xref: /llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp (revision 8ac477ffb509943c940ce37f45b8429388dfdf58)
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "jump-threading"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/IntrinsicInst.h"
17 #include "llvm/LLVMContext.h"
18 #include "llvm/Pass.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LazyValueInfo.h"
21 #include "llvm/Analysis/Loads.h"
22 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
23 #include "llvm/Transforms/Utils/Local.h"
24 #include "llvm/Transforms/Utils/SSAUpdater.h"
25 #include "llvm/Target/TargetData.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ValueHandle.h"
35 #include "llvm/Support/raw_ostream.h"
36 using namespace llvm;
37 
38 STATISTIC(NumThreads, "Number of jumps threaded");
39 STATISTIC(NumFolds,   "Number of terminators folded");
40 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
41 
42 static cl::opt<unsigned>
43 Threshold("jump-threading-threshold",
44           cl::desc("Max block size to duplicate for jump threading"),
45           cl::init(6), cl::Hidden);
46 
47 namespace {
48   /// This pass performs 'jump threading', which looks at blocks that have
49   /// multiple predecessors and multiple successors.  If one or more of the
50   /// predecessors of the block can be proven to always jump to one of the
51   /// successors, we forward the edge from the predecessor to the successor by
52   /// duplicating the contents of this block.
53   ///
54   /// An example of when this can occur is code like this:
55   ///
56   ///   if () { ...
57   ///     X = 4;
58   ///   }
59   ///   if (X < 3) {
60   ///
61   /// In this case, the unconditional branch at the end of the first if can be
62   /// revectored to the false side of the second if.
63   ///
64   class JumpThreading : public FunctionPass {
65     TargetData *TD;
66     LazyValueInfo *LVI;
67 #ifdef NDEBUG
68     SmallPtrSet<BasicBlock*, 16> LoopHeaders;
69 #else
70     SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
71 #endif
72     DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet;
73 
74     // RAII helper for updating the recursion stack.
75     struct RecursionSetRemover {
76       DenseSet<std::pair<Value*, BasicBlock*> > &TheSet;
77       std::pair<Value*, BasicBlock*> ThePair;
78 
79       RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S,
80                           std::pair<Value*, BasicBlock*> P)
81         : TheSet(S), ThePair(P) { }
82 
83       ~RecursionSetRemover() {
84         TheSet.erase(ThePair);
85       }
86     };
87   public:
88     static char ID; // Pass identification
89     JumpThreading() : FunctionPass(ID) {}
90 
91     bool runOnFunction(Function &F);
92 
93     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
94       AU.addRequired<LazyValueInfo>();
95       AU.addPreserved<LazyValueInfo>();
96     }
97 
98     void FindLoopHeaders(Function &F);
99     bool ProcessBlock(BasicBlock *BB);
100     bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
101                     BasicBlock *SuccBB);
102     bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
103                                   const SmallVectorImpl<BasicBlock *> &PredBBs);
104 
105     typedef SmallVectorImpl<std::pair<ConstantInt*,
106                                       BasicBlock*> > PredValueInfo;
107 
108     bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
109                                          PredValueInfo &Result);
110     bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB);
111 
112 
113     bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
114     bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
115 
116     bool ProcessBranchOnPHI(PHINode *PN);
117     bool ProcessBranchOnXOR(BinaryOperator *BO);
118 
119     bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
120   };
121 }
122 
123 char JumpThreading::ID = 0;
124 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
125                 "Jump Threading", false, false)
126 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo)
127 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
128                 "Jump Threading", false, false)
129 
130 // Public interface to the Jump Threading pass
131 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
132 
133 /// runOnFunction - Top level algorithm.
134 ///
135 bool JumpThreading::runOnFunction(Function &F) {
136   DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
137   TD = getAnalysisIfAvailable<TargetData>();
138   LVI = &getAnalysis<LazyValueInfo>();
139 
140   FindLoopHeaders(F);
141 
142   bool Changed, EverChanged = false;
143   do {
144     Changed = false;
145     for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
146       BasicBlock *BB = I;
147       // Thread all of the branches we can over this block.
148       while (ProcessBlock(BB))
149         Changed = true;
150 
151       ++I;
152 
153       // If the block is trivially dead, zap it.  This eliminates the successor
154       // edges which simplifies the CFG.
155       if (pred_begin(BB) == pred_end(BB) &&
156           BB != &BB->getParent()->getEntryBlock()) {
157         DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
158               << "' with terminator: " << *BB->getTerminator() << '\n');
159         LoopHeaders.erase(BB);
160         LVI->eraseBlock(BB);
161         DeleteDeadBlock(BB);
162         Changed = true;
163       } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
164         // Can't thread an unconditional jump, but if the block is "almost
165         // empty", we can replace uses of it with uses of the successor and make
166         // this dead.
167         if (BI->isUnconditional() &&
168             BB != &BB->getParent()->getEntryBlock()) {
169           BasicBlock::iterator BBI = BB->getFirstNonPHI();
170           // Ignore dbg intrinsics.
171           while (isa<DbgInfoIntrinsic>(BBI))
172             ++BBI;
173           // If the terminator is the only non-phi instruction, try to nuke it.
174           if (BBI->isTerminator()) {
175             // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
176             // block, we have to make sure it isn't in the LoopHeaders set.  We
177             // reinsert afterward if needed.
178             bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
179             BasicBlock *Succ = BI->getSuccessor(0);
180 
181             // FIXME: It is always conservatively correct to drop the info
182             // for a block even if it doesn't get erased.  This isn't totally
183             // awesome, but it allows us to use AssertingVH to prevent nasty
184             // dangling pointer issues within LazyValueInfo.
185             LVI->eraseBlock(BB);
186             if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
187               Changed = true;
188               // If we deleted BB and BB was the header of a loop, then the
189               // successor is now the header of the loop.
190               BB = Succ;
191             }
192 
193             if (ErasedFromLoopHeaders)
194               LoopHeaders.insert(BB);
195           }
196         }
197       }
198     }
199     EverChanged |= Changed;
200   } while (Changed);
201 
202   LoopHeaders.clear();
203   return EverChanged;
204 }
205 
206 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
207 /// thread across it.
208 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
209   /// Ignore PHI nodes, these will be flattened when duplication happens.
210   BasicBlock::const_iterator I = BB->getFirstNonPHI();
211 
212   // FIXME: THREADING will delete values that are just used to compute the
213   // branch, so they shouldn't count against the duplication cost.
214 
215 
216   // Sum up the cost of each instruction until we get to the terminator.  Don't
217   // include the terminator because the copy won't include it.
218   unsigned Size = 0;
219   for (; !isa<TerminatorInst>(I); ++I) {
220     // Debugger intrinsics don't incur code size.
221     if (isa<DbgInfoIntrinsic>(I)) continue;
222 
223     // If this is a pointer->pointer bitcast, it is free.
224     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
225       continue;
226 
227     // All other instructions count for at least one unit.
