCst, *PI, BB);
408         if (Res == LazyValueInfo::Unknown)
409           continue;
410 
411         Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
412         Result.push_back(std::make_pair(cast<ConstantInt>(ResC), *PI));
413       }
414 
415       return !Result.empty();
416     }
417   }
418   return false;
419 }
420 
421 
422 
423 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
424 /// in an undefined jump, decide which block is best to revector to.
425 ///
426 /// Since we can pick an arbitrary destination, we pick the successor with the
427 /// fewest predecessors.  This should reduce the in-degree of the others.
428 ///
429 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
430   TerminatorInst *BBTerm = BB->getTerminator();
431   unsigned MinSucc = 0;
432   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
433   // Compute the successor with the minimum number of predecessors.
434   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
435   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
436     TestBB = BBTerm->getSuccessor(i);
437     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
438     if (NumPreds < MinNumPreds)
439       MinSucc = i;
440   }
441 
442   return MinSucc;
443 }
444 
445 /// ProcessBlock - If there are any predecessors whose control can be threaded
446 /// through to a successor, transform them now.
447 bool JumpThreading::ProcessBlock(BasicBlock *BB) {
448   // If this block has a single predecessor, and if that pred has a single
449   // successor, merge the blocks.  This encourages recursive jump threading
450   // because now the condition in this block can be threaded through
451   // predecessors of our predecessor block.
452   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
453     if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
454         SinglePred != BB) {
455       // If SinglePred was a loop header, BB becomes one.
456       if (LoopHeaders.erase(SinglePred))
457         LoopHeaders.insert(BB);
458 
459       // Remember if SinglePred was the entry block of the function.  If so, we
460       // will need to move BB back to the entry position.
461       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
462       MergeBasicBlockIntoOnlyPred(BB);
463 
464       if (isEntry && BB != &BB->getParent()->getEntryBlock())
465         BB->moveBefore(&BB->getParent()->getEntryBlock());
466       return true;
467     }
468   }
469 
470   // Look to see if the terminator is a branch of switch, if not we can't thread
471   // it.
472   Value *Condition;
473   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
474     // Can't thread an unconditional jump.
475     if (BI->isUnconditional()) return false;
476     Condition = BI->getCondition();
477   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
478     Condition = SI->getCondition();
479   else
480     return false; // Must be an invoke.
481 
482   // If the terminator of this block is branching on a constant, simplify the
483   // terminator to an unconditional branch.  This can occur due to threading in
484   // other blocks.
485   if (isa<ConstantInt>(Condition)) {
486     DEBUG(errs() << "  In block '" << BB->getName()
487           << "' folding terminator: " << *BB->getTerminator() << '\n');
488     ++NumFolds;
489     ConstantFoldTerminator(BB);
490     return true;
491   }
492 
493   // If the terminator is branching on an undef, we can pick any of the
494   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
495   if (isa<UndefValue>(Condition)) {
496     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
497 
498     // Fold the branch/switch.
499     TerminatorInst *BBTerm = BB->getTerminator();
500     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
501       if (i == BestSucc) continue;
502       RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
503     }
504 
505     DEBUG(errs() << "  In block '" << BB->getName()
506           << "' folding undef terminator: " << *BBTerm << '\n');
507     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
508     BBTerm->eraseFromParent();
509     return true;
510   }
511 
512   Instruction *CondInst = dyn_cast<Instruction>(Condition);
513 
514   // If the condition is an instruction defined in another block, see if a
515   // predecessor has the same condition:
516   //     br COND, BBX, BBY
517   //  BBX:
518   //     br COND, BBZ, BBW
519   if (!LVI &&
520       !Condition->hasOneUse() && // Multiple uses.
521       (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
522     pred_iterator PI = pred_begin(BB), E = pred_end(BB);
523     if (isa<BranchInst>(BB->getTerminator())) {
524       for (; PI != E; ++PI)
525         if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
526           if (PBI->isConditional() && PBI->getCondition() == Condition &&
527               ProcessBranchOnDuplicateCond(*PI, BB))
528             return true;
529     } else {
530       assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
531       for (; PI != E; ++PI)
532         if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
533           if (PSI->getCondition() == Condition &&
534               ProcessSwitchOnDuplicateCond(*PI, BB))
535             return true;
536     }
537   }
538 
539   // All the rest of our checks depend on the condition being an instruction.
