xref: /llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp (revision 9bcc094d376705e3dcfdd6fe2c71bb5456746b08)
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Jump Threading pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Scalar/JumpThreading.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/BlockFrequencyInfo.h"
23 #include "llvm/Analysis/BranchProbabilityInfo.h"
24 #include "llvm/Analysis/CFG.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/GlobalsModRef.h"
27 #include "llvm/Analysis/GuardUtils.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/LazyValueInfo.h"
30 #include "llvm/Analysis/Loads.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/PostDominators.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DebugInfo.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/PassManager.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/IR/ProfDataUtils.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/Use.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/Support/BlockFrequency.h"
62 #include "llvm/Support/BranchProbability.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
68 #include "llvm/Transforms/Utils/Cloning.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include "llvm/Transforms/Utils/SSAUpdater.h"
71 #include "llvm/Transforms/Utils/ValueMapper.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <iterator>
76 #include <memory>
77 #include <utility>
78 
79 using namespace llvm;
80 using namespace jumpthreading;
81 
82 #define DEBUG_TYPE "jump-threading"
83 
84 STATISTIC(NumThreads, "Number of jumps threaded");
85 STATISTIC(NumFolds,   "Number of terminators folded");
86 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
87 
88 static cl::opt<unsigned>
89 BBDuplicateThreshold("jump-threading-threshold",
90           cl::desc("Max block size to duplicate for jump threading"),
91           cl::init(6), cl::Hidden);
92 
93 static cl::opt<unsigned>
94 ImplicationSearchThreshold(
95   "jump-threading-implication-search-threshold",
96   cl::desc("The number of predecessors to search for a stronger "
97            "condition to use to thread over a weaker condition"),
98   cl::init(3), cl::Hidden);
99 
100 static cl::opt<unsigned> PhiDuplicateThreshold(
101     "jump-threading-phi-threshold",
102     cl::desc("Max PHIs in BB to duplicate for jump threading"), cl::init(76),
103     cl::Hidden);
104 
105 static cl::opt<bool> PrintLVIAfterJumpThreading(
106     "print-lvi-after-jump-threading",
107     cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
108     cl::Hidden);
109 
110 static cl::opt<bool> ThreadAcrossLoopHeaders(
111     "jump-threading-across-loop-headers",
112     cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
113     cl::init(false), cl::Hidden);
114 
115 JumpThreadingPass::JumpThreadingPass(int T) {
116   DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
117 }
118 
119 // Update branch probability information according to conditional
120 // branch probability. This is usually made possible for cloned branches
121 // in inline instances by the context specific profile in the caller.
122 // For instance,
123 //
124 //  [Block PredBB]
125 //  [Branch PredBr]
126 //  if (t) {
127 //     Block A;
128 //  } else {
129 //     Block B;
130 //  }
131 //
132 //  [Block BB]
133 //  cond = PN([true, %A], [..., %B]); // PHI node
134 //  [Branch CondBr]
135 //  if (cond) {
136 //    ...  // P(cond == true) = 1%
137 //  }
138 //
139 //  Here we know that when block A is taken, cond must be true, which means
140 //      P(cond == true | A) = 1
141 //
142 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
143 //                               P(cond == true | B) * P(B)
144 //  we get:
145 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
146 //
147 //  which gives us:
148 //     P(A) is less than P(cond == true), i.e.
149 //     P(t == true) <= P(cond == true)
150 //
151 //  In other words, if we know P(cond == true) is unlikely, we know
152 //  that P(t == true) is also unlikely.
153 //
154 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
155   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
156   if (!CondBr)
157     return;
158 
159   uint64_t TrueWeight, FalseWeight;
160   if (!extractBranchWeights(*CondBr, TrueWeight, FalseWeight))
161     return;
162 
163   if (TrueWeight + FalseWeight == 0)
164     // Zero branch_weights do not give a hint for getting branch probabilities.
165     // Technically it would result in division by zero denominator, which is
166     // TrueWeight + FalseWeight.
167     return;
168 
169   // Returns the outgoing edge of the dominating predecessor block
170   // that leads to the PhiNode's incoming block:
171   auto GetPredOutEdge =
172       [](BasicBlock *IncomingBB,
173          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
174     auto *PredBB = IncomingBB;
175     auto *SuccBB = PhiBB;
176     SmallPtrSet<BasicBlock *, 16> Visited;
177     while (true) {
178       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
179       if (PredBr && PredBr->isConditional())
180         return {PredBB, SuccBB};
181       Visited.insert(PredBB);
182       auto *SinglePredBB = PredBB->getSinglePredecessor();
183       if (!SinglePredBB)
184         return {nullptr, nullptr};
185 
186       // Stop searching when SinglePredBB has been visited. It means we see
187       // an unreachable loop.
188       if (Visited.count(SinglePredBB))
189         return {nullptr, nullptr};
190 
191       SuccBB = PredBB;
192       PredBB = SinglePredBB;
193     }
194   };
195 
196   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
197     Value *PhiOpnd = PN->getIncomingValue(i);
198     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
199 
200     if (!CI || !CI->getType()->isIntegerTy(1))
201       continue;
202 
203     BranchProbability BP =
204         (CI->isOne() ? BranchProbability::getBranchProbability(
205                            TrueWeight, TrueWeight + FalseWeight)
206                      : BranchProbability::getBranchProbability(
207                            FalseWeight, TrueWeight + FalseWeight));
208 
209     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
210     if (!PredOutEdge.first)
211       return;
212 
213     BasicBlock *PredBB = PredOutEdge.first;
214     BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
215     if (!PredBr)
216       return;
217 
218     uint64_t PredTrueWeight, PredFalseWeight;
219     // FIXME: We currently only set the profile data when it is missing.
220     // With PGO, this can be used to refine even existing profile data with
221     // context information. This needs to be done after more performance
222     // testing.
223     if (extractBranchWeights(*PredBr, PredTrueWeight, PredFalseWeight))
224       continue;
225 
226     // We can not infer anything useful when BP >= 50%, because BP is the
227     // upper bound probability value.
228     if (BP >= BranchProbability(50, 100))
229       continue;
230 
231     SmallVector<uint32_t, 2> Weights;
232     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
233       Weights.push_back(BP.getNumerator());
234       Weights.push_back(BP.getCompl().getNumerator());
235     } else {
236       Weights.push_back(BP.getCompl().getNumerator());
237       Weights.push_back(BP.getNumerator());
238     }
239     PredBr->setMetadata(LLVMContext::MD_prof,
240                         MDBuilder(PredBr->getParent()->getContext())
241                             .createBranchWeights(Weights));
242   }
243 }
244 
245 PreservedAnalyses JumpThreadingPass::run(Function &F,
246                                          FunctionAnalysisManager &AM) {
247   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
248   // Jump Threading has no sense for the targets with divergent CF
249   if (TTI.hasBranchDivergence(&F))
250     return PreservedAnalyses::all();
251   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
252   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
253   auto &AA = AM.getResult<AAManager>(F);
254   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
255 
256   bool Changed =
257       runImpl(F, &AM, &TLI, &TTI, &LVI, &AA,
258               std::make_unique<DomTreeUpdater>(
259                   &DT, nullptr, DomTreeUpdater::UpdateStrategy::Lazy),
260               std::nullopt, std::nullopt);
261 
262   if (PrintLVIAfterJumpThreading) {
263     dbgs() << "LVI for function '" << F.getName() << "':\n";
264     LVI.printLVI(F, getDomTreeUpdater()->getDomTree(), dbgs());
265   }
266 
267   if (!Changed)
268     return PreservedAnalyses::all();
269 
270 
271   getDomTreeUpdater()->flush();
272 
273 #if defined(EXPENSIVE_CHECKS)
274   assert(getDomTreeUpdater()->getDomTree().verify(
275              DominatorTree::VerificationLevel::Full) &&
276          "DT broken after JumpThreading");
277   assert((!getDomTreeUpdater()->hasPostDomTree() ||
278           getDomTreeUpdater()->getPostDomTree().verify(
279               PostDominatorTree::VerificationLevel::Full)) &&
280          "PDT broken after JumpThreading");
281 #else
282   assert(getDomTreeUpdater()->getDomTree().verify(
283              DominatorTree::VerificationLevel::Fast) &&
284          "DT broken after JumpThreading");
285   assert((!getDomTreeUpdater()->hasPostDomTree() ||
286           getDomTreeUpdater()->getPostDomTree().verify(
287               PostDominatorTree::VerificationLevel::Fast)) &&
288          "PDT broken after JumpThreading");
289 #endif
290 
291   return getPreservedAnalysis();
292 }
293 
294 bool JumpThreadingPass::runImpl(Function &F_, FunctionAnalysisManager *FAM_,
295                                 TargetLibraryInfo *TLI_,
296                                 TargetTransformInfo *TTI_, LazyValueInfo *LVI_,
297                                 AliasAnalysis *AA_,
298                                 std::unique_ptr<DomTreeUpdater> DTU_,
299                                 std::optional<BlockFrequencyInfo *> BFI_,
300                                 std::optional<BranchProbabilityInfo *> BPI_) {
301   LLVM_DEBUG(dbgs() << "Jump threading on function '" << F_.getName() << "'\n");
302   F = &F_;
303   FAM = FAM_;
304   TLI = TLI_;
305   TTI = TTI_;
306   LVI = LVI_;
307   AA = AA_;
308   DTU = std::move(DTU_);
309   BFI = BFI_;
310   BPI = BPI_;
311   auto *GuardDecl = F->getParent()->getFunction(
312       Intrinsic::getName(Intrinsic::experimental_guard));
313   HasGuards = GuardDecl && !GuardDecl->use_empty();
314 
315   // Reduce the number of instructions duplicated when optimizing strictly for
316   // size.
317   if (BBDuplicateThreshold.getNumOccurrences())
318     BBDupThreshold = BBDuplicateThreshold;
319   else if (F->hasFnAttribute(Attribute::MinSize))
320     BBDupThreshold = 3;
321   else
322     BBDupThreshold = DefaultBBDupThreshold;
323 
324   // JumpThreading must not processes blocks unreachable from entry. It's a
325   // waste of compute time and can potentially lead to hangs.
326   SmallPtrSet<BasicBlock *, 16> Unreachable;
327   assert(DTU && "DTU isn't passed into JumpThreading before using it.");
328   assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
329   DominatorTree &DT = DTU->getDomTree();
330   for (auto &BB : *F)
331     if (!DT.isReachableFromEntry(&BB))
332       Unreachable.insert(&BB);
333 
334   if (!ThreadAcrossLoopHeaders)
335     findLoopHeaders(*F);
336 
337   bool EverChanged = false;
338   bool Changed;
339   do {
340     Changed = false;
341     for (auto &BB : *F) {
342       if (Unreachable.count(&BB))
343         continue;
344       while (processBlock(&BB)) // Thread all of the branches we can over BB.
345         Changed = ChangedSinceLastAnalysisUpdate = true;
346 
347       // Jump threading may have introduced redundant debug values into BB
348       // which should be removed.
349       if (Changed)
350         RemoveRedundantDbgInstrs(&BB);
351 
352       // Stop processing BB if it's the entry or is now deleted. The following
353       // routines attempt to eliminate BB and locating a suitable replacement
354       // for the entry is non-trivial.
355       if (&BB == &F->getEntryBlock() || DTU->isBBPendingDeletion(&BB))
356         continue;
357 
358       if (pred_empty(&BB)) {
359         // When processBlock makes BB unreachable it doesn't bother to fix up
360         // the instructions in it. We must remove BB to prevent invalid IR.
361         LLVM_DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
362                           << "' with terminator: " << *BB.getTerminator()
363                           << '\n');
364         LoopHeaders.erase(&BB);
365         LVI->eraseBlock(&BB);
366         DeleteDeadBlock(&BB, DTU.get());
367         Changed = ChangedSinceLastAnalysisUpdate = true;
368         continue;
369       }
370 
371       // processBlock doesn't thread BBs with unconditional TIs. However, if BB
372       // is "almost empty", we attempt to merge BB with its sole successor.
373       auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
374       if (BI && BI->isUnconditional()) {
375         BasicBlock *Succ = BI->getSuccessor(0);
376         if (
377             // The terminator must be the only non-phi instruction in BB.
378             BB.getFirstNonPHIOrDbg(true)->isTerminator() &&
379             // Don't alter Loop headers and latches to ensure another pass can
380             // detect and transform nested loops later.
381             !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) &&
382             TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU.get())) {
383           RemoveRedundantDbgInstrs(Succ);
384           // BB is valid for cleanup here because we passed in DTU. F remains
385           // BB's parent until a DTU->getDomTree() event.
386           LVI->eraseBlock(&BB);
387           Changed = ChangedSinceLastAnalysisUpdate = true;
388         }
389       }
390     }
391     EverChanged |= Changed;
392   } while (Changed);
393 
394   LoopHeaders.clear();
395   return EverChanged;
396 }
397 
398 // Replace uses of Cond with ToVal when safe to do so. If all uses are
399 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
400 // because we may incorrectly replace uses when guards/assumes are uses of
401 // of `Cond` and we used the guards/assume to reason about the `Cond` value
402 // at the end of block. RAUW unconditionally replaces all uses
403 // including the guards/assumes themselves and the uses before the
404 // guard/assume.
405 static bool replaceFoldableUses(Instruction *Cond, Value *ToVal,
406                                 BasicBlock *KnownAtEndOfBB) {
407   bool Changed = false;
408   assert(Cond->getType() == ToVal->getType());
409   // We can unconditionally replace all uses in non-local blocks (i.e. uses
410   // strictly dominated by BB), since LVI information is true from the
411   // terminator of BB.
412   if (Cond->getParent() == KnownAtEndOfBB)
413     Changed |= replaceNonLocalUsesWith(Cond, ToVal);
414   for (Instruction &I : reverse(*KnownAtEndOfBB)) {
415     // Reached the Cond whose uses we are trying to replace, so there are no
416     // more uses.
417     if (&I == Cond)
418       break;
419     // We only replace uses in instructions that are guaranteed to reach the end
420     // of BB, where we know Cond is ToVal.
421     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
422       break;
423     Changed |= I.replaceUsesOfWith(Cond, ToVal);
424   }
425   if (Cond->use_empty() && !Cond->mayHaveSideEffects()) {
426     Cond->eraseFromParent();
427     Changed = true;
428   }
429   return Changed;
430 }
431 
432 /// Return the cost of duplicating a piece of this block from first non-phi
433 /// and before StopAt instruction to thread across it. Stop scanning the block
434 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
435 static unsigned getJumpThreadDuplicationCost(const TargetTransformInfo *TTI,
436                                              BasicBlock *BB,
437                                              Instruction *StopAt,
438                                              unsigned Threshold) {
439   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
440 
441   // Do not duplicate the BB if it has a lot of PHI nodes.
