1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "jump-threading" 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/IntrinsicInst.h" 17 #include "llvm/LLVMContext.h" 18 #include "llvm/Pass.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 21 #include "llvm/Transforms/Utils/Local.h" 22 #include "llvm/Transforms/Utils/SSAUpdater.h" 23 #include "llvm/Target/TargetData.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 using namespace llvm; 33 34 STATISTIC(NumThreads, "Number of jumps threaded"); 35 STATISTIC(NumFolds, "Number of terminators folded"); 36 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 37 38 static cl::opt<unsigned> 39 Threshold("jump-threading-threshold", 40 cl::desc("Max block size to duplicate for jump threading"), 41 cl::init(6), cl::Hidden); 42 43 namespace { 44 /// This pass performs 'jump threading', which looks at blocks that have 45 /// multiple predecessors and multiple successors. If one or more of the 46 /// predecessors of the block can be proven to always jump to one of the 47 /// successors, we forward the edge from the predecessor to the successor by 48 /// duplicating the contents of this block. 49 /// 50 /// An example of when this can occur is code like this: 51 /// 52 /// if () { ... 53 /// X = 4; 54 /// } 55 /// if (X < 3) { 56 /// 57 /// In this case, the unconditional branch at the end of the first if can be 58 /// revectored to the false side of the second if. 59 /// 60 class JumpThreading : public FunctionPass { 61 TargetData *TD; 62 #ifdef NDEBUG 63 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 64 #else 65 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 66 #endif 67 public: 68 static char ID; // Pass identification 69 JumpThreading() : FunctionPass(&ID) {} 70 71 bool runOnFunction(Function &F); 72 void FindLoopHeaders(Function &F); 73 74 bool ProcessBlock(BasicBlock *BB); 75 bool ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, BasicBlock *SuccBB); 76 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 77 BasicBlock *PredBB); 78 79 typedef SmallVectorImpl<std::pair<ConstantInt*, 80 BasicBlock*> > PredValueInfo; 81 82 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 83 PredValueInfo &Result); 84 bool ProcessThreadableEdges(Instruction *CondInst, BasicBlock *BB); 85 86 87 bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 88 bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 89 90 bool ProcessJumpOnPHI(PHINode *PN); 91 92 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 93 }; 94 } 95 96 char JumpThreading::ID = 0; 97 static RegisterPass<JumpThreading> 98 X("jump-threading", "Jump Threading"); 99 100 // Public interface to the Jump Threading pass 101 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); } 102 103 /// runOnFunction - Top level algorithm. 104 /// 105 bool JumpThreading::runOnFunction(Function &F) { 106 DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n"); 107 TD = getAnalysisIfAvailable<TargetData>(); 108 109 FindLoopHeaders(F); 110 111 bool AnotherIteration = true, EverChanged = false; 112 while (AnotherIteration) { 113 AnotherIteration = false; 114 bool Changed = false; 115 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 116 BasicBlock *BB = I; 117 while (ProcessBlock(BB)) 118 Changed = true; 119 120 ++I; 121 122 // If the block is trivially dead, zap it. This eliminates the successor 123 // edges which simplifies the CFG. 124 if (pred_begin(BB) == pred_end(BB) && 125 BB != &BB->getParent()->getEntryBlock()) { 126 DEBUG(errs() << " JT: Deleting dead block '" << BB->getName() 127 << "' with terminator: " << *BB->getTerminator() << '\n'); 128 LoopHeaders.erase(BB); 129 DeleteDeadBlock(BB); 130 Changed = true; 131 } 132 } 133 AnotherIteration = Changed; 134 EverChanged |= Changed; 135 } 136 137 LoopHeaders.clear(); 138 return EverChanged; 139 } 140 141 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 142 /// thread across it. 143 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) { 144 /// Ignore PHI nodes, these will be flattened when duplication happens. 145 BasicBlock::const_iterator I = BB->getFirstNonPHI(); 146 147 // Sum up the cost of each instruction until we get to the terminator. Don't 148 // include the terminator because the copy won't include it. 149 unsigned Size = 0; 150 for (; !isa<TerminatorInst>(I); ++I) { 151 // Debugger intrinsics don't incur code size. 152 if (isa<DbgInfoIntrinsic>(I)) continue; 153 154 // If this is a pointer->pointer bitcast, it is free. 155 if (isa<BitCastInst>(I) && isa<PointerType>(I->getType())) 156 continue; 157 158 // All other instructions count for at least one unit. 159 ++Size; 160 161 // Calls are more expensive. If they are non-intrinsic calls, we model them 162 // as having cost of 4. If they are a non-vector intrinsic, we model them 163 // as having cost of 2 total, and if they are a vector intrinsic, we model 164 // them as having cost 1. 165 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 166 if (!isa<IntrinsicInst>(CI)) 167 Size += 3; 168 else if (!isa<VectorType>(CI->getType())) 169 Size += 1; 170 } 171 } 172 173 // Threading through a switch statement is particularly profitable. If this 174 // block ends in a switch, decrease its cost to make it more likely to happen. 175 if (isa<SwitchInst>(I)) 176 Size = Size > 6 ? Size-6 : 0; 177 178 return Size; 179 } 180 181 182 183 /// FindLoopHeaders - We do not want jump threading to turn proper loop 184 /// structures into irreducible loops. Doing this breaks up the loop nesting 185 /// hierarchy and pessimizes later transformations. To prevent this from 186 /// happening, we first have to find the loop headers. Here we approximate this 187 /// by finding targets of backedges in the CFG. 188 /// 189 /// Note that there definitely are cases when we want to allow threading of 190 /// edges across a loop header. For example, threading a jump from outside the 191 /// loop (the preheader) to an exit block of the loop is definitely profitable. 