1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Jump Threading pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Scalar/JumpThreading.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/BlockFrequencyInfo.h" 23 #include "llvm/Analysis/BranchProbabilityInfo.h" 24 #include "llvm/Analysis/CFG.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/GlobalsModRef.h" 27 #include "llvm/Analysis/GuardUtils.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/LazyValueInfo.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/MemoryLocation.h" 33 #include "llvm/Analysis/PostDominators.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DebugInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/InstrTypes.h" 47 #include "llvm/IR/Instruction.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/IntrinsicInst.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/MDBuilder.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/PassManager.h" 56 #include "llvm/IR/PatternMatch.h" 57 #include "llvm/IR/ProfDataUtils.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Use.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/Support/BlockFrequency.h" 62 #include "llvm/Support/BranchProbability.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 68 #include "llvm/Transforms/Utils/Cloning.h" 69 #include "llvm/Transforms/Utils/Local.h" 70 #include "llvm/Transforms/Utils/SSAUpdater.h" 71 #include "llvm/Transforms/Utils/ValueMapper.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <iterator> 76 #include <memory> 77 #include <utility> 78 79 using namespace llvm; 80 using namespace jumpthreading; 81 82 #define DEBUG_TYPE "jump-threading" 83 84 STATISTIC(NumThreads, "Number of jumps threaded"); 85 STATISTIC(NumFolds, "Number of terminators folded"); 86 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 87 88 static cl::opt<unsigned> 89 BBDuplicateThreshold("jump-threading-threshold", 90 cl::desc("Max block size to duplicate for jump threading"), 91 cl::init(6), cl::Hidden); 92 93 static cl::opt<unsigned> 94 ImplicationSearchThreshold( 95 "jump-threading-implication-search-threshold", 96 cl::desc("The number of predecessors to search for a stronger " 97 "condition to use to thread over a weaker condition"), 98 cl::init(3), cl::Hidden); 99 100 static cl::opt<unsigned> PhiDuplicateThreshold( 101 "jump-threading-phi-threshold", 102 cl::desc("Max PHIs in BB to duplicate for jump threading"), cl::init(76), 103 cl::Hidden); 104 105 static cl::opt<bool> ThreadAcrossLoopHeaders( 106 "jump-threading-across-loop-headers", 107 cl::desc("Allow JumpThreading to thread across loop headers, for testing"), 108 cl::init(false), cl::Hidden); 109 110 JumpThreadingPass::JumpThreadingPass(int T) { 111 DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 112 } 113 114 // Update branch probability information according to conditional 115 // branch probability. This is usually made possible for cloned branches 116 // in inline instances by the context specific profile in the caller. 117 // For instance, 118 // 119 // [Block PredBB] 120 // [Branch PredBr] 121 // if (t) { 122 // Block A; 123 // } else { 124 // Block B; 125 // } 126 // 127 // [Block BB] 128 // cond = PN([true, %A], [..., %B]); // PHI node 129 // [Branch CondBr] 130 // if (cond) { 131 // ... // P(cond == true) = 1% 132 // } 133 // 134 // Here we know that when block A is taken, cond must be true, which means 135 // P(cond == true | A) = 1 136 // 137 // Given that P(cond == true) = P(cond == true | A) * P(A) + 138 // P(cond == true | B) * P(B) 139 // we get: 140 // P(cond == true ) = P(A) + P(cond == true | B) * P(B) 141 // 142 // which gives us: 143 // P(A) is less than P(cond == true), i.e. 144 // P(t == true) <= P(cond == true) 145 // 146 // In other words, if we know P(cond == true) is unlikely, we know 147 // that P(t == true) is also unlikely. 148 // 149 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) { 150 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 151 if (!CondBr) 152 return; 153 154 uint64_t TrueWeight, FalseWeight; 155 if (!extractBranchWeights(*CondBr, TrueWeight, FalseWeight)) 156 return; 157 158 if (TrueWeight + FalseWeight == 0) 159 // Zero branch_weights do not give a hint for getting branch probabilities. 