1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "jump-threading" 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/IntrinsicInst.h" 17 #include "llvm/LLVMContext.h" 18 #include "llvm/Pass.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LazyValueInfo.h" 21 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 22 #include "llvm/Transforms/Utils/Local.h" 23 #include "llvm/Transforms/Utils/SSAUpdater.h" 24 #include "llvm/Target/TargetData.h" 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 using namespace llvm; 34 35 STATISTIC(NumThreads, "Number of jumps threaded"); 36 STATISTIC(NumFolds, "Number of terminators folded"); 37 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 38 39 static cl::opt<unsigned> 40 Threshold("jump-threading-threshold", 41 cl::desc("Max block size to duplicate for jump threading"), 42 cl::init(6), cl::Hidden); 43 44 // Turn on use of LazyValueInfo. 45 static cl::opt<bool> 46 EnableLVI("enable-jump-threading-lvi", cl::ReallyHidden); 47 48 49 50 namespace { 51 /// This pass performs 'jump threading', which looks at blocks that have 52 /// multiple predecessors and multiple successors. If one or more of the 53 /// predecessors of the block can be proven to always jump to one of the 54 /// successors, we forward the edge from the predecessor to the successor by 55 /// duplicating the contents of this block. 56 /// 57 /// An example of when this can occur is code like this: 58 /// 59 /// if () { ... 60 /// X = 4; 61 /// } 62 /// if (X < 3) { 63 /// 64 /// In this case, the unconditional branch at the end of the first if can be 65 /// revectored to the false side of the second if. 66 /// 67 class JumpThreading : public FunctionPass { 68 TargetData *TD; 69 LazyValueInfo *LVI; 70 #ifdef NDEBUG 71 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 72 #else 73 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 74 #endif 75 public: 76 static char ID; // Pass identification 77 JumpThreading() : FunctionPass(&ID) {} 78 79 bool runOnFunction(Function &F); 80 81 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 82 if (EnableLVI) 83 AU.addRequired<LazyValueInfo>(); 84 } 85 86 void FindLoopHeaders(Function &F); 87 bool ProcessBlock(BasicBlock *BB); 88 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 89 BasicBlock *SuccBB); 90 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 91 BasicBlock *PredBB); 92 93 typedef SmallVectorImpl<std::pair<ConstantInt*, 94 BasicBlock*> > PredValueInfo; 95 96 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 97 PredValueInfo &Result); 98 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB); 99 100 101 bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 102 bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 103 104 bool ProcessJumpOnPHI(PHINode *PN); 105 106 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 107 }; 108 } 109 110 char JumpThreading::ID = 0; 111 static RegisterPass<JumpThreading> 112 X("jump-threading", "Jump Threading"); 113 114 // Public interface to the Jump Threading pass 115 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); } 116 117 /// runOnFunction - Top level algorithm. 118 /// 119 bool JumpThreading::runOnFunction(Function &F) { 120 DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n"); 121 TD = getAnalysisIfAvailable<TargetData>(); 122 LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0; 123 124 FindLoopHeaders(F); 125 126 bool AnotherIteration = true, EverChanged = false; 127 while (AnotherIteration) { 128 AnotherIteration = false; 129 bool Changed = false; 130 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 131 BasicBlock *BB = I; 132 // Thread all of the branches we can over this block. 133 while (ProcessBlock(BB)) 134 Changed = true; 135 136 ++I; 137 138 // If the block is trivially dead, zap it. This eliminates the successor 139 // edges which simplifies the CFG. 140 if (pred_begin(BB) == pred_end(BB) && 141 BB != &BB->getParent()->getEntryBlock()) { 142 DEBUG(errs() << " JT: Deleting dead block '" << BB->getName() 143 << "' with terminator: " << *BB->getTerminator() << '\n'); 144 LoopHeaders.erase(BB); 145 DeleteDeadBlock(BB); 146 Changed = true; 147 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 148 // Can't thread an unconditional jump, but if the block is "almost 149 // empty", we can replace uses of it with uses of the successor and make 150 // this dead. 151 if (BI->isUnconditional() && 152 BB != &BB->getParent()->getEntryBlock()) { 153 BasicBlock::iterator BBI = BB->getFirstNonPHI(); 154 // Ignore dbg intrinsics. 155 while (isa<DbgInfoIntrinsic>(BBI)) 156 ++BBI; 157 // If the terminator is the only non-phi instruction, try to nuke it. 158 if (BBI->isTerminator()) { 159 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 160 // block, we have to make sure it isn't in the LoopHeaders set. We 161 // reinsert afterward in the rare case when the block isn't deleted. 162 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 163 164 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) 165 Changed = true; 166 else if (ErasedFromLoopHeaders) 167 LoopHeaders.insert(BB); 168 } 169 } 170 } 171 } 172 AnotherIteration = Changed; 173 EverChanged |= Changed; 174 } 175 176 LoopHeaders.clear(); 177 return EverChanged; 178 } 179 180 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 181 /// thread across it. 182 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) { 183 /// Ignore PHI nodes, these will be flattened when duplication happens. 184 BasicBlock::const_iterator I = BB->getFirstNonPHI(); 185 186 // FIXME: THREADING will delete values that are just used to compute the 187 // branch, so they shouldn't count against the duplication cost. 188 189 190 // Sum up the cost of each instruction until we get to the terminator. Don't 191 // include the terminator because the copy won't include it. 192 unsigned Size = 0; 193 for (; !isa<TerminatorInst>(I); ++I) { 194 // Debugger intrinsics don't incur code size. 195 if (isa<DbgInfoIntrinsic>(I)) continue; 196 197 // If this is a pointer->pointer bitcast, it is free. 198 if (isa<BitCastInst>(I) && isa<PointerType>(I->getType())) 199 continue; 200 201 // All other instructions count for at least one unit. 202 ++Size; 203 204 // Calls are more expensive. If they are non-intrinsic calls, we model them 205 // as having cost of 4. If they are a non-vector intrinsic, we model them 206 // as having cost of 2 total, and if they are a vector intrinsic, we model 207 // them as having cost 1. 