442   // If a threadable chain is too long then the number of PHI nodes can add up,
443   // leading to a substantial increase in compile time when rewriting the SSA.
444   unsigned PhiCount = 0;
445   Instruction *FirstNonPHI = nullptr;
446   for (Instruction &I : *BB) {
447     if (!isa<PHINode>(&I)) {
448       FirstNonPHI = &I;
449       break;
450     }
451     if (++PhiCount > PhiDuplicateThreshold)
452       return ~0U;
453   }
454 
455   /// Ignore PHI nodes, these will be flattened when duplication happens.
456   BasicBlock::const_iterator I(FirstNonPHI);
457 
458   // FIXME: THREADING will delete values that are just used to compute the
459   // branch, so they shouldn't count against the duplication cost.
460 
461   unsigned Bonus = 0;
462   if (BB->getTerminator() == StopAt) {
463     // Threading through a switch statement is particularly profitable.  If this
464     // block ends in a switch, decrease its cost to make it more likely to
465     // happen.
466     if (isa<SwitchInst>(StopAt))
467       Bonus = 6;
468 
469     // The same holds for indirect branches, but slightly more so.
470     if (isa<IndirectBrInst>(StopAt))
471       Bonus = 8;
472   }
473 
474   // Bump the threshold up so the early exit from the loop doesn't skip the
475   // terminator-based Size adjustment at the end.
476   Threshold += Bonus;
477 
478   // Sum up the cost of each instruction until we get to the terminator.  Don't
479   // include the terminator because the copy won't include it.
480   unsigned Size = 0;
481   for (; &*I != StopAt; ++I) {
482 
483     // Stop scanning the block if we've reached the threshold.
484     if (Size > Threshold)
485       return Size;
486 
487     // Bail out if this instruction gives back a token type, it is not possible
488     // to duplicate it if it is used outside this BB.
489     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
490       return ~0U;
491 
492     // Blocks with NoDuplicate are modelled as having infinite cost, so they
493     // are never duplicated.
494     if (const CallInst *CI = dyn_cast<CallInst>(I))
495       if (CI->cannotDuplicate() || CI->isConvergent())
496         return ~0U;
497 
498     if (TTI->getInstructionCost(&*I, TargetTransformInfo::TCK_SizeAndLatency) ==
499         TargetTransformInfo::TCC_Free)
500       continue;
501 
502     // All other instructions count for at least one unit.
503     ++Size;
504 
505     // Calls are more expensive.  If they are non-intrinsic calls, we model them
506     // as having cost of 4.  If they are a non-vector intrinsic, we model them
507     // as having cost of 2 total, and if they are a vector intrinsic, we model
508     // them as having cost 1.
509     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
510       if (!isa<IntrinsicInst>(CI))
511         Size += 3;
512       else if (!CI->getType()->isVectorTy())
513         Size += 1;
514     }
515   }
516 
517   return Size > Bonus ? Size - Bonus : 0;
518 }
519 
520 /// findLoopHeaders - We do not want jump threading to turn proper loop
521 /// structures into irreducible loops.  Doing this breaks up the loop nesting
522 /// hierarchy and pessimizes later transformations.  To prevent this from
523 /// happening, we first have to find the loop headers.  Here we approximate this
524 /// by finding targets of backedges in the CFG.
525 ///
526 /// Note that there definitely are cases when we want to allow threading of
527 /// edges across a loop header.  For example, threading a jump from outside the
528 /// loop (the preheader) to an exit block of the loop is definitely profitable.
529 /// It is also almost always profitable to thread backedges from within the loop
530 /// to exit blocks, and is often profitable to thread backedges to other blocks
531 /// within the loop (forming a nested loop).  This simple analysis is not rich
532 /// enough to track all of these properties and keep it up-to-date as the CFG
533 /// mutates, so we don't allow any of these transformations.
534 void JumpThreadingPass::findLoopHeaders(Function &F) {
535   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
536   FindFunctionBackedges(F, Edges);
537 
538   for (const auto &Edge : Edges)
539     LoopHeaders.insert(Edge.second);
540 }
541 
542 /// getKnownConstant - Helper method to determine if we can thread over a
543 /// terminator with the given value as its condition, and if so what value to
544 /// use for that. What kind of value this is depends on whether we want an
545 /// integer or a block address, but an undef is always accepted.
546 /// Returns null if Val is null or not an appropriate constant.
547 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
548   if (!Val)
549     return nullptr;
550 
551   // Undef is "known" enough.
552   if (UndefValue *U = dyn_cast<UndefValue>(Val))
553     return U;
554 
555   if (Preference == WantBlockAddress)
556     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
557 
558   return dyn_cast<ConstantInt>(Val);
559 }
560 
561 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see
562 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
563 /// in any of our predecessors.  If so, return the known list of value and pred
564 /// BB in the result vector.
565 ///
566 /// This returns true if there were any known values.
567 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl(
568     Value *V, BasicBlock *BB, PredValueInfo &Result,
569     ConstantPreference Preference, DenseSet<Value *> &RecursionSet,
570     Instruction *CxtI) {
571   const DataLayout &DL = BB->getModule()->getDataLayout();
572 
573   // This method walks up use-def chains recursively.  Because of this, we could
574   // get into an infinite loop going around loops in the use-def chain.  To
575   // prevent this, keep track of what (value, block) pairs we've already visited
576   // and terminate the search if we loop back to them
577   if (!RecursionSet.insert(V).second)
578     return false;
579 
580   // If V is a constant, then it is known in all predecessors.
581   if (Constant *KC = getKnownConstant(V, Preference)) {
582     for (BasicBlock *Pred : predecessors(BB))
583       Result.emplace_back(KC, Pred);
584 
585     return !Result.empty();
586   }
587 
588   // If V is a non-instruction value, or an instruction in a different block,
589   // then it can't be derived from a PHI.
590   Instruction *I = dyn_cast<Instruction>(V);
591   if (!I || I->getParent() != BB) {
592 
593     // Okay, if this is a live-in value, see if it has a known value at the any
594     // edge from our predecessors.
595     for (BasicBlock *P : predecessors(BB)) {
596       using namespace PatternMatch;
597       // If the value is known by LazyValueInfo to be a constant in a
598       // predecessor, use that information to try to thread this block.
599       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
600       // If I is a non-local compare-with-constant instruction, use more-rich
601       // 'getPredicateOnEdge' method. This would be able to handle value
602       // inequalities better, for example if the compare is "X < 4" and "X < 3"
603       // is known true but "X < 4" itself is not available.
604       CmpInst::Predicate Pred;
605       Value *Val;
606       Constant *Cst;
607       if (!PredCst && match(V, m_Cmp(Pred, m_Value(Val), m_Constant(Cst)))) {
608         auto Res = LVI->getPredicateOnEdge(Pred, Val, Cst, P, BB, CxtI);
609         if (Res != LazyValueInfo::Unknown)
610           PredCst = ConstantInt::getBool(V->getContext(), Res);
611       }
612       if (Constant *KC = getKnownConstant(PredCst, Preference))
613         Result.emplace_back(KC, P);
614     }
615 
616     return !Result.empty();
617   }
618 
619   /// If I is a PHI node, then we know the incoming values for any constants.
620   if (PHINode *PN = dyn_cast<PHINode>(I)) {
621     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
622       Value *InVal = PN->getIncomingValue(i);
623       if (Constant *KC = getKnownConstant(InVal, Preference)) {
624         Result.emplace_back(KC, PN->getIncomingBlock(i));
625       } else {
626         Constant *CI = LVI->getConstantOnEdge(InVal,
627                                               PN->getIncomingBlock(i),
628                                               BB, CxtI);
629         if (Constant *KC = getKnownConstant(CI, Preference))
630           Result.emplace_back(KC, PN->getIncomingBlock(i));
631       }
632     }
633 
634     return !Result.empty();
635   }
636 
637   // Handle Cast instructions.
638   if (CastInst *CI = dyn_cast<CastInst>(I)) {
639     Value *Source = CI->getOperand(0);
640     PredValueInfoTy Vals;
641     computeValueKnownInPredecessorsImpl(Source, BB, Vals, Preference,
642                                         RecursionSet, CxtI);
643     if (Vals.empty())
644       return false;
645 
646     // Convert the known values.
647     for (auto &Val : Vals)
648       if (Constant *Folded = ConstantFoldCastOperand(CI->getOpcode(), Val.first,
649                                                      CI->getType(), DL))
650         Result.emplace_back(Folded, Val.second);
651 
652     return !Result.empty();
653   }
654 
655   if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
656     Value *Source = FI->getOperand(0);
657     computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
658                                         RecursionSet, CxtI);
659 
660     erase_if(Result, [](auto &Pair) {
661       return !isGuaranteedNotToBeUndefOrPoison(Pair.first);
662     });
663 
664     return !Result.empty();
665   }
666 
667   // Handle some boolean conditions.
668   if (I->getType()->getPrimitiveSizeInBits() == 1) {
669     using namespace PatternMatch;
670     if (Preference != WantInteger)
671       return false;
672     // X | true -> true
673     // X & false -> false
674     Value *Op0, *Op1;
675     if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
676         match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
677       PredValueInfoTy LHSVals, RHSVals;
678 
679       computeValueKnownInPredecessorsImpl(Op0, BB, LHSVals, WantInteger,
680                                           RecursionSet, CxtI);
681       computeValueKnownInPredecessorsImpl(Op1, BB, RHSVals, WantInteger,
682                                           RecursionSet, CxtI);
683 
684       if (LHSVals.empty() && RHSVals.empty())
685         return false;
686 
687       ConstantInt *InterestingVal;
688       if (match(I, m_LogicalOr()))
689         InterestingVal = ConstantInt::getTrue(I->getContext());
690       else
691         InterestingVal = ConstantInt::getFalse(I->getContext());
692 
693       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
694 
695       // Scan for the sentinel.  If we find an undef, force it to the
696       // interesting value: x|undef -> true and x&undef -> false.
697       for (const auto &LHSVal : LHSVals)
698         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
699           Result.emplace_back(InterestingVal, LHSVal.second);
700           LHSKnownBBs.insert(LHSVal.second);
701         }
702       for (const auto &RHSVal : RHSVals)
703         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
704           // If we already inferred a value for this block on the LHS, don't
705           // re-add it.
706           if (!LHSKnownBBs.count(RHSVal.second))
707             Result.emplace_back(InterestingVal, RHSVal.second);
708         }
709 
710       return !Result.empty();
711     }
712 
713     // Handle the NOT form of XOR.
714     if (I->getOpcode() == Instruction::Xor &&
715         isa<ConstantInt>(I->getOperand(1)) &&
716         cast<ConstantInt>(I->getOperand(1))->isOne()) {
717       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
718                                           WantInteger, RecursionSet, CxtI);
719       if (Result.empty())
720         return false;
721 
722       // Invert the known values.
723       for (auto &R : Result)
724         R.first = ConstantExpr::getNot(R.first);
725 
726       return true;
727     }
728 
729   // Try to simplify some other binary operator values.
730   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
731     if (Preference != WantInteger)
732       return false;
733     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
734       PredValueInfoTy LHSVals;
735       computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
736                                           WantInteger, RecursionSet, CxtI);
737 
738       // Try to use constant folding to simplify the binary operator.
739       for (const auto &LHSVal : LHSVals) {
740         Constant *V = LHSVal.first;
741         Constant *Folded =
742             ConstantFoldBinaryOpOperands(BO->getOpcode(), V, CI, DL);
743 
744         if (Constant *KC = getKnownConstant(Folded, WantInteger))
745           Result.emplace_back(KC, LHSVal.second);
746       }
747     }
748 
749     return !Result.empty();
750   }
751 
752   // Handle compare with phi operand, where the PHI is defined in this block.
753   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
754     if (Preference != WantInteger)
755       return false;
756     Type *CmpType = Cmp->getType();
757     Value *CmpLHS = Cmp->getOperand(0);
758     Value *CmpRHS = Cmp->getOperand(1);
759     CmpInst::Predicate Pred = Cmp->getPredicate();
760 
761     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
762     if (!PN)
763       PN = dyn_cast<PHINode>(CmpRHS);
764     if (PN && PN->getParent() == BB) {
765       const DataLayout &DL = PN->getModule()->getDataLayout();
766       // We can do this simplification if any comparisons fold to true or false.
767       // See if any do.
768       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
769         BasicBlock *PredBB = PN->getIncomingBlock(i);
770         Value *LHS, *RHS;
771         if (PN == CmpLHS) {
772           LHS = PN->getIncomingValue(i);
773           RHS = CmpRHS->DoPHITranslation(BB, PredBB);
774         } else {
775           LHS = CmpLHS->DoPHITranslation(BB, PredBB);
776           RHS = PN->getIncomingValue(i);
777         }
778         Value *Res = simplifyCmpInst(Pred, LHS, RHS, {DL});
779         if (!Res) {
780           if (!isa<Constant>(RHS))
781             continue;
782 
783           // getPredicateOnEdge call will make no sense if LHS is defined in BB.
784           auto LHSInst = dyn_cast<Instruction>(LHS);
785           if (LHSInst && LHSInst->getParent() == BB)
786             continue;
787 
788           LazyValueInfo::Tristate
789             ResT = LVI->getPredicateOnEdge(Pred, LHS,
790                                            cast<Constant>(RHS), PredBB, BB,
791                                            CxtI ? CxtI : Cmp);
792           if (ResT == LazyValueInfo::Unknown)
793             continue;
794           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
795         }
796 
797         if (Constant *KC = getKnownConstant(Res, WantInteger))
798           Result.emplace_back(KC, PredBB);
799       }
800 
801       return !Result.empty();
802     }
803 
804     // If comparing a live-in value against a constant, see if we know the
805     // live-in value on any predecessors.
806     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
807       Constant *CmpConst = cast<Constant>(CmpRHS);
808 
809       if (!isa<Instruction>(CmpLHS) ||
810           cast<Instruction>(CmpLHS)->getParent() != BB) {
811         for (BasicBlock *P : predecessors(BB)) {
812           // If the value is known by LazyValueInfo to be a constant in a
813           // predecessor, use that information to try to thread this block.
814           LazyValueInfo::Tristate Res =
815             LVI->getPredicateOnEdge(Pred, CmpLHS,
816                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
817           if (Res == LazyValueInfo::Unknown)
818             continue;
819 
820           Constant *ResC = ConstantInt::get(CmpType, Res);
821           Result.emplace_back(ResC, P);
822         }
823 
824         return !Result.empty();
825       }
826 
827       // InstCombine can fold some forms of constant range checks into
828       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
829       // x as a live-in.