160 // Technically it would result in division by zero denominator, which is 161 // TrueWeight + FalseWeight. 162 return; 163 164 // Returns the outgoing edge of the dominating predecessor block 165 // that leads to the PhiNode's incoming block: 166 auto GetPredOutEdge = 167 [](BasicBlock *IncomingBB, 168 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> { 169 auto *PredBB = IncomingBB; 170 auto *SuccBB = PhiBB; 171 SmallPtrSet<BasicBlock *, 16> Visited; 172 while (true) { 173 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 174 if (PredBr && PredBr->isConditional()) 175 return {PredBB, SuccBB}; 176 Visited.insert(PredBB); 177 auto *SinglePredBB = PredBB->getSinglePredecessor(); 178 if (!SinglePredBB) 179 return {nullptr, nullptr}; 180 181 // Stop searching when SinglePredBB has been visited. It means we see 182 // an unreachable loop. 183 if (Visited.count(SinglePredBB)) 184 return {nullptr, nullptr}; 185 186 SuccBB = PredBB; 187 PredBB = SinglePredBB; 188 } 189 }; 190 191 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 192 Value *PhiOpnd = PN->getIncomingValue(i); 193 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd); 194 195 if (!CI || !CI->getType()->isIntegerTy(1)) 196 continue; 197 198 BranchProbability BP = 199 (CI->isOne() ? BranchProbability::getBranchProbability( 200 TrueWeight, TrueWeight + FalseWeight) 201 : BranchProbability::getBranchProbability( 202 FalseWeight, TrueWeight + FalseWeight)); 203 204 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB); 205 if (!PredOutEdge.first) 206 return; 207 208 BasicBlock *PredBB = PredOutEdge.first; 209 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 210 if (!PredBr) 211 return; 212 213 uint64_t PredTrueWeight, PredFalseWeight; 214 // FIXME: We currently only set the profile data when it is missing. 215 // With PGO, this can be used to refine even existing profile data with 216 // context information. This needs to be done after more performance 217 // testing. 218 if (extractBranchWeights(*PredBr, PredTrueWeight, PredFalseWeight)) 219 continue; 220 221 // We can not infer anything useful when BP >= 50%, because BP is the 222 // upper bound probability value. 223 if (BP >= BranchProbability(50, 100)) 224 continue; 225 226 uint32_t Weights[2]; 227 if (PredBr->getSuccessor(0) == PredOutEdge.second) { 228 Weights[0] = BP.getNumerator(); 229 Weights[1] = BP.getCompl().getNumerator(); 230 } else { 231 Weights[0] = BP.getCompl().getNumerator(); 232 Weights[1] = BP.getNumerator(); 233 } 234 setBranchWeights(*PredBr, Weights); 235 } 236 } 237 238 PreservedAnalyses JumpThreadingPass::run(Function &F, 239 FunctionAnalysisManager &AM) { 240 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 241 // Jump Threading has no sense for the targets with divergent CF 242 if (TTI.hasBranchDivergence(&F)) 243 return PreservedAnalyses::all(); 244 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 245 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 246 auto &AA = AM.getResult<AAManager>(F); 247 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 248 249 bool Changed = 250 runImpl(F, &AM, &TLI, &TTI, &LVI, &AA, 251 std::make_unique<DomTreeUpdater>( 252 &DT, nullptr, DomTreeUpdater::UpdateStrategy::Lazy), 253 std::nullopt, std::nullopt); 254 255 if (!Changed) 256 return PreservedAnalyses::all(); 257 258 259 getDomTreeUpdater()->flush(); 260 261 #if defined(EXPENSIVE_CHECKS) 262 assert(getDomTreeUpdater()->getDomTree().verify( 263 DominatorTree::VerificationLevel::Full) && 264 "DT broken after JumpThreading"); 265 assert((!getDomTreeUpdater()->hasPostDomTree() || 266 getDomTreeUpdater()->getPostDomTree().verify( 267 PostDominatorTree::VerificationLevel::Full)) && 268 "PDT broken after JumpThreading"); 269 #else 270 assert(getDomTreeUpdater()->getDomTree().verify( 271 DominatorTree::VerificationLevel::Fast) && 272 "DT broken after JumpThreading"); 273 assert((!getDomTreeUpdater()->hasPostDomTree() || 274 getDomTreeUpdater()->getPostDomTree().verify( 275 PostDominatorTree::VerificationLevel::Fast)) && 276 "PDT broken after JumpThreading"); 277 #endif 278 279 return getPreservedAnalysis(); 280 } 281 282 bool JumpThreadingPass::runImpl(Function &F_, FunctionAnalysisManager *FAM_, 283 TargetLibraryInfo *TLI_, 