228     ++Size;
229 
230     // Calls are more expensive.  If they are non-intrinsic calls, we model them
231     // as having cost of 4.  If they are a non-vector intrinsic, we model them
232     // as having cost of 2 total, and if they are a vector intrinsic, we model
233     // them as having cost 1.
234     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
235       if (!isa<IntrinsicInst>(CI))
236         Size += 3;
237       else if (!CI->getType()->isVectorTy())
238         Size += 1;
239     }
240   }
241 
242   // Threading through a switch statement is particularly profitable.  If this
243   // block ends in a switch, decrease its cost to make it more likely to happen.
244   if (isa<SwitchInst>(I))
245     Size = Size > 6 ? Size-6 : 0;
246 
247   return Size;
248 }
249 
250 /// FindLoopHeaders - We do not want jump threading to turn proper loop
251 /// structures into irreducible loops.  Doing this breaks up the loop nesting
252 /// hierarchy and pessimizes later transformations.  To prevent this from
253 /// happening, we first have to find the loop headers.  Here we approximate this
254 /// by finding targets of backedges in the CFG.
255 ///
256 /// Note that there definitely are cases when we want to allow threading of
257 /// edges across a loop header.  For example, threading a jump from outside the
258 /// loop (the preheader) to an exit block of the loop is definitely profitable.
259 /// It is also almost always profitable to thread backedges from within the loop
260 /// to exit blocks, and is often profitable to thread backedges to other blocks
261 /// within the loop (forming a nested loop).  This simple analysis is not rich
262 /// enough to track all of these properties and keep it up-to-date as the CFG
263 /// mutates, so we don't allow any of these transformations.
264 ///
265 void JumpThreading::FindLoopHeaders(Function &F) {
266   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
267   FindFunctionBackedges(F, Edges);
268 
269   for (unsigned i = 0, e = Edges.size(); i != e; ++i)
270     LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
271 }
272 
273 // Helper method for ComputeValueKnownInPredecessors.  If Value is a
274 // ConstantInt, push it.  If it's an undef, push 0.  Otherwise, do nothing.
275 static void PushConstantIntOrUndef(SmallVectorImpl<std::pair<ConstantInt*,
276                                                         BasicBlock*> > &Result,
277                               Constant *Value, BasicBlock* BB){
278   if (ConstantInt *FoldedCInt = dyn_cast<ConstantInt>(Value))
279     Result.push_back(std::make_pair(FoldedCInt, BB));
280   else if (isa<UndefValue>(Value))
281     Result.push_back(std::make_pair((ConstantInt*)0, BB));
282 }
283 
284 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
285 /// if we can infer that the value is a known ConstantInt in any of our
286 /// predecessors.  If so, return the known list of value and pred BB in the
287 /// result vector.  If a value is known to be undef, it is returned as null.
288 ///
289 /// This returns true if there were any known values.
290 ///
291 bool JumpThreading::
292 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
293   // This method walks up use-def chains recursively.  Because of this, we could
294   // get into an infinite loop going around loops in the use-def chain.  To
295   // prevent this, keep track of what (value, block) pairs we've already visited
296   // and terminate the search if we loop back to them
297   if (!RecursionSet.insert(std::make_pair(V, BB)).second)
298     return false;
299 
300   // An RAII help to remove this pair from the recursion set once the recursion
301   // stack pops back out again.
302   RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
303 
304   // If V is a constantint, then it is known in all predecessors.
305   if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
306     ConstantInt *CI = dyn_cast<ConstantInt>(V);
307 
308     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
309       Result.push_back(std::make_pair(CI, *PI));
310 
311     return true;
312   }
313 
314   // If V is a non-instruction value, or an instruction in a different block,
315   // then it can't be derived from a PHI.
316   Instruction *I = dyn_cast<Instruction>(V);
317   if (I == 0 || I->getParent() != BB) {
318 
319     // Okay, if this is a live-in value, see if it has a known value at the end
320     // of any of our predecessors.
321     //
322     // FIXME: This should be an edge property, not a block end property.
323     /// TODO: Per PR2563, we could infer value range information about a
324     /// predecessor based on its terminator.
325     //
326     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
327     // "I" is a non-local compare-with-a-constant instruction.  This would be
328     // able to handle value inequalities better, for example if the compare is
329     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
330     // Perhaps getConstantOnEdge should be smart enough to do this?
331 
332     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
333       BasicBlock *P = *PI;
334       // If the value is known by LazyValueInfo to be a constant in a
335       // predecessor, use that information to try to thread this block.
336       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB);
337       if (PredCst == 0 ||
338           (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst)))
339         continue;
340 
341       Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), P));
342     }
343 
344     return !Result.empty();
345   }
346 
347   /// If I is a PHI node, then we know the incoming values for any constants.
348   if (PHINode *PN = dyn_cast<PHINode>(I)) {
349     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
350       Value *InVal = PN->getIncomingValue(i);
351       if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
352         ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
353         Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
354       } else {
355         Constant *CI = LVI->getConstantOnEdge(InVal,
356                                               PN->getIncomingBlock(i), BB);
357         // LVI returns null is no value could be determined.
358         if (!CI) continue;
359         PushConstantIntOrUndef(Result, CI, PN->getIncomingBlock(i));
360       }
361     }
362 
363     return !Result.empty();
364   }
365 
366   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
367 
368   // Handle some boolean conditions.
369   if (I->getType()->getPrimitiveSizeInBits() == 1) {
370     // X | true -> true
371     // X & false -> false
372     if (I->getOpcode() == Instruction::Or ||
373         I->getOpcode() == Instruction::And) {
374       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
375       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
376 
377       if (LHSVals.empty() && RHSVals.empty())
378         return false;
379 
380       ConstantInt *InterestingVal;
381       if (I->getOpcode() == Instruction::Or)
382         InterestingVal = ConstantInt::getTrue(I->getContext());
383       else
384         InterestingVal = ConstantInt::getFalse(I->getContext());
385 
386       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
387 
388       // Scan for the sentinel.  If we find an undef, force it to the
389       // interesting value: x|undef -> true and x&undef -> false.
390       for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
391         if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) {
392           Result.push_back(LHSVals[i]);
393           Result.back().first = InterestingVal;
394           LHSKnownBBs.insert(LHSVals[i].second);
395         }
396       for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
397         if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) {
398           // If we already inferred a value for this block on the LHS, don't
399           // re-add it.
400           if (!LHSKnownBBs.count(RHSVals[i].second)) {
401             Result.push_back(RHSVals[i]);
402             Result.back().first = InterestingVal;
403           }
404         }
405 
406       return !Result.empty();
407     }
408 
409     // Handle the NOT form of XOR.
410     if (I->getOpcode() == Instruction::Xor &&
411         isa<ConstantInt>(I->getOperand(1)) &&
412         cast<ConstantInt>(I->getOperand(1))->isOne()) {
413       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result);
414       if (Result.empty())
415         return false;
416 
417       // Invert the known values.