540   if (CondInst == 0) {
541     // FIXME: Unify this with code below.
542     if (LVI && ProcessThreadableEdges(Condition, BB))
543       return true;
544     return false;
545   }
546 
547 
548   // See if this is a phi node in the current block.
549   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
550     if (PN->getParent() == BB)
551       return ProcessJumpOnPHI(PN);
552 
553   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
554     if (!LVI &&
555         (!isa<PHINode>(CondCmp->getOperand(0)) ||
556          cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) {
557       // If we have a comparison, loop over the predecessors to see if there is
558       // a condition with a lexically identical value.
559       pred_iterator PI = pred_begin(BB), E = pred_end(BB);
560       for (; PI != E; ++PI)
561         if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
562           if (PBI->isConditional() && *PI != BB) {
563             if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
564               if (CI->getOperand(0) == CondCmp->getOperand(0) &&
565                   CI->getOperand(1) == CondCmp->getOperand(1) &&
566                   CI->getPredicate() == CondCmp->getPredicate()) {
567                 // TODO: Could handle things like (x != 4) --> (x == 17)
568                 if (ProcessBranchOnDuplicateCond(*PI, BB))
569                   return true;
570               }
571             }
572           }
573     }
574   }
575 
576   // Check for some cases that are worth simplifying.  Right now we want to look
577   // for loads that are used by a switch or by the condition for the branch.  If
578   // we see one, check to see if it's partially redundant.  If so, insert a PHI
579   // which can then be used to thread the values.
580   //
581   // This is particularly important because reg2mem inserts loads and stores all
582   // over the place, and this blocks jump threading if we don't zap them.
583   Value *SimplifyValue = CondInst;
584   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
585     if (isa<Constant>(CondCmp->getOperand(1)))
586       SimplifyValue = CondCmp->getOperand(0);
587 
588   // TODO: There are other places where load PRE would be profitable, such as
589   // more complex comparisons.
590   if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
591     if (SimplifyPartiallyRedundantLoad(LI))
592       return true;
593 
594 
595   // Handle a variety of cases where we are branching on something derived from
596   // a PHI node in the current block.  If we can prove that any predecessors
597   // compute a predictable value based on a PHI node, thread those predecessors.
598   //
599   if (ProcessThreadableEdges(CondInst, BB))
600     return true;
601 
602 
603   // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
604   // "(X == 4)" thread through this block.
605 
606   return false;
607 }
608 
609 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
610 /// block that jump on exactly the same condition.  This means that we almost
611 /// always know the direction of the edge in the DESTBB:
612 ///  PREDBB:
613 ///     br COND, DESTBB, BBY
614 ///  DESTBB:
615 ///     br COND, BBZ, BBW
616 ///
617 /// If DESTBB has multiple predecessors, we can't just constant fold the branch
618 /// in DESTBB, we have to thread over it.
619 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
620                                                  BasicBlock *BB) {
621   BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
622 
623   // If both successors of PredBB go to DESTBB, we don't know anything.  We can
624   // fold the branch to an unconditional one, which allows other recursive
625   // simplifications.
626   bool BranchDir;
627   if (PredBI->getSuccessor(1) != BB)
628     BranchDir = true;
629   else if (PredBI->getSuccessor(0) != BB)
630     BranchDir = false;
631   else {
632     DEBUG(errs() << "  In block '" << PredBB->getName()
633           << "' folding terminator: " << *PredBB->getTerminator() << '\n');
634     ++NumFolds;
635     ConstantFoldTerminator(PredBB);
636     return true;
637   }
638 
639   BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
640 
641   // If the dest block has one predecessor, just fix the branch condition to a
642   // constant and fold it.
643   if (BB->getSinglePredecessor()) {
644     DEBUG(errs() << "  In block '" << BB->getName()
645           << "' folding condition to '" << BranchDir << "': "
646           << *BB->getTerminator() << '\n');
647     ++NumFolds;
648     Value *OldCond = DestBI->getCondition();
649     DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
650                                           BranchDir));
651     ConstantFoldTerminator(BB);
652     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
653     return true;
654   }
655 
656 
657   // Next, figure out which successor we are threading to.