284 TargetTransformInfo *TTI_, LazyValueInfo *LVI_, 285 AliasAnalysis *AA_, 286 std::unique_ptr<DomTreeUpdater> DTU_, 287 std::optional<BlockFrequencyInfo *> BFI_, 288 std::optional<BranchProbabilityInfo *> BPI_) { 289 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F_.getName() << "'\n"); 290 F = &F_; 291 FAM = FAM_; 292 TLI = TLI_; 293 TTI = TTI_; 294 LVI = LVI_; 295 AA = AA_; 296 DTU = std::move(DTU_); 297 BFI = BFI_; 298 BPI = BPI_; 299 auto *GuardDecl = F->getParent()->getFunction( 300 Intrinsic::getName(Intrinsic::experimental_guard)); 301 HasGuards = GuardDecl && !GuardDecl->use_empty(); 302 303 // Reduce the number of instructions duplicated when optimizing strictly for 304 // size. 305 if (BBDuplicateThreshold.getNumOccurrences()) 306 BBDupThreshold = BBDuplicateThreshold; 307 else if (F->hasFnAttribute(Attribute::MinSize)) 308 BBDupThreshold = 3; 309 else 310 BBDupThreshold = DefaultBBDupThreshold; 311 312 // JumpThreading must not processes blocks unreachable from entry. It's a 313 // waste of compute time and can potentially lead to hangs. 314 SmallPtrSet<BasicBlock *, 16> Unreachable; 315 assert(DTU && "DTU isn't passed into JumpThreading before using it."); 316 assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed."); 317 DominatorTree &DT = DTU->getDomTree(); 318 for (auto &BB : *F) 319 if (!DT.isReachableFromEntry(&BB)) 320 Unreachable.insert(&BB); 321 322 if (!ThreadAcrossLoopHeaders) 323 findLoopHeaders(*F); 324 325 bool EverChanged = false; 326 bool Changed; 327 do { 328 Changed = false; 329 for (auto &BB : *F) { 330 if (Unreachable.count(&BB)) 331 continue; 332 while (processBlock(&BB)) // Thread all of the branches we can over BB. 333 Changed = ChangedSinceLastAnalysisUpdate = true; 334 335 // Jump threading may have introduced redundant debug values into BB 336 // which should be removed. 337 if (Changed) 338 RemoveRedundantDbgInstrs(&BB); 339 340 // Stop processing BB if it's the entry or is now deleted. The following 341 // routines attempt to eliminate BB and locating a suitable replacement 342 // for the entry is non-trivial. 343 if (&BB == &F->getEntryBlock() || DTU->isBBPendingDeletion(&BB)) 344 continue; 345 346 if (pred_empty(&BB)) { 347 // When processBlock makes BB unreachable it doesn't bother to fix up 348 // the instructions in it. We must remove BB to prevent invalid IR. 349 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName() 350 << "' with terminator: " << *BB.getTerminator() 351 << '\n'); 352 LoopHeaders.erase(&BB); 353 LVI->eraseBlock(&BB); 354 DeleteDeadBlock(&BB, DTU.get()); 355 Changed = ChangedSinceLastAnalysisUpdate = true; 356 continue; 357 } 358 359 // processBlock doesn't thread BBs with unconditional TIs. However, if BB 360 // is "almost empty", we attempt to merge BB with its sole successor. 361 auto *BI = dyn_cast<BranchInst>(BB.getTerminator()); 362 if (BI && BI->isUnconditional()) { 363 BasicBlock *Succ = BI->getSuccessor(0); 364 if ( 365 // The terminator must be the only non-phi instruction in BB. 366 BB.getFirstNonPHIOrDbg(true)->isTerminator() && 367 // Don't alter Loop headers and latches to ensure another pass can 368 // detect and transform nested loops later. 369 !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) && 370 TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU.get())) { 371 RemoveRedundantDbgInstrs(Succ); 372 // BB is valid for cleanup here because we passed in DTU. F remains 373 // BB's parent until a DTU->getDomTree() event. 374 LVI->eraseBlock(&BB); 375 Changed = ChangedSinceLastAnalysisUpdate = true; 376 } 377 } 378 } 379 EverChanged |= Changed; 380 } while (Changed); 381 382 LoopHeaders.clear(); 383 return EverChanged; 384 } 385 386 // Replace uses of Cond with ToVal when safe to do so. If all uses are 387 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond 388 // because we may incorrectly replace uses when guards/assumes are uses of 389 // of `Cond` and we used the guards/assume to reason about the `Cond` value 390 // at the end of block. RAUW unconditionally replaces all uses 391 // including the guards/assumes themselves and the uses before the 392 // guard/assume. 