418       for (unsigned i = 0, e = Result.size(); i != e; ++i)
419         if (Result[i].first)
420           Result[i].first =
421             cast<ConstantInt>(ConstantExpr::getNot(Result[i].first));
422 
423       return true;
424     }
425 
426   // Try to simplify some other binary operator values.
427   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
428     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
429       SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals;
430       ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals);
431 
432       // Try to use constant folding to simplify the binary operator.
433       for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
434         Constant *V = LHSVals[i].first;
435         if (V == 0) V = UndefValue::get(BO->getType());
436         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
437 
438         PushConstantIntOrUndef(Result, Folded, LHSVals[i].second);
439       }
440     }
441 
442     return !Result.empty();
443   }
444 
445   // Handle compare with phi operand, where the PHI is defined in this block.
446   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
447     PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
448     if (PN && PN->getParent() == BB) {
449       // We can do this simplification if any comparisons fold to true or false.
450       // See if any do.
451       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
452         BasicBlock *PredBB = PN->getIncomingBlock(i);
453         Value *LHS = PN->getIncomingValue(i);
454         Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
455 
456         Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
457         if (Res == 0) {
458           if (!isa<Constant>(RHS))
459             continue;
460 
461           LazyValueInfo::Tristate
462             ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
463                                            cast<Constant>(RHS), PredBB, BB);
464           if (ResT == LazyValueInfo::Unknown)
465             continue;
466           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
467         }
468 
469         if (Constant *ConstRes = dyn_cast<Constant>(Res))
470           PushConstantIntOrUndef(Result, ConstRes, PredBB);
471       }
472 
473       return !Result.empty();
474     }
475 
476 
477     // If comparing a live-in value against a constant, see if we know the
478     // live-in value on any predecessors.
479     if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
480       if (!isa<Instruction>(Cmp->getOperand(0)) ||
481           cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
482         Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
483 
484         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){
485           BasicBlock *P = *PI;
486           // If the value is known by LazyValueInfo to be a constant in a
487           // predecessor, use that information to try to thread this block.
488           LazyValueInfo::Tristate Res =
489             LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
490                                     RHSCst, P, BB);
491           if (Res == LazyValueInfo::Unknown)
492             continue;
493 
494           Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
495           Result.push_back(std::make_pair(cast<ConstantInt>(ResC), P));
496         }
497 
498         return !Result.empty();
499       }
500 
501       // Try to find a constant value for the LHS of a comparison,
502       // and evaluate it statically if we can.
503       if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
504         SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals;
505         ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
506 
507         for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
508           Constant *V = LHSVals[i].first;
509           if (V == 0) V = UndefValue::get(CmpConst->getType());
510           Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
511                                                       V, CmpConst);
512           PushConstantIntOrUndef(Result, Folded, LHSVals[i].second);
513         }
514 
515         return !Result.empty();
516       }
517     }
518   }
519 
520   // If all else fails, see if LVI can figure out a constant value for us.
521   Constant *CI = LVI->getConstant(V, BB);
522   ConstantInt *CInt = dyn_cast_or_null<ConstantInt>(CI);
523   if (CInt) {
524     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
525       Result.push_back(std::make_pair(CInt, *PI));
526   }
527 
528   return !Result.empty();
529 }
530 
531 
532 
533 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
534 /// in an undefined jump, decide which block is best to revector to.
535 ///
536 /// Since we can pick an arbitrary destination, we pick the successor with the
537 /// fewest predecessors.  This should reduce the in-degree of the others.
538 ///
539 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
540   TerminatorInst *BBTerm = BB->getTerminator();
541   unsigned MinSucc = 0;
542   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
543   // Compute the successor with the minimum number of predecessors.
544   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
545   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
546     TestBB = BBTerm->getSuccessor(i);
547     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
548     if (NumPreds < MinNumPreds)
549       MinSucc = i;
550   }
551 
552   return MinSucc;
553 }
554 
555 /// ProcessBlock - If there are any predecessors whose control can be threaded
556 /// through to a successor, transform them now.
557 bool JumpThreading::ProcessBlock(BasicBlock *BB) {
558   // If the block is trivially dead, just return and let the caller nuke it.
559   // This simplifies other transformations.
560   if (pred_begin(BB) == pred_end(BB) &&
561       BB != &BB->getParent()->getEntryBlock())
562     return false;
563 
564   // If this block has a single predecessor, and if that pred has a single
565   // successor, merge the blocks.  This encourages recursive jump threading
566   // because now the condition in this block can be threaded through
567   // predecessors of our predecessor block.
568   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
569     if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
570         SinglePred != BB) {
571       // If SinglePred was a loop header, BB becomes one.
572       if (LoopHeaders.erase(SinglePred))
573         LoopHeaders.insert(BB);
574 
575       // Remember if SinglePred was the entry block of the function.  If so, we
576       // will need to move BB back to the entry position.
577       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
578       LVI->eraseBlock(SinglePred);
579       MergeBasicBlockIntoOnlyPred(BB);
580 
581       if (isEntry && BB != &BB->getParent()->getEntryBlock())
582         BB->moveBefore(&BB->getParent()->getEntryBlock());
583       return true;
584     }
585   }
586 
587   // Look to see if the terminator is a branch of switch, if not we can't thread
588   // it.
589   Value *Condition;
590   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
591     // Can't thread an unconditional jump.
592     if (BI->isUnconditional()) return false;
593     Condition = BI->getCondition();
594   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
595     Condition = SI->getCondition();
596   else
597     return false; // Must be an invoke.
598 
599   // If the terminator of this block is branching on a constant, simplify the
600   // terminator to an unconditional branch.  This can occur due to threading in
601   // other blocks.
602   if (isa<ConstantInt>(Condition)) {
603     DEBUG(dbgs() << "  In block '" << BB->getName()
604           << "' folding terminator: " << *BB->getTerminator() << '\n');
605     ++NumFolds;
606     ConstantFoldTerminator(BB);
607     return true;
608   }
609 
610   // If the terminator is branching on an undef, we can pick any of the
611   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
612   if (isa<UndefValue>(Condition)) {
613     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
614 
615     // Fold the branch/switch.
616     TerminatorInst *BBTerm = BB->getTerminator();
617     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
618       if (i == BestSucc) continue;
619       BBTerm->getSuccessor(i)->removePredecessor(BB, true);
620     }
621 
622     DEBUG(dbgs() << "  In block '" << BB->getName()
623           << "' folding undef terminator: " << *BBTerm << '\n');
624     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
625     BBTerm->eraseFromParent();
626     return true;
627   }
628 
629   Instruction *CondInst = dyn_cast<Instruction>(Condition);
630 
631   // All the rest of our checks depend on the condition being an instruction.
632   if (CondInst == 0) {
633     // FIXME: Unify this with code below.
