xref: /llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp (revision 9518fbb54ecd4f52f2c3310e868b1b9a8077cea5)
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "jump-threading"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/IntrinsicInst.h"
17 #include "llvm/LLVMContext.h"
18 #include "llvm/Pass.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
21 #include "llvm/Transforms/Utils/Local.h"
22 #include "llvm/Transforms/Utils/SSAUpdater.h"
23 #include "llvm/Target/TargetData.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 using namespace llvm;
33 
34 STATISTIC(NumThreads, "Number of jumps threaded");
35 STATISTIC(NumFolds,   "Number of terminators folded");
36 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
37 
38 static cl::opt<unsigned>
39 Threshold("jump-threading-threshold",
40           cl::desc("Max block size to duplicate for jump threading"),
41           cl::init(6), cl::Hidden);
42 
43 namespace {
44   /// This pass performs 'jump threading', which looks at blocks that have
45   /// multiple predecessors and multiple successors.  If one or more of the
46   /// predecessors of the block can be proven to always jump to one of the
47   /// successors, we forward the edge from the predecessor to the successor by
48   /// duplicating the contents of this block.
49   ///
50   /// An example of when this can occur is code like this:
51   ///
52   ///   if () { ...
53   ///     X = 4;
54   ///   }
55   ///   if (X < 3) {
56   ///
57   /// In this case, the unconditional branch at the end of the first if can be
58   /// revectored to the false side of the second if.
59   ///
60   class JumpThreading : public FunctionPass {
61     TargetData *TD;
62 #ifdef NDEBUG
63     SmallPtrSet<BasicBlock*, 16> LoopHeaders;
64 #else
65     SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
66 #endif
67   public:
68     static char ID; // Pass identification
69     JumpThreading() : FunctionPass(&ID) {}
70 
71     bool runOnFunction(Function &F);
72     void FindLoopHeaders(Function &F);
73 
74     bool ProcessBlock(BasicBlock *BB);
75     bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
76                     BasicBlock *SuccBB);
77     bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
78                                           BasicBlock *PredBB);
79 
80     typedef SmallVectorImpl<std::pair<ConstantInt*,
81                                       BasicBlock*> > PredValueInfo;
82 
83     bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
84                                          PredValueInfo &Result);
85     bool ProcessThreadableEdges(Instruction *CondInst, BasicBlock *BB);
86 
87 
88     bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
89     bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
90 
91     bool ProcessJumpOnPHI(PHINode *PN);
92 
93     bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
94   };
95 }
96 
97 char JumpThreading::ID = 0;
98 static RegisterPass<JumpThreading>
99 X("jump-threading", "Jump Threading");
100 
101 // Public interface to the Jump Threading pass
102 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
103 
104 /// runOnFunction - Top level algorithm.
105 ///
106 bool JumpThreading::runOnFunction(Function &F) {
107   DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n");
108   TD = getAnalysisIfAvailable<TargetData>();
109 
110   FindLoopHeaders(F);
111 
112   bool AnotherIteration = true, EverChanged = false;
113   while (AnotherIteration) {
114     AnotherIteration = false;
115     bool Changed = false;
116     for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
117       BasicBlock *BB = I;
118       // Thread all of the branches we can over this block.
119       while (ProcessBlock(BB))
120         Changed = true;
121 
122       ++I;
123 
124       // If the block is trivially dead, zap it.  This eliminates the successor
125       // edges which simplifies the CFG.
126       if (pred_begin(BB) == pred_end(BB) &&
127           BB != &BB->getParent()->getEntryBlock()) {
128         DEBUG(errs() << "  JT: Deleting dead block '" << BB->getName()
129               << "' with terminator: " << *BB->getTerminator() << '\n');
130         LoopHeaders.erase(BB);
131         DeleteDeadBlock(BB);
132         Changed = true;
133       } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
134         // Can't thread an unconditional jump, but if the block is "almost
135         // empty", we can replace uses of it with uses of the successor and make
136         // this dead.
137         if (BI->isUnconditional() &&
138             BB != &BB->getParent()->getEntryBlock()) {
139           BasicBlock::iterator BBI = BB->getFirstNonPHI();
140           // Ignore dbg intrinsics.
141           while (isa<DbgInfoIntrinsic>(BBI))
142             ++BBI;
143           // If the terminator is the only non-phi instruction, try to nuke it.
144           if (BBI->isTerminator()) {
145             // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
146             // block, we have to make sure it isn't in the LoopHeaders set.  We
147             // reinsert afterward in the rare case when the block isn't deleted.
148             bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
149 
150             if (TryToSimplifyUncondBranchFromEmptyBlock(BB))
151               Changed = true;
152             else if (ErasedFromLoopHeaders)
153               LoopHeaders.insert(BB);
154           }
155         }
156       }
157     }
158     AnotherIteration = Changed;
159     EverChanged |= Changed;
160   }
161 
162   LoopHeaders.clear();
163   return EverChanged;
164 }
165 
166 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
167 /// thread across it.
168 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
169   /// Ignore PHI nodes, these will be flattened when duplication happens.
170   BasicBlock::const_iterator I = BB->getFirstNonPHI();
171 
172   // Sum up the cost of each instruction until we get to the terminator.  Don't
173   // include the terminator because the copy won't include it.
174   unsigned Size = 0;
175   for (; !isa<TerminatorInst>(I); ++I) {
176     // Debugger intrinsics don't incur code size.
177     if (isa<DbgInfoIntrinsic>(I)) continue;
178 
179     // If this is a pointer->pointer bitcast, it is free.
180     if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
181       continue;
182 
183     // All other instructions count for at least one unit.
