xref: /llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp (revision 8f77e948e50f7cc7fb18164935df1746a23691c1)
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "jump-threading"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/IntrinsicInst.h"
17 #include "llvm/LLVMContext.h"
18 #include "llvm/Pass.h"
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
21 #include "llvm/Transforms/Utils/Local.h"
22 #include "llvm/Transforms/Utils/SSAUpdater.h"
23 #include "llvm/Target/TargetData.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 using namespace llvm;
33 
34 STATISTIC(NumThreads, "Number of jumps threaded");
35 STATISTIC(NumFolds,   "Number of terminators folded");
36 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
37 
38 static cl::opt<unsigned>
39 Threshold("jump-threading-threshold",
40           cl::desc("Max block size to duplicate for jump threading"),
41           cl::init(6), cl::Hidden);
42 
43 namespace {
44   /// This pass performs 'jump threading', which looks at blocks that have
45   /// multiple predecessors and multiple successors.  If one or more of the
46   /// predecessors of the block can be proven to always jump to one of the
47   /// successors, we forward the edge from the predecessor to the successor by
48   /// duplicating the contents of this block.
49   ///
50   /// An example of when this can occur is code like this:
51   ///
52   ///   if () { ...
53   ///     X = 4;
54   ///   }
55   ///   if (X < 3) {
56   ///
57   /// In this case, the unconditional branch at the end of the first if can be
58   /// revectored to the false side of the second if.
59   ///
60   class JumpThreading : public FunctionPass {
61     TargetData *TD;
62 #ifdef NDEBUG
63     SmallPtrSet<BasicBlock*, 16> LoopHeaders;
64 #else
65     SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
66 #endif
67   public:
68     static char ID; // Pass identification
69     JumpThreading() : FunctionPass(&ID) {}
70 
71     bool runOnFunction(Function &F);
72     void FindLoopHeaders(Function &F);
73 
74     bool ProcessBlock(BasicBlock *BB);
75     bool ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, BasicBlock *SuccBB);
76     bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
77                                           BasicBlock *PredBB);
78 
79     typedef SmallVectorImpl<std::pair<ConstantInt*,
80                                       BasicBlock*> > PredValueInfo;
81 
82     bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
83                                          PredValueInfo &Result);
84     bool ProcessThreadableEdges(Instruction *CondInst, BasicBlock *BB);
85 
86 
87     bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
88     bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
89 
90     bool ProcessJumpOnPHI(PHINode *PN);
91 
92     bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
93   };
94 }
95 
96 char JumpThreading::ID = 0;
97 static RegisterPass<JumpThreading>
98 X("jump-threading", "Jump Threading");
99 
100 // Public interface to the Jump Threading pass
101 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
102 
103 /// runOnFunction - Top level algorithm.
104 ///
105 bool JumpThreading::runOnFunction(Function &F) {
106   DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n");
107   TD = getAnalysisIfAvailable<TargetData>();
108 
109   FindLoopHeaders(F);
110 
111   bool AnotherIteration = true, EverChanged = false;
112   while (AnotherIteration) {
113     AnotherIteration = false;
114     bool Changed = false;
115     for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
116       BasicBlock *BB = I;
117       while (ProcessBlock(BB))
118         Changed = true;
119 
120       ++I;
121 
122       // If the block is trivially dead, zap it.  This eliminates the successor
123       // edges which simplifies the CFG.
124       if (pred_begin(BB) == pred_end(BB) &&
125           BB != &BB->getParent()->getEntryBlock()) {
126         DEBUG(errs() << "  JT: Deleting dead block '" << BB->getName()
127               << "' with terminator: " << *BB->getTerminator() << '\n');
128         LoopHeaders.erase(BB);
129         DeleteDeadBlock(BB);
130         Changed = true;
131       }
132     }
133     AnotherIteration = Changed;
134     EverChanged |= Changed;
135   }
136 
137   LoopHeaders.clear();
138   return EverChanged;
139 }
140 
141 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
142 /// thread across it.
143 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
144   /// Ignore PHI nodes, these will be flattened when duplication happens.
145   BasicBlock::const_iterator I = BB->getFirstNonPHI();
146 
147   // Sum up the cost of each instruction until we get to the terminator.  Don't
148   // include the terminator because the copy won't include it.
149   unsigned Size = 0;
150   for (; !isa<TerminatorInst>(I); ++I) {
151     // Debugger intrinsics don't incur code size.
152     if (isa<DbgInfoIntrinsic>(I)) continue;
153 
154     // If this is a pointer->pointer bitcast, it is free.
155     if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
156       continue;
157 
158     // All other instructions count for at least one unit.
159     ++Size;
160 
161     // Calls are more expensive.  If they are non-intrinsic calls, we model them
162     // as having cost of 4.  If they are a non-vector intrinsic, we model them
163     // as having cost of 2 total, and if they are a vector intrinsic, we model
164     // them as having cost 1.
165     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
166       if (!isa<IntrinsicInst>(CI))
167         Size += 3;
168       else if (!isa<VectorType>(CI->getType()))
169         Size += 1;
170     }
171   }
172 
173   // Threading through a switch statement is particularly profitable.  If this
174   // block ends in a switch, decrease its cost to make it more likely to happen.
175   if (isa<SwitchInst>(I))
176     Size = Size > 6 ? Size-6 : 0;
177 
178   return Size;
179 }
180 
181 
182 
183 /// FindLoopHeaders - We do not want jump threading to turn proper loop
184 /// structures into irreducible loops.  Doing this breaks up the loop nesting
185 /// hierarchy and pessimizes later transformations.  To prevent this from
186 /// happening, we first have to find the loop headers.  Here we approximate this
187 /// by finding targets of backedges in the CFG.