830       {
831         using namespace PatternMatch;
832 
833         Value *AddLHS;
834         ConstantInt *AddConst;
835         if (isa<ConstantInt>(CmpConst) &&
836             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
837           if (!isa<Instruction>(AddLHS) ||
838               cast<Instruction>(AddLHS)->getParent() != BB) {
839             for (BasicBlock *P : predecessors(BB)) {
840               // If the value is known by LazyValueInfo to be a ConstantRange in
841               // a predecessor, use that information to try to thread this
842               // block.
843               ConstantRange CR = LVI->getConstantRangeOnEdge(
844                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
845               // Propagate the range through the addition.
846               CR = CR.add(AddConst->getValue());
847 
848               // Get the range where the compare returns true.
849               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
850                   Pred, cast<ConstantInt>(CmpConst)->getValue());
851 
852               Constant *ResC;
853               if (CmpRange.contains(CR))
854                 ResC = ConstantInt::getTrue(CmpType);
855               else if (CmpRange.inverse().contains(CR))
856                 ResC = ConstantInt::getFalse(CmpType);
857               else
858                 continue;
859 
860               Result.emplace_back(ResC, P);
861             }
862 
863             return !Result.empty();
864           }
865         }
866       }
867 
868       // Try to find a constant value for the LHS of a comparison,
869       // and evaluate it statically if we can.
870       PredValueInfoTy LHSVals;
871       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
872                                           WantInteger, RecursionSet, CxtI);
873 
874       for (const auto &LHSVal : LHSVals) {
875         Constant *V = LHSVal.first;
876         Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
877         if (Constant *KC = getKnownConstant(Folded, WantInteger))
878           Result.emplace_back(KC, LHSVal.second);
879       }
880 
881       return !Result.empty();
882     }
883   }
884 
885   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
886     // Handle select instructions where at least one operand is a known constant
887     // and we can figure out the condition value for any predecessor block.
888     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
889     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
890     PredValueInfoTy Conds;
891     if ((TrueVal || FalseVal) &&
892         computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
893                                             WantInteger, RecursionSet, CxtI)) {
894       for (auto &C : Conds) {
895         Constant *Cond = C.first;
896 
897         // Figure out what value to use for the condition.
898         bool KnownCond;
899         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
900           // A known boolean.
901           KnownCond = CI->isOne();
902         } else {
903           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
904           // Either operand will do, so be sure to pick the one that's a known
905           // constant.
906           // FIXME: Do this more cleverly if both values are known constants?
907           KnownCond = (TrueVal != nullptr);
908         }
909 
910         // See if the select has a known constant value for this predecessor.
911         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
912           Result.emplace_back(Val, C.second);
913       }
914 
915       return !Result.empty();
916     }
917   }
918 
919   // If all else fails, see if LVI can figure out a constant value for us.
920   assert(CxtI->getParent() == BB && "CxtI should be in BB");
921   Constant *CI = LVI->getConstant(V, CxtI);
922   if (Constant *KC = getKnownConstant(CI, Preference)) {
923     for (BasicBlock *Pred : predecessors(BB))
924       Result.emplace_back(KC, Pred);
925   }
926 
927   return !Result.empty();
928 }
929 
930 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
931 /// in an undefined jump, decide which block is best to revector to.
932 ///
933 /// Since we can pick an arbitrary destination, we pick the successor with the
934 /// fewest predecessors.  This should reduce the in-degree of the others.
935 static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) {
936   Instruction *BBTerm = BB->getTerminator();
937   unsigned MinSucc = 0;
938   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
939   // Compute the successor with the minimum number of predecessors.
940   unsigned MinNumPreds = pred_size(TestBB);
941   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
942     TestBB = BBTerm->getSuccessor(i);
943     unsigned NumPreds = pred_size(TestBB);
944     if (NumPreds < MinNumPreds) {
945       MinSucc = i;
946       MinNumPreds = NumPreds;
947     }
948   }
949 
950   return MinSucc;
951 }
952 
953 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
954   if (!BB->hasAddressTaken()) return false;
955 
956   // If the block has its address taken, it may be a tree of dead constants
957   // hanging off of it.  These shouldn't keep the block alive.
958   BlockAddress *BA = BlockAddress::get(BB);
959   BA->removeDeadConstantUsers();
960   return !BA->use_empty();
961 }
962 
963 /// processBlock - If there are any predecessors whose control can be threaded
964 /// through to a successor, transform them now.
965 bool JumpThreadingPass::processBlock(BasicBlock *BB) {
966   // If the block is trivially dead, just return and let the caller nuke it.
967   // This simplifies other transformations.
968   if (DTU->isBBPendingDeletion(BB) ||
969       (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
970     return false;
971 
972   // If this block has a single predecessor, and if that pred has a single
973   // successor, merge the blocks.  This encourages recursive jump threading
974   // because now the condition in this block can be threaded through
975   // predecessors of our predecessor block.
976   if (maybeMergeBasicBlockIntoOnlyPred(BB))
977     return true;
978 
979   if (tryToUnfoldSelectInCurrBB(BB))
980     return true;
981 
982   // Look if we can propagate guards to predecessors.
983   if (HasGuards && processGuards(BB))
984     return true;
985 
986   // What kind of constant we're looking for.
987   ConstantPreference Preference = WantInteger;
988 
989   // Look to see if the terminator is a conditional branch, switch or indirect
990   // branch, if not we can't thread it.
991   Value *Condition;
992   Instruction *Terminator = BB->getTerminator();
993   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
994     // Can't thread an unconditional jump.
995     if (BI->isUnconditional()) return false;
996     Condition = BI->getCondition();
997   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
998     Condition = SI->getCondition();
999   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1000     // Can't thread indirect branch with no successors.
1001     if (IB->getNumSuccessors() == 0) return false;
1002     Condition = IB->getAddress()->stripPointerCasts();
1003     Preference = WantBlockAddress;
1004   } else {
1005     return false; // Must be an invoke or callbr.
1006   }
1007 
1008   // Keep track if we constant folded the condition in this invocation.
1009   bool ConstantFolded = false;
1010 
1011   // Run constant folding to see if we can reduce the condition to a simple
1012   // constant.
1013   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1014     Value *SimpleVal =
1015         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1016     if (SimpleVal) {
1017       I->replaceAllUsesWith(SimpleVal);
1018       if (isInstructionTriviallyDead(I, TLI))
1019         I->eraseFromParent();
1020       Condition = SimpleVal;
1021       ConstantFolded = true;
1022     }
1023   }
1024 
1025   // If the terminator is branching on an undef or freeze undef, we can pick any
1026   // of the successors to branch to.  Let getBestDestForJumpOnUndef decide.
1027   auto *FI = dyn_cast<FreezeInst>(Condition);
1028   if (isa<UndefValue>(Condition) ||
1029       (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) {
1030     unsigned BestSucc = getBestDestForJumpOnUndef(BB);
1031     std::vector<DominatorTree::UpdateType> Updates;
1032 
1033     // Fold the branch/switch.
1034     Instruction *BBTerm = BB->getTerminator();
1035     Updates.reserve(BBTerm->getNumSuccessors());
1036     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1037       if (i == BestSucc) continue;
1038       BasicBlock *Succ = BBTerm->getSuccessor(i);
1039       Succ->removePredecessor(BB, true);
1040       Updates.push_back({DominatorTree::Delete, BB, Succ});
1041     }
1042 
1043     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1044                       << "' folding undef terminator: " << *BBTerm << '\n');
1045     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1046     ++NumFolds;
1047     BBTerm->eraseFromParent();
1048     DTU->applyUpdatesPermissive(Updates);
1049     if (FI)
1050       FI->eraseFromParent();
1051     return true;
1052   }
1053 
1054   // If the terminator of this block is branching on a constant, simplify the
1055   // terminator to an unconditional branch.  This can occur due to threading in
1056   // other blocks.
1057   if (getKnownConstant(Condition, Preference)) {
1058     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1059                       << "' folding terminator: " << *BB->getTerminator()
1060                       << '\n');
1061     ++NumFolds;
1062     ConstantFoldTerminator(BB, true, nullptr, DTU.get());
1063     if (auto *BPI = getBPI())
1064       BPI->eraseBlock(BB);
1065     return true;
1066   }
1067 
1068   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1069 
1070   // All the rest of our checks depend on the condition being an instruction.
1071   if (!CondInst) {
1072     // FIXME: Unify this with code below.
1073     if (processThreadableEdges(Condition, BB, Preference, Terminator))
1074       return true;
1075     return ConstantFolded;
1076   }
1077 
1078   // Some of the following optimization can safely work on the unfrozen cond.
1079   Value *CondWithoutFreeze = CondInst;
1080   if (auto *FI = dyn_cast<FreezeInst>(CondInst))
1081     CondWithoutFreeze = FI->getOperand(0);
1082 
1083   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondWithoutFreeze)) {
1084     // If we're branching on a conditional, LVI might be able to determine
1085     // it's value at the branch instruction.  We only handle comparisons
1086     // against a constant at this time.
1087     if (Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1))) {
1088       LazyValueInfo::Tristate Ret =
1089           LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1090                               CondConst, BB->getTerminator(),
1091                               /*UseBlockValue=*/false);
1092       if (Ret != LazyValueInfo::Unknown) {
1093         // We can safely replace *some* uses of the CondInst if it has
1094         // exactly one value as returned by LVI. RAUW is incorrect in the
1095         // presence of guards and assumes, that have the `Cond` as the use. This
1096         // is because we use the guards/assume to reason about the `Cond` value
1097         // at the end of block, but RAUW unconditionally replaces all uses
1098         // including the guards/assumes themselves and the uses before the
1099         // guard/assume.
1100         auto *CI = Ret == LazyValueInfo::True ?
1101           ConstantInt::getTrue(CondCmp->getType()) :
1102           ConstantInt::getFalse(CondCmp->getType());
1103         if (replaceFoldableUses(CondCmp, CI, BB))
1104           return true;
1105       }
1106 
1107       // We did not manage to simplify this branch, try to see whether
1108       // CondCmp depends on a known phi-select pattern.
1109       if (tryToUnfoldSelect(CondCmp, BB))
1110         return true;
1111     }
1112   }
1113 
1114   if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1115     if (tryToUnfoldSelect(SI, BB))
1116       return true;
1117 
1118   // Check for some cases that are worth simplifying.  Right now we want to look
1119   // for loads that are used by a switch or by the condition for the branch.  If
1120   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1121   // which can then be used to thread the values.
1122   Value *SimplifyValue = CondWithoutFreeze;
1123 
1124   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1125     if (isa<Constant>(CondCmp->getOperand(1)))
1126       SimplifyValue = CondCmp->getOperand(0);
1127 
1128   // TODO: There are other places where load PRE would be profitable, such as
1129   // more complex comparisons.
1130   if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1131     if (simplifyPartiallyRedundantLoad(LoadI))
1132       return true;
1133 
1134   // Before threading, try to propagate profile data backwards:
1135   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1136     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1137       updatePredecessorProfileMetadata(PN, BB);
1138 
1139   // Handle a variety of cases where we are branching on something derived from
1140   // a PHI node in the current block.  If we can prove that any predecessors
1141   // compute a predictable value based on a PHI node, thread those predecessors.
1142   if (processThreadableEdges(CondInst, BB, Preference, Terminator))
1143     return true;
1144 
1145   // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in
1146   // the current block, see if we can simplify.
1147   PHINode *PN = dyn_cast<PHINode>(CondWithoutFreeze);
1148   if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1149     return processBranchOnPHI(PN);
1150 
1151   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1152   if (CondInst->getOpcode() == Instruction::Xor &&
1153       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1154     return processBranchOnXOR(cast<BinaryOperator>(CondInst));
1155 
1156   // Search for a stronger dominating condition that can be used to simplify a
1157   // conditional branch leaving BB.
1158   if (processImpliedCondition(BB))
1159     return true;
1160 
1161   return false;
1162 }
1163 
1164 bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) {
1165   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1166   if (!BI || !BI->isConditional())
1167     return false;
1168 
1169   Value *Cond = BI->getCondition();
1170   // Assuming that predecessor's branch was taken, if pred's branch condition
1171   // (V) implies Cond, Cond can be either true, undef, or poison. In this case,
1172   // freeze(Cond) is either true or a nondeterministic value.
1173   // If freeze(Cond) has only one use, we can freely fold freeze(Cond) to true
1174   // without affecting other instructions.
1175   auto *FICond = dyn_cast<FreezeInst>(Cond);
1176   if (FICond && FICond->hasOneUse())
1177     Cond = FICond->getOperand(0);
1178   else
1179     FICond = nullptr;
1180 
1181   BasicBlock *CurrentBB = BB;
1182   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1183   unsigned Iter = 0;
1184 
1185   auto &DL = BB->getModule()->getDataLayout();
1186 
1187   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1188     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1189     if (!PBI || !PBI->isConditional())
1190       return false;
1191     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1192       return false;
1193 
1194     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1195     std::optional<bool> Implication =
1196         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1197 
1198     // If the branch condition of BB (which is Cond) and CurrentPred are
1199     // exactly the same freeze instruction, Cond can be folded into CondIsTrue.
1200     if (!Implication && FICond && isa<FreezeInst>(PBI->getCondition())) {
1201       if (cast<FreezeInst>(PBI->getCondition())->getOperand(0) ==
1202           FICond->getOperand(0))
1203         Implication = CondIsTrue;
1204     }
1205 
1206     if (Implication) {
1207       BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1208       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1209       RemoveSucc->removePredecessor(BB);
1210       BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI);
1211       UncondBI->setDebugLoc(BI->getDebugLoc());
1212       ++NumFolds;
1213       BI->eraseFromParent();
1214       if (FICond)
1215         FICond->eraseFromParent();
1216 
1217       DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}});
1218       if (auto *BPI = getBPI())
1219         BPI->eraseBlock(BB);
1220       return true;
1221     }
1222     CurrentBB = CurrentPred;
1223     CurrentPred = CurrentBB->getSinglePredecessor();
1224   }
1225 
1226   return false;
1227 }
1228 
1229 /// Return true if Op is an instruction defined in the given block.
1230 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1231   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1232     if (OpInst->getParent() == BB)
1233       return true;
1234   return false;
1235 }
1236 
1237 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1238 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1239 /// This is an important optimization that encourages jump threading, and needs
1240 /// to be run interlaced with other jump threading tasks.
1241 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1242   // Don't hack volatile and ordered loads.