192 /// It is also almost always profitable to thread backedges from within the loop 193 /// to exit blocks, and is often profitable to thread backedges to other blocks 194 /// within the loop (forming a nested loop). This simple analysis is not rich 195 /// enough to track all of these properties and keep it up-to-date as the CFG 196 /// mutates, so we don't allow any of these transformations. 197 /// 198 void JumpThreading::FindLoopHeaders(Function &F) { 199 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 200 FindFunctionBackedges(F, Edges); 201 202 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 203 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 204 } 205 206 /// GetResultOfComparison - Given an icmp/fcmp predicate and the left and right 207 /// hand sides of the compare instruction, try to determine the result. If the 208 /// result can not be determined, a null pointer is returned. 209 static Constant *GetResultOfComparison(CmpInst::Predicate pred, 210 Value *LHS, Value *RHS) { 211 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 212 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 213 return ConstantExpr::getCompare(pred, CLHS, CRHS); 214 215 if (LHS == RHS) 216 if (isa<IntegerType>(LHS->getType()) || isa<PointerType>(LHS->getType())) { 217 if (ICmpInst::isTrueWhenEqual(pred)) 218 return ConstantInt::getTrue(LHS->getContext()); 219 else 220 return ConstantInt::getFalse(LHS->getContext()); 221 } 222 return 0; 223 } 224 225 226 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 227 /// if we can infer that the value is a known ConstantInt in any of our 228 /// predecessors. If so, return the known the list of value and pred BB in the 229 /// result vector. If a value is known to be undef, it is returned as null. 230 /// 231 /// The BB basic block is known to start with a PHI node. 232 /// 233 /// This returns true if there were any known values. 234 /// 235 /// 236 /// TODO: Per PR2563, we could infer value range information about a predecessor 237 /// based on its terminator. 238 bool JumpThreading:: 239 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){ 240 PHINode *TheFirstPHI = cast<PHINode>(BB->begin()); 241 242 // If V is a constantint, then it is known in all predecessors. 243 if (isa<ConstantInt>(V) || isa<UndefValue>(V)) { 244 ConstantInt *CI = dyn_cast<ConstantInt>(V); 245 Result.resize(TheFirstPHI->getNumIncomingValues()); 246 for (unsigned i = 0, e = Result.size(); i != e; ++i) 247 Result[i] = std::make_pair(CI, TheFirstPHI->getIncomingBlock(i)); 248 return true; 249 } 250 251 // If V is a non-instruction value, or an instruction in a different block, 252 // then it can't be derived from a PHI. 253 Instruction *I = dyn_cast<Instruction>(V); 254 if (I == 0 || I->getParent() != BB) 255 return false; 256 257 /// If I is a PHI node, then we know the incoming values for any constants. 258 if (PHINode *PN = dyn_cast<PHINode>(I)) { 259 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 260 Value *InVal = PN->getIncomingValue(i); 261 if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) { 262 ConstantInt *CI = dyn_cast<ConstantInt>(InVal); 263 Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i))); 264 } 265 } 266 return !Result.empty(); 267 } 268 269 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals; 270 271 // Handle some boolean conditions. 272 if (I->getType()->getPrimitiveSizeInBits() == 1) { 273 // X | true -> true 274 // X & false -> false 275 if (I->getOpcode() == Instruction::Or || 276 I->getOpcode() == Instruction::And) { 277 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals); 278 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals); 279 280 if (LHSVals.empty() && RHSVals.empty()) 281 return false; 282 283 ConstantInt *InterestingVal; 284 if (I->getOpcode() == Instruction::Or) 285 InterestingVal = ConstantInt::getTrue(I->getContext()); 286 else 287 InterestingVal = ConstantInt::getFalse(I->getContext()); 288 289 // Scan for the sentinel. 290 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 291 if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) 292 Result.push_back(LHSVals[i]); 293 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 294 if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) 295 Result.push_back(RHSVals[i]); 296 return !Result.empty(); 297 } 298 299 // TODO: Should handle the NOT form of XOR. 300 301 } 302 303 // Handle compare with phi operand, where the PHI is defined in this block. 304 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 305 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 306 if (PN && PN->getParent() == BB) { 307 // We can do this simplification if any comparisons fold to true or false. 308 // See if any do. 309 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 310 BasicBlock *PredBB = PN->getIncomingBlock(i); 311 Value *LHS = PN->getIncomingValue(i); 312 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 313 314 Constant *Res = GetResultOfComparison(Cmp->getPredicate(), LHS, RHS); 315 if (Res == 0) continue; 316 317 if (isa<UndefValue>(Res)) 318 Result.push_back(std::make_pair((ConstantInt*)0, PredBB)); 319 else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res)) 320 Result.push_back(std::make_pair(CI, PredBB)); 321 } 322 323 return !Result.empty(); 324 } 325 326 // TODO: We could also recurse to see if we can determine constants another 327 // way. 328 } 329 return false; 330 } 331 332 333 334 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 335 /// in an undefined jump, decide which block is best to revector to. 336 /// 337 /// Since we can pick an arbitrary destination, we pick the successor with the 338 /// fewest predecessors. This should reduce the in-degree of the others. 339 /// 340 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 341 TerminatorInst *BBTerm = BB->getTerminator(); 342 unsigned MinSucc = 0; 343 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 344 // Compute the successor with the minimum number of predecessors. 