184     ++Size;
185 
186     // Calls are more expensive.  If they are non-intrinsic calls, we model them
187     // as having cost of 4.  If they are a non-vector intrinsic, we model them
188     // as having cost of 2 total, and if they are a vector intrinsic, we model
189     // them as having cost 1.
190     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
191       if (!isa<IntrinsicInst>(CI))
192         Size += 3;
193       else if (!isa<VectorType>(CI->getType()))
194         Size += 1;
195     }
196   }
197 
198   // Threading through a switch statement is particularly profitable.  If this
199   // block ends in a switch, decrease its cost to make it more likely to happen.
200   if (isa<SwitchInst>(I))
201     Size = Size > 6 ? Size-6 : 0;
202 
203   return Size;
204 }
205 
206 /// FindLoopHeaders - We do not want jump threading to turn proper loop
207 /// structures into irreducible loops.  Doing this breaks up the loop nesting
208 /// hierarchy and pessimizes later transformations.  To prevent this from
209 /// happening, we first have to find the loop headers.  Here we approximate this
210 /// by finding targets of backedges in the CFG.
211 ///
212 /// Note that there definitely are cases when we want to allow threading of
213 /// edges across a loop header.  For example, threading a jump from outside the
214 /// loop (the preheader) to an exit block of the loop is definitely profitable.
215 /// It is also almost always profitable to thread backedges from within the loop
216 /// to exit blocks, and is often profitable to thread backedges to other blocks
217 /// within the loop (forming a nested loop).  This simple analysis is not rich
218 /// enough to track all of these properties and keep it up-to-date as the CFG
219 /// mutates, so we don't allow any of these transformations.
220 ///
221 void JumpThreading::FindLoopHeaders(Function &F) {
222   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
223   FindFunctionBackedges(F, Edges);
224 
225   for (unsigned i = 0, e = Edges.size(); i != e; ++i)
226     LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
227 }
228 
229 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
230 /// if we can infer that the value is a known ConstantInt in any of our
231 /// predecessors.  If so, return the known list of value and pred BB in the
232 /// result vector.  If a value is known to be undef, it is returned as null.
233 ///
234 /// The BB basic block is known to start with a PHI node.
235 ///
236 /// This returns true if there were any known values.
237 ///
238 ///
239 /// TODO: Per PR2563, we could infer value range information about a predecessor
240 /// based on its terminator.
241 bool JumpThreading::
242 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
243   PHINode *TheFirstPHI = cast<PHINode>(BB->begin());
244 
245   // If V is a constantint, then it is known in all predecessors.
246   if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
247     ConstantInt *CI = dyn_cast<ConstantInt>(V);
248     Result.resize(TheFirstPHI->getNumIncomingValues());
249     for (unsigned i = 0, e = Result.size(); i != e; ++i)
250       Result[i] = std::make_pair(CI, TheFirstPHI->getIncomingBlock(i));
251     return true;
252   }
253 
254   // If V is a non-instruction value, or an instruction in a different block,
255   // then it can't be derived from a PHI.
256   Instruction *I = dyn_cast<Instruction>(V);
257   if (I == 0 || I->getParent() != BB)
258     return false;
259 
260   /// If I is a PHI node, then we know the incoming values for any constants.
261   if (PHINode *PN = dyn_cast<PHINode>(I)) {
262     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
263       Value *InVal = PN->getIncomingValue(i);
264       if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
265         ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
266         Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
267       }
268     }
269     return !Result.empty();
270   }
271 
272   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
273 
274   // Handle some boolean conditions.
275   if (I->getType()->getPrimitiveSizeInBits() == 1) {
276     // X | true -> true
277     // X & false -> false
278     if (I->getOpcode() == Instruction::Or ||
279         I->getOpcode() == Instruction::And) {
280       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
281       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
282 
283       if (LHSVals.empty() && RHSVals.empty())
284         return false;
285 
286       ConstantInt *InterestingVal;
287       if (I->getOpcode() == Instruction::Or)
288         InterestingVal = ConstantInt::getTrue(I->getContext());
289       else
290         InterestingVal = ConstantInt::getFalse(I->getContext());
291 
292       // Scan for the sentinel.
293       for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
294         if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0)
295           Result.push_back(LHSVals[i]);
296       for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
297         if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0)
298           Result.push_back(RHSVals[i]);
299       return !Result.empty();
300     }
301 
302     // Handle the NOT form of XOR.
303     if (I->getOpcode() == Instruction::Xor &&
304         isa<ConstantInt>(I->getOperand(1)) &&
305         cast<ConstantInt>(I->getOperand(1))->isOne()) {
306       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result);
307       if (Result.empty())
308         return false;
309 
310       // Invert the known values.
311       for (unsigned i = 0, e = Result.size(); i != e; ++i)
312         Result[i].first =
313           cast<ConstantInt>(ConstantExpr::getNot(Result[i].first));
314       return true;
315     }
316   }
317 
318   // Handle compare with phi operand, where the PHI is defined in this block.
319   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
320     PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
321     if (PN && PN->getParent() == BB) {
322       // We can do this simplification if any comparisons fold to true or false.
323       // See if any do.
324       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
325         BasicBlock *PredBB = PN->getIncomingBlock(i);
326         Value *LHS = PN->getIncomingValue(i);
327         Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
328 
329         Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS);
330         if (Res == 0) continue;
331 
332         if (isa<UndefValue>(Res))
333           Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
334         else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
335           Result.push_back(std::make_pair(CI, PredBB));
336       }
337 
338       return !Result.empty();
339     }
340 
341     // TODO: We could also recurse to see if we can determine constants another
342     // way.