188 ///
189 /// Note that there definitely are cases when we want to allow threading of
190 /// edges across a loop header.  For example, threading a jump from outside the
191 /// loop (the preheader) to an exit block of the loop is definitely profitable.
192 /// It is also almost always profitable to thread backedges from within the loop
193 /// to exit blocks, and is often profitable to thread backedges to other blocks
194 /// within the loop (forming a nested loop).  This simple analysis is not rich
195 /// enough to track all of these properties and keep it up-to-date as the CFG
196 /// mutates, so we don't allow any of these transformations.
197 ///
198 void JumpThreading::FindLoopHeaders(Function &F) {
199   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
200   FindFunctionBackedges(F, Edges);
201 
202   for (unsigned i = 0, e = Edges.size(); i != e; ++i)
203     LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
204 }
205 
206 /// GetResultOfComparison - Given an icmp/fcmp predicate and the left and right
207 /// hand sides of the compare instruction, try to determine the result. If the
208 /// result can not be determined, a null pointer is returned.
209 static Constant *GetResultOfComparison(CmpInst::Predicate pred,
210                                        Value *LHS, Value *RHS) {
211   if (Constant *CLHS = dyn_cast<Constant>(LHS))
212     if (Constant *CRHS = dyn_cast<Constant>(RHS))
213       return ConstantExpr::getCompare(pred, CLHS, CRHS);
214 
215   if (LHS == RHS)
216     if (isa<IntegerType>(LHS->getType()) || isa<PointerType>(LHS->getType())) {
217       if (ICmpInst::isTrueWhenEqual(pred))
218         return ConstantInt::getTrue(LHS->getContext());
219       else
220         return ConstantInt::getFalse(LHS->getContext());
221     }
222   return 0;
223 }
224 
225 
226 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
227 /// if we can infer that the value is a known ConstantInt in any of our
228 /// predecessors.  If so, return the known the list of value and pred BB in the
229 /// result vector.  If a value is known to be undef, it is returned as null.
230 ///
231 /// The BB basic block is known to start with a PHI node.
232 ///
233 /// This returns true if there were any known values.
234 ///
235 ///
236 /// TODO: Per PR2563, we could infer value range information about a predecessor
237 /// based on its terminator.
238 bool JumpThreading::
239 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
240   PHINode *TheFirstPHI = cast<PHINode>(BB->begin());
241 
242   // If V is a constantint, then it is known in all predecessors.
243   if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
244     ConstantInt *CI = dyn_cast<ConstantInt>(V);
245     Result.resize(TheFirstPHI->getNumIncomingValues());
246     for (unsigned i = 0, e = Result.size(); i != e; ++i)
247       Result[i] = std::make_pair(CI, TheFirstPHI->getIncomingBlock(i));
248     return true;
249   }
250 
251   // If V is a non-instruction value, or an instruction in a different block,
252   // then it can't be derived from a PHI.
253   Instruction *I = dyn_cast<Instruction>(V);
254   if (I == 0 || I->getParent() != BB)
255     return false;
256 
257   /// If I is a PHI node, then we know the incoming values for any constants.
258   if (PHINode *PN = dyn_cast<PHINode>(I)) {
259     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
260       Value *InVal = PN->getIncomingValue(i);
261       if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
262         ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
263         Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
264       }
265     }
266     return !Result.empty();
267   }
268 
269   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
270 
271   // Handle some boolean conditions.
272   if (I->getType()->getPrimitiveSizeInBits() == 1) {
273     // X | true -> true
274     // X & false -> false
275     if (I->getOpcode() == Instruction::Or ||
276         I->getOpcode() == Instruction::And) {
277       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
278       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
279 
280       if (LHSVals.empty() && RHSVals.empty())
281         return false;
282 
283       ConstantInt *InterestingVal;
284       if (I->getOpcode() == Instruction::Or)
285         InterestingVal = ConstantInt::getTrue(I->getContext());
286       else
287         InterestingVal = ConstantInt::getFalse(I->getContext());
288 
289       // Scan for the sentinel.
290       for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
291         if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0)
292           Result.push_back(LHSVals[i]);
293       for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
294         if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0)
295           Result.push_back(RHSVals[i]);
296       return !Result.empty();
297     }
298 
299     // TODO: Should handle the NOT form of XOR.
300 
301   }
302 
303   // Handle compare with phi operand, where the PHI is defined in this block.
304   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
305     PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
306     if (PN && PN->getParent() == BB) {
307       // We can do this simplification if any comparisons fold to true or false.
308       // See if any do.
309       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
310         BasicBlock *PredBB = PN->getIncomingBlock(i);
311         Value *LHS = PN->getIncomingValue(i);
312         Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
313 
314         Constant *Res = GetResultOfComparison(Cmp->getPredicate(), LHS, RHS);
315         if (Res == 0) continue;
316 
317         if (isa<UndefValue>(Res))
318           Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
319         else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
320           Result.push_back(std::make_pair(CI, PredBB));
321       }
322 
323       return !Result.empty();
324     }
325 
326     // TODO: We could also recurse to see if we can determine constants another
327     // way.
328   }
329   return false;
330 }
331 
332 
333 
334 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
335 /// in an undefined jump, decide which block is best to revector to.
336 ///
337 /// Since we can pick an arbitrary destination, we pick the successor with the
338 /// fewest predecessors.  This should reduce the in-degree of the others.