208 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 209 if (!isa<IntrinsicInst>(CI)) 210 Size += 3; 211 else if (!isa<VectorType>(CI->getType())) 212 Size += 1; 213 } 214 } 215 216 // Threading through a switch statement is particularly profitable. If this 217 // block ends in a switch, decrease its cost to make it more likely to happen. 218 if (isa<SwitchInst>(I)) 219 Size = Size > 6 ? Size-6 : 0; 220 221 return Size; 222 } 223 224 /// FindLoopHeaders - We do not want jump threading to turn proper loop 225 /// structures into irreducible loops. Doing this breaks up the loop nesting 226 /// hierarchy and pessimizes later transformations. To prevent this from 227 /// happening, we first have to find the loop headers. Here we approximate this 228 /// by finding targets of backedges in the CFG. 229 /// 230 /// Note that there definitely are cases when we want to allow threading of 231 /// edges across a loop header. For example, threading a jump from outside the 232 /// loop (the preheader) to an exit block of the loop is definitely profitable. 233 /// It is also almost always profitable to thread backedges from within the loop 234 /// to exit blocks, and is often profitable to thread backedges to other blocks 235 /// within the loop (forming a nested loop). This simple analysis is not rich 236 /// enough to track all of these properties and keep it up-to-date as the CFG 237 /// mutates, so we don't allow any of these transformations. 238 /// 239 void JumpThreading::FindLoopHeaders(Function &F) { 240 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 241 FindFunctionBackedges(F, Edges); 242 243 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 244 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 245 } 246 247 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 248 /// if we can infer that the value is a known ConstantInt in any of our 249 /// predecessors. If so, return the known list of value and pred BB in the 250 /// result vector. If a value is known to be undef, it is returned as null. 251 /// 252 /// This returns true if there were any known values. 253 /// 254 bool JumpThreading:: 255 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){ 256 // If V is a constantint, then it is known in all predecessors. 257 if (isa<ConstantInt>(V) || isa<UndefValue>(V)) { 258 ConstantInt *CI = dyn_cast<ConstantInt>(V); 259 260 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 261 Result.push_back(std::make_pair(CI, *PI)); 262 return true; 263 } 264 265 // If V is a non-instruction value, or an instruction in a different block, 266 // then it can't be derived from a PHI. 267 Instruction *I = dyn_cast<Instruction>(V); 268 if (I == 0 || I->getParent() != BB) { 269 270 // Okay, if this is a live-in value, see if it has a known value at the end 271 // of any of our predecessors. 272 // 273 // FIXME: This should be an edge property, not a block end property. 274 /// TODO: Per PR2563, we could infer value range information about a 275 /// predecessor based on its terminator. 276 // 277 if (LVI) { 278 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 279 // "I" is a non-local compare-with-a-constant instruction. This would be 280 // able to handle value inequalities better, for example if the compare is 281 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 282 // Perhaps getConstantOnEdge should be smart enough to do this? 283 284 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 285 // If the value is known by LazyValueInfo to be a constant in a 286 // predecessor, use that information to try to thread this block. 287 Constant *PredCst = LVI->getConstantOnEdge(V, *PI, BB); 288 if (PredCst == 0 || 289 (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst))) 290 continue; 291 292 Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), *PI)); 293 } 294 295 return !Result.empty(); 296 } 297 298 return false; 299 } 300 301 /// If I is a PHI node, then we know the incoming values for any constants. 302 if (PHINode *PN = dyn_cast<PHINode>(I)) { 303 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 304 Value *InVal = PN->getIncomingValue(i); 305 if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) { 306 ConstantInt *CI = dyn_cast<ConstantInt>(InVal); 307 Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i))); 308 } 309 } 310 return !Result.empty(); 311 } 312 313 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals; 314 315 // Handle some boolean conditions. 316 if (I->getType()->getPrimitiveSizeInBits() == 1) { 317 // X | true -> true 318 // X & false -> false 319 if (I->getOpcode() == Instruction::Or || 320 I->getOpcode() == Instruction::And) { 321 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals); 322 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals); 323 324 if (LHSVals.empty() && RHSVals.empty()) 325 return false; 326 327 ConstantInt *InterestingVal; 328 if (I->getOpcode() == Instruction::Or) 329 InterestingVal = ConstantInt::getTrue(I->getContext()); 330 else 331 InterestingVal = ConstantInt::getFalse(I->getContext()); 332 333 // Scan for the sentinel. 334 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 335 if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) 336 Result.push_back(LHSVals[i]); 337 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 338 if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) 339 Result.push_back(RHSVals[i]); 340 return !Result.empty(); 341 } 342 343 // Handle the NOT form of XOR. 344 if (I->getOpcode() == Instruction::Xor && 345 isa<ConstantInt>(I->getOperand(1)) && 346 cast<ConstantInt>(I->getOperand(1))->isOne()) { 347 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result); 348 if (Result.empty()) 349 return false; 350 351 // Invert the known values. 352 for (unsigned i = 0, e = Result.size(); i != e; ++i) 353 if (Result[i].first) 354 Result[i].first = 355 cast<ConstantInt>(ConstantExpr::getNot(Result[i].first)); 356 return true; 357 } 358 } 359 360 // Handle compare with phi operand, where the PHI is defined in this block. 361 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 362 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 363 if (PN && PN->getParent() == BB) { 364 // We can do this simplification if any comparisons fold to true or false. 