343   }
344   return false;
345 }
346 
347 
348 
349 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
350 /// in an undefined jump, decide which block is best to revector to.
351 ///
352 /// Since we can pick an arbitrary destination, we pick the successor with the
353 /// fewest predecessors.  This should reduce the in-degree of the others.
354 ///
355 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
356   TerminatorInst *BBTerm = BB->getTerminator();
357   unsigned MinSucc = 0;
358   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
359   // Compute the successor with the minimum number of predecessors.
360   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
361   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
362     TestBB = BBTerm->getSuccessor(i);
363     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
364     if (NumPreds < MinNumPreds)
365       MinSucc = i;
366   }
367 
368   return MinSucc;
369 }
370 
371 /// ProcessBlock - If there are any predecessors whose control can be threaded
372 /// through to a successor, transform them now.
373 bool JumpThreading::ProcessBlock(BasicBlock *BB) {
374   // If this block has a single predecessor, and if that pred has a single
375   // successor, merge the blocks.  This encourages recursive jump threading
376   // because now the condition in this block can be threaded through
377   // predecessors of our predecessor block.
378   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
379     if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
380         SinglePred != BB) {
381       // If SinglePred was a loop header, BB becomes one.
382       if (LoopHeaders.erase(SinglePred))
383         LoopHeaders.insert(BB);
384 
385       // Remember if SinglePred was the entry block of the function.  If so, we
386       // will need to move BB back to the entry position.
387       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
388       MergeBasicBlockIntoOnlyPred(BB);
389 
390       if (isEntry && BB != &BB->getParent()->getEntryBlock())
391         BB->moveBefore(&BB->getParent()->getEntryBlock());
392       return true;
393     }
394   }
395 
396   // Look to see if the terminator is a branch of switch, if not we can't thread
397   // it.
398   Value *Condition;
399   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
400     // Can't thread an unconditional jump.
401     if (BI->isUnconditional()) return false;
402     Condition = BI->getCondition();
403   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
404     Condition = SI->getCondition();
405   else
406     return false; // Must be an invoke.
407 
408   // If the terminator of this block is branching on a constant, simplify the
409   // terminator to an unconditional branch.  This can occur due to threading in
410   // other blocks.
411   if (isa<ConstantInt>(Condition)) {
412     DEBUG(errs() << "  In block '" << BB->getName()
413           << "' folding terminator: " << *BB->getTerminator() << '\n');
414     ++NumFolds;
415     ConstantFoldTerminator(BB);
416     return true;
417   }
418 
419   // If the terminator is branching on an undef, we can pick any of the
420   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
421   if (isa<UndefValue>(Condition)) {
422     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
423 
424     // Fold the branch/switch.
425     TerminatorInst *BBTerm = BB->getTerminator();
426     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
427       if (i == BestSucc) continue;
428       RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
429     }
430 
431     DEBUG(errs() << "  In block '" << BB->getName()
432           << "' folding undef terminator: " << *BBTerm << '\n');
433     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
434     BBTerm->eraseFromParent();
435     return true;
436   }
437 
438   Instruction *CondInst = dyn_cast<Instruction>(Condition);
439 
440   // If the condition is an instruction defined in another block, see if a
441   // predecessor has the same condition:
442   //     br COND, BBX, BBY
443   //  BBX:
444   //     br COND, BBZ, BBW
445   if (!Condition->hasOneUse() && // Multiple uses.
446       (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
447     pred_iterator PI = pred_begin(BB), E = pred_end(BB);
448     if (isa<BranchInst>(BB->getTerminator())) {
449       for (; PI != E; ++PI)
450         if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
451           if (PBI->isConditional() && PBI->getCondition() == Condition &&
452               ProcessBranchOnDuplicateCond(*PI, BB))
453             return true;
454     } else {
455       assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
456       for (; PI != E; ++PI)
457         if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
458           if (PSI->getCondition() == Condition &&
459               ProcessSwitchOnDuplicateCond(*PI, BB))
460             return true;
461     }
462   }
463 
464   // All the rest of our checks depend on the condition being an instruction.
465   if (CondInst == 0)
466     return false;
467 
468   // See if this is a phi node in the current block.
469   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
470     if (PN->getParent() == BB)
471       return ProcessJumpOnPHI(PN);
472 
473   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
474     if (!isa<PHINode>(CondCmp->getOperand(0)) ||
475         cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB) {
476       // If we have a comparison, loop over the predecessors to see if there is
477       // a condition with a lexically identical value.
478       pred_iterator PI = pred_begin(BB), E = pred_end(BB);
479       for (; PI != E; ++PI)
480         if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
481           if (PBI->isConditional() && *PI != BB) {
482             if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
483               if (CI->getOperand(0) == CondCmp->getOperand(0) &&
484                   CI->getOperand(1) == CondCmp->getOperand(1) &&
485                   CI->getPredicate() == CondCmp->getPredicate()) {
486                 // TODO: Could handle things like (x != 4) --> (x == 17)
487                 if (ProcessBranchOnDuplicateCond(*PI, BB))
488                   return true;
489               }
490             }
491           }
492     }
493   }
494 
495   // Check for some cases that are worth simplifying.  Right now we want to look
496   // for loads that are used by a switch or by the condition for the branch.  If
497   // we see one, check to see if it's partially redundant.  If so, insert a PHI
498   // which can then be used to thread the values.
499   //
500   // This is particularly important because reg2mem inserts loads and stores all
501   // over the place, and this blocks jump threading if we don't zap them.