393 static bool replaceFoldableUses(Instruction *Cond, Value *ToVal, 394 BasicBlock *KnownAtEndOfBB) { 395 bool Changed = false; 396 assert(Cond->getType() == ToVal->getType()); 397 // We can unconditionally replace all uses in non-local blocks (i.e. uses 398 // strictly dominated by BB), since LVI information is true from the 399 // terminator of BB. 400 if (Cond->getParent() == KnownAtEndOfBB) 401 Changed |= replaceNonLocalUsesWith(Cond, ToVal); 402 for (Instruction &I : reverse(*KnownAtEndOfBB)) { 403 // Replace any debug-info record users of Cond with ToVal. 404 for (DPValue &DPV : I.getDbgValueRange()) 405 DPV.replaceVariableLocationOp(Cond, ToVal, true); 406 407 // Reached the Cond whose uses we are trying to replace, so there are no 408 // more uses. 409 if (&I == Cond) 410 break; 411 // We only replace uses in instructions that are guaranteed to reach the end 412 // of BB, where we know Cond is ToVal. 413 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 414 break; 415 Changed |= I.replaceUsesOfWith(Cond, ToVal); 416 } 417 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) { 418 Cond->eraseFromParent(); 419 Changed = true; 420 } 421 return Changed; 422 } 423 424 /// Return the cost of duplicating a piece of this block from first non-phi 425 /// and before StopAt instruction to thread across it. Stop scanning the block 426 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 427 static unsigned getJumpThreadDuplicationCost(const TargetTransformInfo *TTI, 428 BasicBlock *BB, 429 Instruction *StopAt, 430 unsigned Threshold) { 431 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 432 433 // Do not duplicate the BB if it has a lot of PHI nodes. 434 // If a threadable chain is too long then the number of PHI nodes can add up, 435 // leading to a substantial increase in compile time when rewriting the SSA. 436 unsigned PhiCount = 0; 437 Instruction *FirstNonPHI = nullptr; 438 for (Instruction &I : *BB) { 439 if (!isa<PHINode>(&I)) { 440 FirstNonPHI = &I; 441 break; 442 } 443 if (++PhiCount > PhiDuplicateThreshold) 444 return ~0U; 445 } 446 447 /// Ignore PHI nodes, these will be flattened when duplication happens. 448 BasicBlock::const_iterator I(FirstNonPHI); 449 450 // FIXME: THREADING will delete values that are just used to compute the 451 // branch, so they shouldn't count against the duplication cost. 452 453 unsigned Bonus = 0; 454 if (BB->getTerminator() == StopAt) { 455 // Threading through a switch statement is particularly profitable. If this 456 // block ends in a switch, decrease its cost to make it more likely to 457 // happen. 458 if (isa<SwitchInst>(StopAt)) 459 Bonus = 6; 460 461 // The same holds for indirect branches, but slightly more so. 462 if (isa<IndirectBrInst>(StopAt)) 463 Bonus = 8; 464 } 465 466 // Bump the threshold up so the early exit from the loop doesn't skip the 467 // terminator-based Size adjustment at the end. 468 Threshold += Bonus; 469 470 // Sum up the cost of each instruction until we get to the terminator. Don't 471 // include the terminator because the copy won't include it. 472 unsigned Size = 0; 473 for (; &*I != StopAt; ++I) { 474 475 // Stop scanning the block if we've reached the threshold. 476 if (Size > Threshold) 477 return Size; 478 479 // Bail out if this instruction gives back a token type, it is not possible 480 // to duplicate it if it is used outside this BB. 481 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 482 return ~0U; 483 484 // Blocks with NoDuplicate are modelled as having infinite cost, so they 485 // are never duplicated. 486 if (const CallInst *CI = dyn_cast<CallInst>(I)) 487 if (CI->cannotDuplicate() || CI->isConvergent()) 488 return ~0U; 489 490 if (TTI->getInstructionCost(&*I, TargetTransformInfo::TCK_SizeAndLatency) == 491 TargetTransformInfo::TCC_Free) 492 continue; 493 494 // All other instructions count for at least one unit. 495 ++Size; 496 497 // Calls are more expensive. If they are non-intrinsic calls, we model them 498 // as having cost of 4. If they are a non-vector intrinsic, we model them 499 // as having cost of 2 total, and if they are a vector intrinsic, we model 500 // them as having cost 1. 