365 // See if any do. 366 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 367 BasicBlock *PredBB = PN->getIncomingBlock(i); 368 Value *LHS = PN->getIncomingValue(i); 369 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 370 371 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD); 372 if (Res == 0) { 373 if (!LVI || !isa<Constant>(RHS)) 374 continue; 375 376 LazyValueInfo::Tristate 377 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 378 cast<Constant>(RHS), PredBB, BB); 379 if (ResT == LazyValueInfo::Unknown) 380 continue; 381 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 382 } 383 384 if (isa<UndefValue>(Res)) 385 Result.push_back(std::make_pair((ConstantInt*)0, PredBB)); 386 else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res)) 387 Result.push_back(std::make_pair(CI, PredBB)); 388 } 389 390 return !Result.empty(); 391 } 392 393 394 // If comparing a live-in value against a constant, see if we know the 395 // live-in value on any predecessors. 396 if (LVI && isa<Constant>(Cmp->getOperand(1)) && 397 Cmp->getType()->isInteger() && // Not vector compare. 398 (!isa<Instruction>(Cmp->getOperand(0)) || 399 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB)) { 400 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 401 402 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 403 // If the value is known by LazyValueInfo to be a constant in a 404 // predecessor, use that information to try to thread this block. 405 LazyValueInfo::Tristate 406 Res = LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 407 RHSCst, *PI, BB); 408 if (Res == LazyValueInfo::Unknown) 409 continue; 410 411 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 412 Result.push_back(std::make_pair(cast<ConstantInt>(ResC), *PI)); 413 } 414 415 return !Result.empty(); 416 } 417 } 418 return false; 419 } 420 421 422 423 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 424 /// in an undefined jump, decide which block is best to revector to. 425 /// 426 /// Since we can pick an arbitrary destination, we pick the successor with the 427 /// fewest predecessors. This should reduce the in-degree of the others. 428 /// 429 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 430 TerminatorInst *BBTerm = BB->getTerminator(); 431 unsigned MinSucc = 0; 432 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 433 // Compute the successor with the minimum number of predecessors. 434 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 435 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 436 TestBB = BBTerm->getSuccessor(i); 437 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 438 if (NumPreds < MinNumPreds) 439 MinSucc = i; 440 } 441 442 return MinSucc; 443 } 444 445 /// ProcessBlock - If there are any predecessors whose control can be threaded 446 /// through to a successor, transform them now. 447 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 448 // If this block has a single predecessor, and if that pred has a single 449 // successor, merge the blocks. This encourages recursive jump threading 450 // because now the condition in this block can be threaded through 451 // predecessors of our predecessor block. 452 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 453 if (SinglePred->getTerminator()->getNumSuccessors() == 1 && 454 SinglePred != BB) { 455 // If SinglePred was a loop header, BB becomes one. 456 if (LoopHeaders.erase(SinglePred)) 457 LoopHeaders.insert(BB); 458 459 // Remember if SinglePred was the entry block of the function. If so, we 460 // will need to move BB back to the entry position. 461 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 462 MergeBasicBlockIntoOnlyPred(BB); 463 464 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 465 BB->moveBefore(&BB->getParent()->getEntryBlock()); 466 return true; 467 } 468 } 469 470 // Look to see if the terminator is a branch of switch, if not we can't thread 471 // it. 472 Value *Condition; 473 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 474 // Can't thread an unconditional jump. 475 if (BI->isUnconditional()) return false; 476 Condition = BI->getCondition(); 477 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 478 Condition = SI->getCondition(); 479 else 480 return false; // Must be an invoke. 481 482 // If the terminator of this block is branching on a constant, simplify the 483 // terminator to an unconditional branch. This can occur due to threading in 484 // other blocks. 485 if (isa<ConstantInt>(Condition)) { 486 DEBUG(errs() << " In block '" << BB->getName() 487 << "' folding terminator: " << *BB->getTerminator() << '\n'); 488 ++NumFolds; 489 ConstantFoldTerminator(BB); 490 return true; 491 } 492 493 // If the terminator is branching on an undef, we can pick any of the 494 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 495 if (isa<UndefValue>(Condition)) { 496 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 497 498 // Fold the branch/switch. 499 TerminatorInst *BBTerm = BB->getTerminator(); 500 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 501 if (i == BestSucc) continue; 502 RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD); 503 } 504 505 DEBUG(errs() << " In block '" << BB->getName() 506 << "' folding undef terminator: " << *BBTerm << '\n'); 507 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 508 BBTerm->eraseFromParent(); 509 return true; 510 } 511 512 Instruction *CondInst = dyn_cast<Instruction>(Condition); 513 514 // If the condition is an instruction defined in another block, see if a 515 // predecessor has the same condition: 516 // br COND, BBX, BBY 517 // BBX: 518 // br COND, BBZ, BBW 519 if (!LVI && 520 !Condition->hasOneUse() && // Multiple uses. 521 (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition. 522 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 523 if (isa<BranchInst>(BB->getTerminator())) { 524 for (; PI != E; ++PI) 525 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 526 if (PBI->isConditional() && PBI->getCondition() == Condition && 527 ProcessBranchOnDuplicateCond(*PI, BB)) 528 return true; 529 } else { 530 assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator"); 531 for (; PI != E; ++PI) 532 if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator())) 533 if (PSI->getCondition() == Condition && 534 ProcessSwitchOnDuplicateCond(*PI, BB)) 535 return true; 536 } 537 } 538 539 // All the rest of our checks depend on the condition being an instruction. 540 if (CondInst == 0) { 541 // FIXME: Unify this with code below. 542 if (LVI && ProcessThreadableEdges(Condition, BB)) 543 return true; 544 return false; 545 } 546 547 548 // See if this is a phi node in the current block. 