658   BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
659 
660   SmallVector<BasicBlock*, 2> Preds;
661   Preds.push_back(PredBB);
662 
663   // Ok, try to thread it!
664   return ThreadEdge(BB, Preds, SuccBB);
665 }
666 
667 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
668 /// block that switch on exactly the same condition.  This means that we almost
669 /// always know the direction of the edge in the DESTBB:
670 ///  PREDBB:
671 ///     switch COND [... DESTBB, BBY ... ]
672 ///  DESTBB:
673 ///     switch COND [... BBZ, BBW ]
674 ///
675 /// Optimizing switches like this is very important, because simplifycfg builds
676 /// switches out of repeated 'if' conditions.
677 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
678                                                  BasicBlock *DestBB) {
679   // Can't thread edge to self.
680   if (PredBB == DestBB)
681     return false;
682 
683   SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
684   SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
685 
686   // There are a variety of optimizations that we can potentially do on these
687   // blocks: we order them from most to least preferable.
688 
689   // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
690   // directly to their destination.  This does not introduce *any* code size
691   // growth.  Skip debug info first.
692   BasicBlock::iterator BBI = DestBB->begin();
693   while (isa<DbgInfoIntrinsic>(BBI))
694     BBI++;
695 
696   // FIXME: Thread if it just contains a PHI.
697   if (isa<SwitchInst>(BBI)) {
698     bool MadeChange = false;
699     // Ignore the default edge for now.
700     for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
701       ConstantInt *DestVal = DestSI->getCaseValue(i);
702       BasicBlock *DestSucc = DestSI->getSuccessor(i);
703 
704       // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
705       // PredSI has an explicit case for it.  If so, forward.  If it is covered
706       // by the default case, we can't update PredSI.
707       unsigned PredCase = PredSI->findCaseValue(DestVal);
708       if (PredCase == 0) continue;
709 
710       // If PredSI doesn't go to DestBB on this value, then it won't reach the
711       // case on this condition.
712       if (PredSI->getSuccessor(PredCase) != DestBB &&
713           DestSI->getSuccessor(i) != DestBB)
714         continue;
715 
716       // Otherwise, we're safe to make the change.  Make sure that the edge from
717       // DestSI to DestSucc is not critical and has no PHI nodes.
718       DEBUG(errs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
719       DEBUG(errs() << "THROUGH: " << *DestSI);
720 
721       // If the destination has PHI nodes, just split the edge for updating
722       // simplicity.
723       if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
724         SplitCriticalEdge(DestSI, i, this);
725         DestSucc = DestSI->getSuccessor(i);
726       }
727       FoldSingleEntryPHINodes(DestSucc);
728       PredSI->setSuccessor(PredCase, DestSucc);
729       MadeChange = true;
730     }
731 
732     if (MadeChange)
733       return true;
734   }
735 
736   return false;
737 }
738 
739 
740 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
741 /// load instruction, eliminate it by replacing it with a PHI node.  This is an
742 /// important optimization that encourages jump threading, and needs to be run
743 /// interlaced with other jump threading tasks.
744 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
745   // Don't hack volatile loads.
746   if (LI->isVolatile()) return false;
747 
748   // If the load is defined in a block with exactly one predecessor, it can't be
749   // partially redundant.
750   BasicBlock *LoadBB = LI->getParent();
751   if (LoadBB->getSinglePredecessor())
752     return false;
753 
754   Value *LoadedPtr = LI->getOperand(0);
755 
756   // If the loaded operand is defined in the LoadBB, it can't be available.
757   // TODO: Could do simple PHI translation, that would be fun :)
758   if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
759     if (PtrOp->getParent() == LoadBB)
760       return false;
761 
762   // Scan a few instructions up from the load, to see if it is obviously live at
763   // the entry to its block.
764   BasicBlock::iterator BBIt = LI;
765 
766   if (Value *AvailableVal =
767         FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
768     // If the value if the load is locally available within the block, just use
769     // it.  This frequently occurs for reg2mem'd allocas.
770     //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
771 
772     // If the returned value is the load itself, replace with an undef. This can
773     // only happen in dead loops.
774     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
775     LI->replaceAllUsesWith(AvailableVal);
776     LI->eraseFromParent();
777     return true;
778   }
779 
780   // Otherwise, if we scanned the whole block and got to the top of the block,
781   // we know the block is locally transparent to the load.  If not, something
782   // might clobber its value.