634     if (ProcessThreadableEdges(Condition, BB))
635       return true;
636     return false;
637   }
638 
639 
640   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
641     // For a comparison where the LHS is outside this block, it's possible
642     // that we've branched on it before.  Used LVI to see if we can simplify
643     // the branch based on that.
644     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
645     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
646     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
647     if (CondBr && CondConst && CondBr->isConditional() && PI != PE &&
648         (!isa<Instruction>(CondCmp->getOperand(0)) ||
649          cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) {
650       // For predecessor edge, determine if the comparison is true or false
651       // on that edge.  If they're all true or all false, we can simplify the
652       // branch.
653       // FIXME: We could handle mixed true/false by duplicating code.
654       LazyValueInfo::Tristate Baseline =
655         LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0),
656                                 CondConst, *PI, BB);
657       if (Baseline != LazyValueInfo::Unknown) {
658         // Check that all remaining incoming values match the first one.
659         while (++PI != PE) {
660           LazyValueInfo::Tristate Ret =
661             LVI->getPredicateOnEdge(CondCmp->getPredicate(),
662                                     CondCmp->getOperand(0), CondConst, *PI, BB);
663           if (Ret != Baseline) break;
664         }
665 
666         // If we terminated early, then one of the values didn't match.
667         if (PI == PE) {
668           unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0;
669           unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1;
670           CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
671           BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
672           CondBr->eraseFromParent();
673           return true;
674         }
675       }
676     }
677   }
678 
679   // Check for some cases that are worth simplifying.  Right now we want to look
680   // for loads that are used by a switch or by the condition for the branch.  If
681   // we see one, check to see if it's partially redundant.  If so, insert a PHI
682   // which can then be used to thread the values.
683   //
684   Value *SimplifyValue = CondInst;
685   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
686     if (isa<Constant>(CondCmp->getOperand(1)))
687       SimplifyValue = CondCmp->getOperand(0);
688 
689   // TODO: There are other places where load PRE would be profitable, such as
690   // more complex comparisons.
691   if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
692     if (SimplifyPartiallyRedundantLoad(LI))
693       return true;
694 
695 
696   // Handle a variety of cases where we are branching on something derived from
697   // a PHI node in the current block.  If we can prove that any predecessors
698   // compute a predictable value based on a PHI node, thread those predecessors.
699   //
700   if (ProcessThreadableEdges(CondInst, BB))
701     return true;
702 
703   // If this is an otherwise-unfoldable branch on a phi node in the current
704   // block, see if we can simplify.
705   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
706     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
707       return ProcessBranchOnPHI(PN);
708 
709 
710   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
711   if (CondInst->getOpcode() == Instruction::Xor &&
712       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
713     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
714 
715 
716   // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
717   // "(X == 4)", thread through this block.
718 
719   return false;
720 }
721 
722 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
723 /// block that jump on exactly the same condition.  This means that we almost
724 /// always know the direction of the edge in the DESTBB:
725 ///  PREDBB:
726 ///     br COND, DESTBB, BBY
727 ///  DESTBB:
728 ///     br COND, BBZ, BBW
729 ///
730 /// If DESTBB has multiple predecessors, we can't just constant fold the branch
731 /// in DESTBB, we have to thread over it.
732 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
733                                                  BasicBlock *BB) {
734   BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
735 
736   // If both successors of PredBB go to DESTBB, we don't know anything.  We can
737   // fold the branch to an unconditional one, which allows other recursive
738   // simplifications.
739   bool BranchDir;
740   if (PredBI->getSuccessor(1) != BB)
741     BranchDir = true;
742   else if (PredBI->getSuccessor(0) != BB)
743     BranchDir = false;
744   else {
745     DEBUG(dbgs() << "  In block '" << PredBB->getName()
746           << "' folding terminator: " << *PredBB->getTerminator() << '\n');
747     ++NumFolds;
748     ConstantFoldTerminator(PredBB);
749     return true;
750   }
751 
752   BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
753 
754   // If the dest block has one predecessor, just fix the branch condition to a
755   // constant and fold it.
756   if (BB->getSinglePredecessor()) {
757     DEBUG(dbgs() << "  In block '" << BB->getName()
758           << "' folding condition to '" << BranchDir << "': "
759           << *BB->getTerminator() << '\n');
760     ++NumFolds;
761     Value *OldCond = DestBI->getCondition();
762     DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
763                                           BranchDir));
764     // Delete dead instructions before we fold the branch.  Folding the branch
765     // can eliminate edges from the CFG which can end up deleting OldCond.
766     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
767     ConstantFoldTerminator(BB);
768     return true;
769   }
770 
771 
772   // Next, figure out which successor we are threading to.
773   BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
774 
775   SmallVector<BasicBlock*, 2> Preds;
776   Preds.push_back(PredBB);
777 
778   // Ok, try to thread it!
779   return ThreadEdge(BB, Preds, SuccBB);
780 }
781 
782 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
783 /// block that switch on exactly the same condition.  This means that we almost
784 /// always know the direction of the edge in the DESTBB:
785 ///  PREDBB:
786 ///     switch COND [... DESTBB, BBY ... ]
787 ///  DESTBB:
788 ///     switch COND [... BBZ, BBW ]
789 ///
790 /// Optimizing switches like this is very important, because simplifycfg builds
791 /// switches out of repeated 'if' conditions.
792 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
793                                                  BasicBlock *DestBB) {
794   // Can't thread edge to self.
795   if (PredBB == DestBB)
796     return false;
797 
798   SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
799   SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
800 
801   // There are a variety of optimizations that we can potentially do on these
802   // blocks: we order them from most to least preferable.
803 
804   // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
805   // directly to their destination.  This does not introduce *any* code size
806   // growth.  Skip debug info first.
807   BasicBlock::iterator BBI = DestBB->begin();
808   while (isa<DbgInfoIntrinsic>(BBI))
809     BBI++;
810 
811   // FIXME: Thread if it just contains a PHI.
812   if (isa<SwitchInst>(BBI)) {
813     bool MadeChange = false;
814     // Ignore the default edge for now.
815     for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
816       ConstantInt *DestVal = DestSI->getCaseValue(i);
817       BasicBlock *DestSucc = DestSI->getSuccessor(i);
818 
819       // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
820       // PredSI has an explicit case for it.  If so, forward.  If it is covered
821       // by the default case, we can't update PredSI.
822       unsigned PredCase = PredSI->findCaseValue(DestVal);
823       if (PredCase == 0) continue;
824 
825       // If PredSI doesn't go to DestBB on this value, then it won't reach the
826       // case on this condition.
827       if (PredSI->getSuccessor(PredCase) != DestBB &&
828           DestSI->getSuccessor(i) != DestBB)
829         continue;
830 
831       // Do not forward this if it already goes to this destination, this would
832       // be an infinite loop.
833       if (PredSI->getSuccessor(PredCase) == DestSucc)
834         continue;
835 
836       // Otherwise, we're safe to make the change.  Make sure that the edge from
837       // DestSI to DestSucc is not critical and has no PHI nodes.