549 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 550 if (PN->getParent() == BB) 551 return ProcessJumpOnPHI(PN); 552 553 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 554 if (!LVI && 555 (!isa<PHINode>(CondCmp->getOperand(0)) || 556 cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) { 557 // If we have a comparison, loop over the predecessors to see if there is 558 // a condition with a lexically identical value. 559 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 560 for (; PI != E; ++PI) 561 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 562 if (PBI->isConditional() && *PI != BB) { 563 if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) { 564 if (CI->getOperand(0) == CondCmp->getOperand(0) && 565 CI->getOperand(1) == CondCmp->getOperand(1) && 566 CI->getPredicate() == CondCmp->getPredicate()) { 567 // TODO: Could handle things like (x != 4) --> (x == 17) 568 if (ProcessBranchOnDuplicateCond(*PI, BB)) 569 return true; 570 } 571 } 572 } 573 } 574 } 575 576 // Check for some cases that are worth simplifying. Right now we want to look 577 // for loads that are used by a switch or by the condition for the branch. If 578 // we see one, check to see if it's partially redundant. If so, insert a PHI 579 // which can then be used to thread the values. 580 // 581 // This is particularly important because reg2mem inserts loads and stores all 582 // over the place, and this blocks jump threading if we don't zap them. 583 Value *SimplifyValue = CondInst; 584 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 585 if (isa<Constant>(CondCmp->getOperand(1))) 586 SimplifyValue = CondCmp->getOperand(0); 587 588 // TODO: There are other places where load PRE would be profitable, such as 589 // more complex comparisons. 590 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 591 if (SimplifyPartiallyRedundantLoad(LI)) 592 return true; 593 594 595 // Handle a variety of cases where we are branching on something derived from 596 // a PHI node in the current block. If we can prove that any predecessors 597 // compute a predictable value based on a PHI node, thread those predecessors. 598 // 599 if (ProcessThreadableEdges(CondInst, BB)) 600 return true; 601 602 603 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 604 // "(X == 4)" thread through this block. 605 606 return false; 607 } 608 609 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that 610 /// block that jump on exactly the same condition. This means that we almost 611 /// always know the direction of the edge in the DESTBB: 612 /// PREDBB: 613 /// br COND, DESTBB, BBY 614 /// DESTBB: 615 /// br COND, BBZ, BBW 616 /// 617 /// If DESTBB has multiple predecessors, we can't just constant fold the branch 618 /// in DESTBB, we have to thread over it. 619 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB, 620 BasicBlock *BB) { 621 BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator()); 622 623 // If both successors of PredBB go to DESTBB, we don't know anything. We can 624 // fold the branch to an unconditional one, which allows other recursive 625 // simplifications. 626 bool BranchDir; 627 if (PredBI->getSuccessor(1) != BB) 628 BranchDir = true; 629 else if (PredBI->getSuccessor(0) != BB) 630 BranchDir = false; 631 else { 632 DEBUG(errs() << " In block '" << PredBB->getName() 633 << "' folding terminator: " << *PredBB->getTerminator() << '\n'); 634 ++NumFolds; 635 ConstantFoldTerminator(PredBB); 636 return true; 637 } 638 639 BranchInst *DestBI = cast<BranchInst>(BB->getTerminator()); 640 641 // If the dest block has one predecessor, just fix the branch condition to a 642 // constant and fold it. 643 if (BB->getSinglePredecessor()) { 644 DEBUG(errs() << " In block '" << BB->getName() 645 << "' folding condition to '" << BranchDir << "': " 646 << *BB->getTerminator() << '\n'); 647 ++NumFolds; 648 Value *OldCond = DestBI->getCondition(); 649 DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 650 BranchDir)); 651 ConstantFoldTerminator(BB); 652 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 653 return true; 654 } 655 656 657 // Next, figure out which successor we are threading to. 658 BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir); 659 660 SmallVector<BasicBlock*, 2> Preds; 661 Preds.push_back(PredBB); 662 663 // Ok, try to thread it! 664 return ThreadEdge(BB, Preds, SuccBB); 665 } 666 667 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that 668 /// block that switch on exactly the same condition. This means that we almost 669 /// always know the direction of the edge in the DESTBB: 670 /// PREDBB: 671 /// switch COND [... DESTBB, BBY ... ] 672 /// DESTBB: 673 /// switch COND [... BBZ, BBW ] 674 /// 675 /// Optimizing switches like this is very important, because simplifycfg builds 676 /// switches out of repeated 'if' conditions. 677 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, 678 BasicBlock *DestBB) { 679 // Can't thread edge to self. 680 if (PredBB == DestBB) 681 return false; 682 683 SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator()); 684 SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator()); 685 686 // There are a variety of optimizations that we can potentially do on these 687 // blocks: we order them from most to least preferable. 688 689 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB 690 // directly to their destination. This does not introduce *any* code size 691 // growth. Skip debug info first. 692 BasicBlock::iterator BBI = DestBB->begin(); 693 while (isa<DbgInfoIntrinsic>(BBI)) 694 BBI++; 695 696 // FIXME: Thread if it just contains a PHI. 697 if (isa<SwitchInst>(BBI)) { 698 bool MadeChange = false; 699 // Ignore the default edge for now. 700 for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) { 701 ConstantInt *DestVal = DestSI->getCaseValue(i); 702 BasicBlock *DestSucc = DestSI->getSuccessor(i); 703 704 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if 705 // PredSI has an explicit case for it. If so, forward. If it is covered 706 // by the default case, we can't update PredSI. 707 unsigned PredCase = PredSI->findCaseValue(DestVal); 708 if (PredCase == 0) continue; 709 710 // If PredSI doesn't go to DestBB on this value, then it won't reach the 711 // case on this condition. 712 if (PredSI->getSuccessor(PredCase) != DestBB && 713 DestSI->getSuccessor(i) != DestBB) 714 continue; 715 716 // Otherwise, we're safe to make the change. Make sure that the edge from 717 // DestSI to DestSucc is not critical and has no PHI nodes. 