339 ///
340 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
341   TerminatorInst *BBTerm = BB->getTerminator();
342   unsigned MinSucc = 0;
343   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
344   // Compute the successor with the minimum number of predecessors.
345   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
346   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
347     TestBB = BBTerm->getSuccessor(i);
348     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
349     if (NumPreds < MinNumPreds)
350       MinSucc = i;
351   }
352 
353   return MinSucc;
354 }
355 
356 /// ProcessBlock - If there are any predecessors whose control can be threaded
357 /// through to a successor, transform them now.
358 bool JumpThreading::ProcessBlock(BasicBlock *BB) {
359   // If this block has a single predecessor, and if that pred has a single
360   // successor, merge the blocks.  This encourages recursive jump threading
361   // because now the condition in this block can be threaded through
362   // predecessors of our predecessor block.
363   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
364     if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
365         SinglePred != BB) {
366       // If SinglePred was a loop header, BB becomes one.
367       if (LoopHeaders.erase(SinglePred))
368         LoopHeaders.insert(BB);
369 
370       // Remember if SinglePred was the entry block of the function.  If so, we
371       // will need to move BB back to the entry position.
372       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
373       MergeBasicBlockIntoOnlyPred(BB);
374 
375       if (isEntry && BB != &BB->getParent()->getEntryBlock())
376         BB->moveBefore(&BB->getParent()->getEntryBlock());
377       return true;
378     }
379   }
380 
381   // Look to see if the terminator is a branch of switch, if not we can't thread
382   // it.
383   Value *Condition;
384   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
385     // Can't thread an unconditional jump.
386     if (BI->isUnconditional()) return false;
387     Condition = BI->getCondition();
388   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
389     Condition = SI->getCondition();
390   else
391     return false; // Must be an invoke.
392 
393   // If the terminator of this block is branching on a constant, simplify the
394   // terminator to an unconditional branch.  This can occur due to threading in
395   // other blocks.
396   if (isa<ConstantInt>(Condition)) {
397     DEBUG(errs() << "  In block '" << BB->getName()
398           << "' folding terminator: " << *BB->getTerminator() << '\n');
399     ++NumFolds;
400     ConstantFoldTerminator(BB);
401     return true;
402   }
403 
404   // If the terminator is branching on an undef, we can pick any of the
405   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
406   if (isa<UndefValue>(Condition)) {
407     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
408 
409     // Fold the branch/switch.
410     TerminatorInst *BBTerm = BB->getTerminator();
411     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
412       if (i == BestSucc) continue;
413       BBTerm->getSuccessor(i)->removePredecessor(BB);
414     }
415 
416     DEBUG(errs() << "  In block '" << BB->getName()
417           << "' folding undef terminator: " << *BBTerm << '\n');
418     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
419     BBTerm->eraseFromParent();
420     return true;
421   }
422 
423   Instruction *CondInst = dyn_cast<Instruction>(Condition);
424 
425   // If the condition is an instruction defined in another block, see if a
426   // predecessor has the same condition:
427   //     br COND, BBX, BBY
428   //  BBX:
429   //     br COND, BBZ, BBW
430   if (!Condition->hasOneUse() && // Multiple uses.
431       (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
432     pred_iterator PI = pred_begin(BB), E = pred_end(BB);
433     if (isa<BranchInst>(BB->getTerminator())) {
434       for (; PI != E; ++PI)
435         if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
436           if (PBI->isConditional() && PBI->getCondition() == Condition &&
437               ProcessBranchOnDuplicateCond(*PI, BB))
438             return true;
439     } else {
440       assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
441       for (; PI != E; ++PI)
442         if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
443           if (PSI->getCondition() == Condition &&
444               ProcessSwitchOnDuplicateCond(*PI, BB))
445             return true;
446     }
447   }
448 
449   // All the rest of our checks depend on the condition being an instruction.
450   if (CondInst == 0)
451     return false;
452 
453   // See if this is a phi node in the current block.
454   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
455     if (PN->getParent() == BB)
456       return ProcessJumpOnPHI(PN);
457 
458   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
459     if (!isa<PHINode>(CondCmp->getOperand(0)) ||
460         cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB) {
461       // If we have a comparison, loop over the predecessors to see if there is
462       // a condition with a lexically identical value.
463       pred_iterator PI = pred_begin(BB), E = pred_end(BB);
464       for (; PI != E; ++PI)
465         if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
466           if (PBI->isConditional() && *PI != BB) {
467             if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
468               if (CI->getOperand(0) == CondCmp->getOperand(0) &&
469                   CI->getOperand(1) == CondCmp->getOperand(1) &&
470                   CI->getPredicate() == CondCmp->getPredicate()) {
471                 // TODO: Could handle things like (x != 4) --> (x == 17)
472                 if (ProcessBranchOnDuplicateCond(*PI, BB))
473                   return true;
474               }
475             }
476           }
477     }
478   }
479 
480   // Check for some cases that are worth simplifying.  Right now we want to look
481   // for loads that are used by a switch or by the condition for the branch.  If
482   // we see one, check to see if it's partially redundant.  If so, insert a PHI
483   // which can then be used to thread the values.
484   //
485   // This is particularly important because reg2mem inserts loads and stores all
486   // over the place, and this blocks jump threading if we don't zap them.
487   Value *SimplifyValue = CondInst;
488   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
489     if (isa<Constant>(CondCmp->getOperand(1)))
490       SimplifyValue = CondCmp->getOperand(0);
491 
492   if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
493     if (SimplifyPartiallyRedundantLoad(LI))
494       return true;
495 
496 
497   // Handle a variety of cases where we are branching on something derived from
498   // a PHI node in the current block.  If we can prove that any predecessors
499   // compute a predictable value based on a PHI node, thread those predecessors.