838       DEBUG(dbgs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
839       DEBUG(dbgs() << "THROUGH: " << *DestSI);
840 
841       // If the destination has PHI nodes, just split the edge for updating
842       // simplicity.
843       if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
844         SplitCriticalEdge(DestSI, i, this);
845         DestSucc = DestSI->getSuccessor(i);
846       }
847       FoldSingleEntryPHINodes(DestSucc);
848       PredSI->setSuccessor(PredCase, DestSucc);
849       MadeChange = true;
850     }
851 
852     if (MadeChange)
853       return true;
854   }
855 
856   return false;
857 }
858 
859 
860 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
861 /// load instruction, eliminate it by replacing it with a PHI node.  This is an
862 /// important optimization that encourages jump threading, and needs to be run
863 /// interlaced with other jump threading tasks.
864 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
865   // Don't hack volatile loads.
866   if (LI->isVolatile()) return false;
867 
868   // If the load is defined in a block with exactly one predecessor, it can't be
869   // partially redundant.
870   BasicBlock *LoadBB = LI->getParent();
871   if (LoadBB->getSinglePredecessor())
872     return false;
873 
874   Value *LoadedPtr = LI->getOperand(0);
875 
876   // If the loaded operand is defined in the LoadBB, it can't be available.
877   // TODO: Could do simple PHI translation, that would be fun :)
878   if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
879     if (PtrOp->getParent() == LoadBB)
880       return false;
881 
882   // Scan a few instructions up from the load, to see if it is obviously live at
883   // the entry to its block.
884   BasicBlock::iterator BBIt = LI;
885 
886   if (Value *AvailableVal =
887         FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
888     // If the value if the load is locally available within the block, just use
889     // it.  This frequently occurs for reg2mem'd allocas.
890     //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
891 
892     // If the returned value is the load itself, replace with an undef. This can
893     // only happen in dead loops.
894     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
895     LI->replaceAllUsesWith(AvailableVal);
896     LI->eraseFromParent();
897     return true;
898   }
899 
900   // Otherwise, if we scanned the whole block and got to the top of the block,
901   // we know the block is locally transparent to the load.  If not, something
902   // might clobber its value.
903   if (BBIt != LoadBB->begin())
904     return false;
905 
906 
907   SmallPtrSet<BasicBlock*, 8> PredsScanned;
908   typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
909   AvailablePredsTy AvailablePreds;
910   BasicBlock *OneUnavailablePred = 0;
911 
912   // If we got here, the loaded value is transparent through to the start of the
913   // block.  Check to see if it is available in any of the predecessor blocks.
914   for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
915        PI != PE; ++PI) {
916     BasicBlock *PredBB = *PI;
917 
918     // If we already scanned this predecessor, skip it.
919     if (!PredsScanned.insert(PredBB))
920       continue;
921 
922     // Scan the predecessor to see if the value is available in the pred.
923     BBIt = PredBB->end();
924     Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
925     if (!PredAvailable) {
926       OneUnavailablePred = PredBB;
927       continue;
928     }
929 
930     // If so, this load is partially redundant.  Remember this info so that we
931     // can create a PHI node.
932     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
933   }
934 
935   // If the loaded value isn't available in any predecessor, it isn't partially
936   // redundant.
937   if (AvailablePreds.empty()) return false;
938 
939   // Okay, the loaded value is available in at least one (and maybe all!)
940   // predecessors.  If the value is unavailable in more than one unique
941   // predecessor, we want to insert a merge block for those common predecessors.
942   // This ensures that we only have to insert one reload, thus not increasing
943   // code size.
944   BasicBlock *UnavailablePred = 0;
945 
946   // If there is exactly one predecessor where the value is unavailable, the
947   // already computed 'OneUnavailablePred' block is it.  If it ends in an
948   // unconditional branch, we know that it isn't a critical edge.
949   if (PredsScanned.size() == AvailablePreds.size()+1 &&
950       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
951     UnavailablePred = OneUnavailablePred;
952   } else if (PredsScanned.size() != AvailablePreds.size()) {
953     // Otherwise, we had multiple unavailable predecessors or we had a critical
954     // edge from the one.
955     SmallVector<BasicBlock*, 8> PredsToSplit;
956     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
957 
958     for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
959       AvailablePredSet.insert(AvailablePreds[i].first);
960 
961     // Add all the unavailable predecessors to the PredsToSplit list.
962     for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
963          PI != PE; ++PI) {
964       BasicBlock *P = *PI;
965       // If the predecessor is an indirect goto, we can't split the edge.
966       if (isa<IndirectBrInst>(P->getTerminator()))
967         return false;
968 
969       if (!AvailablePredSet.count(P))
970         PredsToSplit.push_back(P);
971     }
972 
973     // Split them out to their own block.
974     UnavailablePred =
975       SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
976                              "thread-pre-split", this);
977   }
978 
979   // If the value isn't available in all predecessors, then there will be
980   // exactly one where it isn't available.  Insert a load on that edge and add
981   // it to the AvailablePreds list.
982   if (UnavailablePred) {
983     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
984            "Can't handle critical edge here!");
985     Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
986                                  LI->getAlignment(),
987                                  UnavailablePred->getTerminator());
988     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
989   }
990 
991   // Now we know that each predecessor of this block has a value in
992   // AvailablePreds, sort them for efficient access as we're walking the preds.
993   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
994 
995   // Create a PHI node at the start of the block for the PRE'd load value.
996   PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
997   PN->takeName(LI);
998 
999   // Insert new entries into the PHI for each predecessor.  A single block may
1000   // have multiple entries here.
1001   for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
1002        ++PI) {
1003     BasicBlock *P = *PI;
1004     AvailablePredsTy::iterator I =
1005       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
1006                        std::make_pair(P, (Value*)0));
1007 
1008     assert(I != AvailablePreds.end() && I->first == P &&
1009            "Didn't find entry for predecessor!");
1010 
1011     PN->addIncoming(I->second, I->first);
1012   }
1013 
1014   //cerr << "PRE: " << *LI << *PN << "\n";
1015 
1016   LI->replaceAllUsesWith(PN);
1017   LI->eraseFromParent();
1018 
1019   return true;
1020 }
1021 
1022 /// FindMostPopularDest - The specified list contains multiple possible
1023 /// threadable destinations.  Pick the one that occurs the most frequently in
1024 /// the list.
1025 static BasicBlock *
1026 FindMostPopularDest(BasicBlock *BB,
1027                     const SmallVectorImpl<std::pair<BasicBlock*,
1028                                   BasicBlock*> > &PredToDestList) {
1029   assert(!PredToDestList.empty());
1030 
1031   // Determine popularity.  If there are multiple possible destinations, we
1032   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1033   // blocks with known and real destinations to threading undef.  We'll handle
1034   // them later if interesting.