718 DEBUG(errs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI); 719 DEBUG(errs() << "THROUGH: " << *DestSI); 720 721 // If the destination has PHI nodes, just split the edge for updating 722 // simplicity. 723 if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){ 724 SplitCriticalEdge(DestSI, i, this); 725 DestSucc = DestSI->getSuccessor(i); 726 } 727 FoldSingleEntryPHINodes(DestSucc); 728 PredSI->setSuccessor(PredCase, DestSucc); 729 MadeChange = true; 730 } 731 732 if (MadeChange) 733 return true; 734 } 735 736 return false; 737 } 738 739 740 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 741 /// load instruction, eliminate it by replacing it with a PHI node. This is an 742 /// important optimization that encourages jump threading, and needs to be run 743 /// interlaced with other jump threading tasks. 744 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 745 // Don't hack volatile loads. 746 if (LI->isVolatile()) return false; 747 748 // If the load is defined in a block with exactly one predecessor, it can't be 749 // partially redundant. 750 BasicBlock *LoadBB = LI->getParent(); 751 if (LoadBB->getSinglePredecessor()) 752 return false; 753 754 Value *LoadedPtr = LI->getOperand(0); 755 756 // If the loaded operand is defined in the LoadBB, it can't be available. 757 // TODO: Could do simple PHI translation, that would be fun :) 758 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 759 if (PtrOp->getParent() == LoadBB) 760 return false; 761 762 // Scan a few instructions up from the load, to see if it is obviously live at 763 // the entry to its block. 764 BasicBlock::iterator BBIt = LI; 765 766 if (Value *AvailableVal = 767 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) { 768 // If the value if the load is locally available within the block, just use 769 // it. This frequently occurs for reg2mem'd allocas. 770 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 771 772 // If the returned value is the load itself, replace with an undef. This can 773 // only happen in dead loops. 774 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 775 LI->replaceAllUsesWith(AvailableVal); 776 LI->eraseFromParent(); 777 return true; 778 } 779 780 // Otherwise, if we scanned the whole block and got to the top of the block, 781 // we know the block is locally transparent to the load. If not, something 782 // might clobber its value. 783 if (BBIt != LoadBB->begin()) 784 return false; 785 786 787 SmallPtrSet<BasicBlock*, 8> PredsScanned; 788 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 789 AvailablePredsTy AvailablePreds; 790 BasicBlock *OneUnavailablePred = 0; 791 792 // If we got here, the loaded value is transparent through to the start of the 793 // block. Check to see if it is available in any of the predecessor blocks. 794 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 795 PI != PE; ++PI) { 796 BasicBlock *PredBB = *PI; 797 798 // If we already scanned this predecessor, skip it. 799 if (!PredsScanned.insert(PredBB)) 800 continue; 801 802 // Scan the predecessor to see if the value is available in the pred. 803 BBIt = PredBB->end(); 804 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6); 805 if (!PredAvailable) { 806 OneUnavailablePred = PredBB; 807 continue; 808 } 809 810 // If so, this load is partially redundant. Remember this info so that we 811 // can create a PHI node. 812 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 813 } 814 815 // If the loaded value isn't available in any predecessor, it isn't partially 816 // redundant. 817 if (AvailablePreds.empty()) return false; 818 819 // Okay, the loaded value is available in at least one (and maybe all!) 820 // predecessors. If the value is unavailable in more than one unique 821 // predecessor, we want to insert a merge block for those common predecessors. 822 // This ensures that we only have to insert one reload, thus not increasing 823 // code size. 824 BasicBlock *UnavailablePred = 0; 825 826 // If there is exactly one predecessor where the value is unavailable, the 827 // already computed 'OneUnavailablePred' block is it. If it ends in an 828 // unconditional branch, we know that it isn't a critical edge. 829 if (PredsScanned.size() == AvailablePreds.size()+1 && 830 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 831 UnavailablePred = OneUnavailablePred; 832 } else if (PredsScanned.size() != AvailablePreds.size()) { 833 // Otherwise, we had multiple unavailable predecessors or we had a critical 834 // edge from the one. 835 SmallVector<BasicBlock*, 8> PredsToSplit; 836 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 837 838 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 839 AvailablePredSet.insert(AvailablePreds[i].first); 840 841 // Add all the unavailable predecessors to the PredsToSplit list. 842 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 843 PI != PE; ++PI) 844 if (!AvailablePredSet.count(*PI)) 845 PredsToSplit.push_back(*PI); 846 847 // Split them out to their own block. 848 UnavailablePred = 849 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(), 850 "thread-pre-split", this); 851 } 852 853 // If the value isn't available in all predecessors, then there will be 854 // exactly one where it isn't available. Insert a load on that edge and add 855 // it to the AvailablePreds list. 856 if (UnavailablePred) { 857 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 858 "Can't handle critical edge here!"); 859 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, 860 LI->getAlignment(), 861 UnavailablePred->getTerminator()); 862 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 863 } 864 865 // Now we know that each predecessor of this block has a value in 866 // AvailablePreds, sort them for efficient access as we're walking the preds. 867 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 868 869 // Create a PHI node at the start of the block for the PRE'd load value. 