783   if (BBIt != LoadBB->begin())
784     return false;
785 
786 
787   SmallPtrSet<BasicBlock*, 8> PredsScanned;
788   typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
789   AvailablePredsTy AvailablePreds;
790   BasicBlock *OneUnavailablePred = 0;
791 
792   // If we got here, the loaded value is transparent through to the start of the
793   // block.  Check to see if it is available in any of the predecessor blocks.
794   for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
795        PI != PE; ++PI) {
796     BasicBlock *PredBB = *PI;
797 
798     // If we already scanned this predecessor, skip it.
799     if (!PredsScanned.insert(PredBB))
800       continue;
801 
802     // Scan the predecessor to see if the value is available in the pred.
803     BBIt = PredBB->end();
804     Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
805     if (!PredAvailable) {
806       OneUnavailablePred = PredBB;
807       continue;
808     }
809 
810     // If so, this load is partially redundant.  Remember this info so that we
811     // can create a PHI node.
812     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
813   }
814 
815   // If the loaded value isn't available in any predecessor, it isn't partially
816   // redundant.
817   if (AvailablePreds.empty()) return false;
818 
819   // Okay, the loaded value is available in at least one (and maybe all!)
820   // predecessors.  If the value is unavailable in more than one unique
821   // predecessor, we want to insert a merge block for those common predecessors.
822   // This ensures that we only have to insert one reload, thus not increasing
823   // code size.
824   BasicBlock *UnavailablePred = 0;
825 
826   // If there is exactly one predecessor where the value is unavailable, the
827   // already computed 'OneUnavailablePred' block is it.  If it ends in an
828   // unconditional branch, we know that it isn't a critical edge.
829   if (PredsScanned.size() == AvailablePreds.size()+1 &&
830       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
831     UnavailablePred = OneUnavailablePred;
832   } else if (PredsScanned.size() != AvailablePreds.size()) {
833     // Otherwise, we had multiple unavailable predecessors or we had a critical
834     // edge from the one.
835     SmallVector<BasicBlock*, 8> PredsToSplit;
836     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
837 
838     for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
839       AvailablePredSet.insert(AvailablePreds[i].first);
840 
841     // Add all the unavailable predecessors to the PredsToSplit list.
842     for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
843          PI != PE; ++PI)
844       if (!AvailablePredSet.count(*PI))
845         PredsToSplit.push_back(*PI);
846 
847     // Split them out to their own block.
848     UnavailablePred =
849       SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
850                              "thread-pre-split", this);
851   }
852 
853   // If the value isn't available in all predecessors, then there will be
854   // exactly one where it isn't available.  Insert a load on that edge and add
855   // it to the AvailablePreds list.
856   if (UnavailablePred) {
857     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
858            "Can't handle critical edge here!");
859     Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
860                                  LI->getAlignment(),
861                                  UnavailablePred->getTerminator());
862     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
863   }
864 
865   // Now we know that each predecessor of this block has a value in
866   // AvailablePreds, sort them for efficient access as we're walking the preds.
867   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
868 
869   // Create a PHI node at the start of the block for the PRE'd load value.
870   PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
871   PN->takeName(LI);
872 
873   // Insert new entries into the PHI for each predecessor.  A single block may
874   // have multiple entries here.
875   for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
876        ++PI) {
877     AvailablePredsTy::iterator I =
878       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
879                        std::make_pair(*PI, (Value*)0));
880 
881     assert(I != AvailablePreds.end() && I->first == *PI &&
882            "Didn't find entry for predecessor!");
883 
884     PN->addIncoming(I->second, I->first);
885   }
886 
887   //cerr << "PRE: " << *LI << *PN << "\n";
888 
889   LI->replaceAllUsesWith(PN);
890   LI->eraseFromParent();
891 
892   return true;
893 }
894 
895 /// FindMostPopularDest - The specified list contains multiple possible
896 /// threadable destinations.  Pick the one that occurs the most frequently in
897 /// the list.
898 static BasicBlock *
899 FindMostPopularDest(BasicBlock *BB,
900                     const SmallVectorImpl<std::pair<BasicBlock*,
901                                   BasicBlock*> > &PredToDestList) {
902   assert(!PredToDestList.empty());
903 
904   // Determine popularity.  If there are multiple possible destinations, we
905   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
906   // blocks with known and real destinations to threading undef.  We'll handle
907   // them later if interesting.