1035   DenseMap<BasicBlock*, unsigned> DestPopularity;
1036   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1037     if (PredToDestList[i].second)
1038       DestPopularity[PredToDestList[i].second]++;
1039 
1040   // Find the most popular dest.
1041   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1042   BasicBlock *MostPopularDest = DPI->first;
1043   unsigned Popularity = DPI->second;
1044   SmallVector<BasicBlock*, 4> SamePopularity;
1045 
1046   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1047     // If the popularity of this entry isn't higher than the popularity we've
1048     // seen so far, ignore it.
1049     if (DPI->second < Popularity)
1050       ; // ignore.
1051     else if (DPI->second == Popularity) {
1052       // If it is the same as what we've seen so far, keep track of it.
1053       SamePopularity.push_back(DPI->first);
1054     } else {
1055       // If it is more popular, remember it.
1056       SamePopularity.clear();
1057       MostPopularDest = DPI->first;
1058       Popularity = DPI->second;
1059     }
1060   }
1061 
1062   // Okay, now we know the most popular destination.  If there is more than
1063   // destination, we need to determine one.  This is arbitrary, but we need
1064   // to make a deterministic decision.  Pick the first one that appears in the
1065   // successor list.
1066   if (!SamePopularity.empty()) {
1067     SamePopularity.push_back(MostPopularDest);
1068     TerminatorInst *TI = BB->getTerminator();
1069     for (unsigned i = 0; ; ++i) {
1070       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1071 
1072       if (std::find(SamePopularity.begin(), SamePopularity.end(),
1073                     TI->getSuccessor(i)) == SamePopularity.end())
1074         continue;
1075 
1076       MostPopularDest = TI->getSuccessor(i);
1077       break;
1078     }
1079   }
1080 
1081   // Okay, we have finally picked the most popular destination.
1082   return MostPopularDest;
1083 }
1084 
1085 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) {
1086   // If threading this would thread across a loop header, don't even try to
1087   // thread the edge.
1088   if (LoopHeaders.count(BB))
1089     return false;
1090 
1091   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
1092   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues))
1093     return false;
1094 
1095   assert(!PredValues.empty() &&
1096          "ComputeValueKnownInPredecessors returned true with no values");
1097 
1098   DEBUG(dbgs() << "IN BB: " << *BB;
1099         for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1100           dbgs() << "  BB '" << BB->getName() << "': FOUND condition = ";
1101           if (PredValues[i].first)
1102             dbgs() << *PredValues[i].first;
1103           else
1104             dbgs() << "UNDEF";
1105           dbgs() << " for pred '" << PredValues[i].second->getName()
1106           << "'.\n";
1107         });
1108 
1109   // Decide what we want to thread through.  Convert our list of known values to
1110   // a list of known destinations for each pred.  This also discards duplicate
1111   // predecessors and keeps track of the undefined inputs (which are represented
1112   // as a null dest in the PredToDestList).
1113   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1114   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1115 
1116   BasicBlock *OnlyDest = 0;
1117   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1118 
1119   for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1120     BasicBlock *Pred = PredValues[i].second;
1121     if (!SeenPreds.insert(Pred))
1122       continue;  // Duplicate predecessor entry.
1123 
1124     // If the predecessor ends with an indirect goto, we can't change its
1125     // destination.
1126     if (isa<IndirectBrInst>(Pred->getTerminator()))
1127       continue;
1128 
1129     ConstantInt *Val = PredValues[i].first;
1130 
1131     BasicBlock *DestBB;
1132     if (Val == 0)      // Undef.
1133       DestBB = 0;
1134     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1135       DestBB = BI->getSuccessor(Val->isZero());
1136     else {
1137       SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
1138       DestBB = SI->getSuccessor(SI->findCaseValue(Val));
1139     }
1140 
1141     // If we have exactly one destination, remember it for efficiency below.
1142     if (i == 0)
1143       OnlyDest = DestBB;
1144     else if (OnlyDest != DestBB)
1145       OnlyDest = MultipleDestSentinel;
1146 
1147     PredToDestList.push_back(std::make_pair(Pred, DestBB));
1148   }
1149 
1150   // If all edges were unthreadable, we fail.
1151   if (PredToDestList.empty())
1152     return false;
1153 
1154   // Determine which is the most common successor.  If we have many inputs and
1155   // this block is a switch, we want to start by threading the batch that goes
1156   // to the most popular destination first.  If we only know about one
1157   // threadable destination (the common case) we can avoid this.
1158   BasicBlock *MostPopularDest = OnlyDest;
1159 
1160   if (MostPopularDest == MultipleDestSentinel)
1161     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1162 
1163   // Now that we know what the most popular destination is, factor all
1164   // predecessors that will jump to it into a single predecessor.
1165   SmallVector<BasicBlock*, 16> PredsToFactor;
1166   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1167     if (PredToDestList[i].second == MostPopularDest) {
1168       BasicBlock *Pred = PredToDestList[i].first;
1169 
1170       // This predecessor may be a switch or something else that has multiple
1171       // edges to the block.  Factor each of these edges by listing them
1172       // according to # occurrences in PredsToFactor.
1173       TerminatorInst *PredTI = Pred->getTerminator();
1174       for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1175         if (PredTI->getSuccessor(i) == BB)
1176           PredsToFactor.push_back(Pred);
1177     }
1178 
1179   // If the threadable edges are branching on an undefined value, we get to pick
1180   // the destination that these predecessors should get to.
1181   if (MostPopularDest == 0)
1182     MostPopularDest = BB->getTerminator()->
1183                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1184 
1185   // Ok, try to thread it!
1186   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1187 }
1188 
1189 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1190 /// a PHI node in the current block.  See if there are any simplifications we
1191 /// can do based on inputs to the phi node.
1192 ///
1193 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
1194   BasicBlock *BB = PN->getParent();
1195 
1196   // TODO: We could make use of this to do it once for blocks with common PHI
1197   // values.
1198   SmallVector<BasicBlock*, 1> PredBBs;
1199   PredBBs.resize(1);
1200 
1201   // If any of the predecessor blocks end in an unconditional branch, we can
1202   // *duplicate* the conditional branch into that block in order to further
1203   // encourage jump threading and to eliminate cases where we have branch on a
1204   // phi of an icmp (branch on icmp is much better).
1205   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1206     BasicBlock *PredBB = PN->getIncomingBlock(i);
1207     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1208       if (PredBr->isUnconditional()) {
1209         PredBBs[0] = PredBB;
1210         // Try to duplicate BB into PredBB.
1211         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1212           return true;
1213       }
1214   }
1215 
1216   return false;
1217 }
1218 
1219 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1220 /// a xor instruction in the current block.  See if there are any
1221 /// simplifications we can do based on inputs to the xor.
1222 ///
1223 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
1224   BasicBlock *BB = BO->getParent();
1225 
1226   // If either the LHS or RHS of the xor is a constant, don't do this
1227   // optimization.