1243   if (!LoadI->isUnordered()) return false;
1244 
1245   // If the load is defined in a block with exactly one predecessor, it can't be
1246   // partially redundant.
1247   BasicBlock *LoadBB = LoadI->getParent();
1248   if (LoadBB->getSinglePredecessor())
1249     return false;
1250 
1251   // If the load is defined in an EH pad, it can't be partially redundant,
1252   // because the edges between the invoke and the EH pad cannot have other
1253   // instructions between them.
1254   if (LoadBB->isEHPad())
1255     return false;
1256 
1257   Value *LoadedPtr = LoadI->getOperand(0);
1258 
1259   // If the loaded operand is defined in the LoadBB and its not a phi,
1260   // it can't be available in predecessors.
1261   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1262     return false;
1263 
1264   // Scan a few instructions up from the load, to see if it is obviously live at
1265   // the entry to its block.
1266   BasicBlock::iterator BBIt(LoadI);
1267   bool IsLoadCSE;
1268   if (Value *AvailableVal = FindAvailableLoadedValue(
1269           LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1270     // If the value of the load is locally available within the block, just use
1271     // it.  This frequently occurs for reg2mem'd allocas.
1272 
1273     if (IsLoadCSE) {
1274       LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1275       combineMetadataForCSE(NLoadI, LoadI, false);
1276       LVI->forgetValue(NLoadI);
1277     };
1278 
1279     // If the returned value is the load itself, replace with poison. This can
1280     // only happen in dead loops.
1281     if (AvailableVal == LoadI)
1282       AvailableVal = PoisonValue::get(LoadI->getType());
1283     if (AvailableVal->getType() != LoadI->getType())
1284       AvailableVal = CastInst::CreateBitOrPointerCast(
1285           AvailableVal, LoadI->getType(), "", LoadI);
1286     LoadI->replaceAllUsesWith(AvailableVal);
1287     LoadI->eraseFromParent();
1288     return true;
1289   }
1290 
1291   // Otherwise, if we scanned the whole block and got to the top of the block,
1292   // we know the block is locally transparent to the load.  If not, something
1293   // might clobber its value.
1294   if (BBIt != LoadBB->begin())
1295     return false;
1296 
1297   // If all of the loads and stores that feed the value have the same AA tags,
1298   // then we can propagate them onto any newly inserted loads.
1299   AAMDNodes AATags = LoadI->getAAMetadata();
1300 
1301   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1302 
1303   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1304 
1305   AvailablePredsTy AvailablePreds;
1306   BasicBlock *OneUnavailablePred = nullptr;
1307   SmallVector<LoadInst*, 8> CSELoads;
1308 
1309   // If we got here, the loaded value is transparent through to the start of the
1310   // block.  Check to see if it is available in any of the predecessor blocks.
1311   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1312     // If we already scanned this predecessor, skip it.
1313     if (!PredsScanned.insert(PredBB).second)
1314       continue;
1315 
1316     BBIt = PredBB->end();
1317     unsigned NumScanedInst = 0;
1318     Value *PredAvailable = nullptr;
1319     // NOTE: We don't CSE load that is volatile or anything stronger than
1320     // unordered, that should have been checked when we entered the function.
1321     assert(LoadI->isUnordered() &&
1322            "Attempting to CSE volatile or atomic loads");
1323     // If this is a load on a phi pointer, phi-translate it and search
1324     // for available load/store to the pointer in predecessors.
1325     Type *AccessTy = LoadI->getType();
1326     const auto &DL = LoadI->getModule()->getDataLayout();
1327     MemoryLocation Loc(LoadedPtr->DoPHITranslation(LoadBB, PredBB),
1328                        LocationSize::precise(DL.getTypeStoreSize(AccessTy)),
1329                        AATags);
1330     PredAvailable = findAvailablePtrLoadStore(Loc, AccessTy, LoadI->isAtomic(),
1331                                               PredBB, BBIt, DefMaxInstsToScan,
1332                                               AA, &IsLoadCSE, &NumScanedInst);
1333 
1334     // If PredBB has a single predecessor, continue scanning through the
1335     // single predecessor.
1336     BasicBlock *SinglePredBB = PredBB;
1337     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1338            NumScanedInst < DefMaxInstsToScan) {
1339       SinglePredBB = SinglePredBB->getSinglePredecessor();
1340       if (SinglePredBB) {
1341         BBIt = SinglePredBB->end();
1342         PredAvailable = findAvailablePtrLoadStore(
1343             Loc, AccessTy, LoadI->isAtomic(), SinglePredBB, BBIt,
1344             (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1345             &NumScanedInst);
1346       }
1347     }
1348 
1349     if (!PredAvailable) {
1350       OneUnavailablePred = PredBB;
1351       continue;
1352     }
1353 
1354     if (IsLoadCSE)
1355       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1356 
1357     // If so, this load is partially redundant.  Remember this info so that we
1358     // can create a PHI node.
1359     AvailablePreds.emplace_back(PredBB, PredAvailable);
1360   }
1361 
1362   // If the loaded value isn't available in any predecessor, it isn't partially
1363   // redundant.
1364   if (AvailablePreds.empty()) return false;
1365 
1366   // Okay, the loaded value is available in at least one (and maybe all!)
1367   // predecessors.  If the value is unavailable in more than one unique
1368   // predecessor, we want to insert a merge block for those common predecessors.
1369   // This ensures that we only have to insert one reload, thus not increasing
1370   // code size.
1371   BasicBlock *UnavailablePred = nullptr;
1372 
1373   // If the value is unavailable in one of predecessors, we will end up
1374   // inserting a new instruction into them. It is only valid if all the
1375   // instructions before LoadI are guaranteed to pass execution to its
1376   // successor, or if LoadI is safe to speculate.
1377   // TODO: If this logic becomes more complex, and we will perform PRE insertion
1378   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1379   // It requires domination tree analysis, so for this simple case it is an
1380   // overkill.
1381   if (PredsScanned.size() != AvailablePreds.size() &&
1382       !isSafeToSpeculativelyExecute(LoadI))
1383     for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1384       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1385         return false;
1386 
1387   // If there is exactly one predecessor where the value is unavailable, the
1388   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1389   // unconditional branch, we know that it isn't a critical edge.
1390   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1391       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1392     UnavailablePred = OneUnavailablePred;
1393   } else if (PredsScanned.size() != AvailablePreds.size()) {
1394     // Otherwise, we had multiple unavailable predecessors or we had a critical
1395     // edge from the one.
1396     SmallVector<BasicBlock*, 8> PredsToSplit;
1397     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1398 
1399     for (const auto &AvailablePred : AvailablePreds)
1400       AvailablePredSet.insert(AvailablePred.first);
1401 
1402     // Add all the unavailable predecessors to the PredsToSplit list.
1403     for (BasicBlock *P : predecessors(LoadBB)) {
1404       // If the predecessor is an indirect goto, we can't split the edge.
1405       if (isa<IndirectBrInst>(P->getTerminator()))
1406         return false;
1407 
1408       if (!AvailablePredSet.count(P))
1409         PredsToSplit.push_back(P);
1410     }
1411 
1412     // Split them out to their own block.
1413     UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1414   }
1415 
1416   // If the value isn't available in all predecessors, then there will be
1417   // exactly one where it isn't available.  Insert a load on that edge and add
1418   // it to the AvailablePreds list.
1419   if (UnavailablePred) {
1420     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1421            "Can't handle critical edge here!");
1422     LoadInst *NewVal = new LoadInst(
1423         LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1424         LoadI->getName() + ".pr", false, LoadI->getAlign(),
1425         LoadI->getOrdering(), LoadI->getSyncScopeID(),
1426         UnavailablePred->getTerminator());
1427     NewVal->setDebugLoc(LoadI->getDebugLoc());
1428     if (AATags)
1429       NewVal->setAAMetadata(AATags);
1430 
1431     AvailablePreds.emplace_back(UnavailablePred, NewVal);
1432   }
1433 
1434   // Now we know that each predecessor of this block has a value in
1435   // AvailablePreds, sort them for efficient access as we're walking the preds.
1436   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1437 
1438   // Create a PHI node at the start of the block for the PRE'd load value.
1439   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1440   PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "");
1441   PN->insertBefore(LoadBB->begin());
1442   PN->takeName(LoadI);
1443   PN->setDebugLoc(LoadI->getDebugLoc());
1444 
1445   // Insert new entries into the PHI for each predecessor.  A single block may
1446   // have multiple entries here.
1447   for (pred_iterator PI = PB; PI != PE; ++PI) {
1448     BasicBlock *P = *PI;
1449     AvailablePredsTy::iterator I =
1450         llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr));
1451 
1452     assert(I != AvailablePreds.end() && I->first == P &&
1453            "Didn't find entry for predecessor!");
1454 
1455     // If we have an available predecessor but it requires casting, insert the
1456     // cast in the predecessor and use the cast. Note that we have to update the
1457     // AvailablePreds vector as we go so that all of the PHI entries for this
1458     // predecessor use the same bitcast.
1459     Value *&PredV = I->second;
1460     if (PredV->getType() != LoadI->getType())
1461       PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1462                                                P->getTerminator());
1463 
1464     PN->addIncoming(PredV, I->first);
1465   }
1466 
1467   for (LoadInst *PredLoadI : CSELoads) {
1468     combineMetadataForCSE(PredLoadI, LoadI, true);
1469     LVI->forgetValue(PredLoadI);
1470   }
1471 
1472   LoadI->replaceAllUsesWith(PN);
1473   LoadI->eraseFromParent();
1474 
1475   return true;
1476 }
1477 
1478 /// findMostPopularDest - The specified list contains multiple possible
1479 /// threadable destinations.  Pick the one that occurs the most frequently in
1480 /// the list.
1481 static BasicBlock *
1482 findMostPopularDest(BasicBlock *BB,
1483                     const SmallVectorImpl<std::pair<BasicBlock *,
1484                                           BasicBlock *>> &PredToDestList) {
1485   assert(!PredToDestList.empty());
1486 
1487   // Determine popularity.  If there are multiple possible destinations, we
1488   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1489   // blocks with known and real destinations to threading undef.  We'll handle
1490   // them later if interesting.
1491   MapVector<BasicBlock *, unsigned> DestPopularity;
1492 
1493   // Populate DestPopularity with the successors in the order they appear in the
1494   // successor list.  This way, we ensure determinism by iterating it in the
1495   // same order in std::max_element below.  We map nullptr to 0 so that we can
1496   // return nullptr when PredToDestList contains nullptr only.
1497   DestPopularity[nullptr] = 0;
1498   for (auto *SuccBB : successors(BB))
1499     DestPopularity[SuccBB] = 0;
1500 
1501   for (const auto &PredToDest : PredToDestList)
1502     if (PredToDest.second)
1503       DestPopularity[PredToDest.second]++;
1504 
1505   // Find the most popular dest.
1506   auto MostPopular = std::max_element(
1507       DestPopularity.begin(), DestPopularity.end(), llvm::less_second());
1508 
1509   // Okay, we have finally picked the most popular destination.
1510   return MostPopular->first;
1511 }
1512 
1513 // Try to evaluate the value of V when the control flows from PredPredBB to
1514 // BB->getSinglePredecessor() and then on to BB.
1515 Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB,
1516                                                        BasicBlock *PredPredBB,
1517                                                        Value *V) {
1518   BasicBlock *PredBB = BB->getSinglePredecessor();
1519   assert(PredBB && "Expected a single predecessor");
1520 
1521   if (Constant *Cst = dyn_cast<Constant>(V)) {
1522     return Cst;
1523   }
1524 
1525   // Consult LVI if V is not an instruction in BB or PredBB.
1526   Instruction *I = dyn_cast<Instruction>(V);
1527   if (!I || (I->getParent() != BB && I->getParent() != PredBB)) {
1528     return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr);
1529   }
1530 
1531   // Look into a PHI argument.
1532   if (PHINode *PHI = dyn_cast<PHINode>(V)) {
1533     if (PHI->getParent() == PredBB)
1534       return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB));
1535     return nullptr;
1536   }
1537 
1538   // If we have a CmpInst, try to fold it for each incoming edge into PredBB.
1539   if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) {
1540     if (CondCmp->getParent() == BB) {
1541       Constant *Op0 =
1542           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0));
1543       Constant *Op1 =
1544           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1));
1545       if (Op0 && Op1) {
1546         return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1);
1547       }
1548     }
1549     return nullptr;
1550   }
1551 
1552   return nullptr;
1553 }
1554 
1555 bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB,
1556                                                ConstantPreference Preference,
1557                                                Instruction *CxtI) {
1558   // If threading this would thread across a loop header, don't even try to
1559   // thread the edge.
1560   if (LoopHeaders.count(BB))
1561     return false;
1562 
1563   PredValueInfoTy PredValues;
1564   if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference,
1565                                        CxtI)) {
1566     // We don't have known values in predecessors.  See if we can thread through
1567     // BB and its sole predecessor.
1568     return maybethreadThroughTwoBasicBlocks(BB, Cond);
1569   }
1570 
1571   assert(!PredValues.empty() &&
1572          "computeValueKnownInPredecessors returned true with no values");
1573 
1574   LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1575              for (const auto &PredValue : PredValues) {
1576                dbgs() << "  BB '" << BB->getName()
1577                       << "': FOUND condition = " << *PredValue.first
1578                       << " for pred '" << PredValue.second->getName() << "'.\n";
1579   });
1580 
1581   // Decide what we want to thread through.  Convert our list of known values to
1582   // a list of known destinations for each pred.  This also discards duplicate
1583   // predecessors and keeps track of the undefined inputs (which are represented
1584   // as a null dest in the PredToDestList).
1585   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1586   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1587 
1588   BasicBlock *OnlyDest = nullptr;
1589   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1590   Constant *OnlyVal = nullptr;
1591   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1592 
1593   for (const auto &PredValue : PredValues) {
1594     BasicBlock *Pred = PredValue.second;
1595     if (!SeenPreds.insert(Pred).second)
1596       continue;  // Duplicate predecessor entry.
1597 
1598     Constant *Val = PredValue.first;
1599 
1600     BasicBlock *DestBB;
1601     if (isa<UndefValue>(Val))
1602       DestBB = nullptr;
1603     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1604       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1605       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1606     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1607       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1608       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1609     } else {
1610       assert(isa<IndirectBrInst>(BB->getTerminator())
1611               && "Unexpected terminator");
1612       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1613       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1614     }
1615 
1616     // If we have exactly one destination, remember it for efficiency below.