500   //
501   // We only bother doing this if the current block has a PHI node and if the
502   // conditional instruction lives in the current block.  If either condition
503   // fail, this won't be a computable value anyway.
504   if (CondInst->getParent() == BB && isa<PHINode>(BB->front()))
505     if (ProcessThreadableEdges(CondInst, BB))
506       return true;
507 
508 
509   // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
510   // "(X == 4)" thread through this block.
511 
512   return false;
513 }
514 
515 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
516 /// block that jump on exactly the same condition.  This means that we almost
517 /// always know the direction of the edge in the DESTBB:
518 ///  PREDBB:
519 ///     br COND, DESTBB, BBY
520 ///  DESTBB:
521 ///     br COND, BBZ, BBW
522 ///
523 /// If DESTBB has multiple predecessors, we can't just constant fold the branch
524 /// in DESTBB, we have to thread over it.
525 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
526                                                  BasicBlock *BB) {
527   BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
528 
529   // If both successors of PredBB go to DESTBB, we don't know anything.  We can
530   // fold the branch to an unconditional one, which allows other recursive
531   // simplifications.
532   bool BranchDir;
533   if (PredBI->getSuccessor(1) != BB)
534     BranchDir = true;
535   else if (PredBI->getSuccessor(0) != BB)
536     BranchDir = false;
537   else {
538     DEBUG(errs() << "  In block '" << PredBB->getName()
539           << "' folding terminator: " << *PredBB->getTerminator() << '\n');
540     ++NumFolds;
541     ConstantFoldTerminator(PredBB);
542     return true;
543   }
544 
545   BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
546 
547   // If the dest block has one predecessor, just fix the branch condition to a
548   // constant and fold it.
549   if (BB->getSinglePredecessor()) {
550     DEBUG(errs() << "  In block '" << BB->getName()
551           << "' folding condition to '" << BranchDir << "': "
552           << *BB->getTerminator() << '\n');
553     ++NumFolds;
554     Value *OldCond = DestBI->getCondition();
555     DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
556                                           BranchDir));
557     ConstantFoldTerminator(BB);
558     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
559     return true;
560   }
561 
562 
563   // Next, figure out which successor we are threading to.
564   BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
565 
566   // Ok, try to thread it!
567   return ThreadEdge(BB, PredBB, SuccBB);
568 }
569 
570 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
571 /// block that switch on exactly the same condition.  This means that we almost
572 /// always know the direction of the edge in the DESTBB:
573 ///  PREDBB:
574 ///     switch COND [... DESTBB, BBY ... ]
575 ///  DESTBB:
576 ///     switch COND [... BBZ, BBW ]
577 ///
578 /// Optimizing switches like this is very important, because simplifycfg builds
579 /// switches out of repeated 'if' conditions.
580 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
581                                                  BasicBlock *DestBB) {
582   // Can't thread edge to self.
583   if (PredBB == DestBB)
584     return false;
585 
586   SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
587   SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
588 
589   // There are a variety of optimizations that we can potentially do on these
590   // blocks: we order them from most to least preferable.
591 
592   // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
593   // directly to their destination.  This does not introduce *any* code size
594   // growth.  Skip debug info first.
595   BasicBlock::iterator BBI = DestBB->begin();
596   while (isa<DbgInfoIntrinsic>(BBI))
597     BBI++;
598 
599   // FIXME: Thread if it just contains a PHI.
600   if (isa<SwitchInst>(BBI)) {
601     bool MadeChange = false;
602     // Ignore the default edge for now.
603     for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
604       ConstantInt *DestVal = DestSI->getCaseValue(i);
605       BasicBlock *DestSucc = DestSI->getSuccessor(i);
606 
607       // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
608       // PredSI has an explicit case for it.  If so, forward.  If it is covered
609       // by the default case, we can't update PredSI.
610       unsigned PredCase = PredSI->findCaseValue(DestVal);
611       if (PredCase == 0) continue;
612 
613       // If PredSI doesn't go to DestBB on this value, then it won't reach the
614       // case on this condition.
615       if (PredSI->getSuccessor(PredCase) != DestBB &&
616           DestSI->getSuccessor(i) != DestBB)
617         continue;
618 
619       // Otherwise, we're safe to make the change.  Make sure that the edge from
620       // DestSI to DestSucc is not critical and has no PHI nodes.
621       DEBUG(errs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
622       DEBUG(errs() << "THROUGH: " << *DestSI);
623 
624       // If the destination has PHI nodes, just split the edge for updating
625       // simplicity.
626       if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
627         SplitCriticalEdge(DestSI, i, this);
628         DestSucc = DestSI->getSuccessor(i);
629       }
630       FoldSingleEntryPHINodes(DestSucc);
631       PredSI->setSuccessor(PredCase, DestSucc);
632       MadeChange = true;
633     }
634 
635     if (MadeChange)
636       return true;
637   }
638 
639   return false;
640 }
641 
642 
643 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
644 /// load instruction, eliminate it by replacing it with a PHI node.  This is an
645 /// important optimization that encourages jump threading, and needs to be run
646 /// interlaced with other jump threading tasks.
647 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
648   // Don't hack volatile loads.
649   if (LI->isVolatile()) return false;
650 
651   // If the load is defined in a block with exactly one predecessor, it can't be
652   // partially redundant.