1228   if (isa<ConstantInt>(BO->getOperand(0)) ||
1229       isa<ConstantInt>(BO->getOperand(1)))
1230     return false;
1231 
1232   // If the first instruction in BB isn't a phi, we won't be able to infer
1233   // anything special about any particular predecessor.
1234   if (!isa<PHINode>(BB->front()))
1235     return false;
1236 
1237   // If we have a xor as the branch input to this block, and we know that the
1238   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1239   // the condition into the predecessor and fix that value to true, saving some
1240   // logical ops on that path and encouraging other paths to simplify.
1241   //
1242   // This copies something like this:
1243   //
1244   //  BB:
1245   //    %X = phi i1 [1],  [%X']
1246   //    %Y = icmp eq i32 %A, %B
1247   //    %Z = xor i1 %X, %Y
1248   //    br i1 %Z, ...
1249   //
1250   // Into:
1251   //  BB':
1252   //    %Y = icmp ne i32 %A, %B
1253   //    br i1 %Z, ...
1254 
1255   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> XorOpValues;
1256   bool isLHS = true;
1257   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues)) {
1258     assert(XorOpValues.empty());
1259     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues))
1260       return false;
1261     isLHS = false;
1262   }
1263 
1264   assert(!XorOpValues.empty() &&
1265          "ComputeValueKnownInPredecessors returned true with no values");
1266 
1267   // Scan the information to see which is most popular: true or false.  The
1268   // predecessors can be of the set true, false, or undef.
1269   unsigned NumTrue = 0, NumFalse = 0;
1270   for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1271     if (!XorOpValues[i].first) continue;  // Ignore undefs for the count.
1272     if (XorOpValues[i].first->isZero())
1273       ++NumFalse;
1274     else
1275       ++NumTrue;
1276   }
1277 
1278   // Determine which value to split on, true, false, or undef if neither.
1279   ConstantInt *SplitVal = 0;
1280   if (NumTrue > NumFalse)
1281     SplitVal = ConstantInt::getTrue(BB->getContext());
1282   else if (NumTrue != 0 || NumFalse != 0)
1283     SplitVal = ConstantInt::getFalse(BB->getContext());
1284 
1285   // Collect all of the blocks that this can be folded into so that we can
1286   // factor this once and clone it once.
1287   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1288   for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1289     if (XorOpValues[i].first != SplitVal && XorOpValues[i].first != 0) continue;
1290 
1291     BlocksToFoldInto.push_back(XorOpValues[i].second);
1292   }
1293 
1294   // If we inferred a value for all of the predecessors, then duplication won't
1295   // help us.  However, we can just replace the LHS or RHS with the constant.
1296   if (BlocksToFoldInto.size() ==
1297       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1298     if (SplitVal == 0) {
1299       // If all preds provide undef, just nuke the xor, because it is undef too.
1300       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1301       BO->eraseFromParent();
1302     } else if (SplitVal->isZero()) {
1303       // If all preds provide 0, replace the xor with the other input.
1304       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1305       BO->eraseFromParent();
1306     } else {
1307       // If all preds provide 1, set the computed value to 1.
1308       BO->setOperand(!isLHS, SplitVal);
1309     }
1310 
1311     return true;
1312   }
1313 
1314   // Try to duplicate BB into PredBB.
1315   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1316 }
1317 
1318 
1319 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1320 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1321 /// NewPred using the entries from OldPred (suitably mapped).
1322 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1323                                             BasicBlock *OldPred,
1324                                             BasicBlock *NewPred,
1325                                      DenseMap<Instruction*, Value*> &ValueMap) {
1326   for (BasicBlock::iterator PNI = PHIBB->begin();
1327        PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1328     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1329     // DestBlock.
1330     Value *IV = PN->getIncomingValueForBlock(OldPred);
1331 
1332     // Remap the value if necessary.
1333     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1334       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1335       if (I != ValueMap.end())
1336         IV = I->second;
1337     }
1338 
1339     PN->addIncoming(IV, NewPred);
1340   }
1341 }
1342 
1343 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1344 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1345 /// across BB.  Transform the IR to reflect this change.
1346 bool JumpThreading::ThreadEdge(BasicBlock *BB,
1347                                const SmallVectorImpl<BasicBlock*> &PredBBs,
1348                                BasicBlock *SuccBB) {
1349   // If threading to the same block as we come from, we would infinite loop.
1350   if (SuccBB == BB) {
1351     DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1352           << "' - would thread to self!\n");
1353     return false;
1354   }
1355 
1356   // If threading this would thread across a loop header, don't thread the edge.
1357   // See the comments above FindLoopHeaders for justifications and caveats.
1358   if (LoopHeaders.count(BB)) {
1359     DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
1360           << "' to dest BB '" << SuccBB->getName()
1361           << "' - it might create an irreducible loop!\n");
1362     return false;
1363   }
1364 
1365   unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1366   if (JumpThreadCost > Threshold) {
1367     DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1368           << "' - Cost is too high: " << JumpThreadCost << "\n");
1369     return false;
1370   }
1371 
1372   // And finally, do it!  Start by factoring the predecessors is needed.
1373   BasicBlock *PredBB;
1374   if (PredBBs.size() == 1)
1375     PredBB = PredBBs[0];
1376   else {
1377     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1378           << " common predecessors.\n");
1379     PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1380                                     ".thr_comm", this);
1381   }
1382 
1383   // And finally, do it!
1384   DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1385         << SuccBB->getName() << "' with cost: " << JumpThreadCost
1386         << ", across block:\n    "
1387         << *BB << "\n");
1388 
1389   LVI->threadEdge(PredBB, BB, SuccBB);
1390 
1391   // We are going to have to map operands from the original BB block to the new
1392   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1393   // account for entry from PredBB.
1394   DenseMap<Instruction*, Value*> ValueMapping;
1395 
1396   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1397                                          BB->getName()+".thread",
1398                                          BB->getParent(), BB);
1399   NewBB->moveAfter(PredBB);
1400 
1401   BasicBlock::iterator BI = BB->begin();
1402   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1403     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1404 
1405   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1406   // mapping and using it to remap operands in the cloned instructions.
1407   for (; !isa<TerminatorInst>(BI); ++BI) {
1408     Instruction *New = BI->clone();
1409     New->setName(BI->getName());
1410     NewBB->getInstList().push_back(New);
1411     ValueMapping[BI] = New;
1412 
1413     // Remap operands to patch up intra-block references.
1414     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1415       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1416         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1417         if (I != ValueMapping.end())
1418           New->setOperand(i, I->second);
1419       }
1420   }
1421 
1422   // We didn't copy the terminator from BB over to NewBB, because there is now
1423   // an unconditional jump to SuccBB.  Insert the unconditional jump.
1424   BranchInst::Create(SuccBB, NewBB);
1425 
1426   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1427   // PHI nodes for NewBB now.