501 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 502 if (!isa<IntrinsicInst>(CI)) 503 Size += 3; 504 else if (!CI->getType()->isVectorTy()) 505 Size += 1; 506 } 507 } 508 509 return Size > Bonus ? Size - Bonus : 0; 510 } 511 512 /// findLoopHeaders - We do not want jump threading to turn proper loop 513 /// structures into irreducible loops. Doing this breaks up the loop nesting 514 /// hierarchy and pessimizes later transformations. To prevent this from 515 /// happening, we first have to find the loop headers. Here we approximate this 516 /// by finding targets of backedges in the CFG. 517 /// 518 /// Note that there definitely are cases when we want to allow threading of 519 /// edges across a loop header. For example, threading a jump from outside the 520 /// loop (the preheader) to an exit block of the loop is definitely profitable. 521 /// It is also almost always profitable to thread backedges from within the loop 522 /// to exit blocks, and is often profitable to thread backedges to other blocks 523 /// within the loop (forming a nested loop). This simple analysis is not rich 524 /// enough to track all of these properties and keep it up-to-date as the CFG 525 /// mutates, so we don't allow any of these transformations. 526 void JumpThreadingPass::findLoopHeaders(Function &F) { 527 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 528 FindFunctionBackedges(F, Edges); 529 530 for (const auto &Edge : Edges) 531 LoopHeaders.insert(Edge.second); 532 } 533 534 /// getKnownConstant - Helper method to determine if we can thread over a 535 /// terminator with the given value as its condition, and if so what value to 536 /// use for that. What kind of value this is depends on whether we want an 537 /// integer or a block address, but an undef is always accepted. 538 /// Returns null if Val is null or not an appropriate constant. 539 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 540 if (!Val) 541 return nullptr; 542 543 // Undef is "known" enough. 544 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 545 return U; 546 547 if (Preference == WantBlockAddress) 548 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 549 550 return dyn_cast<ConstantInt>(Val); 551 } 552 553 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see 554 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 555 /// in any of our predecessors. If so, return the known list of value and pred 556 /// BB in the result vector. 557 /// 558 /// This returns true if there were any known values. 559 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl( 560 Value *V, BasicBlock *BB, PredValueInfo &Result, 561 ConstantPreference Preference, DenseSet<Value *> &RecursionSet, 562 Instruction *CxtI) { 563 const DataLayout &DL = BB->getModule()->getDataLayout(); 564 565 // This method walks up use-def chains recursively. Because of this, we could 566 // get into an infinite loop going around loops in the use-def chain. To 567 // prevent this, keep track of what (value, block) pairs we've already visited 568 // and terminate the search if we loop back to them 569 if (!RecursionSet.insert(V).second) 570 return false; 571 572 // If V is a constant, then it is known in all predecessors. 573 if (Constant *KC = getKnownConstant(V, Preference)) { 574 for (BasicBlock *Pred : predecessors(BB)) 575 Result.emplace_back(KC, Pred); 576 577 return !Result.empty(); 578 } 579 580 // If V is a non-instruction value, or an instruction in a different block, 581 // then it can't be derived from a PHI. 582 Instruction *I = dyn_cast<Instruction>(V); 583 if (!I || I->getParent() != BB) { 584 585 // Okay, if this is a live-in value, see if it has a known value at the any 586 // edge from our predecessors. 587 for (BasicBlock *P : predecessors(BB)) { 588 using namespace PatternMatch; 589 // If the value is known by LazyValueInfo to be a constant in a 590 // predecessor, use that information to try to thread this block. 591 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 592 // If I is a non-local compare-with-constant instruction, use more-rich 593 // 'getPredicateOnEdge' method. This would be able to handle value 594 // inequalities better, for example if the compare is "X < 4" and "X < 3" 595 // is known true but "X < 4" itself is not available. 