908   DenseMap<BasicBlock*, unsigned> DestPopularity;
909   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
910     if (PredToDestList[i].second)
911       DestPopularity[PredToDestList[i].second]++;
912 
913   // Find the most popular dest.
914   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
915   BasicBlock *MostPopularDest = DPI->first;
916   unsigned Popularity = DPI->second;
917   SmallVector<BasicBlock*, 4> SamePopularity;
918 
919   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
920     // If the popularity of this entry isn't higher than the popularity we've
921     // seen so far, ignore it.
922     if (DPI->second < Popularity)
923       ; // ignore.
924     else if (DPI->second == Popularity) {
925       // If it is the same as what we've seen so far, keep track of it.
926       SamePopularity.push_back(DPI->first);
927     } else {
928       // If it is more popular, remember it.
929       SamePopularity.clear();
930       MostPopularDest = DPI->first;
931       Popularity = DPI->second;
932     }
933   }
934 
935   // Okay, now we know the most popular destination.  If there is more than
936   // destination, we need to determine one.  This is arbitrary, but we need
937   // to make a deterministic decision.  Pick the first one that appears in the
938   // successor list.
939   if (!SamePopularity.empty()) {
940     SamePopularity.push_back(MostPopularDest);
941     TerminatorInst *TI = BB->getTerminator();
942     for (unsigned i = 0; ; ++i) {
943       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
944 
945       if (std::find(SamePopularity.begin(), SamePopularity.end(),
946                     TI->getSuccessor(i)) == SamePopularity.end())
947         continue;
948 
949       MostPopularDest = TI->getSuccessor(i);
950       break;
951     }
952   }
953 
954   // Okay, we have finally picked the most popular destination.
955   return MostPopularDest;
956 }
957 
958 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) {
959   // If threading this would thread across a loop header, don't even try to
960   // thread the edge.
961   if (LoopHeaders.count(BB))
962     return false;
963 
964   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
965   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues))
966     return false;
967   assert(!PredValues.empty() &&
968          "ComputeValueKnownInPredecessors returned true with no values");
969 
970   DEBUG(errs() << "IN BB: " << *BB;
971         for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
972           errs() << "  BB '" << BB->getName() << "': FOUND condition = ";
973           if (PredValues[i].first)
974             errs() << *PredValues[i].first;
975           else
976             errs() << "UNDEF";
977           errs() << " for pred '" << PredValues[i].second->getName()
978           << "'.\n";
979         });
980 
981   // Decide what we want to thread through.  Convert our list of known values to
982   // a list of known destinations for each pred.  This also discards duplicate
983   // predecessors and keeps track of the undefined inputs (which are represented
984   // as a null dest in the PredToDestList).
985   SmallPtrSet<BasicBlock*, 16> SeenPreds;
986   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
987 
988   BasicBlock *OnlyDest = 0;
989   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
990 
991   for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
992     BasicBlock *Pred = PredValues[i].second;
993     if (!SeenPreds.insert(Pred))
994       continue;  // Duplicate predecessor entry.
995 
996     // If the predecessor ends with an indirect goto, we can't change its
997     // destination.
998     if (isa<IndirectBrInst>(Pred->getTerminator()))
999       continue;
1000 
1001     ConstantInt *Val = PredValues[i].first;
1002 
1003     BasicBlock *DestBB;
1004     if (Val == 0)      // Undef.
1005       DestBB = 0;
1006     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1007       DestBB = BI->getSuccessor(Val->isZero());
1008     else {
1009       SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
1010       DestBB = SI->getSuccessor(SI->findCaseValue(Val));
1011     }
1012 
1013     // If we have exactly one destination, remember it for efficiency below.
1014     if (i == 0)
1015       OnlyDest = DestBB;
1016     else if (OnlyDest != DestBB)
1017       OnlyDest = MultipleDestSentinel;
1018 
1019     PredToDestList.push_back(std::make_pair(Pred, DestBB));
1020   }
1021 
1022   // If all edges were unthreadable, we fail.