1428   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1429 
1430   // If there were values defined in BB that are used outside the block, then we
1431   // now have to update all uses of the value to use either the original value,
1432   // the cloned value, or some PHI derived value.  This can require arbitrary
1433   // PHI insertion, of which we are prepared to do, clean these up now.
1434   SSAUpdater SSAUpdate;
1435   SmallVector<Use*, 16> UsesToRename;
1436   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1437     // Scan all uses of this instruction to see if it is used outside of its
1438     // block, and if so, record them in UsesToRename.
1439     for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1440          ++UI) {
1441       Instruction *User = cast<Instruction>(*UI);
1442       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1443         if (UserPN->getIncomingBlock(UI) == BB)
1444           continue;
1445       } else if (User->getParent() == BB)
1446         continue;
1447 
1448       UsesToRename.push_back(&UI.getUse());
1449     }
1450 
1451     // If there are no uses outside the block, we're done with this instruction.
1452     if (UsesToRename.empty())
1453       continue;
1454 
1455     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1456 
1457     // We found a use of I outside of BB.  Rename all uses of I that are outside
1458     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1459     // with the two values we know.
1460     SSAUpdate.Initialize(I->getType(), I->getName());
1461     SSAUpdate.AddAvailableValue(BB, I);
1462     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1463 
1464     while (!UsesToRename.empty())
1465       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1466     DEBUG(dbgs() << "\n");
1467   }
1468 
1469 
1470   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1471   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1472   // us to simplify any PHI nodes in BB.
1473   TerminatorInst *PredTerm = PredBB->getTerminator();
1474   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1475     if (PredTerm->getSuccessor(i) == BB) {
1476       BB->removePredecessor(PredBB, true);
1477       PredTerm->setSuccessor(i, NewBB);
1478     }
1479 
1480   // At this point, the IR is fully up to date and consistent.  Do a quick scan
1481   // over the new instructions and zap any that are constants or dead.  This
1482   // frequently happens because of phi translation.
1483   SimplifyInstructionsInBlock(NewBB, TD);
1484 
1485   // Threaded an edge!
1486   ++NumThreads;
1487   return true;
1488 }
1489 
1490 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1491 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1492 /// If we can duplicate the contents of BB up into PredBB do so now, this
1493 /// improves the odds that the branch will be on an analyzable instruction like
1494 /// a compare.
1495 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1496                                  const SmallVectorImpl<BasicBlock *> &PredBBs) {
1497   assert(!PredBBs.empty() && "Can't handle an empty set");
1498 
1499   // If BB is a loop header, then duplicating this block outside the loop would
1500   // cause us to transform this into an irreducible loop, don't do this.
1501   // See the comments above FindLoopHeaders for justifications and caveats.
1502   if (LoopHeaders.count(BB)) {
1503     DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
1504           << "' into predecessor block '" << PredBBs[0]->getName()
1505           << "' - it might create an irreducible loop!\n");
1506     return false;
1507   }
1508 
1509   unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1510   if (DuplicationCost > Threshold) {
1511     DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
1512           << "' - Cost is too high: " << DuplicationCost << "\n");
1513     return false;
1514   }
1515 
1516   // And finally, do it!  Start by factoring the predecessors is needed.
1517   BasicBlock *PredBB;
1518   if (PredBBs.size() == 1)
1519     PredBB = PredBBs[0];
1520   else {
1521     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1522           << " common predecessors.\n");
1523     PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1524                                     ".thr_comm", this);
1525   }
1526 
1527   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1528   // of PredBB.
1529   DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1530         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1531         << DuplicationCost << " block is:" << *BB << "\n");
1532 
1533   // Unless PredBB ends with an unconditional branch, split the edge so that we
1534   // can just clone the bits from BB into the end of the new PredBB.
1535   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1536 
1537   if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) {
1538     PredBB = SplitEdge(PredBB, BB, this);
1539     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1540   }
1541 
1542   // We are going to have to map operands from the original BB block into the
1543   // PredBB block.  Evaluate PHI nodes in BB.
1544   DenseMap<Instruction*, Value*> ValueMapping;
1545 
1546   BasicBlock::iterator BI = BB->begin();
1547   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1548     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1549 
1550   // Clone the non-phi instructions of BB into PredBB, keeping track of the
1551   // mapping and using it to remap operands in the cloned instructions.
1552   for (; BI != BB->end(); ++BI) {
1553     Instruction *New = BI->clone();
1554 
1555     // Remap operands to patch up intra-block references.
1556     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1557       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1558         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1559         if (I != ValueMapping.end())
1560           New->setOperand(i, I->second);
1561       }
1562 
1563     // If this instruction can be simplified after the operands are updated,
1564     // just use the simplified value instead.  This frequently happens due to
1565     // phi translation.
1566     if (Value *IV = SimplifyInstruction(New, TD)) {
1567       delete New;
1568       ValueMapping[BI] = IV;
1569     } else {
1570       // Otherwise, insert the new instruction into the block.
1571       New->setName(BI->getName());
1572       PredBB->getInstList().insert(OldPredBranch, New);
1573       ValueMapping[BI] = New;
1574     }
1575   }
1576 
1577   // Check to see if the targets of the branch had PHI nodes. If so, we need to
1578   // add entries to the PHI nodes for branch from PredBB now.
1579   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1580   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1581                                   ValueMapping);
1582   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1583                                   ValueMapping);
1584 
1585   // If there were values defined in BB that are used outside the block, then we
1586   // now have to update all uses of the value to use either the original value,
1587   // the cloned value, or some PHI derived value.  This can require arbitrary
1588   // PHI insertion, of which we are prepared to do, clean these up now.
1589   SSAUpdater SSAUpdate;
1590   SmallVector<Use*, 16> UsesToRename;
1591   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1592     // Scan all uses of this instruction to see if it is used outside of its
1593     // block, and if so, record them in UsesToRename.
1594     for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1595          ++UI) {
1596       Instruction *User = cast<Instruction>(*UI);
1597       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1598         if (UserPN->getIncomingBlock(UI) == BB)
1599           continue;
1600       } else if (User->getParent() == BB)
1601         continue;
1602 
1603       UsesToRename.push_back(&UI.getUse());
1604     }
1605 
1606     // If there are no uses outside the block, we're done with this instruction.
1607     if (UsesToRename.empty())
1608       continue;
1609 
1610     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1611 
1612     // We found a use of I outside of BB.  Rename all uses of I that are outside
1613     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1614     // with the two values we know.
1615     SSAUpdate.Initialize(I->getType(), I->getName());
1616     SSAUpdate.AddAvailableValue(BB, I);
1617     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1618 
1619     while (!UsesToRename.empty())
1620       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1621     DEBUG(dbgs() << "\n");
1622   }
1623 
1624   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1625   // that we nuked.
1626   BB->removePredecessor(PredBB, true);
1627 
1628   // Remove the unconditional branch at the end of the PredBB block.
1629   OldPredBranch->eraseFromParent();
1630 
1631   ++NumDupes;
1632   return true;
1633 }
1634 
1635 
1636