502   Value *SimplifyValue = CondInst;
503   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
504     if (isa<Constant>(CondCmp->getOperand(1)))
505       SimplifyValue = CondCmp->getOperand(0);
506 
507   if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
508     if (SimplifyPartiallyRedundantLoad(LI))
509       return true;
510 
511 
512   // Handle a variety of cases where we are branching on something derived from
513   // a PHI node in the current block.  If we can prove that any predecessors
514   // compute a predictable value based on a PHI node, thread those predecessors.
515   //
516   // We only bother doing this if the current block has a PHI node and if the
517   // conditional instruction lives in the current block.  If either condition
518   // fails, this won't be a computable value anyway.
519   if (CondInst->getParent() == BB && isa<PHINode>(BB->front()))
520     if (ProcessThreadableEdges(CondInst, BB))
521       return true;
522 
523 
524   // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
525   // "(X == 4)" thread through this block.
526 
527   return false;
528 }
529 
530 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
531 /// block that jump on exactly the same condition.  This means that we almost
532 /// always know the direction of the edge in the DESTBB:
533 ///  PREDBB:
534 ///     br COND, DESTBB, BBY
535 ///  DESTBB:
536 ///     br COND, BBZ, BBW
537 ///
538 /// If DESTBB has multiple predecessors, we can't just constant fold the branch
539 /// in DESTBB, we have to thread over it.
540 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
541                                                  BasicBlock *BB) {
542   BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
543 
544   // If both successors of PredBB go to DESTBB, we don't know anything.  We can
545   // fold the branch to an unconditional one, which allows other recursive
546   // simplifications.
547   bool BranchDir;
548   if (PredBI->getSuccessor(1) != BB)
549     BranchDir = true;
550   else if (PredBI->getSuccessor(0) != BB)
551     BranchDir = false;
552   else {
553     DEBUG(errs() << "  In block '" << PredBB->getName()
554           << "' folding terminator: " << *PredBB->getTerminator() << '\n');
555     ++NumFolds;
556     ConstantFoldTerminator(PredBB);
557     return true;
558   }
559 
560   BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
561 
562   // If the dest block has one predecessor, just fix the branch condition to a
563   // constant and fold it.
564   if (BB->getSinglePredecessor()) {
565     DEBUG(errs() << "  In block '" << BB->getName()
566           << "' folding condition to '" << BranchDir << "': "
567           << *BB->getTerminator() << '\n');
568     ++NumFolds;
569     Value *OldCond = DestBI->getCondition();
570     DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
571                                           BranchDir));
572     ConstantFoldTerminator(BB);
573     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
574     return true;
575   }
576 
577 
578   // Next, figure out which successor we are threading to.
579   BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
580 
581   SmallVector<BasicBlock*, 2> Preds;
582   Preds.push_back(PredBB);
583 
584   // Ok, try to thread it!
585   return ThreadEdge(BB, Preds, SuccBB);
586 }
587 
588 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
589 /// block that switch on exactly the same condition.  This means that we almost
590 /// always know the direction of the edge in the DESTBB:
591 ///  PREDBB:
592 ///     switch COND [... DESTBB, BBY ... ]
593 ///  DESTBB:
594 ///     switch COND [... BBZ, BBW ]
595 ///
596 /// Optimizing switches like this is very important, because simplifycfg builds
597 /// switches out of repeated 'if' conditions.
598 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
599                                                  BasicBlock *DestBB) {
600   // Can't thread edge to self.
601   if (PredBB == DestBB)
602     return false;
603 
604   SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
605   SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
606 
607   // There are a variety of optimizations that we can potentially do on these
608   // blocks: we order them from most to least preferable.
609 
610   // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
611   // directly to their destination.  This does not introduce *any* code size
612   // growth.  Skip debug info first.
613   BasicBlock::iterator BBI = DestBB->begin();
614   while (isa<DbgInfoIntrinsic>(BBI))
615     BBI++;
616 
617   // FIXME: Thread if it just contains a PHI.
618   if (isa<SwitchInst>(BBI)) {
619     bool MadeChange = false;
620     // Ignore the default edge for now.
621     for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
622       ConstantInt *DestVal = DestSI->getCaseValue(i);
623       BasicBlock *DestSucc = DestSI->getSuccessor(i);
624 
625       // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
626       // PredSI has an explicit case for it.  If so, forward.  If it is covered
627       // by the default case, we can't update PredSI.
628       unsigned PredCase = PredSI->findCaseValue(DestVal);
629       if (PredCase == 0) continue;
630 
631       // If PredSI doesn't go to DestBB on this value, then it won't reach the
632       // case on this condition.
633       if (PredSI->getSuccessor(PredCase) != DestBB &&
634           DestSI->getSuccessor(i) != DestBB)
635         continue;
636 
637       // Otherwise, we're safe to make the change.  Make sure that the edge from
638       // DestSI to DestSucc is not critical and has no PHI nodes.
639       DEBUG(errs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
640       DEBUG(errs() << "THROUGH: " << *DestSI);
641 
642       // If the destination has PHI nodes, just split the edge for updating
643       // simplicity.
644       if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
645         SplitCriticalEdge(DestSI, i, this);
646         DestSucc = DestSI->getSuccessor(i);
647       }
648       FoldSingleEntryPHINodes(DestSucc);
649       PredSI->setSuccessor(PredCase, DestSucc);
650       MadeChange = true;
651     }
652 
653     if (MadeChange)
654       return true;
655   }
656 
657   return false;
658 }
659 
660 
661 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
662 /// load instruction, eliminate it by replacing it with a PHI node.  This is an
663 /// important optimization that encourages jump threading, and needs to be run
664 /// interlaced with other jump threading tasks.
665 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
666   // Don't hack volatile loads.