1617     if (PredToDestList.empty()) {
1618       OnlyDest = DestBB;
1619       OnlyVal = Val;
1620     } else {
1621       if (OnlyDest != DestBB)
1622         OnlyDest = MultipleDestSentinel;
1623       // It possible we have same destination, but different value, e.g. default
1624       // case in switchinst.
1625       if (Val != OnlyVal)
1626         OnlyVal = MultipleVal;
1627     }
1628 
1629     // If the predecessor ends with an indirect goto, we can't change its
1630     // destination.
1631     if (isa<IndirectBrInst>(Pred->getTerminator()))
1632       continue;
1633 
1634     PredToDestList.emplace_back(Pred, DestBB);
1635   }
1636 
1637   // If all edges were unthreadable, we fail.
1638   if (PredToDestList.empty())
1639     return false;
1640 
1641   // If all the predecessors go to a single known successor, we want to fold,
1642   // not thread. By doing so, we do not need to duplicate the current block and
1643   // also miss potential opportunities in case we dont/cant duplicate.
1644   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1645     if (BB->hasNPredecessors(PredToDestList.size())) {
1646       bool SeenFirstBranchToOnlyDest = false;
1647       std::vector <DominatorTree::UpdateType> Updates;
1648       Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1649       for (BasicBlock *SuccBB : successors(BB)) {
1650         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1651           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1652         } else {
1653           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1654           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1655         }
1656       }
1657 
1658       // Finally update the terminator.
1659       Instruction *Term = BB->getTerminator();
1660       BranchInst::Create(OnlyDest, Term);
1661       ++NumFolds;
1662       Term->eraseFromParent();
1663       DTU->applyUpdatesPermissive(Updates);
1664       if (auto *BPI = getBPI())
1665         BPI->eraseBlock(BB);
1666 
1667       // If the condition is now dead due to the removal of the old terminator,
1668       // erase it.
1669       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1670         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1671           CondInst->eraseFromParent();
1672         // We can safely replace *some* uses of the CondInst if it has
1673         // exactly one value as returned by LVI. RAUW is incorrect in the
1674         // presence of guards and assumes, that have the `Cond` as the use. This
1675         // is because we use the guards/assume to reason about the `Cond` value
1676         // at the end of block, but RAUW unconditionally replaces all uses
1677         // including the guards/assumes themselves and the uses before the
1678         // guard/assume.
1679         else if (OnlyVal && OnlyVal != MultipleVal)
1680           replaceFoldableUses(CondInst, OnlyVal, BB);
1681       }
1682       return true;
1683     }
1684   }
1685 
1686   // Determine which is the most common successor.  If we have many inputs and
1687   // this block is a switch, we want to start by threading the batch that goes
1688   // to the most popular destination first.  If we only know about one
1689   // threadable destination (the common case) we can avoid this.
1690   BasicBlock *MostPopularDest = OnlyDest;
1691 
1692   if (MostPopularDest == MultipleDestSentinel) {
1693     // Remove any loop headers from the Dest list, threadEdge conservatively
1694     // won't process them, but we might have other destination that are eligible
1695     // and we still want to process.
1696     erase_if(PredToDestList,
1697              [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1698                return LoopHeaders.contains(PredToDest.second);
1699              });
1700 
1701     if (PredToDestList.empty())
1702       return false;
1703 
1704     MostPopularDest = findMostPopularDest(BB, PredToDestList);
1705   }
1706 
1707   // Now that we know what the most popular destination is, factor all
1708   // predecessors that will jump to it into a single predecessor.
1709   SmallVector<BasicBlock*, 16> PredsToFactor;
1710   for (const auto &PredToDest : PredToDestList)
1711     if (PredToDest.second == MostPopularDest) {
1712       BasicBlock *Pred = PredToDest.first;
1713 
1714       // This predecessor may be a switch or something else that has multiple
1715       // edges to the block.  Factor each of these edges by listing them
1716       // according to # occurrences in PredsToFactor.
1717       for (BasicBlock *Succ : successors(Pred))
1718         if (Succ == BB)
1719           PredsToFactor.push_back(Pred);
1720     }
1721 
1722   // If the threadable edges are branching on an undefined value, we get to pick
1723   // the destination that these predecessors should get to.
1724   if (!MostPopularDest)
1725     MostPopularDest = BB->getTerminator()->
1726                             getSuccessor(getBestDestForJumpOnUndef(BB));
1727 
1728   // Ok, try to thread it!
1729   return tryThreadEdge(BB, PredsToFactor, MostPopularDest);
1730 }
1731 
1732 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on
1733 /// a PHI node (or freeze PHI) in the current block.  See if there are any
1734 /// simplifications we can do based on inputs to the phi node.
1735 bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) {
1736   BasicBlock *BB = PN->getParent();
1737 
1738   // TODO: We could make use of this to do it once for blocks with common PHI
1739   // values.
1740   SmallVector<BasicBlock*, 1> PredBBs;
1741   PredBBs.resize(1);
1742 
1743   // If any of the predecessor blocks end in an unconditional branch, we can
1744   // *duplicate* the conditional branch into that block in order to further
1745   // encourage jump threading and to eliminate cases where we have branch on a
1746   // phi of an icmp (branch on icmp is much better).
1747   // This is still beneficial when a frozen phi is used as the branch condition
1748   // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp))
1749   // to br(icmp(freeze ...)).
1750   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1751     BasicBlock *PredBB = PN->getIncomingBlock(i);
1752     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1753       if (PredBr->isUnconditional()) {
1754         PredBBs[0] = PredBB;
1755         // Try to duplicate BB into PredBB.
1756         if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1757           return true;
1758       }
1759   }
1760 
1761   return false;
1762 }
1763 
1764 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on
1765 /// a xor instruction in the current block.  See if there are any
1766 /// simplifications we can do based on inputs to the xor.
1767 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) {
1768   BasicBlock *BB = BO->getParent();
1769 
1770   // If either the LHS or RHS of the xor is a constant, don't do this
1771   // optimization.
1772   if (isa<ConstantInt>(BO->getOperand(0)) ||
1773       isa<ConstantInt>(BO->getOperand(1)))
1774     return false;
1775 
1776   // If the first instruction in BB isn't a phi, we won't be able to infer
1777   // anything special about any particular predecessor.
1778   if (!isa<PHINode>(BB->front()))
1779     return false;
1780 
1781   // If this BB is a landing pad, we won't be able to split the edge into it.
1782   if (BB->isEHPad())
1783     return false;
1784 
1785   // If we have a xor as the branch input to this block, and we know that the
1786   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1787   // the condition into the predecessor and fix that value to true, saving some
1788   // logical ops on that path and encouraging other paths to simplify.
1789   //
1790   // This copies something like this:
1791   //
1792   //  BB:
1793   //    %X = phi i1 [1],  [%X']
1794   //    %Y = icmp eq i32 %A, %B
1795   //    %Z = xor i1 %X, %Y
1796   //    br i1 %Z, ...
1797   //
1798   // Into:
1799   //  BB':
1800   //    %Y = icmp ne i32 %A, %B
1801   //    br i1 %Y, ...
1802 
1803   PredValueInfoTy XorOpValues;
1804   bool isLHS = true;
1805   if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1806                                        WantInteger, BO)) {
1807     assert(XorOpValues.empty());
1808     if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1809                                          WantInteger, BO))
1810       return false;
1811     isLHS = false;
1812   }
1813 
1814   assert(!XorOpValues.empty() &&
1815          "computeValueKnownInPredecessors returned true with no values");
1816 
1817   // Scan the information to see which is most popular: true or false.  The
1818   // predecessors can be of the set true, false, or undef.
1819   unsigned NumTrue = 0, NumFalse = 0;
1820   for (const auto &XorOpValue : XorOpValues) {
1821     if (isa<UndefValue>(XorOpValue.first))
1822       // Ignore undefs for the count.
1823       continue;
1824     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1825       ++NumFalse;
1826     else
1827       ++NumTrue;
1828   }
1829 
1830   // Determine which value to split on, true, false, or undef if neither.
1831   ConstantInt *SplitVal = nullptr;
1832   if (NumTrue > NumFalse)
1833     SplitVal = ConstantInt::getTrue(BB->getContext());
1834   else if (NumTrue != 0 || NumFalse != 0)
1835     SplitVal = ConstantInt::getFalse(BB->getContext());
1836 
1837   // Collect all of the blocks that this can be folded into so that we can
1838   // factor this once and clone it once.
1839   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1840   for (const auto &XorOpValue : XorOpValues) {
1841     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1842       continue;
1843 
1844     BlocksToFoldInto.push_back(XorOpValue.second);
1845   }
1846 
1847   // If we inferred a value for all of the predecessors, then duplication won't
1848   // help us.  However, we can just replace the LHS or RHS with the constant.
1849   if (BlocksToFoldInto.size() ==
1850       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1851     if (!SplitVal) {
1852       // If all preds provide undef, just nuke the xor, because it is undef too.
1853       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1854       BO->eraseFromParent();
1855     } else if (SplitVal->isZero() && BO != BO->getOperand(isLHS)) {
1856       // If all preds provide 0, replace the xor with the other input.
1857       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1858       BO->eraseFromParent();
1859     } else {
1860       // If all preds provide 1, set the computed value to 1.
1861       BO->setOperand(!isLHS, SplitVal);
1862     }
1863 
1864     return true;
1865   }
1866 
1867   // If any of predecessors end with an indirect goto, we can't change its
1868   // destination.
1869   if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) {
1870         return isa<IndirectBrInst>(Pred->getTerminator());
1871       }))
1872     return false;
1873 
1874   // Try to duplicate BB into PredBB.
1875   return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1876 }
1877 
1878 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1879 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1880 /// NewPred using the entries from OldPred (suitably mapped).
1881 static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1882                                             BasicBlock *OldPred,
1883                                             BasicBlock *NewPred,
1884                                      DenseMap<Instruction*, Value*> &ValueMap) {
1885   for (PHINode &PN : PHIBB->phis()) {
1886     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1887     // DestBlock.
1888     Value *IV = PN.getIncomingValueForBlock(OldPred);
1889 
1890     // Remap the value if necessary.
1891     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1892       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1893       if (I != ValueMap.end())
1894         IV = I->second;
1895     }
1896 
1897     PN.addIncoming(IV, NewPred);
1898   }
1899 }
1900 
1901 /// Merge basic block BB into its sole predecessor if possible.
1902 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) {
1903   BasicBlock *SinglePred = BB->getSinglePredecessor();
1904   if (!SinglePred)
1905     return false;
1906 
1907   const Instruction *TI = SinglePred->getTerminator();
1908   if (TI->isSpecialTerminator() || TI->getNumSuccessors() != 1 ||
1909       SinglePred == BB || hasAddressTakenAndUsed(BB))
1910     return false;
1911 
1912   // If SinglePred was a loop header, BB becomes one.
1913   if (LoopHeaders.erase(SinglePred))
1914     LoopHeaders.insert(BB);
1915 
1916   LVI->eraseBlock(SinglePred);
1917   MergeBasicBlockIntoOnlyPred(BB, DTU.get());
1918 
1919   // Now that BB is merged into SinglePred (i.e. SinglePred code followed by
1920   // BB code within one basic block `BB`), we need to invalidate the LVI
1921   // information associated with BB, because the LVI information need not be
1922   // true for all of BB after the merge. For example,
1923   // Before the merge, LVI info and code is as follows:
1924   // SinglePred: <LVI info1 for %p val>
1925   // %y = use of %p
1926   // call @exit() // need not transfer execution to successor.
1927   // assume(%p) // from this point on %p is true
1928   // br label %BB
1929   // BB: <LVI info2 for %p val, i.e. %p is true>
1930   // %x = use of %p
1931   // br label exit
1932   //
1933   // Note that this LVI info for blocks BB and SinglPred is correct for %p
1934   // (info2 and info1 respectively). After the merge and the deletion of the
1935   // LVI info1 for SinglePred. We have the following code:
1936   // BB: <LVI info2 for %p val>
1937   // %y = use of %p
1938   // call @exit()
1939   // assume(%p)
1940   // %x = use of %p <-- LVI info2 is correct from here onwards.
1941   // br label exit
1942   // LVI info2 for BB is incorrect at the beginning of BB.
1943 
1944   // Invalidate LVI information for BB if the LVI is not provably true for
1945   // all of BB.
1946   if (!isGuaranteedToTransferExecutionToSuccessor(BB))
1947     LVI->eraseBlock(BB);
1948   return true;
1949 }
1950 
1951 /// Update the SSA form.  NewBB contains instructions that are copied from BB.
1952 /// ValueMapping maps old values in BB to new ones in NewBB.
1953 void JumpThreadingPass::updateSSA(
1954     BasicBlock *BB, BasicBlock *NewBB,
1955     DenseMap<Instruction *, Value *> &ValueMapping) {
1956   // If there were values defined in BB that are used outside the block, then we
1957   // now have to update all uses of the value to use either the original value,
1958   // the cloned value, or some PHI derived value.  This can require arbitrary
1959   // PHI insertion, of which we are prepared to do, clean these up now.
1960   SSAUpdater SSAUpdate;
1961   SmallVector<Use *, 16> UsesToRename;
1962   SmallVector<DbgValueInst *, 4> DbgValues;
1963 
1964   for (Instruction &I : *BB) {
1965     // Scan all uses of this instruction to see if it is used outside of its
1966     // block, and if so, record them in UsesToRename.
1967     for (Use &U : I.uses()) {
1968       Instruction *User = cast<Instruction>(U.getUser());
1969       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1970         if (UserPN->getIncomingBlock(U) == BB)
1971           continue;
1972       } else if (User->getParent() == BB)
1973         continue;
1974 
1975       UsesToRename.push_back(&U);
1976     }
1977 
1978     // Find debug values outside of the block
1979     findDbgValues(DbgValues, &I);
1980     llvm::erase_if(DbgValues, [&](const DbgValueInst *DbgVal) {
1981       return DbgVal->getParent() == BB;
1982     });
1983 
1984     // If there are no uses outside the block, we're done with this instruction.
1985     if (UsesToRename.empty() && DbgValues.empty())
1986       continue;
1987     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
1988 
1989     // We found a use of I outside of BB.  Rename all uses of I that are outside
1990     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1991     // with the two values we know.
1992     SSAUpdate.Initialize(I.getType(), I.getName());
1993     SSAUpdate.AddAvailableValue(BB, &I);
1994     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
1995 
1996     while (!UsesToRename.empty())
1997       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1998     if (!DbgValues.empty()) {
1999       SSAUpdate.UpdateDebugValues(&I, DbgValues);
2000       DbgValues.clear();
2001     }
2002 
2003     LLVM_DEBUG(dbgs() << "\n");
2004   }
2005 }
2006 
2007 /// Clone instructions in range [BI, BE) to NewBB.  For PHI nodes, we only clone
2008 /// arguments that come from PredBB.  Return the map from the variables in the
2009 /// source basic block to the variables in the newly created basic block.