653   BasicBlock *LoadBB = LI->getParent();
654   if (LoadBB->getSinglePredecessor())
655     return false;
656 
657   Value *LoadedPtr = LI->getOperand(0);
658 
659   // If the loaded operand is defined in the LoadBB, it can't be available.
660   // FIXME: Could do PHI translation, that would be fun :)
661   if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
662     if (PtrOp->getParent() == LoadBB)
663       return false;
664 
665   // Scan a few instructions up from the load, to see if it is obviously live at
666   // the entry to its block.
667   BasicBlock::iterator BBIt = LI;
668 
669   if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB,
670                                                      BBIt, 6)) {
671     // If the value if the load is locally available within the block, just use
672     // it.  This frequently occurs for reg2mem'd allocas.
673     //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
674 
675     // If the returned value is the load itself, replace with an undef. This can
676     // only happen in dead loops.
677     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
678     LI->replaceAllUsesWith(AvailableVal);
679     LI->eraseFromParent();
680     return true;
681   }
682 
683   // Otherwise, if we scanned the whole block and got to the top of the block,
684   // we know the block is locally transparent to the load.  If not, something
685   // might clobber its value.
686   if (BBIt != LoadBB->begin())
687     return false;
688 
689 
690   SmallPtrSet<BasicBlock*, 8> PredsScanned;
691   typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
692   AvailablePredsTy AvailablePreds;
693   BasicBlock *OneUnavailablePred = 0;
694 
695   // If we got here, the loaded value is transparent through to the start of the
696   // block.  Check to see if it is available in any of the predecessor blocks.
697   for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
698        PI != PE; ++PI) {
699     BasicBlock *PredBB = *PI;
700 
701     // If we already scanned this predecessor, skip it.
702     if (!PredsScanned.insert(PredBB))
703       continue;
704 
705     // Scan the predecessor to see if the value is available in the pred.
706     BBIt = PredBB->end();
707     Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
708     if (!PredAvailable) {
709       OneUnavailablePred = PredBB;
710       continue;
711     }
712 
713     // If so, this load is partially redundant.  Remember this info so that we
714     // can create a PHI node.
715     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
716   }
717 
718   // If the loaded value isn't available in any predecessor, it isn't partially
719   // redundant.
720   if (AvailablePreds.empty()) return false;
721 
722   // Okay, the loaded value is available in at least one (and maybe all!)
723   // predecessors.  If the value is unavailable in more than one unique
724   // predecessor, we want to insert a merge block for those common predecessors.
725   // This ensures that we only have to insert one reload, thus not increasing
726   // code size.
727   BasicBlock *UnavailablePred = 0;
728 
729   // If there is exactly one predecessor where the value is unavailable, the
730   // already computed 'OneUnavailablePred' block is it.  If it ends in an
731   // unconditional branch, we know that it isn't a critical edge.
732   if (PredsScanned.size() == AvailablePreds.size()+1 &&
733       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
734     UnavailablePred = OneUnavailablePred;
735   } else if (PredsScanned.size() != AvailablePreds.size()) {
736     // Otherwise, we had multiple unavailable predecessors or we had a critical
737     // edge from the one.
738     SmallVector<BasicBlock*, 8> PredsToSplit;
739     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
740 
741     for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
742       AvailablePredSet.insert(AvailablePreds[i].first);
743 
744     // Add all the unavailable predecessors to the PredsToSplit list.
745     for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
746          PI != PE; ++PI)
747       if (!AvailablePredSet.count(*PI))
748         PredsToSplit.push_back(*PI);
749 
750     // Split them out to their own block.
751     UnavailablePred =
752       SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
753                              "thread-split", this);
754   }
755 
756   // If the value isn't available in all predecessors, then there will be
757   // exactly one where it isn't available.  Insert a load on that edge and add
758   // it to the AvailablePreds list.
759   if (UnavailablePred) {
760     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
761            "Can't handle critical edge here!");
762     Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr",
763                                  UnavailablePred->getTerminator());
764     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
765   }
766 
767   // Now we know that each predecessor of this block has a value in
768   // AvailablePreds, sort them for efficient access as we're walking the preds.
769   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
770 
771   // Create a PHI node at the start of the block for the PRE'd load value.
772   PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
773   PN->takeName(LI);
774 
775   // Insert new entries into the PHI for each predecessor.  A single block may
776   // have multiple entries here.
777   for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
778        ++PI) {
779     AvailablePredsTy::iterator I =
780       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
781                        std::make_pair(*PI, (Value*)0));
782 
783     assert(I != AvailablePreds.end() && I->first == *PI &&
784            "Didn't find entry for predecessor!");
785 
786     PN->addIncoming(I->second, I->first);
787   }
788 
789   //cerr << "PRE: " << *LI << *PN << "\n";
790 
791   LI->replaceAllUsesWith(PN);
792   LI->eraseFromParent();
793 
794   return true;
795 }
796 
797 /// FindMostPopularDest - The specified list contains multiple possible
798 /// threadable destinations.  Pick the one that occurs the most frequently in
799 /// the list.
800 static BasicBlock *
801 FindMostPopularDest(BasicBlock *BB,
802                     const SmallVectorImpl<std::pair<BasicBlock*,
803                                   BasicBlock*> > &PredToDestList) {
804   assert(!PredToDestList.empty());
805 
806   // Determine popularity.  If there are multiple possible destinations, we
807   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
808   // blocks with known and real destinations to threading undef.  We'll handle
809   // them later if interesting.
810   DenseMap<BasicBlock*, unsigned> DestPopularity;
811   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
812     if (PredToDestList[i].second)
813       DestPopularity[PredToDestList[i].second]++;
814 
815   // Find the most popular dest.