667   if (LI->isVolatile()) return false;
668 
669   // If the load is defined in a block with exactly one predecessor, it can't be
670   // partially redundant.
671   BasicBlock *LoadBB = LI->getParent();
672   if (LoadBB->getSinglePredecessor())
673     return false;
674 
675   Value *LoadedPtr = LI->getOperand(0);
676 
677   // If the loaded operand is defined in the LoadBB, it can't be available.
678   // FIXME: Could do PHI translation, that would be fun :)
679   if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
680     if (PtrOp->getParent() == LoadBB)
681       return false;
682 
683   // Scan a few instructions up from the load, to see if it is obviously live at
684   // the entry to its block.
685   BasicBlock::iterator BBIt = LI;
686 
687   if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB,
688                                                      BBIt, 6)) {
689     // If the value if the load is locally available within the block, just use
690     // it.  This frequently occurs for reg2mem'd allocas.
691     //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
692 
693     // If the returned value is the load itself, replace with an undef. This can
694     // only happen in dead loops.
695     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
696     LI->replaceAllUsesWith(AvailableVal);
697     LI->eraseFromParent();
698     return true;
699   }
700 
701   // Otherwise, if we scanned the whole block and got to the top of the block,
702   // we know the block is locally transparent to the load.  If not, something
703   // might clobber its value.
704   if (BBIt != LoadBB->begin())
705     return false;
706 
707 
708   SmallPtrSet<BasicBlock*, 8> PredsScanned;
709   typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
710   AvailablePredsTy AvailablePreds;
711   BasicBlock *OneUnavailablePred = 0;
712 
713   // If we got here, the loaded value is transparent through to the start of the
714   // block.  Check to see if it is available in any of the predecessor blocks.
715   for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
716        PI != PE; ++PI) {
717     BasicBlock *PredBB = *PI;
718 
719     // If we already scanned this predecessor, skip it.
720     if (!PredsScanned.insert(PredBB))
721       continue;
722 
723     // Scan the predecessor to see if the value is available in the pred.
724     BBIt = PredBB->end();
725     Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
726     if (!PredAvailable) {
727       OneUnavailablePred = PredBB;
728       continue;
729     }
730 
731     // If so, this load is partially redundant.  Remember this info so that we
732     // can create a PHI node.
733     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
734   }
735 
736   // If the loaded value isn't available in any predecessor, it isn't partially
737   // redundant.
738   if (AvailablePreds.empty()) return false;
739 
740   // Okay, the loaded value is available in at least one (and maybe all!)
741   // predecessors.  If the value is unavailable in more than one unique
742   // predecessor, we want to insert a merge block for those common predecessors.
743   // This ensures that we only have to insert one reload, thus not increasing
744   // code size.
745   BasicBlock *UnavailablePred = 0;
746 
747   // If there is exactly one predecessor where the value is unavailable, the
748   // already computed 'OneUnavailablePred' block is it.  If it ends in an
749   // unconditional branch, we know that it isn't a critical edge.
750   if (PredsScanned.size() == AvailablePreds.size()+1 &&
751       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
752     UnavailablePred = OneUnavailablePred;
753   } else if (PredsScanned.size() != AvailablePreds.size()) {
754     // Otherwise, we had multiple unavailable predecessors or we had a critical
755     // edge from the one.
756     SmallVector<BasicBlock*, 8> PredsToSplit;
757     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
758 
759     for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
760       AvailablePredSet.insert(AvailablePreds[i].first);
761 
762     // Add all the unavailable predecessors to the PredsToSplit list.
763     for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
764          PI != PE; ++PI)
765       if (!AvailablePredSet.count(*PI))
766         PredsToSplit.push_back(*PI);
767 
768     // Split them out to their own block.
769     UnavailablePred =
770       SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
771                              "thread-split", this);
772   }
773 
774   // If the value isn't available in all predecessors, then there will be
775   // exactly one where it isn't available.  Insert a load on that edge and add
776   // it to the AvailablePreds list.
777   if (UnavailablePred) {
778     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
779            "Can't handle critical edge here!");
780     Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr",
781                                  UnavailablePred->getTerminator());
782     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
783   }
784 
785   // Now we know that each predecessor of this block has a value in
786   // AvailablePreds, sort them for efficient access as we're walking the preds.
787   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
788 
789   // Create a PHI node at the start of the block for the PRE'd load value.
790   PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
791   PN->takeName(LI);
792 
793   // Insert new entries into the PHI for each predecessor.  A single block may
794   // have multiple entries here.
795   for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
796        ++PI) {
797     AvailablePredsTy::iterator I =
798       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
799                        std::make_pair(*PI, (Value*)0));
800 
801     assert(I != AvailablePreds.end() && I->first == *PI &&
802            "Didn't find entry for predecessor!");
803 
804     PN->addIncoming(I->second, I->first);
805   }
806 
807   //cerr << "PRE: " << *LI << *PN << "\n";
808 
809   LI->replaceAllUsesWith(PN);
810   LI->eraseFromParent();
811 
812   return true;
813 }
814 
815 /// FindMostPopularDest - The specified list contains multiple possible
816 /// threadable destinations.  Pick the one that occurs the most frequently in
817 /// the list.
818 static BasicBlock *
819 FindMostPopularDest(BasicBlock *BB,
820                     const SmallVectorImpl<std::pair<BasicBlock*,
821                                   BasicBlock*> > &PredToDestList) {
822   assert(!PredToDestList.empty());
823 
824   // Determine popularity.  If there are multiple possible destinations, we
825   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
826   // blocks with known and real destinations to threading undef.  We'll handle
827   // them later if interesting.