2010 DenseMap<Instruction *, Value *>
2011 JumpThreadingPass::cloneInstructions(BasicBlock::iterator BI,
2012                                      BasicBlock::iterator BE, BasicBlock *NewBB,
2013                                      BasicBlock *PredBB) {
2014   // We are going to have to map operands from the source basic block to the new
2015   // copy of the block 'NewBB'.  If there are PHI nodes in the source basic
2016   // block, evaluate them to account for entry from PredBB.
2017   DenseMap<Instruction *, Value *> ValueMapping;
2018 
2019   // Retargets llvm.dbg.value to any renamed variables.
2020   auto RetargetDbgValueIfPossible = [&](Instruction *NewInst) -> bool {
2021     auto DbgInstruction = dyn_cast<DbgValueInst>(NewInst);
2022     if (!DbgInstruction)
2023       return false;
2024 
2025     SmallSet<std::pair<Value *, Value *>, 16> OperandsToRemap;
2026     for (auto DbgOperand : DbgInstruction->location_ops()) {
2027       auto DbgOperandInstruction = dyn_cast<Instruction>(DbgOperand);
2028       if (!DbgOperandInstruction)
2029         continue;
2030 
2031       auto I = ValueMapping.find(DbgOperandInstruction);
2032       if (I != ValueMapping.end()) {
2033         OperandsToRemap.insert(
2034             std::pair<Value *, Value *>(DbgOperand, I->second));
2035       }
2036     }
2037 
2038     for (auto &[OldOp, MappedOp] : OperandsToRemap)
2039       DbgInstruction->replaceVariableLocationOp(OldOp, MappedOp);
2040     return true;
2041   };
2042 
2043   // Clone the phi nodes of the source basic block into NewBB.  The resulting
2044   // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater
2045   // might need to rewrite the operand of the cloned phi.
2046   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2047     PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB);
2048     NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB);
2049     ValueMapping[PN] = NewPN;
2050   }
2051 
2052   // Clone noalias scope declarations in the threaded block. When threading a
2053   // loop exit, we would otherwise end up with two idential scope declarations
2054   // visible at the same time.
2055   SmallVector<MDNode *> NoAliasScopes;
2056   DenseMap<MDNode *, MDNode *> ClonedScopes;
2057   LLVMContext &Context = PredBB->getContext();
2058   identifyNoAliasScopesToClone(BI, BE, NoAliasScopes);
2059   cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context);
2060 
2061   // Clone the non-phi instructions of the source basic block into NewBB,
2062   // keeping track of the mapping and using it to remap operands in the cloned
2063   // instructions.
2064   for (; BI != BE; ++BI) {
2065     Instruction *New = BI->clone();
2066     New->setName(BI->getName());
2067     New->insertInto(NewBB, NewBB->end());
2068     ValueMapping[&*BI] = New;
2069     adaptNoAliasScopes(New, ClonedScopes, Context);
2070 
2071     if (RetargetDbgValueIfPossible(New))
2072       continue;
2073 
2074     // Remap operands to patch up intra-block references.
2075     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2076       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2077         DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst);
2078         if (I != ValueMapping.end())
2079           New->setOperand(i, I->second);
2080       }
2081   }
2082 
2083   return ValueMapping;
2084 }
2085 
2086 /// Attempt to thread through two successive basic blocks.
2087 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB,
2088                                                          Value *Cond) {
2089   // Consider:
2090   //
2091   // PredBB:
2092   //   %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ]
2093   //   %tobool = icmp eq i32 %cond, 0
2094   //   br i1 %tobool, label %BB, label ...
2095   //
2096   // BB:
2097   //   %cmp = icmp eq i32* %var, null
2098   //   br i1 %cmp, label ..., label ...
2099   //
2100   // We don't know the value of %var at BB even if we know which incoming edge
2101   // we take to BB.  However, once we duplicate PredBB for each of its incoming
2102   // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of
2103   // PredBB.  Then we can thread edges PredBB1->BB and PredBB2->BB through BB.
2104 
2105   // Require that BB end with a Branch for simplicity.
2106   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2107   if (!CondBr)
2108     return false;
2109 
2110   // BB must have exactly one predecessor.
2111   BasicBlock *PredBB = BB->getSinglePredecessor();
2112   if (!PredBB)
2113     return false;
2114 
2115   // Require that PredBB end with a conditional Branch. If PredBB ends with an
2116   // unconditional branch, we should be merging PredBB and BB instead. For
2117   // simplicity, we don't deal with a switch.
2118   BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2119   if (!PredBBBranch || PredBBBranch->isUnconditional())
2120     return false;
2121 
2122   // If PredBB has exactly one incoming edge, we don't gain anything by copying
2123   // PredBB.
2124   if (PredBB->getSinglePredecessor())
2125     return false;
2126 
2127   // Don't thread through PredBB if it contains a successor edge to itself, in
2128   // which case we would infinite loop.  Suppose we are threading an edge from
2129   // PredPredBB through PredBB and BB to SuccBB with PredBB containing a
2130   // successor edge to itself.  If we allowed jump threading in this case, we
2131   // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread.  Since
2132   // PredBB.thread has a successor edge to PredBB, we would immediately come up
2133   // with another jump threading opportunity from PredBB.thread through PredBB
2134   // and BB to SuccBB.  This jump threading would repeatedly occur.  That is, we
2135   // would keep peeling one iteration from PredBB.
2136   if (llvm::is_contained(successors(PredBB), PredBB))
2137     return false;
2138 
2139   // Don't thread across a loop header.
2140   if (LoopHeaders.count(PredBB))
2141     return false;
2142 
2143   // Avoid complication with duplicating EH pads.
2144   if (PredBB->isEHPad())
2145     return false;
2146 
2147   // Find a predecessor that we can thread.  For simplicity, we only consider a
2148   // successor edge out of BB to which we thread exactly one incoming edge into
2149   // PredBB.
2150   unsigned ZeroCount = 0;
2151   unsigned OneCount = 0;
2152   BasicBlock *ZeroPred = nullptr;
2153   BasicBlock *OnePred = nullptr;
2154   for (BasicBlock *P : predecessors(PredBB)) {
2155     // If PredPred ends with IndirectBrInst, we can't handle it.
2156     if (isa<IndirectBrInst>(P->getTerminator()))
2157       continue;
2158     if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(
2159             evaluateOnPredecessorEdge(BB, P, Cond))) {
2160       if (CI->isZero()) {
2161         ZeroCount++;
2162         ZeroPred = P;
2163       } else if (CI->isOne()) {
2164         OneCount++;
2165         OnePred = P;
2166       }
2167     }
2168   }
2169 
2170   // Disregard complicated cases where we have to thread multiple edges.
2171   BasicBlock *PredPredBB;
2172   if (ZeroCount == 1) {
2173     PredPredBB = ZeroPred;
2174   } else if (OneCount == 1) {
2175     PredPredBB = OnePred;
2176   } else {
2177     return false;
2178   }
2179 
2180   BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred);
2181 
2182   // If threading to the same block as we come from, we would infinite loop.
2183   if (SuccBB == BB) {
2184     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2185                       << "' - would thread to self!\n");
2186     return false;
2187   }
2188 
2189   // If threading this would thread across a loop header, don't thread the edge.
2190   // See the comments above findLoopHeaders for justifications and caveats.
2191   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2192     LLVM_DEBUG({
2193       bool BBIsHeader = LoopHeaders.count(BB);
2194       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2195       dbgs() << "  Not threading across "
2196              << (BBIsHeader ? "loop header BB '" : "block BB '")
2197              << BB->getName() << "' to dest "
2198              << (SuccIsHeader ? "loop header BB '" : "block BB '")
2199              << SuccBB->getName()
2200              << "' - it might create an irreducible loop!\n";
2201     });
2202     return false;
2203   }
2204 
2205   // Compute the cost of duplicating BB and PredBB.
2206   unsigned BBCost = getJumpThreadDuplicationCost(
2207       TTI, BB, BB->getTerminator(), BBDupThreshold);
2208   unsigned PredBBCost = getJumpThreadDuplicationCost(
2209       TTI, PredBB, PredBB->getTerminator(), BBDupThreshold);
2210 
2211   // Give up if costs are too high.  We need to check BBCost and PredBBCost
2212   // individually before checking their sum because getJumpThreadDuplicationCost
2213   // return (unsigned)~0 for those basic blocks that cannot be duplicated.
2214   if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold ||
2215       BBCost + PredBBCost > BBDupThreshold) {
2216     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2217                       << "' - Cost is too high: " << PredBBCost
2218                       << " for PredBB, " << BBCost << "for BB\n");
2219     return false;
2220   }
2221 
2222   // Now we are ready to duplicate PredBB.
2223   threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB);
2224   return true;
2225 }
2226 
2227 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB,
2228                                                     BasicBlock *PredBB,
2229                                                     BasicBlock *BB,
2230                                                     BasicBlock *SuccBB) {
2231   LLVM_DEBUG(dbgs() << "  Threading through '" << PredBB->getName() << "' and '"
2232                     << BB->getName() << "'\n");
2233 
2234   // Build BPI/BFI before any changes are made to IR.
2235   bool HasProfile = doesBlockHaveProfileData(BB);
2236   auto *BFI = getOrCreateBFI(HasProfile);
2237   auto *BPI = getOrCreateBPI(BFI != nullptr);
2238 
2239   BranchInst *CondBr = cast<BranchInst>(BB->getTerminator());
2240   BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator());
2241 
2242   BasicBlock *NewBB =
2243       BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread",
2244                          PredBB->getParent(), PredBB);
2245   NewBB->moveAfter(PredBB);
2246 
2247   // Set the block frequency of NewBB.
2248   if (BFI) {
2249     assert(BPI && "It's expected BPI to exist along with BFI");
2250     auto NewBBFreq = BFI->getBlockFreq(PredPredBB) *
2251                      BPI->getEdgeProbability(PredPredBB, PredBB);
2252     BFI->setBlockFreq(NewBB, NewBBFreq);
2253   }
2254 
2255   // We are going to have to map operands from the original BB block to the new
2256   // copy of the block 'NewBB'.  If there are PHI nodes in PredBB, evaluate them
2257   // to account for entry from PredPredBB.
2258   DenseMap<Instruction *, Value *> ValueMapping =
2259       cloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB);
2260 
2261   // Copy the edge probabilities from PredBB to NewBB.
2262   if (BPI)
2263     BPI->copyEdgeProbabilities(PredBB, NewBB);
2264 
2265   // Update the terminator of PredPredBB to jump to NewBB instead of PredBB.
2266   // This eliminates predecessors from PredPredBB, which requires us to simplify
2267   // any PHI nodes in PredBB.
2268   Instruction *PredPredTerm = PredPredBB->getTerminator();
2269   for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i)
2270     if (PredPredTerm->getSuccessor(i) == PredBB) {
2271       PredBB->removePredecessor(PredPredBB, true);
2272       PredPredTerm->setSuccessor(i, NewBB);
2273     }
2274 
2275   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB,
2276                                   ValueMapping);
2277   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB,
2278                                   ValueMapping);
2279 
2280   DTU->applyUpdatesPermissive(
2281       {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)},
2282        {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)},
2283        {DominatorTree::Insert, PredPredBB, NewBB},
2284        {DominatorTree::Delete, PredPredBB, PredBB}});
2285 
2286   updateSSA(PredBB, NewBB, ValueMapping);
2287 
2288   // Clean up things like PHI nodes with single operands, dead instructions,
2289   // etc.
2290   SimplifyInstructionsInBlock(NewBB, TLI);
2291   SimplifyInstructionsInBlock(PredBB, TLI);
2292 
2293   SmallVector<BasicBlock *, 1> PredsToFactor;
2294   PredsToFactor.push_back(NewBB);
2295   threadEdge(BB, PredsToFactor, SuccBB);
2296 }
2297 
2298 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so.
2299 bool JumpThreadingPass::tryThreadEdge(
2300     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs,
2301     BasicBlock *SuccBB) {
2302   // If threading to the same block as we come from, we would infinite loop.
2303   if (SuccBB == BB) {
2304     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2305                       << "' - would thread to self!\n");
2306     return false;
2307   }
2308 
2309   // If threading this would thread across a loop header, don't thread the edge.
2310   // See the comments above findLoopHeaders for justifications and caveats.
2311   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2312     LLVM_DEBUG({
2313       bool BBIsHeader = LoopHeaders.count(BB);
2314       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2315       dbgs() << "  Not threading across "
2316           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
2317           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
2318           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
2319     });
2320     return false;
2321   }
2322 
2323   unsigned JumpThreadCost = getJumpThreadDuplicationCost(
2324       TTI, BB, BB->getTerminator(), BBDupThreshold);
2325   if (JumpThreadCost > BBDupThreshold) {
2326     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2327                       << "' - Cost is too high: " << JumpThreadCost << "\n");
2328     return false;
2329   }
2330 
2331   threadEdge(BB, PredBBs, SuccBB);
2332   return true;
2333 }
2334 
2335 /// threadEdge - We have decided that it is safe and profitable to factor the
2336 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
2337 /// across BB.  Transform the IR to reflect this change.
2338 void JumpThreadingPass::threadEdge(BasicBlock *BB,
2339                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
2340                                    BasicBlock *SuccBB) {
2341   assert(SuccBB != BB && "Don't create an infinite loop");
2342 
2343   assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) &&
2344          "Don't thread across loop headers");
2345 
2346   // Build BPI/BFI before any changes are made to IR.
2347   bool HasProfile = doesBlockHaveProfileData(BB);
2348   auto *BFI = getOrCreateBFI(HasProfile);
2349   auto *BPI = getOrCreateBPI(BFI != nullptr);
2350 
2351   // And finally, do it!  Start by factoring the predecessors if needed.
2352   BasicBlock *PredBB;
2353   if (PredBBs.size() == 1)
2354     PredBB = PredBBs[0];
2355   else {
2356     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2357                       << " common predecessors.\n");
2358     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2359   }
2360 
2361   // And finally, do it!
2362   LLVM_DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName()
2363                     << "' to '" << SuccBB->getName()
2364                     << ", across block:\n    " << *BB << "\n");
2365 
2366   LVI->threadEdge(PredBB, BB, SuccBB);
2367 
2368   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
2369                                          BB->getName()+".thread",
2370                                          BB->getParent(), BB);
2371   NewBB->moveAfter(PredBB);
2372 
2373   // Set the block frequency of NewBB.