345 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 346 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 347 TestBB = BBTerm->getSuccessor(i); 348 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 349 if (NumPreds < MinNumPreds) 350 MinSucc = i; 351 } 352 353 return MinSucc; 354 } 355 356 /// ProcessBlock - If there are any predecessors whose control can be threaded 357 /// through to a successor, transform them now. 358 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 359 // If this block has a single predecessor, and if that pred has a single 360 // successor, merge the blocks. This encourages recursive jump threading 361 // because now the condition in this block can be threaded through 362 // predecessors of our predecessor block. 363 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 364 if (SinglePred->getTerminator()->getNumSuccessors() == 1 && 365 SinglePred != BB) { 366 // If SinglePred was a loop header, BB becomes one. 367 if (LoopHeaders.erase(SinglePred)) 368 LoopHeaders.insert(BB); 369 370 // Remember if SinglePred was the entry block of the function. If so, we 371 // will need to move BB back to the entry position. 372 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 373 MergeBasicBlockIntoOnlyPred(BB); 374 375 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 376 BB->moveBefore(&BB->getParent()->getEntryBlock()); 377 return true; 378 } 379 } 380 381 // Look to see if the terminator is a branch of switch, if not we can't thread 382 // it. 383 Value *Condition; 384 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 385 // Can't thread an unconditional jump. 386 if (BI->isUnconditional()) return false; 387 Condition = BI->getCondition(); 388 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 389 Condition = SI->getCondition(); 390 else 391 return false; // Must be an invoke. 392 393 // If the terminator of this block is branching on a constant, simplify the 394 // terminator to an unconditional branch. This can occur due to threading in 395 // other blocks. 396 if (isa<ConstantInt>(Condition)) { 397 DEBUG(errs() << " In block '" << BB->getName() 398 << "' folding terminator: " << *BB->getTerminator() << '\n'); 399 ++NumFolds; 400 ConstantFoldTerminator(BB); 401 return true; 402 } 403 404 // If the terminator is branching on an undef, we can pick any of the 405 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 406 if (isa<UndefValue>(Condition)) { 407 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 408 409 // Fold the branch/switch. 410 TerminatorInst *BBTerm = BB->getTerminator(); 411 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 412 if (i == BestSucc) continue; 413 BBTerm->getSuccessor(i)->removePredecessor(BB); 414 } 415 416 DEBUG(errs() << " In block '" << BB->getName() 417 << "' folding undef terminator: " << *BBTerm << '\n'); 418 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 419 BBTerm->eraseFromParent(); 420 return true; 421 } 422 423 Instruction *CondInst = dyn_cast<Instruction>(Condition); 424 425 // If the condition is an instruction defined in another block, see if a 426 // predecessor has the same condition: 427 // br COND, BBX, BBY 428 // BBX: 429 // br COND, BBZ, BBW 430 if (!Condition->hasOneUse() && // Multiple uses. 431 (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition. 432 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 433 if (isa<BranchInst>(BB->getTerminator())) { 434 for (; PI != E; ++PI) 435 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 436 if (PBI->isConditional() && PBI->getCondition() == Condition && 437 ProcessBranchOnDuplicateCond(*PI, BB)) 438 return true; 439 } else { 440 assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator"); 441 for (; PI != E; ++PI) 442 if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator())) 443 if (PSI->getCondition() == Condition && 444 ProcessSwitchOnDuplicateCond(*PI, BB)) 445 return true; 446 } 447 } 448 449 // All the rest of our checks depend on the condition being an instruction. 450 if (CondInst == 0) 451 return false; 452 453 // See if this is a phi node in the current block. 454 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 455 if (PN->getParent() == BB) 456 return ProcessJumpOnPHI(PN); 457 458 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 459 if (!isa<PHINode>(CondCmp->getOperand(0)) || 460 cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB) { 461 // If we have a comparison, loop over the predecessors to see if there is 462 // a condition with a lexically identical value. 463 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 464 for (; PI != E; ++PI) 465 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 466 if (PBI->isConditional() && *PI != BB) { 467 if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) { 468 if (CI->getOperand(0) == CondCmp->getOperand(0) && 469 CI->getOperand(1) == CondCmp->getOperand(1) && 470 CI->getPredicate() == CondCmp->getPredicate()) { 471 // TODO: Could handle things like (x != 4) --> (x == 17) 472 if (ProcessBranchOnDuplicateCond(*PI, BB)) 473 return true; 474 } 475 } 476 } 477 } 478 } 479 480 // Check for some cases that are worth simplifying. Right now we want to look 481 // for loads that are used by a switch or by the condition for the branch. If 482 // we see one, check to see if it's partially redundant. If so, insert a PHI 483 // which can then be used to thread the values. 484 // 485 // This is particularly important because reg2mem inserts loads and stores all 486 // over the place, and this blocks jump threading if we don't zap them. 487 Value *SimplifyValue = CondInst; 488 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 489 if (isa<Constant>(CondCmp->getOperand(1))) 490 SimplifyValue = CondCmp->getOperand(0); 491 492 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 493 if (SimplifyPartiallyRedundantLoad(LI)) 494 return true; 495 496 497 // Handle a variety of cases where we are branching on something derived from 498 // a PHI node in the current block. If we can prove that any predecessors 499 // compute a predictable value based on a PHI node, thread those predecessors. 