828   DenseMap<BasicBlock*, unsigned> DestPopularity;
829   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
830     if (PredToDestList[i].second)
831       DestPopularity[PredToDestList[i].second]++;
832 
833   // Find the most popular dest.
834   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
835   BasicBlock *MostPopularDest = DPI->first;
836   unsigned Popularity = DPI->second;
837   SmallVector<BasicBlock*, 4> SamePopularity;
838 
839   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
840     // If the popularity of this entry isn't higher than the popularity we've
841     // seen so far, ignore it.
842     if (DPI->second < Popularity)
843       ; // ignore.
844     else if (DPI->second == Popularity) {
845       // If it is the same as what we've seen so far, keep track of it.
846       SamePopularity.push_back(DPI->first);
847     } else {
848       // If it is more popular, remember it.
849       SamePopularity.clear();
850       MostPopularDest = DPI->first;
851       Popularity = DPI->second;
852     }
853   }
854 
855   // Okay, now we know the most popular destination.  If there is more than
856   // destination, we need to determine one.  This is arbitrary, but we need
857   // to make a deterministic decision.  Pick the first one that appears in the
858   // successor list.
859   if (!SamePopularity.empty()) {
860     SamePopularity.push_back(MostPopularDest);
861     TerminatorInst *TI = BB->getTerminator();
862     for (unsigned i = 0; ; ++i) {
863       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
864 
865       if (std::find(SamePopularity.begin(), SamePopularity.end(),
866                     TI->getSuccessor(i)) == SamePopularity.end())
867         continue;
868 
869       MostPopularDest = TI->getSuccessor(i);
870       break;
871     }
872   }
873 
874   // Okay, we have finally picked the most popular destination.
875   return MostPopularDest;
876 }
877 
878 bool JumpThreading::ProcessThreadableEdges(Instruction *CondInst,
879                                            BasicBlock *BB) {
880   // If threading this would thread across a loop header, don't even try to
881   // thread the edge.
882   if (LoopHeaders.count(BB))
883     return false;
884 
885   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
886   if (!ComputeValueKnownInPredecessors(CondInst, BB, PredValues))
887     return false;
888   assert(!PredValues.empty() &&
889          "ComputeValueKnownInPredecessors returned true with no values");
890 
891   DEBUG(errs() << "IN BB: " << *BB;
892         for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
893           errs() << "  BB '" << BB->getName() << "': FOUND condition = ";
894           if (PredValues[i].first)
895             errs() << *PredValues[i].first;
896           else
897             errs() << "UNDEF";
898           errs() << " for pred '" << PredValues[i].second->getName()
899           << "'.\n";
900         });
901 
902   // Decide what we want to thread through.  Convert our list of known values to
903   // a list of known destinations for each pred.  This also discards duplicate
904   // predecessors and keeps track of the undefined inputs (which are represented
905   // as a null dest in the PredToDestList).
906   SmallPtrSet<BasicBlock*, 16> SeenPreds;
907   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
908 
909   BasicBlock *OnlyDest = 0;
910   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
911 
912   for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
913     BasicBlock *Pred = PredValues[i].second;
914     if (!SeenPreds.insert(Pred))
915       continue;  // Duplicate predecessor entry.
916 
917     // If the predecessor ends with an indirect goto, we can't change its
918     // destination.
919     if (isa<IndirectBrInst>(Pred->getTerminator()))
920       continue;
921 
922     ConstantInt *Val = PredValues[i].first;
923 
924     BasicBlock *DestBB;
925     if (Val == 0)      // Undef.
926       DestBB = 0;
927     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
928       DestBB = BI->getSuccessor(Val->isZero());
929     else {
930       SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
931       DestBB = SI->getSuccessor(SI->findCaseValue(Val));
932     }
933 
934     // If we have exactly one destination, remember it for efficiency below.
935     if (i == 0)
936       OnlyDest = DestBB;
937     else if (OnlyDest != DestBB)
938       OnlyDest = MultipleDestSentinel;
939 
940     PredToDestList.push_back(std::make_pair(Pred, DestBB));
941   }
942 
943   // If all edges were unthreadable, we fail.
944   if (PredToDestList.empty())
945     return false;
946 
947   // Determine which is the most common successor.  If we have many inputs and
948   // this block is a switch, we want to start by threading the batch that goes
949   // to the most popular destination first.  If we only know about one
950   // threadable destination (the common case) we can avoid this.
951   BasicBlock *MostPopularDest = OnlyDest;
952 
953   if (MostPopularDest == MultipleDestSentinel)
954     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
955 
956   // Now that we know what the most popular destination is, factor all
957   // predecessors that will jump to it into a single predecessor.
958   SmallVector<BasicBlock*, 16> PredsToFactor;
959   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
960     if (PredToDestList[i].second == MostPopularDest) {
961       BasicBlock *Pred = PredToDestList[i].first;
962 
963       // This predecessor may be a switch or something else that has multiple
964       // edges to the block.  Factor each of these edges by listing them
965       // according to # occurrences in PredsToFactor.
966       TerminatorInst *PredTI = Pred->getTerminator();
967       for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
968         if (PredTI->getSuccessor(i) == BB)
969           PredsToFactor.push_back(Pred);
970     }
971 
972   // If the threadable edges are branching on an undefined value, we get to pick
973   // the destination that these predecessors should get to.
974   if (MostPopularDest == 0)
975     MostPopularDest = BB->getTerminator()->
976                             getSuccessor(GetBestDestForJumpOnUndef(BB));
977 
978   // Ok, try to thread it!
979   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
980 }
981 
982 /// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
983 /// the current block.  See if there are any simplifications we can do based on
984 /// inputs to the phi node.