596 CmpInst::Predicate Pred; 597 Value *Val; 598 Constant *Cst; 599 if (!PredCst && match(V, m_Cmp(Pred, m_Value(Val), m_Constant(Cst)))) { 600 auto Res = LVI->getPredicateOnEdge(Pred, Val, Cst, P, BB, CxtI); 601 if (Res != LazyValueInfo::Unknown) 602 PredCst = ConstantInt::getBool(V->getContext(), Res); 603 } 604 if (Constant *KC = getKnownConstant(PredCst, Preference)) 605 Result.emplace_back(KC, P); 606 } 607 608 return !Result.empty(); 609 } 610 611 /// If I is a PHI node, then we know the incoming values for any constants. 612 if (PHINode *PN = dyn_cast<PHINode>(I)) { 613 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 614 Value *InVal = PN->getIncomingValue(i); 615 if (Constant *KC = getKnownConstant(InVal, Preference)) { 616 Result.emplace_back(KC, PN->getIncomingBlock(i)); 617 } else { 618 Constant *CI = LVI->getConstantOnEdge(InVal, 619 PN->getIncomingBlock(i), 620 BB, CxtI); 621 if (Constant *KC = getKnownConstant(CI, Preference)) 622 Result.emplace_back(KC, PN->getIncomingBlock(i)); 623 } 624 } 625 626 return !Result.empty(); 627 } 628 629 // Handle Cast instructions. 630 if (CastInst *CI = dyn_cast<CastInst>(I)) { 631 Value *Source = CI->getOperand(0); 632 PredValueInfoTy Vals; 633 computeValueKnownInPredecessorsImpl(Source, BB, Vals, Preference, 634 RecursionSet, CxtI); 635 if (Vals.empty()) 636 return false; 637 638 // Convert the known values. 639 for (auto &Val : Vals) 640 if (Constant *Folded = ConstantFoldCastOperand(CI->getOpcode(), Val.first, 641 CI->getType(), DL)) 642 Result.emplace_back(Folded, Val.second); 643 644 return !Result.empty(); 645 } 646 647 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 648 Value *Source = FI->getOperand(0); 649 computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, 650 RecursionSet, CxtI); 651 652 erase_if(Result, [](auto &Pair) { 653 return !isGuaranteedNotToBeUndefOrPoison(Pair.first); 654 }); 655 656 return !Result.empty(); 657 } 658 659 // Handle some boolean conditions. 660 if (I->getType()->getPrimitiveSizeInBits() == 1) { 661 using namespace PatternMatch; 662 if (Preference != WantInteger) 663 return false; 664 // X | true -> true 665 // X & false -> false 666 Value *Op0, *Op1; 667 if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 668 match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 669 PredValueInfoTy LHSVals, RHSVals; 670 671 computeValueKnownInPredecessorsImpl(Op0, BB, LHSVals, WantInteger, 672 RecursionSet, CxtI); 673 computeValueKnownInPredecessorsImpl(Op1, BB, RHSVals, WantInteger, 674 RecursionSet, CxtI); 675 676 if (LHSVals.empty() && RHSVals.empty()) 677 return false; 678 679 ConstantInt *InterestingVal; 680 if (match(I, m_LogicalOr())) 681 InterestingVal = ConstantInt::getTrue(I->getContext()); 682 else 683 InterestingVal = ConstantInt::getFalse(I->getContext()); 684 685 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 686 687 // Scan for the sentinel. If we find an undef, force it to the 688 // interesting value: x|undef -> true and x&undef -> false. 689 for (const auto &LHSVal : LHSVals) 690 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 691 Result.emplace_back(InterestingVal, LHSVal.second); 692 LHSKnownBBs.insert(LHSVal.second); 693 } 694 for (const auto &RHSVal : RHSVals) 695 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 696 // If we already inferred a value for this block on the LHS, don't 697 // re-add it. 698 if (!LHSKnownBBs.count(RHSVal.second)) 699 Result.emplace_back(InterestingVal, RHSVal.second); 700 } 701 702 return !Result.empty(); 703 } 704 705 // Handle the NOT form of XOR. 706 if (I->getOpcode() == Instruction::Xor && 707 isa<ConstantInt>(I->getOperand(1)) && 708 cast<ConstantInt>(I->getOperand(1))->isOne()) { 709 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result, 710 WantInteger, RecursionSet, CxtI); 711 if (Result.empty()) 712 return false; 713 714 // Invert the known values. 715 for (auto &R : Result) 716 R.first = ConstantExpr::getNot(R.first); 717 718 return true; 719 } 720 721 // Try to simplify some other binary operator values. 722 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 723 if (Preference != WantInteger) 724 return false; 725 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 726 PredValueInfoTy LHSVals; 727 computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals, 728 WantInteger, RecursionSet, CxtI); 729 730 // Try to use constant folding to simplify the binary operator. 