500 // 501 // We only bother doing this if the current block has a PHI node and if the 502 // conditional instruction lives in the current block. If either condition 503 // fail, this won't be a computable value anyway. 504 if (CondInst->getParent() == BB && isa<PHINode>(BB->front())) 505 if (ProcessThreadableEdges(CondInst, BB)) 506 return true; 507 508 509 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 510 // "(X == 4)" thread through this block. 511 512 return false; 513 } 514 515 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that 516 /// block that jump on exactly the same condition. This means that we almost 517 /// always know the direction of the edge in the DESTBB: 518 /// PREDBB: 519 /// br COND, DESTBB, BBY 520 /// DESTBB: 521 /// br COND, BBZ, BBW 522 /// 523 /// If DESTBB has multiple predecessors, we can't just constant fold the branch 524 /// in DESTBB, we have to thread over it. 525 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB, 526 BasicBlock *BB) { 527 BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator()); 528 529 // If both successors of PredBB go to DESTBB, we don't know anything. We can 530 // fold the branch to an unconditional one, which allows other recursive 531 // simplifications. 532 bool BranchDir; 533 if (PredBI->getSuccessor(1) != BB) 534 BranchDir = true; 535 else if (PredBI->getSuccessor(0) != BB) 536 BranchDir = false; 537 else { 538 DEBUG(errs() << " In block '" << PredBB->getName() 539 << "' folding terminator: " << *PredBB->getTerminator() << '\n'); 540 ++NumFolds; 541 ConstantFoldTerminator(PredBB); 542 return true; 543 } 544 545 BranchInst *DestBI = cast<BranchInst>(BB->getTerminator()); 546 547 // If the dest block has one predecessor, just fix the branch condition to a 548 // constant and fold it. 549 if (BB->getSinglePredecessor()) { 550 DEBUG(errs() << " In block '" << BB->getName() 551 << "' folding condition to '" << BranchDir << "': " 552 << *BB->getTerminator() << '\n'); 553 ++NumFolds; 554 Value *OldCond = DestBI->getCondition(); 555 DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 556 BranchDir)); 557 ConstantFoldTerminator(BB); 558 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 559 return true; 560 } 561 562 563 // Next, figure out which successor we are threading to. 564 BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir); 565 566 // Ok, try to thread it! 567 return ThreadEdge(BB, PredBB, SuccBB); 568 } 569 570 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that 571 /// block that switch on exactly the same condition. This means that we almost 572 /// always know the direction of the edge in the DESTBB: 573 /// PREDBB: 574 /// switch COND [... DESTBB, BBY ... ] 575 /// DESTBB: 576 /// switch COND [... BBZ, BBW ] 577 /// 578 /// Optimizing switches like this is very important, because simplifycfg builds 579 /// switches out of repeated 'if' conditions. 580 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, 581 BasicBlock *DestBB) { 582 // Can't thread edge to self. 583 if (PredBB == DestBB) 584 return false; 585 586 SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator()); 587 SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator()); 588 589 // There are a variety of optimizations that we can potentially do on these 590 // blocks: we order them from most to least preferable. 591 592 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB 593 // directly to their destination. This does not introduce *any* code size 594 // growth. Skip debug info first. 595 BasicBlock::iterator BBI = DestBB->begin(); 596 while (isa<DbgInfoIntrinsic>(BBI)) 597 BBI++; 598 599 // FIXME: Thread if it just contains a PHI. 600 if (isa<SwitchInst>(BBI)) { 601 bool MadeChange = false; 602 // Ignore the default edge for now. 603 for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) { 604 ConstantInt *DestVal = DestSI->getCaseValue(i); 605 BasicBlock *DestSucc = DestSI->getSuccessor(i); 606 607 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if 608 // PredSI has an explicit case for it. If so, forward. If it is covered 609 // by the default case, we can't update PredSI. 610 unsigned PredCase = PredSI->findCaseValue(DestVal); 611 if (PredCase == 0) continue; 612 613 // If PredSI doesn't go to DestBB on this value, then it won't reach the 614 // case on this condition. 615 if (PredSI->getSuccessor(PredCase) != DestBB && 616 DestSI->getSuccessor(i) != DestBB) 617 continue; 618 619 // Otherwise, we're safe to make the change. Make sure that the edge from 620 // DestSI to DestSucc is not critical and has no PHI nodes. 621 DEBUG(errs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI); 622 DEBUG(errs() << "THROUGH: " << *DestSI); 623 624 // If the destination has PHI nodes, just split the edge for updating 625 // simplicity. 626 if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){ 627 SplitCriticalEdge(DestSI, i, this); 628 DestSucc = DestSI->getSuccessor(i); 629 } 630 FoldSingleEntryPHINodes(DestSucc); 631 PredSI->setSuccessor(PredCase, DestSucc); 632 MadeChange = true; 633 } 634 635 if (MadeChange) 636 return true; 637 } 638 639 return false; 640 } 641 642 643 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 644 /// load instruction, eliminate it by replacing it with a PHI node. This is an 645 /// important optimization that encourages jump threading, and needs to be run 646 /// interlaced with other jump threading tasks. 647 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 648 // Don't hack volatile loads. 649 if (LI->isVolatile()) return false; 650 651 // If the load is defined in a block with exactly one predecessor, it can't be 652 // partially redundant. 653 BasicBlock *LoadBB = LI->getParent(); 654 if (LoadBB->getSinglePredecessor()) 655 return false; 656 657 Value *LoadedPtr = LI->getOperand(0); 658 659 // If the loaded operand is defined in the LoadBB, it can't be available. 660 // FIXME: Could do PHI translation, that would be fun :) 661 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 662 if (PtrOp->getParent() == LoadBB) 663 return false; 664 665 // Scan a few instructions up from the load, to see if it is obviously live at 666 // the entry to its block. 