2374   if (BFI) {
2375     assert(BPI && "It's expected BPI to exist along with BFI");
2376     auto NewBBFreq =
2377         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
2378     BFI->setBlockFreq(NewBB, NewBBFreq);
2379   }
2380 
2381   // Copy all the instructions from BB to NewBB except the terminator.
2382   DenseMap<Instruction *, Value *> ValueMapping =
2383       cloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB);
2384 
2385   // We didn't copy the terminator from BB over to NewBB, because there is now
2386   // an unconditional jump to SuccBB.  Insert the unconditional jump.
2387   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
2388   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2389 
2390   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2391   // PHI nodes for NewBB now.
2392   addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2393 
2394   // Update the terminator of PredBB to jump to NewBB instead of BB.  This
2395   // eliminates predecessors from BB, which requires us to simplify any PHI
2396   // nodes in BB.
2397   Instruction *PredTerm = PredBB->getTerminator();
2398   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2399     if (PredTerm->getSuccessor(i) == BB) {
2400       BB->removePredecessor(PredBB, true);
2401       PredTerm->setSuccessor(i, NewBB);
2402     }
2403 
2404   // Enqueue required DT updates.
2405   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB},
2406                                {DominatorTree::Insert, PredBB, NewBB},
2407                                {DominatorTree::Delete, PredBB, BB}});
2408 
2409   updateSSA(BB, NewBB, ValueMapping);
2410 
2411   // At this point, the IR is fully up to date and consistent.  Do a quick scan
2412   // over the new instructions and zap any that are constants or dead.  This
2413   // frequently happens because of phi translation.
2414   SimplifyInstructionsInBlock(NewBB, TLI);
2415 
2416   // Update the edge weight from BB to SuccBB, which should be less than before.
2417   updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB, BFI, BPI, HasProfile);
2418 
2419   // Threaded an edge!
2420   ++NumThreads;
2421 }
2422 
2423 /// Create a new basic block that will be the predecessor of BB and successor of
2424 /// all blocks in Preds. When profile data is available, update the frequency of
2425 /// this new block.
2426 BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB,
2427                                                ArrayRef<BasicBlock *> Preds,
2428                                                const char *Suffix) {
2429   SmallVector<BasicBlock *, 2> NewBBs;
2430 
2431   // Collect the frequencies of all predecessors of BB, which will be used to
2432   // update the edge weight of the result of splitting predecessors.
2433   DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2434   auto *BFI = getBFI();
2435   if (BFI) {
2436     auto *BPI = getOrCreateBPI(true);
2437     for (auto *Pred : Preds)
2438       FreqMap.insert(std::make_pair(
2439           Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2440   }
2441 
2442   // In the case when BB is a LandingPad block we create 2 new predecessors
2443   // instead of just one.
2444   if (BB->isLandingPad()) {
2445     std::string NewName = std::string(Suffix) + ".split-lp";
2446     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2447   } else {
2448     NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2449   }
2450 
2451   std::vector<DominatorTree::UpdateType> Updates;
2452   Updates.reserve((2 * Preds.size()) + NewBBs.size());
2453   for (auto *NewBB : NewBBs) {
2454     BlockFrequency NewBBFreq(0);
2455     Updates.push_back({DominatorTree::Insert, NewBB, BB});
2456     for (auto *Pred : predecessors(NewBB)) {
2457       Updates.push_back({DominatorTree::Delete, Pred, BB});
2458       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2459       if (BFI) // Update frequencies between Pred -> NewBB.
2460         NewBBFreq += FreqMap.lookup(Pred);
2461     }
2462     if (BFI) // Apply the summed frequency to NewBB.
2463       BFI->setBlockFreq(NewBB, NewBBFreq);
2464   }
2465 
2466   DTU->applyUpdatesPermissive(Updates);
2467   return NewBBs[0];
2468 }
2469 
2470 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2471   const Instruction *TI = BB->getTerminator();
2472   if (!TI || TI->getNumSuccessors() < 2)
2473     return false;
2474 
2475   return hasValidBranchWeightMD(*TI);
2476 }
2477 
2478 /// Update the block frequency of BB and branch weight and the metadata on the
2479 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2480 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2481 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2482                                                      BasicBlock *BB,
2483                                                      BasicBlock *NewBB,
2484                                                      BasicBlock *SuccBB,
2485                                                      BlockFrequencyInfo *BFI,
2486                                                      BranchProbabilityInfo *BPI,
2487                                                      bool HasProfile) {
2488   assert(((BFI && BPI) || (!BFI && !BFI)) &&
2489          "Both BFI & BPI should either be set or unset");
2490 
2491   if (!BFI) {
2492     assert(!HasProfile &&
2493            "It's expected to have BFI/BPI when profile info exists");
2494     return;
2495   }
2496 
2497   // As the edge from PredBB to BB is deleted, we have to update the block
2498   // frequency of BB.
2499   auto BBOrigFreq = BFI->getBlockFreq(BB);
2500   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2501   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2502   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2503   BFI->setBlockFreq(BB, BBNewFreq);
2504 
2505   // Collect updated outgoing edges' frequencies from BB and use them to update
2506   // edge probabilities.
2507   SmallVector<uint64_t, 4> BBSuccFreq;
2508   for (BasicBlock *Succ : successors(BB)) {
2509     auto SuccFreq = (Succ == SuccBB)
2510                         ? BB2SuccBBFreq - NewBBFreq
2511                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2512     BBSuccFreq.push_back(SuccFreq.getFrequency());
2513   }
2514 
2515   uint64_t MaxBBSuccFreq =
2516       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2517 
2518   SmallVector<BranchProbability, 4> BBSuccProbs;
2519   if (MaxBBSuccFreq == 0)
2520     BBSuccProbs.assign(BBSuccFreq.size(),
2521                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2522   else {
2523     for (uint64_t Freq : BBSuccFreq)
2524       BBSuccProbs.push_back(
2525           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2526     // Normalize edge probabilities so that they sum up to one.
2527     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2528                                               BBSuccProbs.end());
2529   }
2530 
2531   // Update edge probabilities in BPI.
2532   BPI->setEdgeProbability(BB, BBSuccProbs);
2533 
2534   // Update the profile metadata as well.
2535   //
2536   // Don't do this if the profile of the transformed blocks was statically
2537   // estimated.  (This could occur despite the function having an entry
2538   // frequency in completely cold parts of the CFG.)
2539   //
2540   // In this case we don't want to suggest to subsequent passes that the
2541   // calculated weights are fully consistent.  Consider this graph:
2542   //
2543   //                 check_1
2544   //             50% /  |
2545   //             eq_1   | 50%
2546   //                 \  |
2547   //                 check_2
2548   //             50% /  |
2549   //             eq_2   | 50%
2550   //                 \  |
2551   //                 check_3
2552   //             50% /  |
2553   //             eq_3   | 50%
2554   //                 \  |
2555   //
2556   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2557   // the overall probabilities are inconsistent; the total probability that the
2558   // value is either 1, 2 or 3 is 150%.
2559   //
2560   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2561   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2562   // the loop exit edge.  Then based solely on static estimation we would assume
2563   // the loop was extremely hot.
2564   //
2565   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2566   // shouldn't make edges extremely likely or unlikely based solely on static
2567   // estimation.
2568   if (BBSuccProbs.size() >= 2 && HasProfile) {
2569     SmallVector<uint32_t, 4> Weights;
2570     for (auto Prob : BBSuccProbs)
2571       Weights.push_back(Prob.getNumerator());
2572 
2573     auto TI = BB->getTerminator();
2574     TI->setMetadata(
2575         LLVMContext::MD_prof,
2576         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2577   }
2578 }
2579 
2580 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2581 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2582 /// If we can duplicate the contents of BB up into PredBB do so now, this
2583 /// improves the odds that the branch will be on an analyzable instruction like
2584 /// a compare.
2585 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred(
2586     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2587   assert(!PredBBs.empty() && "Can't handle an empty set");
2588 
2589   // If BB is a loop header, then duplicating this block outside the loop would
2590   // cause us to transform this into an irreducible loop, don't do this.
2591   // See the comments above findLoopHeaders for justifications and caveats.
2592   if (LoopHeaders.count(BB)) {
2593     LLVM_DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2594                       << "' into predecessor block '" << PredBBs[0]->getName()
2595                       << "' - it might create an irreducible loop!\n");
2596     return false;
2597   }
2598 
2599   unsigned DuplicationCost = getJumpThreadDuplicationCost(
2600       TTI, BB, BB->getTerminator(), BBDupThreshold);
2601   if (DuplicationCost > BBDupThreshold) {
2602     LLVM_DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2603                       << "' - Cost is too high: " << DuplicationCost << "\n");
2604     return false;
2605   }
2606 
2607   // And finally, do it!  Start by factoring the predecessors if needed.
2608   std::vector<DominatorTree::UpdateType> Updates;
2609   BasicBlock *PredBB;
2610   if (PredBBs.size() == 1)
2611     PredBB = PredBBs[0];
2612   else {
2613     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2614                       << " common predecessors.\n");
2615     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2616   }
2617   Updates.push_back({DominatorTree::Delete, PredBB, BB});
2618 
2619   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2620   // of PredBB.
2621   LLVM_DEBUG(dbgs() << "  Duplicating block '" << BB->getName()
2622                     << "' into end of '" << PredBB->getName()
2623                     << "' to eliminate branch on phi.  Cost: "
2624                     << DuplicationCost << " block is:" << *BB << "\n");
2625 
2626   // Unless PredBB ends with an unconditional branch, split the edge so that we
2627   // can just clone the bits from BB into the end of the new PredBB.
2628   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2629 
2630   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2631     BasicBlock *OldPredBB = PredBB;
2632     PredBB = SplitEdge(OldPredBB, BB);
2633     Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2634     Updates.push_back({DominatorTree::Insert, PredBB, BB});
2635     Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2636     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2637   }
2638 
2639   // We are going to have to map operands from the original BB block into the
2640   // PredBB block.  Evaluate PHI nodes in BB.
2641   DenseMap<Instruction*, Value*> ValueMapping;
2642 
2643   BasicBlock::iterator BI = BB->begin();
2644   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2645     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2646   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2647   // mapping and using it to remap operands in the cloned instructions.
2648   for (; BI != BB->end(); ++BI) {
2649     Instruction *New = BI->clone();
2650     New->insertInto(PredBB, OldPredBranch->getIterator());
2651 
2652     // Remap operands to patch up intra-block references.
2653     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2654       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2655         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2656         if (I != ValueMapping.end())
2657           New->setOperand(i, I->second);
2658       }
2659 
2660     // If this instruction can be simplified after the operands are updated,
2661     // just use the simplified value instead.  This frequently happens due to
2662     // phi translation.
2663     if (Value *IV = simplifyInstruction(
2664             New,
2665             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2666       ValueMapping[&*BI] = IV;
2667       if (!New->mayHaveSideEffects()) {
2668         New->eraseFromParent();
2669         New = nullptr;
2670       }
2671     } else {
2672       ValueMapping[&*BI] = New;
2673     }
2674     if (New) {
2675       // Otherwise, insert the new instruction into the block.
2676       New->setName(BI->getName());
2677       // Update Dominance from simplified New instruction operands.
2678       for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2679         if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2680           Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2681     }
2682   }
2683 
2684   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2685   // add entries to the PHI nodes for branch from PredBB now.
2686   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2687   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2688                                   ValueMapping);
2689   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2690                                   ValueMapping);
2691 
2692   updateSSA(BB, PredBB, ValueMapping);
2693 
2694   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2695   // that we nuked.
2696   BB->removePredecessor(PredBB, true);
2697 
2698   // Remove the unconditional branch at the end of the PredBB block.
2699   OldPredBranch->eraseFromParent();
2700   if (auto *BPI = getBPI())
2701     BPI->copyEdgeProbabilities(BB, PredBB);
2702   DTU->applyUpdatesPermissive(Updates);
2703 
2704   ++NumDupes;
2705   return true;
2706 }
2707 
2708 // Pred is a predecessor of BB with an unconditional branch to BB. SI is
2709 // a Select instruction in Pred. BB has other predecessors and SI is used in
2710 // a PHI node in BB. SI has no other use.
2711 // A new basic block, NewBB, is created and SI is converted to compare and
2712 // conditional branch. SI is erased from parent.
2713 void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
2714                                           SelectInst *SI, PHINode *SIUse,
2715                                           unsigned Idx) {
2716   // Expand the select.
2717   //
2718   // Pred --
2719   //  |    v
2720   //  |  NewBB
2721   //  |    |
2722   //  |-----
2723   //  v
2724   // BB
2725   BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator());
2726   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2727                                          BB->getParent(), BB);
2728   // Move the unconditional branch to NewBB.
2729   PredTerm->removeFromParent();
2730   PredTerm->insertInto(NewBB, NewBB->end());
2731   // Create a conditional branch and update PHI nodes.
2732   auto *BI = BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2733   BI->applyMergedLocation(PredTerm->getDebugLoc(), SI->getDebugLoc());
2734   BI->copyMetadata(*SI, {LLVMContext::MD_prof});
2735   SIUse->setIncomingValue(Idx, SI->getFalseValue());
2736   SIUse->addIncoming(SI->getTrueValue(), NewBB);
2737 
2738   uint64_t TrueWeight = 1;
2739   uint64_t FalseWeight = 1;
2740   // Copy probabilities from 'SI' to created conditional branch in 'Pred'.
2741   if (extractBranchWeights(*SI, TrueWeight, FalseWeight) &&
2742       (TrueWeight + FalseWeight) != 0) {
2743     SmallVector<BranchProbability, 2> BP;
2744     BP.emplace_back(BranchProbability::getBranchProbability(
2745         TrueWeight, TrueWeight + FalseWeight));
2746     BP.emplace_back(BranchProbability::getBranchProbability(
2747         FalseWeight, TrueWeight + FalseWeight));
2748     // Update BPI if exists.
2749     if (auto *BPI = getBPI())
2750       BPI->setEdgeProbability(Pred, BP);
2751   }
2752   // Set the block frequency of NewBB.
2753   if (auto *BFI = getBFI()) {
2754     if ((TrueWeight + FalseWeight) == 0) {
2755       TrueWeight = 1;
2756       FalseWeight = 1;
2757     }
2758     BranchProbability PredToNewBBProb = BranchProbability::getBranchProbability(
2759         TrueWeight, TrueWeight + FalseWeight);
2760     auto NewBBFreq = BFI->getBlockFreq(Pred) * PredToNewBBProb;
2761     BFI->setBlockFreq(NewBB, NewBBFreq);
2762   }
2763 
2764   // The select is now dead.