816   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
817   BasicBlock *MostPopularDest = DPI->first;
818   unsigned Popularity = DPI->second;
819   SmallVector<BasicBlock*, 4> SamePopularity;
820 
821   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
822     // If the popularity of this entry isn't higher than the popularity we've
823     // seen so far, ignore it.
824     if (DPI->second < Popularity)
825       ; // ignore.
826     else if (DPI->second == Popularity) {
827       // If it is the same as what we've seen so far, keep track of it.
828       SamePopularity.push_back(DPI->first);
829     } else {
830       // If it is more popular, remember it.
831       SamePopularity.clear();
832       MostPopularDest = DPI->first;
833       Popularity = DPI->second;
834     }
835   }
836 
837   // Okay, now we know the most popular destination.  If there is more than
838   // destination, we need to determine one.  This is arbitrary, but we need
839   // to make a deterministic decision.  Pick the first one that appears in the
840   // successor list.
841   if (!SamePopularity.empty()) {
842     SamePopularity.push_back(MostPopularDest);
843     TerminatorInst *TI = BB->getTerminator();
844     for (unsigned i = 0; ; ++i) {
845       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
846 
847       if (std::find(SamePopularity.begin(), SamePopularity.end(),
848                     TI->getSuccessor(i)) == SamePopularity.end())
849         continue;
850 
851       MostPopularDest = TI->getSuccessor(i);
852       break;
853     }
854   }
855 
856   // Okay, we have finally picked the most popular destination.
857   return MostPopularDest;
858 }
859 
860 bool JumpThreading::ProcessThreadableEdges(Instruction *CondInst,
861                                            BasicBlock *BB) {
862   // If threading this would thread across a loop header, don't even try to
863   // thread the edge.
864   if (LoopHeaders.count(BB))
865     return false;
866 
867 
868 
869   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
870   if (!ComputeValueKnownInPredecessors(CondInst, BB, PredValues))
871     return false;
872   assert(!PredValues.empty() &&
873          "ComputeValueKnownInPredecessors returned true with no values");
874 
875   DEBUG(errs() << "IN BB: " << *BB;
876         for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
877           errs() << "  BB '" << BB->getName() << "': FOUND condition = ";
878           if (PredValues[i].first)
879             errs() << *PredValues[i].first;
880           else
881             errs() << "UNDEF";
882           errs() << " for pred '" << PredValues[i].second->getName()
883           << "'.\n";
884         });
885 
886   // Decide what we want to thread through.  Convert our list of known values to
887   // a list of known destinations for each pred.  This also discards duplicate
888   // predecessors and keeps track of the undefined inputs (which are represented
889   // as a null dest in the PredToDestList.
890   SmallPtrSet<BasicBlock*, 16> SeenPreds;
891   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
892 
893   BasicBlock *OnlyDest = 0;
894   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
895 
896   for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
897     BasicBlock *Pred = PredValues[i].second;
898     if (!SeenPreds.insert(Pred))
899       continue;  // Duplicate predecessor entry.
900 
901     // If the predecessor ends with an indirect goto, we can't change its
902     // destination.
903     if (isa<IndirectBrInst>(Pred->getTerminator()))
904       continue;
905 
906     ConstantInt *Val = PredValues[i].first;
907 
908     BasicBlock *DestBB;
909     if (Val == 0)      // Undef.
910       DestBB = 0;
911     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
912       DestBB = BI->getSuccessor(Val->isZero());
913     else {
914       SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
915       DestBB = SI->getSuccessor(SI->findCaseValue(Val));
916     }
917 
918     // If we have exactly one destination, remember it for efficiency below.
919     if (i == 0)
920       OnlyDest = DestBB;
921     else if (OnlyDest != DestBB)
922       OnlyDest = MultipleDestSentinel;
923 
924     PredToDestList.push_back(std::make_pair(Pred, DestBB));
925   }
926 
927   // If all edges were unthreadable, we fail.
928   if (PredToDestList.empty())
929     return false;
930 
931   // Determine which is the most common successor.  If we have many inputs and
932   // this block is a switch, we want to start by threading the batch that goes
933   // to the most popular destination first.  If we only know about one
934   // threadable destination (the common case) we can avoid this.
935   BasicBlock *MostPopularDest = OnlyDest;
936 
937   if (MostPopularDest == MultipleDestSentinel)
938     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
939 
940   // Now that we know what the most popular destination is, factor all
941   // predecessors that will jump to it into a single predecessor.
942   SmallVector<BasicBlock*, 16> PredsToFactor;
943   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
944     if (PredToDestList[i].second == MostPopularDest) {
945       BasicBlock *Pred = PredToDestList[i].first;
946 
947       // This predecessor may be a switch or something else that has multiple
948       // edges to the block.  Factor each of these edges by listing them
949       // according to # occurrences in PredsToFactor.
950       TerminatorInst *PredTI = Pred->getTerminator();
951       for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
952         if (PredTI->getSuccessor(i) == BB)
953           PredsToFactor.push_back(Pred);
954     }
955 
956   BasicBlock *PredToThread;
957   if (PredsToFactor.size() == 1)
958     PredToThread = PredsToFactor[0];
959   else {
960     DEBUG(errs() << "  Factoring out " << PredsToFactor.size()
961                  << " common predecessors.\n");
962     PredToThread = SplitBlockPredecessors(BB, &PredsToFactor[0],
963                                           PredsToFactor.size(),
964                                           ".thr_comm", this);
965   }
966 
967   // If the threadable edges are branching on an undefined value, we get to pick
968   // the destination that these predecessors should get to.