667 BasicBlock::iterator BBIt = LI; 668 669 if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB, 670 BBIt, 6)) { 671 // If the value if the load is locally available within the block, just use 672 // it. This frequently occurs for reg2mem'd allocas. 673 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 674 675 // If the returned value is the load itself, replace with an undef. This can 676 // only happen in dead loops. 677 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 678 LI->replaceAllUsesWith(AvailableVal); 679 LI->eraseFromParent(); 680 return true; 681 } 682 683 // Otherwise, if we scanned the whole block and got to the top of the block, 684 // we know the block is locally transparent to the load. If not, something 685 // might clobber its value. 686 if (BBIt != LoadBB->begin()) 687 return false; 688 689 690 SmallPtrSet<BasicBlock*, 8> PredsScanned; 691 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 692 AvailablePredsTy AvailablePreds; 693 BasicBlock *OneUnavailablePred = 0; 694 695 // If we got here, the loaded value is transparent through to the start of the 696 // block. Check to see if it is available in any of the predecessor blocks. 697 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 698 PI != PE; ++PI) { 699 BasicBlock *PredBB = *PI; 700 701 // If we already scanned this predecessor, skip it. 702 if (!PredsScanned.insert(PredBB)) 703 continue; 704 705 // Scan the predecessor to see if the value is available in the pred. 706 BBIt = PredBB->end(); 707 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6); 708 if (!PredAvailable) { 709 OneUnavailablePred = PredBB; 710 continue; 711 } 712 713 // If so, this load is partially redundant. Remember this info so that we 714 // can create a PHI node. 715 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 716 } 717 718 // If the loaded value isn't available in any predecessor, it isn't partially 719 // redundant. 720 if (AvailablePreds.empty()) return false; 721 722 // Okay, the loaded value is available in at least one (and maybe all!) 723 // predecessors. If the value is unavailable in more than one unique 724 // predecessor, we want to insert a merge block for those common predecessors. 725 // This ensures that we only have to insert one reload, thus not increasing 726 // code size. 727 BasicBlock *UnavailablePred = 0; 728 729 // If there is exactly one predecessor where the value is unavailable, the 730 // already computed 'OneUnavailablePred' block is it. If it ends in an 731 // unconditional branch, we know that it isn't a critical edge. 732 if (PredsScanned.size() == AvailablePreds.size()+1 && 733 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 734 UnavailablePred = OneUnavailablePred; 735 } else if (PredsScanned.size() != AvailablePreds.size()) { 736 // Otherwise, we had multiple unavailable predecessors or we had a critical 737 // edge from the one. 738 SmallVector<BasicBlock*, 8> PredsToSplit; 739 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 740 741 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 742 AvailablePredSet.insert(AvailablePreds[i].first); 743 744 // Add all the unavailable predecessors to the PredsToSplit list. 745 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 746 PI != PE; ++PI) 747 if (!AvailablePredSet.count(*PI)) 748 PredsToSplit.push_back(*PI); 749 750 // Split them out to their own block. 751 UnavailablePred = 752 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(), 753 "thread-split", this); 754 } 755 756 // If the value isn't available in all predecessors, then there will be 757 // exactly one where it isn't available. Insert a load on that edge and add 758 // it to the AvailablePreds list. 759 if (UnavailablePred) { 760 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 761 "Can't handle critical edge here!"); 762 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", 763 UnavailablePred->getTerminator()); 764 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 765 } 766 767 // Now we know that each predecessor of this block has a value in 768 // AvailablePreds, sort them for efficient access as we're walking the preds. 769 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 770 771 // Create a PHI node at the start of the block for the PRE'd load value. 772 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin()); 773 PN->takeName(LI); 774 775 // Insert new entries into the PHI for each predecessor. A single block may 776 // have multiple entries here. 777 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E; 778 ++PI) { 779 AvailablePredsTy::iterator I = 780 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 781 std::make_pair(*PI, (Value*)0)); 782 783 assert(I != AvailablePreds.end() && I->first == *PI && 784 "Didn't find entry for predecessor!"); 785 786 PN->addIncoming(I->second, I->first); 787 } 788 789 //cerr << "PRE: " << *LI << *PN << "\n"; 790 791 LI->replaceAllUsesWith(PN); 792 LI->eraseFromParent(); 793 794 return true; 795 } 796 797 /// FindMostPopularDest - The specified list contains multiple possible 798 /// threadable destinations. Pick the one that occurs the most frequently in 799 /// the list. 800 static BasicBlock * 801 FindMostPopularDest(BasicBlock *BB, 802 const SmallVectorImpl<std::pair<BasicBlock*, 803 BasicBlock*> > &PredToDestList) { 804 assert(!PredToDestList.empty()); 805 806 // Determine popularity. If there are multiple possible destinations, we 807 // explicitly choose to ignore 'undef' destinations. We prefer to thread 808 // blocks with known and real destinations to threading undef. We'll handle 809 // them later if interesting. 