731 for (const auto &LHSVal : LHSVals) { 732 Constant *V = LHSVal.first; 733 Constant *Folded = 734 ConstantFoldBinaryOpOperands(BO->getOpcode(), V, CI, DL); 735 736 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 737 Result.emplace_back(KC, LHSVal.second); 738 } 739 } 740 741 return !Result.empty(); 742 } 743 744 // Handle compare with phi operand, where the PHI is defined in this block. 745 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 746 if (Preference != WantInteger) 747 return false; 748 Type *CmpType = Cmp->getType(); 749 Value *CmpLHS = Cmp->getOperand(0); 750 Value *CmpRHS = Cmp->getOperand(1); 751 CmpInst::Predicate Pred = Cmp->getPredicate(); 752 753 PHINode *PN = dyn_cast<PHINode>(CmpLHS); 754 if (!PN) 755 PN = dyn_cast<PHINode>(CmpRHS); 756 // Do not perform phi translation across a loop header phi, because this 757 // may result in comparison of values from two different loop iterations. 758 // FIXME: This check is broken if LoopHeaders is not populated. 759 if (PN && PN->getParent() == BB && !LoopHeaders.contains(BB)) { 760 const DataLayout &DL = PN->getModule()->getDataLayout(); 761 // We can do this simplification if any comparisons fold to true or false. 762 // See if any do. 763 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 764 BasicBlock *PredBB = PN->getIncomingBlock(i); 765 Value *LHS, *RHS; 766 if (PN == CmpLHS) { 767 LHS = PN->getIncomingValue(i); 768 RHS = CmpRHS->DoPHITranslation(BB, PredBB); 769 } else { 770 LHS = CmpLHS->DoPHITranslation(BB, PredBB); 771 RHS = PN->getIncomingValue(i); 772 } 773 Value *Res = simplifyCmpInst(Pred, LHS, RHS, {DL}); 774 if (!Res) { 775 if (!isa<Constant>(RHS)) 776 continue; 777 778 // getPredicateOnEdge call will make no sense if LHS is defined in BB. 779 auto LHSInst = dyn_cast<Instruction>(LHS); 780 if (LHSInst && LHSInst->getParent() == BB) 781 continue; 782 783 LazyValueInfo::Tristate 784 ResT = LVI->getPredicateOnEdge(Pred, LHS, 785 cast<Constant>(RHS), PredBB, BB, 786 CxtI ? CxtI : Cmp); 787 if (ResT == LazyValueInfo::Unknown) 788 continue; 789 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 790 } 791 792 if (Constant *KC = getKnownConstant(Res, WantInteger)) 793 Result.emplace_back(KC, PredBB); 794 } 795 796 return !Result.empty(); 797 } 798 799 // If comparing a live-in value against a constant, see if we know the 800 // live-in value on any predecessors. 801 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) { 802 Constant *CmpConst = cast<Constant>(CmpRHS); 803 804 if (!isa<Instruction>(CmpLHS) || 805 cast<Instruction>(CmpLHS)->getParent() != BB) { 806 for (BasicBlock *P : predecessors(BB)) { 807 // If the value is known by LazyValueInfo to be a constant in a 808 // predecessor, use that information to try to thread this block. 809 LazyValueInfo::Tristate Res = 810 LVI->getPredicateOnEdge(Pred, CmpLHS, 811 CmpConst, P, BB, CxtI ? CxtI : Cmp); 812 if (Res == LazyValueInfo::Unknown) 813 continue; 814 815 Constant *ResC = ConstantInt::get(CmpType, Res); 816 Result.emplace_back(ResC, P); 817 } 818 819 return !Result.empty(); 820 } 821 822 // InstCombine can fold some forms of constant range checks into 823 // (icmp (add (x, C1)), C2). See if we have we have such a thing with 824 // x as a live-in. 825 { 826 using namespace PatternMatch; 827 828 Value *AddLHS; 829 ConstantInt *AddConst; 830 if (isa<ConstantInt>(CmpConst) && 831 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { 832 if (!isa<Instruction>(AddLHS) || 833 cast<Instruction>(AddLHS)->getParent() != BB) { 834 for (BasicBlock *P : predecessors(BB)) { 835 // If the value is known by LazyValueInfo to be a ConstantRange in 836 // a predecessor, use that information to try to thread this 837 // block. 838 ConstantRange CR = LVI->getConstantRangeOnEdge( 839 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS)); 840 // Propagate the range through the addition. 