985 ///
986 bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
987   BasicBlock *BB = PN->getParent();
988 
989   // If any of the predecessor blocks end in an unconditional branch, we can
990   // *duplicate* the jump into that block in order to further encourage jump
991   // threading and to eliminate cases where we have branch on a phi of an icmp
992   // (branch on icmp is much better).
993 
994   // We don't want to do this tranformation for switches, because we don't
995   // really want to duplicate a switch.
996   if (isa<SwitchInst>(BB->getTerminator()))
997     return false;
998 
999   // Look for unconditional branch predecessors.
1000   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1001     BasicBlock *PredBB = PN->getIncomingBlock(i);
1002     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1003       if (PredBr->isUnconditional() &&
1004           // Try to duplicate BB into PredBB.
1005           DuplicateCondBranchOnPHIIntoPred(BB, PredBB))
1006         return true;
1007   }
1008 
1009   return false;
1010 }
1011 
1012 
1013 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1014 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1015 /// NewPred using the entries from OldPred (suitably mapped).
1016 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1017                                             BasicBlock *OldPred,
1018                                             BasicBlock *NewPred,
1019                                      DenseMap<Instruction*, Value*> &ValueMap) {
1020   for (BasicBlock::iterator PNI = PHIBB->begin();
1021        PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1022     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1023     // DestBlock.
1024     Value *IV = PN->getIncomingValueForBlock(OldPred);
1025 
1026     // Remap the value if necessary.
1027     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1028       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1029       if (I != ValueMap.end())
1030         IV = I->second;
1031     }
1032 
1033     PN->addIncoming(IV, NewPred);
1034   }
1035 }
1036 
1037 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1038 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1039 /// across BB.  Transform the IR to reflect this change.
1040 bool JumpThreading::ThreadEdge(BasicBlock *BB,
1041                                const SmallVectorImpl<BasicBlock*> &PredBBs,
1042                                BasicBlock *SuccBB) {
1043   // If threading to the same block as we come from, we would infinite loop.
1044   if (SuccBB == BB) {
1045     DEBUG(errs() << "  Not threading across BB '" << BB->getName()
1046           << "' - would thread to self!\n");
1047     return false;
1048   }
1049 
1050   // If threading this would thread across a loop header, don't thread the edge.
1051   // See the comments above FindLoopHeaders for justifications and caveats.
1052   if (LoopHeaders.count(BB)) {
1053     DEBUG(errs() << "  Not threading across loop header BB '" << BB->getName()
1054           << "' to dest BB '" << SuccBB->getName()
1055           << "' - it might create an irreducible loop!\n");
1056     return false;
1057   }
1058 
1059   unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1060   if (JumpThreadCost > Threshold) {
1061     DEBUG(errs() << "  Not threading BB '" << BB->getName()
1062           << "' - Cost is too high: " << JumpThreadCost << "\n");
1063     return false;
1064   }
1065 
1066   // And finally, do it!  Start by factoring the predecessors is needed.
1067   BasicBlock *PredBB;
1068   if (PredBBs.size() == 1)
1069     PredBB = PredBBs[0];
1070   else {
1071     DEBUG(errs() << "  Factoring out " << PredBBs.size()
1072           << " common predecessors.\n");
1073     PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1074                                     ".thr_comm", this);
1075   }
1076 
1077   // And finally, do it!
1078   DEBUG(errs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1079         << SuccBB->getName() << "' with cost: " << JumpThreadCost
1080         << ", across block:\n    "
1081         << *BB << "\n");
1082 
1083   // We are going to have to map operands from the original BB block to the new
1084   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1085   // account for entry from PredBB.
1086   DenseMap<Instruction*, Value*> ValueMapping;
1087 
1088   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1089                                          BB->getName()+".thread",
1090                                          BB->getParent(), BB);
1091   NewBB->moveAfter(PredBB);
1092 
1093   BasicBlock::iterator BI = BB->begin();
1094   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1095     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1096 
1097   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1098   // mapping and using it to remap operands in the cloned instructions.
1099   for (; !isa<TerminatorInst>(BI); ++BI) {
1100     Instruction *New = BI->clone();
1101     New->setName(BI->getName());
1102     NewBB->getInstList().push_back(New);
1103     ValueMapping[BI] = New;
1104 
1105     // Remap operands to patch up intra-block references.
1106     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1107       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1108         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1109         if (I != ValueMapping.end())
1110           New->setOperand(i, I->second);
1111       }
1112   }
1113 
1114   // We didn't copy the terminator from BB over to NewBB, because there is now
1115   // an unconditional jump to SuccBB.  Insert the unconditional jump.
1116   BranchInst::Create(SuccBB, NewBB);
1117 
1118   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1119   // PHI nodes for NewBB now.
1120   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1121 
1122   // If there were values defined in BB that are used outside the block, then we
1123   // now have to update all uses of the value to use either the original value,
1124   // the cloned value, or some PHI derived value.  This can require arbitrary
1125   // PHI insertion, of which we are prepared to do, clean these up now.
1126   SSAUpdater SSAUpdate;
1127   SmallVector<Use*, 16> UsesToRename;
1128   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1129     // Scan all uses of this instruction to see if it is used outside of its
1130     // block, and if so, record them in UsesToRename.
1131     for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1132          ++UI) {
1133       Instruction *User = cast<Instruction>(*UI);
1134       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1135         if (UserPN->getIncomingBlock(UI) == BB)
1136           continue;
1137       } else if (User->getParent() == BB)
1138         continue;
1139 
1140       UsesToRename.push_back(&UI.getUse());
1141     }
1142 
1143     // If there are no uses outside the block, we're done with this instruction.