810 DenseMap<BasicBlock*, unsigned> DestPopularity; 811 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 812 if (PredToDestList[i].second) 813 DestPopularity[PredToDestList[i].second]++; 814 815 // Find the most popular dest. 816 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 817 BasicBlock *MostPopularDest = DPI->first; 818 unsigned Popularity = DPI->second; 819 SmallVector<BasicBlock*, 4> SamePopularity; 820 821 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 822 // If the popularity of this entry isn't higher than the popularity we've 823 // seen so far, ignore it. 824 if (DPI->second < Popularity) 825 ; // ignore. 826 else if (DPI->second == Popularity) { 827 // If it is the same as what we've seen so far, keep track of it. 828 SamePopularity.push_back(DPI->first); 829 } else { 830 // If it is more popular, remember it. 831 SamePopularity.clear(); 832 MostPopularDest = DPI->first; 833 Popularity = DPI->second; 834 } 835 } 836 837 // Okay, now we know the most popular destination. If there is more than 838 // destination, we need to determine one. This is arbitrary, but we need 839 // to make a deterministic decision. Pick the first one that appears in the 840 // successor list. 841 if (!SamePopularity.empty()) { 842 SamePopularity.push_back(MostPopularDest); 843 TerminatorInst *TI = BB->getTerminator(); 844 for (unsigned i = 0; ; ++i) { 845 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 846 847 if (std::find(SamePopularity.begin(), SamePopularity.end(), 848 TI->getSuccessor(i)) == SamePopularity.end()) 849 continue; 850 851 MostPopularDest = TI->getSuccessor(i); 852 break; 853 } 854 } 855 856 // Okay, we have finally picked the most popular destination. 857 return MostPopularDest; 858 } 859 860 bool JumpThreading::ProcessThreadableEdges(Instruction *CondInst, 861 BasicBlock *BB) { 862 // If threading this would thread across a loop header, don't even try to 863 // thread the edge. 864 if (LoopHeaders.count(BB)) 865 return false; 866 867 868 869 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues; 870 if (!ComputeValueKnownInPredecessors(CondInst, BB, PredValues)) 871 return false; 872 assert(!PredValues.empty() && 873 "ComputeValueKnownInPredecessors returned true with no values"); 874 875 DEBUG(errs() << "IN BB: " << *BB; 876 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 877 errs() << " BB '" << BB->getName() << "': FOUND condition = "; 878 if (PredValues[i].first) 879 errs() << *PredValues[i].first; 880 else 881 errs() << "UNDEF"; 882 errs() << " for pred '" << PredValues[i].second->getName() 883 << "'.\n"; 884 }); 885 886 // Decide what we want to thread through. Convert our list of known values to 887 // a list of known destinations for each pred. This also discards duplicate 888 // predecessors and keeps track of the undefined inputs (which are represented 889 // as a null dest in the PredToDestList. 890 SmallPtrSet<BasicBlock*, 16> SeenPreds; 891 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 892 893 BasicBlock *OnlyDest = 0; 894 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 895 896 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 897 BasicBlock *Pred = PredValues[i].second; 898 if (!SeenPreds.insert(Pred)) 899 continue; // Duplicate predecessor entry. 900 901 // If the predecessor ends with an indirect goto, we can't change its 902 // destination. 903 if (isa<IndirectBrInst>(Pred->getTerminator())) 904 continue; 905 906 ConstantInt *Val = PredValues[i].first; 907 908 BasicBlock *DestBB; 909 if (Val == 0) // Undef. 910 DestBB = 0; 911 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 912 DestBB = BI->getSuccessor(Val->isZero()); 913 else { 914 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator()); 915 DestBB = SI->getSuccessor(SI->findCaseValue(Val)); 916 } 917 918 // If we have exactly one destination, remember it for efficiency below. 919 if (i == 0) 920 OnlyDest = DestBB; 921 else if (OnlyDest != DestBB) 922 OnlyDest = MultipleDestSentinel; 923 924 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 925 } 926 927 // If all edges were unthreadable, we fail. 928 if (PredToDestList.empty()) 929 return false; 930 931 // Determine which is the most common successor. If we have many inputs and 932 // this block is a switch, we want to start by threading the batch that goes 933 // to the most popular destination first. If we only know about one 934 // threadable destination (the common case) we can avoid this. 935 BasicBlock *MostPopularDest = OnlyDest; 936 937 if (MostPopularDest == MultipleDestSentinel) 938 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 939 940 // Now that we know what the most popular destination is, factor all 941 // predecessors that will jump to it into a single predecessor. 942 SmallVector<BasicBlock*, 16> PredsToFactor; 943 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 944 if (PredToDestList[i].second == MostPopularDest) { 945 BasicBlock *Pred = PredToDestList[i].first; 946 947 // This predecessor may be a switch or something else that has multiple 948 // edges to the block. Factor each of these edges by listing them 949 // according to # occurrences in PredsToFactor. 950 TerminatorInst *PredTI = Pred->getTerminator(); 951 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 952 if (PredTI->getSuccessor(i) == BB) 953 PredsToFactor.push_back(Pred); 954 } 955 956 BasicBlock *PredToThread; 957 if (PredsToFactor.size() == 1) 958 PredToThread = PredsToFactor[0]; 959 else { 960 DEBUG(errs() << " Factoring out " << PredsToFactor.size() 961 << " common predecessors.\n"); 962 PredToThread = SplitBlockPredecessors(BB, &PredsToFactor[0], 963 PredsToFactor.size(), 964 ".thr_comm", this); 965 } 966 967 // If the threadable edges are branching on an undefined value, we get to pick 968 // the destination that these predecessors should get to. 969 if (MostPopularDest == 0) 970 MostPopularDest = BB->getTerminator()-> 971 getSuccessor(GetBestDestForJumpOnUndef(BB)); 972 973 // Ok, try to thread it! 974 return ThreadEdge(BB, PredToThread, MostPopularDest); 975 } 976 977 /// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in 978 /// the current block. See if there are any simplifications we can do based on 979 /// inputs to the phi node. 980 /// 981 bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) { 982 BasicBlock *BB = PN->getParent(); 983 984 // If any of the predecessor blocks end in an unconditional branch, we can 985 // *duplicate* the jump into that block in order to further encourage jump 986 // threading and to eliminate cases where we have branch on a phi of an icmp 987 // (branch on icmp is much better). 