2765   SI->eraseFromParent();
2766   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB},
2767                                {DominatorTree::Insert, Pred, NewBB}});
2768 
2769   // Update any other PHI nodes in BB.
2770   for (BasicBlock::iterator BI = BB->begin();
2771        PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2772     if (Phi != SIUse)
2773       Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2774 }
2775 
2776 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
2777   PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
2778 
2779   if (!CondPHI || CondPHI->getParent() != BB)
2780     return false;
2781 
2782   for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
2783     BasicBlock *Pred = CondPHI->getIncomingBlock(I);
2784     SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
2785 
2786     // The second and third condition can be potentially relaxed. Currently
2787     // the conditions help to simplify the code and allow us to reuse existing
2788     // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *)
2789     if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
2790       continue;
2791 
2792     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2793     if (!PredTerm || !PredTerm->isUnconditional())
2794       continue;
2795 
2796     unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
2797     return true;
2798   }
2799   return false;
2800 }
2801 
2802 /// tryToUnfoldSelect - Look for blocks of the form
2803 /// bb1:
2804 ///   %a = select
2805 ///   br bb2
2806 ///
2807 /// bb2:
2808 ///   %p = phi [%a, %bb1] ...
2809 ///   %c = icmp %p
2810 ///   br i1 %c
2811 ///
2812 /// And expand the select into a branch structure if one of its arms allows %c
2813 /// to be folded. This later enables threading from bb1 over bb2.
2814 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2815   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2816   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2817   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2818 
2819   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2820       CondLHS->getParent() != BB)
2821     return false;
2822 
2823   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2824     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2825     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2826 
2827     // Look if one of the incoming values is a select in the corresponding
2828     // predecessor.
2829     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2830       continue;
2831 
2832     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2833     if (!PredTerm || !PredTerm->isUnconditional())
2834       continue;
2835 
2836     // Now check if one of the select values would allow us to constant fold the
2837     // terminator in BB. We don't do the transform if both sides fold, those
2838     // cases will be threaded in any case.
2839     LazyValueInfo::Tristate LHSFolds =
2840         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2841                                 CondRHS, Pred, BB, CondCmp);
2842     LazyValueInfo::Tristate RHSFolds =
2843         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2844                                 CondRHS, Pred, BB, CondCmp);
2845     if ((LHSFolds != LazyValueInfo::Unknown ||
2846          RHSFolds != LazyValueInfo::Unknown) &&
2847         LHSFolds != RHSFolds) {
2848       unfoldSelectInstr(Pred, BB, SI, CondLHS, I);
2849       return true;
2850     }
2851   }
2852   return false;
2853 }
2854 
2855 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2856 /// same BB in the form
2857 /// bb:
2858 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2859 ///   %s = select %p, trueval, falseval
2860 ///
2861 /// or
2862 ///
2863 /// bb:
2864 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2865 ///   %c = cmp %p, 0
2866 ///   %s = select %c, trueval, falseval
2867 ///
2868 /// And expand the select into a branch structure. This later enables
2869 /// jump-threading over bb in this pass.
2870 ///
2871 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2872 /// select if the associated PHI has at least one constant.  If the unfolded
2873 /// select is not jump-threaded, it will be folded again in the later
2874 /// optimizations.
2875 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2876   // This transform would reduce the quality of msan diagnostics.
2877   // Disable this transform under MemorySanitizer.
2878   if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
2879     return false;
2880 
2881   // If threading this would thread across a loop header, don't thread the edge.
2882   // See the comments above findLoopHeaders for justifications and caveats.
2883   if (LoopHeaders.count(BB))
2884     return false;
2885 
2886   for (BasicBlock::iterator BI = BB->begin();
2887        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2888     // Look for a Phi having at least one constant incoming value.
2889     if (llvm::all_of(PN->incoming_values(),
2890                      [](Value *V) { return !isa<ConstantInt>(V); }))
2891       continue;
2892 
2893     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2894       using namespace PatternMatch;
2895 
2896       // Check if SI is in BB and use V as condition.
2897       if (SI->getParent() != BB)
2898         return false;
2899       Value *Cond = SI->getCondition();
2900       bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()));
2901       return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr;
2902     };
2903 
2904     SelectInst *SI = nullptr;
2905     for (Use &U : PN->uses()) {
2906       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2907         // Look for a ICmp in BB that compares PN with a constant and is the
2908         // condition of a Select.
2909         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2910             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2911           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2912             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2913               SI = SelectI;
2914               break;
2915             }
2916       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2917         // Look for a Select in BB that uses PN as condition.
2918         if (isUnfoldCandidate(SelectI, U.get())) {
2919           SI = SelectI;
2920           break;
2921         }
2922       }
2923     }
2924 
2925     if (!SI)
2926       continue;
2927     // Expand the select.
2928     Value *Cond = SI->getCondition();
2929     if (!isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI))
2930       Cond = new FreezeInst(Cond, "cond.fr", SI);
2931     MDNode *BranchWeights = getBranchWeightMDNode(*SI);
2932     Instruction *Term =
2933         SplitBlockAndInsertIfThen(Cond, SI, false, BranchWeights);
2934     BasicBlock *SplitBB = SI->getParent();
2935     BasicBlock *NewBB = Term->getParent();
2936     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2937     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2938     NewPN->addIncoming(SI->getFalseValue(), BB);
2939     SI->replaceAllUsesWith(NewPN);
2940     SI->eraseFromParent();
2941     // NewBB and SplitBB are newly created blocks which require insertion.
2942     std::vector<DominatorTree::UpdateType> Updates;
2943     Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2944     Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2945     Updates.push_back({DominatorTree::Insert, BB, NewBB});
2946     Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2947     // BB's successors were moved to SplitBB, update DTU accordingly.
2948     for (auto *Succ : successors(SplitBB)) {
2949       Updates.push_back({DominatorTree::Delete, BB, Succ});
2950       Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2951     }
2952     DTU->applyUpdatesPermissive(Updates);
2953     return true;
2954   }
2955   return false;
2956 }
2957 
2958 /// Try to propagate a guard from the current BB into one of its predecessors
2959 /// in case if another branch of execution implies that the condition of this
2960 /// guard is always true. Currently we only process the simplest case that
2961 /// looks like:
2962 ///
2963 /// Start:
2964 ///   %cond = ...
2965 ///   br i1 %cond, label %T1, label %F1
2966 /// T1:
2967 ///   br label %Merge
2968 /// F1:
2969 ///   br label %Merge
2970 /// Merge:
2971 ///   %condGuard = ...
2972 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2973 ///
2974 /// And cond either implies condGuard or !condGuard. In this case all the
2975 /// instructions before the guard can be duplicated in both branches, and the
2976 /// guard is then threaded to one of them.
2977 bool JumpThreadingPass::processGuards(BasicBlock *BB) {
2978   using namespace PatternMatch;
2979 
2980   // We only want to deal with two predecessors.
2981   BasicBlock *Pred1, *Pred2;
2982   auto PI = pred_begin(BB), PE = pred_end(BB);
2983   if (PI == PE)
2984     return false;
2985   Pred1 = *PI++;
2986   if (PI == PE)
2987     return false;
2988   Pred2 = *PI++;
2989   if (PI != PE)
2990     return false;
2991   if (Pred1 == Pred2)
2992     return false;
2993 
2994   // Try to thread one of the guards of the block.
2995   // TODO: Look up deeper than to immediate predecessor?
2996   auto *Parent = Pred1->getSinglePredecessor();
2997   if (!Parent || Parent != Pred2->getSinglePredecessor())
2998     return false;
2999 
3000   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
3001     for (auto &I : *BB)
3002       if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI))
3003         return true;
3004 
3005   return false;
3006 }
3007 
3008 /// Try to propagate the guard from BB which is the lower block of a diamond
3009 /// to one of its branches, in case if diamond's condition implies guard's
3010 /// condition.
3011 bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard,
3012                                     BranchInst *BI) {
3013   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
3014   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
3015   Value *GuardCond = Guard->getArgOperand(0);
3016   Value *BranchCond = BI->getCondition();
3017   BasicBlock *TrueDest = BI->getSuccessor(0);
3018   BasicBlock *FalseDest = BI->getSuccessor(1);
3019 
3020   auto &DL = BB->getModule()->getDataLayout();
3021   bool TrueDestIsSafe = false;
3022   bool FalseDestIsSafe = false;
3023 
3024   // True dest is safe if BranchCond => GuardCond.
3025   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
3026   if (Impl && *Impl)
3027     TrueDestIsSafe = true;
3028   else {
3029     // False dest is safe if !BranchCond => GuardCond.
3030     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
3031     if (Impl && *Impl)
3032       FalseDestIsSafe = true;
3033   }
3034 
3035   if (!TrueDestIsSafe && !FalseDestIsSafe)
3036     return false;
3037 
3038   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
3039   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
3040 
3041   ValueToValueMapTy UnguardedMapping, GuardedMapping;
3042   Instruction *AfterGuard = Guard->getNextNode();
3043   unsigned Cost =
3044       getJumpThreadDuplicationCost(TTI, BB, AfterGuard, BBDupThreshold);
3045   if (Cost > BBDupThreshold)
3046     return false;
3047   // Duplicate all instructions before the guard and the guard itself to the
3048   // branch where implication is not proved.
3049   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
3050       BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
3051   assert(GuardedBlock && "Could not create the guarded block?");
3052   // Duplicate all instructions before the guard in the unguarded branch.
3053   // Since we have successfully duplicated the guarded block and this block
3054   // has fewer instructions, we expect it to succeed.
3055   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
3056       BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
3057   assert(UnguardedBlock && "Could not create the unguarded block?");
3058   LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
3059                     << GuardedBlock->getName() << "\n");
3060   // Some instructions before the guard may still have uses. For them, we need
3061   // to create Phi nodes merging their copies in both guarded and unguarded
3062   // branches. Those instructions that have no uses can be just removed.
3063   SmallVector<Instruction *, 4> ToRemove;
3064   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
3065     if (!isa<PHINode>(&*BI))
3066       ToRemove.push_back(&*BI);
3067 
3068   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
3069   assert(InsertionPoint && "Empty block?");
3070   // Substitute with Phis & remove.
3071   for (auto *Inst : reverse(ToRemove)) {
3072     if (!Inst->use_empty()) {
3073       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
3074       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
3075       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
3076       NewPN->insertBefore(InsertionPoint);
3077       Inst->replaceAllUsesWith(NewPN);
3078     }
3079     Inst->eraseFromParent();
3080   }
3081   return true;
3082 }
3083 
3084 PreservedAnalyses JumpThreadingPass::getPreservedAnalysis() const {
3085   PreservedAnalyses PA;
3086   PA.preserve<LazyValueAnalysis>();
3087   PA.preserve<DominatorTreeAnalysis>();
3088 
3089   // TODO: We would like to preserve BPI/BFI. Enable once all paths update them.
3090   // TODO: Would be nice to verify BPI/BFI consistency as well.
3091   return PA;
3092 }
3093 
3094 template <typename AnalysisT>
3095 typename AnalysisT::Result *JumpThreadingPass::runExternalAnalysis() {
3096   assert(FAM && "Can't run external analysis without FunctionAnalysisManager");
3097 
3098   // If there were no changes since last call to 'runExternalAnalysis' then all
3099   // analysis is either up to date or explicitly invalidated. Just go ahead and
3100   // run the "external" analysis.
3101   if (!ChangedSinceLastAnalysisUpdate) {
3102     assert(!DTU->hasPendingUpdates() &&
3103            "Lost update of 'ChangedSinceLastAnalysisUpdate'?");
3104     // Run the "external" analysis.
3105     return &FAM->getResult<AnalysisT>(*F);
3106   }
3107   ChangedSinceLastAnalysisUpdate = false;
3108 
3109   auto PA = getPreservedAnalysis();
3110   // TODO: This shouldn't be needed once 'getPreservedAnalysis' reports BPI/BFI
3111   // as preserved.
3112   PA.preserve<BranchProbabilityAnalysis>();
3113   PA.preserve<BlockFrequencyAnalysis>();
3114   // Report everything except explicitly preserved as invalid.
3115   FAM->invalidate(*F, PA);
3116   // Update DT/PDT.
3117   DTU->flush();
3118   // Make sure DT/PDT are valid before running "external" analysis.
3119   assert(DTU->getDomTree().verify(DominatorTree::VerificationLevel::Fast));
3120   assert((!DTU->hasPostDomTree() ||
3121           DTU->getPostDomTree().verify(
3122               PostDominatorTree::VerificationLevel::Fast)));
3123   // Run the "external" analysis.
3124   auto *Result = &FAM->getResult<AnalysisT>(*F);
3125   // Update analysis JumpThreading depends on and not explicitly preserved.
3126   TTI = &FAM->getResult<TargetIRAnalysis>(*F);
3127   TLI = &FAM->getResult<TargetLibraryAnalysis>(*F);
3128   AA = &FAM->getResult<AAManager>(*F);
3129 
3130   return Result;
3131 }
3132 
3133 BranchProbabilityInfo *JumpThreadingPass::getBPI() {
3134   if (!BPI) {
3135     assert(FAM && "Can't create BPI without FunctionAnalysisManager");
3136     BPI = FAM->getCachedResult<BranchProbabilityAnalysis>(*F);
3137   }
3138   return *BPI;
3139 }
3140 
3141 BlockFrequencyInfo *JumpThreadingPass::getBFI() {
3142   if (!BFI) {
3143     assert(FAM && "Can't create BFI without FunctionAnalysisManager");
3144     BFI = FAM->getCachedResult<BlockFrequencyAnalysis>(*F);
3145   }
3146   return *BFI;
3147 }
3148 
3149 // Important note on validity of BPI/BFI. JumpThreading tries to preserve
3150 // BPI/BFI as it goes. Thus if cached instance exists it will be updated.
3151 // Otherwise, new instance of BPI/BFI is created (up to date by definition).
3152 BranchProbabilityInfo *JumpThreadingPass::getOrCreateBPI(bool Force) {
3153   auto *Res = getBPI();
3154   if (Res)
3155     return Res;
3156 
3157   if (Force)
3158     BPI = runExternalAnalysis<BranchProbabilityAnalysis>();
3159 
3160   return *BPI;
3161 }
3162 
3163 BlockFrequencyInfo *JumpThreadingPass::getOrCreateBFI(bool Force) {
3164   auto *Res = getBFI();
3165   if (Res)
3166     return Res;
3167 
3168   if (Force)
3169     BFI = runExternalAnalysis<BlockFrequencyAnalysis>();
3170 
3171   return *BFI;
3172 }
3173