1023   if (PredToDestList.empty())
1024     return false;
1025 
1026   // Determine which is the most common successor.  If we have many inputs and
1027   // this block is a switch, we want to start by threading the batch that goes
1028   // to the most popular destination first.  If we only know about one
1029   // threadable destination (the common case) we can avoid this.
1030   BasicBlock *MostPopularDest = OnlyDest;
1031 
1032   if (MostPopularDest == MultipleDestSentinel)
1033     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1034 
1035   // Now that we know what the most popular destination is, factor all
1036   // predecessors that will jump to it into a single predecessor.
1037   SmallVector<BasicBlock*, 16> PredsToFactor;
1038   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1039     if (PredToDestList[i].second == MostPopularDest) {
1040       BasicBlock *Pred = PredToDestList[i].first;
1041 
1042       // This predecessor may be a switch or something else that has multiple
1043       // edges to the block.  Factor each of these edges by listing them
1044       // according to # occurrences in PredsToFactor.
1045       TerminatorInst *PredTI = Pred->getTerminator();
1046       for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1047         if (PredTI->getSuccessor(i) == BB)
1048           PredsToFactor.push_back(Pred);
1049     }
1050 
1051   // If the threadable edges are branching on an undefined value, we get to pick
1052   // the destination that these predecessors should get to.
1053   if (MostPopularDest == 0)
1054     MostPopularDest = BB->getTerminator()->
1055                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1056 
1057   // Ok, try to thread it!
1058   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1059 }
1060 
1061 /// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
1062 /// the current block.  See if there are any simplifications we can do based on
1063 /// inputs to the phi node.
1064 ///
1065 bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
1066   BasicBlock *BB = PN->getParent();
1067 
1068   // If any of the predecessor blocks end in an unconditional branch, we can
1069   // *duplicate* the jump into that block in order to further encourage jump
1070   // threading and to eliminate cases where we have branch on a phi of an icmp
1071   // (branch on icmp is much better).
1072 
1073   // We don't want to do this tranformation for switches, because we don't
1074   // really want to duplicate a switch.
1075   if (isa<SwitchInst>(BB->getTerminator()))
1076     return false;
1077 
1078   // Look for unconditional branch predecessors.
1079   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1080     BasicBlock *PredBB = PN->getIncomingBlock(i);
1081     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1082       if (PredBr->isUnconditional() &&
1083           // Try to duplicate BB into PredBB.
1084           DuplicateCondBranchOnPHIIntoPred(BB, PredBB))
1085         return true;
1086   }
1087 
1088   return false;
1089 }
1090 
1091 
1092 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1093 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1094 /// NewPred using the entries from OldPred (suitably mapped).
1095 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1096                                             BasicBlock *OldPred,
1097                                             BasicBlock *NewPred,
1098                                      DenseMap<Instruction*, Value*> &ValueMap) {
1099   for (BasicBlock::iterator PNI = PHIBB->begin();
1100        PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1101     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1102     // DestBlock.
1103     Value *IV = PN->getIncomingValueForBlock(OldPred);
1104 
1105     // Remap the value if necessary.
1106     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1107       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1108       if (I != ValueMap.end())
1109         IV = I->second;
1110     }
1111 
1112     PN->addIncoming(IV, NewPred);
1113   }
1114 }
1115 
1116 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1117 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1118 /// across BB.  Transform the IR to reflect this change.
1119 bool JumpThreading::ThreadEdge(BasicBlock *BB,
1120                                const SmallVectorImpl<BasicBlock*> &PredBBs,
1121                                BasicBlock *SuccBB) {
1122   // If threading to the same block as we come from, we would infinite loop.
1123   if (SuccBB == BB) {
1124     DEBUG(errs() << "  Not threading across BB '" << BB->getName()
1125           << "' - would thread to self!\n");
1126     return false;
1127   }
1128 
1129   // If threading this would thread across a loop header, don't thread the edge.
1130   // See the comments above FindLoopHeaders for justifications and caveats.
1131   if (LoopHeaders.count(BB)) {
1132     DEBUG(errs() << "  Not threading across loop header BB '" << BB->getName()
1133           << "' to dest BB '" << SuccBB->getName()
1134           << "' - it might create an irreducible loop!\n");
1135     return false;
1136   }
1137 
1138   unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1139   if (JumpThreadCost > Threshold) {
1140     DEBUG(errs() << "  Not threading BB '" << BB->getName()
1141           << "' - Cost is too high: " << JumpThreadCost << "\n");
1142     return false;
1143   }
1144 
1145   // And finally, do it!  Start by factoring the predecessors is needed.