870 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin()); 871 PN->takeName(LI); 872 873 // Insert new entries into the PHI for each predecessor. A single block may 874 // have multiple entries here. 875 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E; 876 ++PI) { 877 AvailablePredsTy::iterator I = 878 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 879 std::make_pair(*PI, (Value*)0)); 880 881 assert(I != AvailablePreds.end() && I->first == *PI && 882 "Didn't find entry for predecessor!"); 883 884 PN->addIncoming(I->second, I->first); 885 } 886 887 //cerr << "PRE: " << *LI << *PN << "\n"; 888 889 LI->replaceAllUsesWith(PN); 890 LI->eraseFromParent(); 891 892 return true; 893 } 894 895 /// FindMostPopularDest - The specified list contains multiple possible 896 /// threadable destinations. Pick the one that occurs the most frequently in 897 /// the list. 898 static BasicBlock * 899 FindMostPopularDest(BasicBlock *BB, 900 const SmallVectorImpl<std::pair<BasicBlock*, 901 BasicBlock*> > &PredToDestList) { 902 assert(!PredToDestList.empty()); 903 904 // Determine popularity. If there are multiple possible destinations, we 905 // explicitly choose to ignore 'undef' destinations. We prefer to thread 906 // blocks with known and real destinations to threading undef. We'll handle 907 // them later if interesting. 908 DenseMap<BasicBlock*, unsigned> DestPopularity; 909 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 910 if (PredToDestList[i].second) 911 DestPopularity[PredToDestList[i].second]++; 912 913 // Find the most popular dest. 914 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 915 BasicBlock *MostPopularDest = DPI->first; 916 unsigned Popularity = DPI->second; 917 SmallVector<BasicBlock*, 4> SamePopularity; 918 919 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 920 // If the popularity of this entry isn't higher than the popularity we've 921 // seen so far, ignore it. 922 if (DPI->second < Popularity) 923 ; // ignore. 924 else if (DPI->second == Popularity) { 925 // If it is the same as what we've seen so far, keep track of it. 926 SamePopularity.push_back(DPI->first); 927 } else { 928 // If it is more popular, remember it. 929 SamePopularity.clear(); 930 MostPopularDest = DPI->first; 931 Popularity = DPI->second; 932 } 933 } 934 935 // Okay, now we know the most popular destination. If there is more than 936 // destination, we need to determine one. This is arbitrary, but we need 937 // to make a deterministic decision. Pick the first one that appears in the 938 // successor list. 939 if (!SamePopularity.empty()) { 940 SamePopularity.push_back(MostPopularDest); 941 TerminatorInst *TI = BB->getTerminator(); 942 for (unsigned i = 0; ; ++i) { 943 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 944 945 if (std::find(SamePopularity.begin(), SamePopularity.end(), 946 TI->getSuccessor(i)) == SamePopularity.end()) 947 continue; 948 949 MostPopularDest = TI->getSuccessor(i); 950 break; 951 } 952 } 953 954 // Okay, we have finally picked the most popular destination. 955 return MostPopularDest; 956 } 957 958 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) { 959 // If threading this would thread across a loop header, don't even try to 960 // thread the edge. 961 if (LoopHeaders.count(BB)) 962 return false; 963 964 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues; 965 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues)) 966 return false; 967 assert(!PredValues.empty() && 968 "ComputeValueKnownInPredecessors returned true with no values"); 969 970 DEBUG(errs() << "IN BB: " << *BB; 971 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 972 errs() << " BB '" << BB->getName() << "': FOUND condition = "; 973 if (PredValues[i].first) 974 errs() << *PredValues[i].first; 975 else 976 errs() << "UNDEF"; 977 errs() << " for pred '" << PredValues[i].second->getName() 978 << "'.\n"; 979 }); 980 981 // Decide what we want to thread through. Convert our list of known values to 982 // a list of known destinations for each pred. This also discards duplicate 983 // predecessors and keeps track of the undefined inputs (which are represented 984 // as a null dest in the PredToDestList). 985 SmallPtrSet<BasicBlock*, 16> SeenPreds; 986 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 987 988 BasicBlock *OnlyDest = 0; 989 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 990 991 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 992 BasicBlock *Pred = PredValues[i].second; 993 if (!SeenPreds.insert(Pred)) 994 continue; // Duplicate predecessor entry. 995 996 // If the predecessor ends with an indirect goto, we can't change its 997 // destination. 998 if (isa<IndirectBrInst>(Pred->getTerminator())) 999 continue; 1000 1001 ConstantInt *Val = PredValues[i].first; 1002 1003 BasicBlock *DestBB; 1004 if (Val == 0) // Undef. 1005 DestBB = 0; 1006 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1007 DestBB = BI->getSuccessor(Val->isZero()); 1008 else { 1009 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator()); 1010 DestBB = SI->getSuccessor(SI->findCaseValue(Val)); 1011 } 1012 1013 // If we have exactly one destination, remember it for efficiency below. 1014 if (i == 0) 1015 OnlyDest = DestBB; 1016 else if (OnlyDest != DestBB) 1017 OnlyDest = MultipleDestSentinel; 1018 1019 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1020 } 1021 1022 // If all edges were unthreadable, we fail. 1023 if (PredToDestList.empty()) 1024 return false; 1025 1026 // Determine which is the most common successor. If we have many inputs and 1027 // this block is a switch, we want to start by threading the batch that goes 1028 // to the most popular destination first. If we only know about one 1029 // threadable destination (the common case) we can avoid this. 1030 BasicBlock *MostPopularDest = OnlyDest; 1031 1032 if (MostPopularDest == MultipleDestSentinel) 1033 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1034 1035 // Now that we know what the most popular destination is, factor all 1036 // predecessors that will jump to it into a single predecessor. 1037 SmallVector<BasicBlock*, 16> PredsToFactor; 1038 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1039 if (PredToDestList[i].second == MostPopularDest) { 1040 BasicBlock *Pred = PredToDestList[i].first; 1041 1042 // This predecessor may be a switch or something else that has multiple 1043 // edges to the block. Factor each of these edges by listing them 1044 // according to # occurrences in PredsToFactor. 