969   if (MostPopularDest == 0)
970     MostPopularDest = BB->getTerminator()->
971                             getSuccessor(GetBestDestForJumpOnUndef(BB));
972 
973   // Ok, try to thread it!
974   return ThreadEdge(BB, PredToThread, MostPopularDest);
975 }
976 
977 /// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
978 /// the current block.  See if there are any simplifications we can do based on
979 /// inputs to the phi node.
980 ///
981 bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
982   BasicBlock *BB = PN->getParent();
983 
984   // If any of the predecessor blocks end in an unconditional branch, we can
985   // *duplicate* the jump into that block in order to further encourage jump
986   // threading and to eliminate cases where we have branch on a phi of an icmp
987   // (branch on icmp is much better).
988 
989   // We don't want to do this tranformation for switches, because we don't
990   // really want to duplicate a switch.
991   if (isa<SwitchInst>(BB->getTerminator()))
992     return false;
993 
994   // Look for unconditional branch predecessors.
995   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
996     BasicBlock *PredBB = PN->getIncomingBlock(i);
997     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
998       if (PredBr->isUnconditional() &&
999           // Try to duplicate BB into PredBB.
1000           DuplicateCondBranchOnPHIIntoPred(BB, PredBB))
1001         return true;
1002   }
1003 
1004   return false;
1005 }
1006 
1007 
1008 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1009 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1010 /// NewPred using the entries from OldPred (suitably mapped).
1011 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1012                                             BasicBlock *OldPred,
1013                                             BasicBlock *NewPred,
1014                                      DenseMap<Instruction*, Value*> &ValueMap) {
1015   for (BasicBlock::iterator PNI = PHIBB->begin();
1016        PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1017     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1018     // DestBlock.
1019     Value *IV = PN->getIncomingValueForBlock(OldPred);
1020 
1021     // Remap the value if necessary.
1022     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1023       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1024       if (I != ValueMap.end())
1025         IV = I->second;
1026     }
1027 
1028     PN->addIncoming(IV, NewPred);
1029   }
1030 }
1031 
1032 /// ThreadEdge - We have decided that it is safe and profitable to thread an
1033 /// edge from PredBB to SuccBB across BB.  Transform the IR to reflect this
1034 /// change.
1035 bool JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB,
1036                                BasicBlock *SuccBB) {
1037   // If threading to the same block as we come from, we would infinite loop.
1038   if (SuccBB == BB) {
1039     DEBUG(errs() << "  Not threading across BB '" << BB->getName()
1040           << "' - would thread to self!\n");
1041     return false;
1042   }
1043 
1044   // If threading this would thread across a loop header, don't thread the edge.
1045   // See the comments above FindLoopHeaders for justifications and caveats.
1046   if (LoopHeaders.count(BB)) {
1047     DEBUG(errs() << "  Not threading from '" << PredBB->getName()
1048           << "' across loop header BB '" << BB->getName()
1049           << "' to dest BB '" << SuccBB->getName()
1050           << "' - it might create an irreducible loop!\n");
1051     return false;
1052   }
1053 
1054   unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1055   if (JumpThreadCost > Threshold) {
1056     DEBUG(errs() << "  Not threading BB '" << BB->getName()
1057           << "' - Cost is too high: " << JumpThreadCost << "\n");
1058     return false;
1059   }
1060 
1061   // And finally, do it!
1062   DEBUG(errs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1063         << SuccBB->getName() << "' with cost: " << JumpThreadCost
1064         << ", across block:\n    "
1065         << *BB << "\n");
1066 
1067   // We are going to have to map operands from the original BB block to the new
1068   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1069   // account for entry from PredBB.
1070   DenseMap<Instruction*, Value*> ValueMapping;
1071 
1072   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1073                                          BB->getName()+".thread",
1074                                          BB->getParent(), BB);
1075   NewBB->moveAfter(PredBB);
1076 
1077   BasicBlock::iterator BI = BB->begin();
1078   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1079     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1080 
1081   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1082   // mapping and using it to remap operands in the cloned instructions.
1083   for (; !isa<TerminatorInst>(BI); ++BI) {
1084     Instruction *New = BI->clone();
1085     New->setName(BI->getName());
1086     NewBB->getInstList().push_back(New);
1087     ValueMapping[BI] = New;
1088 
1089     // Remap operands to patch up intra-block references.
1090     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1091       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1092         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1093         if (I != ValueMapping.end())
1094           New->setOperand(i, I->second);
1095       }
1096   }
1097 
1098   // We didn't copy the terminator from BB over to NewBB, because there is now
1099   // an unconditional jump to SuccBB.  Insert the unconditional jump.
1100   BranchInst::Create(SuccBB, NewBB);
1101 
1102   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1103   // PHI nodes for NewBB now.
1104   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1105 
1106   // If there were values defined in BB that are used outside the block, then we
1107   // now have to update all uses of the value to use either the original value,
1108   // the cloned value, or some PHI derived value.  This can require arbitrary
1109   // PHI insertion, of which we are prepared to do, clean these up now.
1110   SSAUpdater SSAUpdate;
1111   SmallVector<Use*, 16> UsesToRename;
1112   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1113     // Scan all uses of this instruction to see if it is used outside of its
1114     // block, and if so, record them in UsesToRename.
1115     for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1116          ++UI) {
1117       Instruction *User = cast<Instruction>(*UI);
1118       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1119         if (UserPN->getIncomingBlock(UI) == BB)
1120           continue;
1121       } else if (User->getParent() == BB)
1122         continue;
1123 
1124       UsesToRename.push_back(&UI.getUse());
1125     }
1126 
1127     // If there are no uses outside the block, we're done with this instruction.