1146   BasicBlock *PredBB;
1147   if (PredBBs.size() == 1)
1148     PredBB = PredBBs[0];
1149   else {
1150     DEBUG(errs() << "  Factoring out " << PredBBs.size()
1151           << " common predecessors.\n");
1152     PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1153                                     ".thr_comm", this);
1154   }
1155 
1156   // And finally, do it!
1157   DEBUG(errs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1158         << SuccBB->getName() << "' with cost: " << JumpThreadCost
1159         << ", across block:\n    "
1160         << *BB << "\n");
1161 
1162   // We are going to have to map operands from the original BB block to the new
1163   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1164   // account for entry from PredBB.
1165   DenseMap<Instruction*, Value*> ValueMapping;
1166 
1167   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1168                                          BB->getName()+".thread",
1169                                          BB->getParent(), BB);
1170   NewBB->moveAfter(PredBB);
1171 
1172   BasicBlock::iterator BI = BB->begin();
1173   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1174     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1175 
1176   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1177   // mapping and using it to remap operands in the cloned instructions.
1178   for (; !isa<TerminatorInst>(BI); ++BI) {
1179     Instruction *New = BI->clone();
1180     New->setName(BI->getName());
1181     NewBB->getInstList().push_back(New);
1182     ValueMapping[BI] = New;
1183 
1184     // Remap operands to patch up intra-block references.
1185     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1186       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1187         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1188         if (I != ValueMapping.end())
1189           New->setOperand(i, I->second);
1190       }
1191   }
1192 
1193   // We didn't copy the terminator from BB over to NewBB, because there is now
1194   // an unconditional jump to SuccBB.  Insert the unconditional jump.
1195   BranchInst::Create(SuccBB, NewBB);
1196 
1197   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1198   // PHI nodes for NewBB now.
1199   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1200 
1201   // If there were values defined in BB that are used outside the block, then we
1202   // now have to update all uses of the value to use either the original value,
1203   // the cloned value, or some PHI derived value.  This can require arbitrary
1204   // PHI insertion, of which we are prepared to do, clean these up now.
1205   SSAUpdater SSAUpdate;
1206   SmallVector<Use*, 16> UsesToRename;
1207   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1208     // Scan all uses of this instruction to see if it is used outside of its
1209     // block, and if so, record them in UsesToRename.
1210     for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1211          ++UI) {
1212       Instruction *User = cast<Instruction>(*UI);
1213       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1214         if (UserPN->getIncomingBlock(UI) == BB)
1215           continue;
1216       } else if (User->getParent() == BB)
1217         continue;
1218 
1219       UsesToRename.push_back(&UI.getUse());
1220     }
1221 
1222     // If there are no uses outside the block, we're done with this instruction.
1223     if (UsesToRename.empty())
1224       continue;
1225 
1226     DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1227 
1228     // We found a use of I outside of BB.  Rename all uses of I that are outside
1229     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1230     // with the two values we know.
1231     SSAUpdate.Initialize(I);
1232     SSAUpdate.AddAvailableValue(BB, I);
1233     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1234 
1235     while (!UsesToRename.empty())
1236       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1237     DEBUG(errs() << "\n");
1238   }
1239 
1240 
1241   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1242   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1243   // us to simplify any PHI nodes in BB.
1244   TerminatorInst *PredTerm = PredBB->getTerminator();
1245   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1246     if (PredTerm->getSuccessor(i) == BB) {
1247       RemovePredecessorAndSimplify(BB, PredBB, TD);
1248       PredTerm->setSuccessor(i, NewBB);
1249     }
1250 
1251   // At this point, the IR is fully up to date and consistent.  Do a quick scan
1252   // over the new instructions and zap any that are constants or dead.  This
1253   // frequently happens because of phi translation.
1254   BI = NewBB->begin();
1255   for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
1256     Instruction *Inst = BI++;
1257 
1258     if (Value *V = SimplifyInstruction(Inst, TD)) {
1259       WeakVH BIHandle(BI);
1260       ReplaceAndSimplifyAllUses(Inst, V, TD);
1261       if (BIHandle == 0)
1262         BI = NewBB->begin();
1263       continue;
1264     }
1265 
1266     RecursivelyDeleteTriviallyDeadInstructions(Inst);
1267   }
1268 
1269   // Threaded an edge!