1045 TerminatorInst *PredTI = Pred->getTerminator(); 1046 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 1047 if (PredTI->getSuccessor(i) == BB) 1048 PredsToFactor.push_back(Pred); 1049 } 1050 1051 // If the threadable edges are branching on an undefined value, we get to pick 1052 // the destination that these predecessors should get to. 1053 if (MostPopularDest == 0) 1054 MostPopularDest = BB->getTerminator()-> 1055 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1056 1057 // Ok, try to thread it! 1058 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1059 } 1060 1061 /// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in 1062 /// the current block. See if there are any simplifications we can do based on 1063 /// inputs to the phi node. 1064 /// 1065 bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) { 1066 BasicBlock *BB = PN->getParent(); 1067 1068 // If any of the predecessor blocks end in an unconditional branch, we can 1069 // *duplicate* the jump into that block in order to further encourage jump 1070 // threading and to eliminate cases where we have branch on a phi of an icmp 1071 // (branch on icmp is much better). 1072 1073 // We don't want to do this tranformation for switches, because we don't 1074 // really want to duplicate a switch. 1075 if (isa<SwitchInst>(BB->getTerminator())) 1076 return false; 1077 1078 // Look for unconditional branch predecessors. 1079 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1080 BasicBlock *PredBB = PN->getIncomingBlock(i); 1081 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1082 if (PredBr->isUnconditional() && 1083 // Try to duplicate BB into PredBB. 1084 DuplicateCondBranchOnPHIIntoPred(BB, PredBB)) 1085 return true; 1086 } 1087 1088 return false; 1089 } 1090 1091 1092 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1093 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1094 /// NewPred using the entries from OldPred (suitably mapped). 1095 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1096 BasicBlock *OldPred, 1097 BasicBlock *NewPred, 1098 DenseMap<Instruction*, Value*> &ValueMap) { 1099 for (BasicBlock::iterator PNI = PHIBB->begin(); 1100 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1101 // Ok, we have a PHI node. Figure out what the incoming value was for the 1102 // DestBlock. 1103 Value *IV = PN->getIncomingValueForBlock(OldPred); 1104 1105 // Remap the value if necessary. 1106 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1107 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1108 if (I != ValueMap.end()) 1109 IV = I->second; 1110 } 1111 1112 PN->addIncoming(IV, NewPred); 1113 } 1114 } 1115 1116 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1117 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1118 /// across BB. Transform the IR to reflect this change. 1119 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1120 const SmallVectorImpl<BasicBlock*> &PredBBs, 1121 BasicBlock *SuccBB) { 1122 // If threading to the same block as we come from, we would infinite loop. 1123 if (SuccBB == BB) { 1124 DEBUG(errs() << " Not threading across BB '" << BB->getName() 1125 << "' - would thread to self!\n"); 1126 return false; 1127 } 1128 1129 // If threading this would thread across a loop header, don't thread the edge. 1130 // See the comments above FindLoopHeaders for justifications and caveats. 1131 if (LoopHeaders.count(BB)) { 1132 DEBUG(errs() << " Not threading across loop header BB '" << BB->getName() 1133 << "' to dest BB '" << SuccBB->getName() 1134 << "' - it might create an irreducible loop!\n"); 1135 return false; 1136 } 1137 1138 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB); 1139 if (JumpThreadCost > Threshold) { 1140 DEBUG(errs() << " Not threading BB '" << BB->getName() 1141 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1142 return false; 1143 } 1144 1145 // And finally, do it! Start by factoring the predecessors is needed. 1146 BasicBlock *PredBB; 1147 if (PredBBs.size() == 1) 1148 PredBB = PredBBs[0]; 1149 else { 1150 DEBUG(errs() << " Factoring out " << PredBBs.size() 1151 << " common predecessors.\n"); 1152 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), 1153 ".thr_comm", this); 1154 } 1155 1156 // And finally, do it! 1157 DEBUG(errs() << " Threading edge from '" << PredBB->getName() << "' to '" 1158 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1159 << ", across block:\n " 1160 << *BB << "\n"); 1161 1162 // We are going to have to map operands from the original BB block to the new 1163 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1164 // account for entry from PredBB. 1165 DenseMap<Instruction*, Value*> ValueMapping; 1166 1167 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1168 BB->getName()+".thread", 1169 BB->getParent(), BB); 1170 NewBB->moveAfter(PredBB); 1171 1172 BasicBlock::iterator BI = BB->begin(); 1173 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1174 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1175 1176 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1177 // mapping and using it to remap operands in the cloned instructions. 1178 for (; !isa<TerminatorInst>(BI); ++BI) { 1179 Instruction *New = BI->clone(); 1180 New->setName(BI->getName()); 1181 NewBB->getInstList().push_back(New); 1182 ValueMapping[BI] = New; 1183 1184 // Remap operands to patch up intra-block references. 1185 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1186 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1187 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1188 if (I != ValueMapping.end()) 1189 New->setOperand(i, I->second); 1190 } 1191 } 1192 1193 // We didn't copy the terminator from BB over to NewBB, because there is now 1194 // an unconditional jump to SuccBB. Insert the unconditional jump. 1195 BranchInst::Create(SuccBB, NewBB); 1196 1197 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1198 // PHI nodes for NewBB now. 1199 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1200 1201 // If there were values defined in BB that are used outside the block, then we 1202 // now have to update all uses of the value to use either the original value, 1203 // the cloned value, or some PHI derived value. This can require arbitrary 1204 // PHI insertion, of which we are prepared to do, clean these up now. 1205 SSAUpdater SSAUpdate; 1206 SmallVector<Use*, 16> UsesToRename; 1207 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1208 // Scan all uses of this instruction to see if it is used outside of its 1209 // block, and if so, record them in UsesToRename. 1210 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1211 ++UI) { 1212 Instruction *User = cast<Instruction>(*UI); 1213 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1214 if (UserPN->getIncomingBlock(UI) == BB) 1215 continue; 1216 } else if (User->getParent() == BB) 1217 continue; 1218 1219 UsesToRename.push_back(&UI.getUse()); 1220 } 1221 1222 // If there are no uses outside the block, we're done with this instruction. 