1144     if (UsesToRename.empty())
1145       continue;
1146 
1147     DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1148 
1149     // We found a use of I outside of BB.  Rename all uses of I that are outside
1150     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1151     // with the two values we know.
1152     SSAUpdate.Initialize(I);
1153     SSAUpdate.AddAvailableValue(BB, I);
1154     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1155 
1156     while (!UsesToRename.empty())
1157       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1158     DEBUG(errs() << "\n");
1159   }
1160 
1161 
1162   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1163   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1164   // us to simplify any PHI nodes in BB.
1165   TerminatorInst *PredTerm = PredBB->getTerminator();
1166   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1167     if (PredTerm->getSuccessor(i) == BB) {
1168       RemovePredecessorAndSimplify(BB, PredBB, TD);
1169       PredTerm->setSuccessor(i, NewBB);
1170     }
1171 
1172   // At this point, the IR is fully up to date and consistent.  Do a quick scan
1173   // over the new instructions and zap any that are constants or dead.  This
1174   // frequently happens because of phi translation.
1175   BI = NewBB->begin();
1176   for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
1177     Instruction *Inst = BI++;
1178 
1179     if (Value *V = SimplifyInstruction(Inst, TD)) {
1180       WeakVH BIHandle(BI);
1181       ReplaceAndSimplifyAllUses(Inst, V, TD);
1182       if (BIHandle == 0)
1183         BI = NewBB->begin();
1184       continue;
1185     }
1186 
1187     RecursivelyDeleteTriviallyDeadInstructions(Inst);
1188   }
1189 
1190   // Threaded an edge!
1191   ++NumThreads;
1192   return true;
1193 }
1194 
1195 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1196 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1197 /// If we can duplicate the contents of BB up into PredBB do so now, this
1198 /// improves the odds that the branch will be on an analyzable instruction like
1199 /// a compare.
1200 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1201                                                      BasicBlock *PredBB) {
1202   // If BB is a loop header, then duplicating this block outside the loop would
1203   // cause us to transform this into an irreducible loop, don't do this.
1204   // See the comments above FindLoopHeaders for justifications and caveats.
1205   if (LoopHeaders.count(BB)) {
1206     DEBUG(errs() << "  Not duplicating loop header '" << BB->getName()
1207           << "' into predecessor block '" << PredBB->getName()
1208           << "' - it might create an irreducible loop!\n");
1209     return false;
1210   }
1211 
1212   unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1213   if (DuplicationCost > Threshold) {
1214     DEBUG(errs() << "  Not duplicating BB '" << BB->getName()
1215           << "' - Cost is too high: " << DuplicationCost << "\n");
1216     return false;
1217   }
1218 
1219   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1220   // of PredBB.
1221   DEBUG(errs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1222         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1223         << DuplicationCost << " block is:" << *BB << "\n");
1224 
1225   // We are going to have to map operands from the original BB block into the
1226   // PredBB block.  Evaluate PHI nodes in BB.
1227   DenseMap<Instruction*, Value*> ValueMapping;
1228 
1229   BasicBlock::iterator BI = BB->begin();
1230   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1231     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1232 
1233   BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1234 
1235   // Clone the non-phi instructions of BB into PredBB, keeping track of the
1236   // mapping and using it to remap operands in the cloned instructions.
1237   for (; BI != BB->end(); ++BI) {
1238     Instruction *New = BI->clone();
1239     New->setName(BI->getName());
1240     PredBB->getInstList().insert(OldPredBranch, New);
1241     ValueMapping[BI] = New;
1242 
1243     // Remap operands to patch up intra-block references.
1244     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1245       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1246         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1247         if (I != ValueMapping.end())
1248           New->setOperand(i, I->second);
1249       }
1250   }
1251 
1252   // Check to see if the targets of the branch had PHI nodes. If so, we need to
1253   // add entries to the PHI nodes for branch from PredBB now.
1254   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1255   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1256                                   ValueMapping);
1257   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1258                                   ValueMapping);
1259 
1260   // If there were values defined in BB that are used outside the block, then we
1261   // now have to update all uses of the value to use either the original value,
1262   // the cloned value, or some PHI derived value.  This can require arbitrary
1263   // PHI insertion, of which we are prepared to do, clean these up now.
1264   SSAUpdater SSAUpdate;
1265   SmallVector<Use*, 16> UsesToRename;
1266   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1267     // Scan all uses of this instruction to see if it is used outside of its
1268     // block, and if so, record them in UsesToRename.
1269     for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1270          ++UI) {
1271       Instruction *User = cast<Instruction>(*UI);
1272       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1273         if (UserPN->getIncomingBlock(UI) == BB)
1274           continue;
1275       } else if (User->getParent() == BB)
1276         continue;
1277 
1278       UsesToRename.push_back(&UI.getUse());
1279     }
1280 
1281     // If there are no uses outside the block, we're done with this instruction.
1282     if (UsesToRename.empty())
1283       continue;
1284 
1285     DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1286 
1287     // We found a use of I outside of BB.  Rename all uses of I that are outside
1288     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1289     // with the two values we know.
1290     SSAUpdate.Initialize(I);
1291     SSAUpdate.AddAvailableValue(BB, I);
1292     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1293 
1294     while (!UsesToRename.empty())
1295       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1296     DEBUG(errs() << "\n");
1297   }
1298 
1299   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1300   // that we nuked.
1301   RemovePredecessorAndSimplify(BB, PredBB, TD);
1302 
1303   // Remove the unconditional branch at the end of the PredBB block.
1304   OldPredBranch->eraseFromParent();
1305 
1306   ++NumDupes;
1307   return true;
1308 }
1309 
1310 
1311