988 989 // We don't want to do this tranformation for switches, because we don't 990 // really want to duplicate a switch. 991 if (isa<SwitchInst>(BB->getTerminator())) 992 return false; 993 994 // Look for unconditional branch predecessors. 995 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 996 BasicBlock *PredBB = PN->getIncomingBlock(i); 997 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 998 if (PredBr->isUnconditional() && 999 // Try to duplicate BB into PredBB. 1000 DuplicateCondBranchOnPHIIntoPred(BB, PredBB)) 1001 return true; 1002 } 1003 1004 return false; 1005 } 1006 1007 1008 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1009 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1010 /// NewPred using the entries from OldPred (suitably mapped). 1011 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1012 BasicBlock *OldPred, 1013 BasicBlock *NewPred, 1014 DenseMap<Instruction*, Value*> &ValueMap) { 1015 for (BasicBlock::iterator PNI = PHIBB->begin(); 1016 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1017 // Ok, we have a PHI node. Figure out what the incoming value was for the 1018 // DestBlock. 1019 Value *IV = PN->getIncomingValueForBlock(OldPred); 1020 1021 // Remap the value if necessary. 1022 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1023 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1024 if (I != ValueMap.end()) 1025 IV = I->second; 1026 } 1027 1028 PN->addIncoming(IV, NewPred); 1029 } 1030 } 1031 1032 /// ThreadEdge - We have decided that it is safe and profitable to thread an 1033 /// edge from PredBB to SuccBB across BB. Transform the IR to reflect this 1034 /// change. 1035 bool JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, 1036 BasicBlock *SuccBB) { 1037 // If threading to the same block as we come from, we would infinite loop. 1038 if (SuccBB == BB) { 1039 DEBUG(errs() << " Not threading across BB '" << BB->getName() 1040 << "' - would thread to self!\n"); 1041 return false; 1042 } 1043 1044 // If threading this would thread across a loop header, don't thread the edge. 1045 // See the comments above FindLoopHeaders for justifications and caveats. 1046 if (LoopHeaders.count(BB)) { 1047 DEBUG(errs() << " Not threading from '" << PredBB->getName() 1048 << "' across loop header BB '" << BB->getName() 1049 << "' to dest BB '" << SuccBB->getName() 1050 << "' - it might create an irreducible loop!\n"); 1051 return false; 1052 } 1053 1054 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB); 1055 if (JumpThreadCost > Threshold) { 1056 DEBUG(errs() << " Not threading BB '" << BB->getName() 1057 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1058 return false; 1059 } 1060 1061 // And finally, do it! 1062 DEBUG(errs() << " Threading edge from '" << PredBB->getName() << "' to '" 1063 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1064 << ", across block:\n " 1065 << *BB << "\n"); 1066 1067 // We are going to have to map operands from the original BB block to the new 1068 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1069 // account for entry from PredBB. 1070 DenseMap<Instruction*, Value*> ValueMapping; 1071 1072 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1073 BB->getName()+".thread", 1074 BB->getParent(), BB); 1075 NewBB->moveAfter(PredBB); 1076 1077 BasicBlock::iterator BI = BB->begin(); 1078 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1079 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1080 1081 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1082 // mapping and using it to remap operands in the cloned instructions. 1083 for (; !isa<TerminatorInst>(BI); ++BI) { 1084 Instruction *New = BI->clone(); 1085 New->setName(BI->getName()); 1086 NewBB->getInstList().push_back(New); 1087 ValueMapping[BI] = New; 1088 1089 // Remap operands to patch up intra-block references. 1090 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1091 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1092 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1093 if (I != ValueMapping.end()) 1094 New->setOperand(i, I->second); 1095 } 1096 } 1097 1098 // We didn't copy the terminator from BB over to NewBB, because there is now 1099 // an unconditional jump to SuccBB. Insert the unconditional jump. 1100 BranchInst::Create(SuccBB, NewBB); 1101 1102 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1103 // PHI nodes for NewBB now. 1104 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1105 1106 // If there were values defined in BB that are used outside the block, then we 1107 // now have to update all uses of the value to use either the original value, 1108 // the cloned value, or some PHI derived value. This can require arbitrary 1109 // PHI insertion, of which we are prepared to do, clean these up now. 1110 SSAUpdater SSAUpdate; 1111 SmallVector<Use*, 16> UsesToRename; 1112 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1113 // Scan all uses of this instruction to see if it is used outside of its 1114 // block, and if so, record them in UsesToRename. 1115 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1116 ++UI) { 1117 Instruction *User = cast<Instruction>(*UI); 1118 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1119 if (UserPN->getIncomingBlock(UI) == BB) 1120 continue; 1121 } else if (User->getParent() == BB) 1122 continue; 1123 1124 UsesToRename.push_back(&UI.getUse()); 1125 } 1126 1127 // If there are no uses outside the block, we're done with this instruction. 