1128     if (UsesToRename.empty())
1129       continue;
1130 
1131     DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1132 
1133     // We found a use of I outside of BB.  Rename all uses of I that are outside
1134     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1135     // with the two values we know.
1136     SSAUpdate.Initialize(I);
1137     SSAUpdate.AddAvailableValue(BB, I);
1138     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1139 
1140     while (!UsesToRename.empty())
1141       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1142     DEBUG(errs() << "\n");
1143   }
1144 
1145 
1146   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1147   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1148   // us to simplify any PHI nodes in BB.
1149   TerminatorInst *PredTerm = PredBB->getTerminator();
1150   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1151     if (PredTerm->getSuccessor(i) == BB) {
1152       BB->removePredecessor(PredBB);
1153       PredTerm->setSuccessor(i, NewBB);
1154     }
1155 
1156   // At this point, the IR is fully up to date and consistent.  Do a quick scan
1157   // over the new instructions and zap any that are constants or dead.  This
1158   // frequently happens because of phi translation.
1159   BI = NewBB->begin();
1160   for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
1161     Instruction *Inst = BI++;
1162     if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
1163       Inst->replaceAllUsesWith(C);
1164       Inst->eraseFromParent();
1165       continue;
1166     }
1167 
1168     RecursivelyDeleteTriviallyDeadInstructions(Inst);
1169   }
1170 
1171   // Threaded an edge!
1172   ++NumThreads;
1173   return true;
1174 }
1175 
1176 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1177 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1178 /// If we can duplicate the contents of BB up into PredBB do so now, this
1179 /// improves the odds that the branch will be on an analyzable instruction like
1180 /// a compare.
1181 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1182                                                      BasicBlock *PredBB) {
1183   // If BB is a loop header, then duplicating this block outside the loop would
1184   // cause us to transform this into an irreducible loop, don't do this.
1185   // See the comments above FindLoopHeaders for justifications and caveats.
1186   if (LoopHeaders.count(BB)) {
1187     DEBUG(errs() << "  Not duplicating loop header '" << BB->getName()
1188           << "' into predecessor block '" << PredBB->getName()
1189           << "' - it might create an irreducible loop!\n");
1190     return false;
1191   }
1192 
1193   unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1194   if (DuplicationCost > Threshold) {
1195     DEBUG(errs() << "  Not duplicating BB '" << BB->getName()
1196           << "' - Cost is too high: " << DuplicationCost << "\n");
1197     return false;
1198   }
1199 
1200   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1201   // of PredBB.
1202   DEBUG(errs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1203         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1204         << DuplicationCost << " block is:" << *BB << "\n");
1205 
1206   // We are going to have to map operands from the original BB block into the
1207   // PredBB block.  Evaluate PHI nodes in BB.
1208   DenseMap<Instruction*, Value*> ValueMapping;
1209 
1210   BasicBlock::iterator BI = BB->begin();
1211   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1212     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1213 
1214   BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1215 
1216   // Clone the non-phi instructions of BB into PredBB, keeping track of the
1217   // mapping and using it to remap operands in the cloned instructions.
1218   for (; BI != BB->end(); ++BI) {
1219     Instruction *New = BI->clone();
1220     New->setName(BI->getName());
1221     PredBB->getInstList().insert(OldPredBranch, New);
1222     ValueMapping[BI] = New;
1223 
1224     // Remap operands to patch up intra-block references.
1225     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1226       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1227         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1228         if (I != ValueMapping.end())
1229           New->setOperand(i, I->second);
1230       }
1231   }
1232 
1233   // Check to see if the targets of the branch had PHI nodes. If so, we need to
1234   // add entries to the PHI nodes for branch from PredBB now.
1235   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1236   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1237                                   ValueMapping);
1238   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1239                                   ValueMapping);
1240 
1241   // If there were values defined in BB that are used outside the block, then we
1242   // now have to update all uses of the value to use either the original value,
1243   // the cloned value, or some PHI derived value.  This can require arbitrary
1244   // PHI insertion, of which we are prepared to do, clean these up now.
1245   SSAUpdater SSAUpdate;
1246   SmallVector<Use*, 16> UsesToRename;
1247   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1248     // Scan all uses of this instruction to see if it is used outside of its
1249     // block, and if so, record them in UsesToRename.
1250     for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1251          ++UI) {
1252       Instruction *User = cast<Instruction>(*UI);
1253       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1254         if (UserPN->getIncomingBlock(UI) == BB)
1255           continue;
1256       } else if (User->getParent() == BB)
1257         continue;
1258 
1259       UsesToRename.push_back(&UI.getUse());
1260     }
1261 
1262     // If there are no uses outside the block, we're done with this instruction.
1263     if (UsesToRename.empty())
1264       continue;
1265 
1266     DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1267 
1268     // We found a use of I outside of BB.  Rename all uses of I that are outside
1269     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1270     // with the two values we know.
1271     SSAUpdate.Initialize(I);
1272     SSAUpdate.AddAvailableValue(BB, I);
1273     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1274 
1275     while (!UsesToRename.empty())
1276       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1277     DEBUG(errs() << "\n");
1278   }
1279 
1280   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1281   // that we nuked.
1282   BB->removePredecessor(PredBB);
1283 
1284   // Remove the unconditional branch at the end of the PredBB block.
1285   OldPredBranch->eraseFromParent();
1286 
1287   ++NumDupes;
1288   return true;
1289 }
1290 
1291 
1292