1223 if (UsesToRename.empty()) 1224 continue; 1225 1226 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1227 1228 // We found a use of I outside of BB. Rename all uses of I that are outside 1229 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1230 // with the two values we know. 1231 SSAUpdate.Initialize(I); 1232 SSAUpdate.AddAvailableValue(BB, I); 1233 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); 1234 1235 while (!UsesToRename.empty()) 1236 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1237 DEBUG(errs() << "\n"); 1238 } 1239 1240 1241 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1242 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1243 // us to simplify any PHI nodes in BB. 1244 TerminatorInst *PredTerm = PredBB->getTerminator(); 1245 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1246 if (PredTerm->getSuccessor(i) == BB) { 1247 RemovePredecessorAndSimplify(BB, PredBB, TD); 1248 PredTerm->setSuccessor(i, NewBB); 1249 } 1250 1251 // At this point, the IR is fully up to date and consistent. Do a quick scan 1252 // over the new instructions and zap any that are constants or dead. This 1253 // frequently happens because of phi translation. 1254 BI = NewBB->begin(); 1255 for (BasicBlock::iterator E = NewBB->end(); BI != E; ) { 1256 Instruction *Inst = BI++; 1257 1258 if (Value *V = SimplifyInstruction(Inst, TD)) { 1259 WeakVH BIHandle(BI); 1260 ReplaceAndSimplifyAllUses(Inst, V, TD); 1261 if (BIHandle == 0) 1262 BI = NewBB->begin(); 1263 continue; 1264 } 1265 1266 RecursivelyDeleteTriviallyDeadInstructions(Inst); 1267 } 1268 1269 // Threaded an edge! 1270 ++NumThreads; 1271 return true; 1272 } 1273 1274 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1275 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1276 /// If we can duplicate the contents of BB up into PredBB do so now, this 1277 /// improves the odds that the branch will be on an analyzable instruction like 1278 /// a compare. 1279 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1280 BasicBlock *PredBB) { 1281 // If BB is a loop header, then duplicating this block outside the loop would 1282 // cause us to transform this into an irreducible loop, don't do this. 1283 // See the comments above FindLoopHeaders for justifications and caveats. 1284 if (LoopHeaders.count(BB)) { 1285 DEBUG(errs() << " Not duplicating loop header '" << BB->getName() 1286 << "' into predecessor block '" << PredBB->getName() 1287 << "' - it might create an irreducible loop!\n"); 1288 return false; 1289 } 1290 1291 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB); 1292 if (DuplicationCost > Threshold) { 1293 DEBUG(errs() << " Not duplicating BB '" << BB->getName() 1294 << "' - Cost is too high: " << DuplicationCost << "\n"); 1295 return false; 1296 } 1297 1298 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1299 // of PredBB. 1300 DEBUG(errs() << " Duplicating block '" << BB->getName() << "' into end of '" 1301 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1302 << DuplicationCost << " block is:" << *BB << "\n"); 1303 1304 // We are going to have to map operands from the original BB block into the 1305 // PredBB block. Evaluate PHI nodes in BB. 1306 DenseMap<Instruction*, Value*> ValueMapping; 1307 1308 BasicBlock::iterator BI = BB->begin(); 1309 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1310 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1311 1312 BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1313 1314 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1315 // mapping and using it to remap operands in the cloned instructions. 1316 for (; BI != BB->end(); ++BI) { 1317 Instruction *New = BI->clone(); 1318 New->setName(BI->getName()); 1319 PredBB->getInstList().insert(OldPredBranch, New); 1320 ValueMapping[BI] = New; 1321 1322 // Remap operands to patch up intra-block references. 1323 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1324 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1325 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1326 if (I != ValueMapping.end()) 1327 New->setOperand(i, I->second); 1328 } 1329 } 1330 1331 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1332 // add entries to the PHI nodes for branch from PredBB now. 1333 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1334 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1335 ValueMapping); 1336 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1337 ValueMapping); 1338 1339 // If there were values defined in BB that are used outside the block, then we 1340 // now have to update all uses of the value to use either the original value, 1341 // the cloned value, or some PHI derived value. This can require arbitrary 1342 // PHI insertion, of which we are prepared to do, clean these up now. 1343 SSAUpdater SSAUpdate; 1344 SmallVector<Use*, 16> UsesToRename; 1345 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1346 // Scan all uses of this instruction to see if it is used outside of its 1347 // block, and if so, record them in UsesToRename. 1348 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1349 ++UI) { 1350 Instruction *User = cast<Instruction>(*UI); 1351 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1352 if (UserPN->getIncomingBlock(UI) == BB) 1353 continue; 1354 } else if (User->getParent() == BB) 1355 continue; 1356 1357 UsesToRename.push_back(&UI.getUse()); 1358 } 1359 1360 // If there are no uses outside the block, we're done with this instruction. 1361 if (UsesToRename.empty()) 1362 continue; 1363 1364 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1365 1366 // We found a use of I outside of BB. Rename all uses of I that are outside 1367 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1368 // with the two values we know. 1369 SSAUpdate.Initialize(I); 1370 SSAUpdate.AddAvailableValue(BB, I); 1371 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); 1372 1373 while (!UsesToRename.empty()) 1374 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1375 DEBUG(errs() << "\n"); 1376 } 1377 1378 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1379 // that we nuked. 1380 RemovePredecessorAndSimplify(BB, PredBB, TD); 1381 1382 // Remove the unconditional branch at the end of the PredBB block. 1383 OldPredBranch->eraseFromParent(); 1384 1385 ++NumDupes; 1386 return true; 1387 } 1388 1389 1390