1270   ++NumThreads;
1271   return true;
1272 }
1273 
1274 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1275 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1276 /// If we can duplicate the contents of BB up into PredBB do so now, this
1277 /// improves the odds that the branch will be on an analyzable instruction like
1278 /// a compare.
1279 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1280                                                      BasicBlock *PredBB) {
1281   // If BB is a loop header, then duplicating this block outside the loop would
1282   // cause us to transform this into an irreducible loop, don't do this.
1283   // See the comments above FindLoopHeaders for justifications and caveats.
1284   if (LoopHeaders.count(BB)) {
1285     DEBUG(errs() << "  Not duplicating loop header '" << BB->getName()
1286           << "' into predecessor block '" << PredBB->getName()
1287           << "' - it might create an irreducible loop!\n");
1288     return false;
1289   }
1290 
1291   unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1292   if (DuplicationCost > Threshold) {
1293     DEBUG(errs() << "  Not duplicating BB '" << BB->getName()
1294           << "' - Cost is too high: " << DuplicationCost << "\n");
1295     return false;
1296   }
1297 
1298   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1299   // of PredBB.
1300   DEBUG(errs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1301         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1302         << DuplicationCost << " block is:" << *BB << "\n");
1303 
1304   // We are going to have to map operands from the original BB block into the
1305   // PredBB block.  Evaluate PHI nodes in BB.
1306   DenseMap<Instruction*, Value*> ValueMapping;
1307 
1308   BasicBlock::iterator BI = BB->begin();
1309   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1310     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1311 
1312   BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1313 
1314   // Clone the non-phi instructions of BB into PredBB, keeping track of the
1315   // mapping and using it to remap operands in the cloned instructions.
1316   for (; BI != BB->end(); ++BI) {
1317     Instruction *New = BI->clone();
1318     New->setName(BI->getName());
1319     PredBB->getInstList().insert(OldPredBranch, New);
1320     ValueMapping[BI] = New;
1321 
1322     // Remap operands to patch up intra-block references.
1323     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1324       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1325         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1326         if (I != ValueMapping.end())
1327           New->setOperand(i, I->second);
1328       }
1329   }
1330 
1331   // Check to see if the targets of the branch had PHI nodes. If so, we need to
1332   // add entries to the PHI nodes for branch from PredBB now.
1333   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1334   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1335                                   ValueMapping);
1336   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1337                                   ValueMapping);
1338 
1339   // If there were values defined in BB that are used outside the block, then we
1340   // now have to update all uses of the value to use either the original value,
1341   // the cloned value, or some PHI derived value.  This can require arbitrary
1342   // PHI insertion, of which we are prepared to do, clean these up now.
1343   SSAUpdater SSAUpdate;
1344   SmallVector<Use*, 16> UsesToRename;
1345   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1346     // Scan all uses of this instruction to see if it is used outside of its
1347     // block, and if so, record them in UsesToRename.
1348     for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1349          ++UI) {
1350       Instruction *User = cast<Instruction>(*UI);
1351       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1352         if (UserPN->getIncomingBlock(UI) == BB)
1353           continue;
1354       } else if (User->getParent() == BB)
1355         continue;
1356 
1357       UsesToRename.push_back(&UI.getUse());
1358     }
1359 
1360     // If there are no uses outside the block, we're done with this instruction.
1361     if (UsesToRename.empty())
1362       continue;
1363 
1364     DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1365 
1366     // We found a use of I outside of BB.  Rename all uses of I that are outside
1367     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1368     // with the two values we know.
1369     SSAUpdate.Initialize(I);
1370     SSAUpdate.AddAvailableValue(BB, I);
1371     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1372 
1373     while (!UsesToRename.empty())
1374       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1375     DEBUG(errs() << "\n");
1376   }
1377 
1378   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1379   // that we nuked.
1380   RemovePredecessorAndSimplify(BB, PredBB, TD);
1381 
1382   // Remove the unconditional branch at the end of the PredBB block.
1383   OldPredBranch->eraseFromParent();
1384 
1385   ++NumDupes;
1386   return true;
1387 }
1388 
1389 
1390