1128 if (UsesToRename.empty()) 1129 continue; 1130 1131 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1132 1133 // We found a use of I outside of BB. Rename all uses of I that are outside 1134 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1135 // with the two values we know. 1136 SSAUpdate.Initialize(I); 1137 SSAUpdate.AddAvailableValue(BB, I); 1138 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); 1139 1140 while (!UsesToRename.empty()) 1141 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1142 DEBUG(errs() << "\n"); 1143 } 1144 1145 1146 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1147 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1148 // us to simplify any PHI nodes in BB. 1149 TerminatorInst *PredTerm = PredBB->getTerminator(); 1150 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1151 if (PredTerm->getSuccessor(i) == BB) { 1152 BB->removePredecessor(PredBB); 1153 PredTerm->setSuccessor(i, NewBB); 1154 } 1155 1156 // At this point, the IR is fully up to date and consistent. Do a quick scan 1157 // over the new instructions and zap any that are constants or dead. This 1158 // frequently happens because of phi translation. 1159 BI = NewBB->begin(); 1160 for (BasicBlock::iterator E = NewBB->end(); BI != E; ) { 1161 Instruction *Inst = BI++; 1162 if (Constant *C = ConstantFoldInstruction(Inst, TD)) { 1163 Inst->replaceAllUsesWith(C); 1164 Inst->eraseFromParent(); 1165 continue; 1166 } 1167 1168 RecursivelyDeleteTriviallyDeadInstructions(Inst); 1169 } 1170 1171 // Threaded an edge! 1172 ++NumThreads; 1173 return true; 1174 } 1175 1176 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1177 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1178 /// If we can duplicate the contents of BB up into PredBB do so now, this 1179 /// improves the odds that the branch will be on an analyzable instruction like 1180 /// a compare. 1181 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1182 BasicBlock *PredBB) { 1183 // If BB is a loop header, then duplicating this block outside the loop would 1184 // cause us to transform this into an irreducible loop, don't do this. 1185 // See the comments above FindLoopHeaders for justifications and caveats. 1186 if (LoopHeaders.count(BB)) { 1187 DEBUG(errs() << " Not duplicating loop header '" << BB->getName() 1188 << "' into predecessor block '" << PredBB->getName() 1189 << "' - it might create an irreducible loop!\n"); 1190 return false; 1191 } 1192 1193 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB); 1194 if (DuplicationCost > Threshold) { 1195 DEBUG(errs() << " Not duplicating BB '" << BB->getName() 1196 << "' - Cost is too high: " << DuplicationCost << "\n"); 1197 return false; 1198 } 1199 1200 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1201 // of PredBB. 1202 DEBUG(errs() << " Duplicating block '" << BB->getName() << "' into end of '" 1203 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1204 << DuplicationCost << " block is:" << *BB << "\n"); 1205 1206 // We are going to have to map operands from the original BB block into the 1207 // PredBB block. Evaluate PHI nodes in BB. 1208 DenseMap<Instruction*, Value*> ValueMapping; 1209 1210 BasicBlock::iterator BI = BB->begin(); 1211 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1212 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1213 1214 BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1215 1216 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1217 // mapping and using it to remap operands in the cloned instructions. 1218 for (; BI != BB->end(); ++BI) { 1219 Instruction *New = BI->clone(); 1220 New->setName(BI->getName()); 1221 PredBB->getInstList().insert(OldPredBranch, New); 1222 ValueMapping[BI] = New; 1223 1224 // Remap operands to patch up intra-block references. 1225 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1226 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1227 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1228 if (I != ValueMapping.end()) 1229 New->setOperand(i, I->second); 1230 } 1231 } 1232 1233 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1234 // add entries to the PHI nodes for branch from PredBB now. 1235 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1236 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1237 ValueMapping); 1238 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1239 ValueMapping); 1240 1241 // If there were values defined in BB that are used outside the block, then we 1242 // now have to update all uses of the value to use either the original value, 1243 // the cloned value, or some PHI derived value. This can require arbitrary 1244 // PHI insertion, of which we are prepared to do, clean these up now. 1245 SSAUpdater SSAUpdate; 1246 SmallVector<Use*, 16> UsesToRename; 1247 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1248 // Scan all uses of this instruction to see if it is used outside of its 1249 // block, and if so, record them in UsesToRename. 1250 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1251 ++UI) { 1252 Instruction *User = cast<Instruction>(*UI); 1253 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1254 if (UserPN->getIncomingBlock(UI) == BB) 1255 continue; 1256 } else if (User->getParent() == BB) 1257 continue; 1258 1259 UsesToRename.push_back(&UI.getUse()); 1260 } 1261 1262 // If there are no uses outside the block, we're done with this instruction. 1263 if (UsesToRename.empty()) 1264 continue; 1265 1266 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1267 1268 // We found a use of I outside of BB. Rename all uses of I that are outside 1269 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1270 // with the two values we know. 1271 SSAUpdate.Initialize(I); 1272 SSAUpdate.AddAvailableValue(BB, I); 1273 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); 1274 1275 while (!UsesToRename.empty()) 1276 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1277 DEBUG(errs() << "\n"); 1278 } 1279 1280 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1281 // that we nuked. 1282 BB->removePredecessor(PredBB); 1283 1284 // Remove the unconditional branch at the end of the PredBB block. 1285 OldPredBranch->eraseFromParent(); 1286 1287 ++NumDupes; 1288 return true; 1289 } 1290 1291 1292