841 CR = CR.add(AddConst->getValue()); 842 843 // Get the range where the compare returns true. 844 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( 845 Pred, cast<ConstantInt>(CmpConst)->getValue()); 846 847 Constant *ResC; 848 if (CmpRange.contains(CR)) 849 ResC = ConstantInt::getTrue(CmpType); 850 else if (CmpRange.inverse().contains(CR)) 851 ResC = ConstantInt::getFalse(CmpType); 852 else 853 continue; 854 855 Result.emplace_back(ResC, P); 856 } 857 858 return !Result.empty(); 859 } 860 } 861 } 862 863 // Try to find a constant value for the LHS of a comparison, 864 // and evaluate it statically if we can. 865 PredValueInfoTy LHSVals; 866 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, 867 WantInteger, RecursionSet, CxtI); 868 869 for (const auto &LHSVal : LHSVals) { 870 Constant *V = LHSVal.first; 871 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst); 872 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 873 Result.emplace_back(KC, LHSVal.second); 874 } 875 876 return !Result.empty(); 877 } 878 } 879 880 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 881 // Handle select instructions where at least one operand is a known constant 882 // and we can figure out the condition value for any predecessor block. 883 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 884 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 885 PredValueInfoTy Conds; 886 if ((TrueVal || FalseVal) && 887 computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds, 888 WantInteger, RecursionSet, CxtI)) { 889 for (auto &C : Conds) { 890 Constant *Cond = C.first; 891 892 // Figure out what value to use for the condition. 893 bool KnownCond; 894 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 895 // A known boolean. 896 KnownCond = CI->isOne(); 897 } else { 898 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 899 // Either operand will do, so be sure to pick the one that's a known 900 // constant. 901 // FIXME: Do this more cleverly if both values are known constants? 902 KnownCond = (TrueVal != nullptr); 903 } 904 905 // See if the select has a known constant value for this predecessor. 906 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 907 Result.emplace_back(Val, C.second); 908 } 909 910 return !Result.empty(); 911 } 912 } 913 914 // If all else fails, see if LVI can figure out a constant value for us. 915 assert(CxtI->getParent() == BB && "CxtI should be in BB"); 916 Constant *CI = LVI->getConstant(V, CxtI); 917 if (Constant *KC = getKnownConstant(CI, Preference)) { 918 for (BasicBlock *Pred : predecessors(BB)) 919 Result.emplace_back(KC, Pred); 920 } 921 922 return !Result.empty(); 923 } 924 925 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 926 /// in an undefined jump, decide which block is best to revector to. 927 /// 928 /// Since we can pick an arbitrary destination, we pick the successor with the 929 /// fewest predecessors. This should reduce the in-degree of the others. 930 static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) { 931 Instruction *BBTerm = BB->getTerminator(); 932 unsigned MinSucc = 0; 933 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 934 // Compute the successor with the minimum number of predecessors. 935 unsigned MinNumPreds = pred_size(TestBB); 936 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 937 TestBB = BBTerm->getSuccessor(i); 938 unsigned NumPreds = pred_size(TestBB); 939 if (NumPreds < MinNumPreds) { 940 MinSucc = i; 941 MinNumPreds = NumPreds; 942 } 943 } 944 945 return MinSucc; 946 } 947 948 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 949 if (!BB->hasAddressTaken()) return false; 950 951 // If the block has its address taken, it may be a tree of dead constants 952 // hanging off of it. These shouldn't keep the block alive. 953 BlockAddress *BA = BlockAddress::get(BB); 954 BA->removeDeadConstantUsers(); 955 return !BA->use_empty(); 956 } 957 958 /// processBlock - If there are any predecessors whose control can be threaded 959 /// through to a successor, transform them now. 960 bool JumpThreadingPass::processBlock(BasicBlock *BB) { 961 // If the block is trivially dead, just return and let the caller nuke it. 962 // This simplifies other transformations. 963 if (DTU->isBBPendingDeletion(BB) || 964 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock())) 965 return false; 966 967 // If this block has a single predecessor, and if that pred has a single 968 // successor, merge the blocks. This encourages recursive jump threading 969 // because now the condition in this block can be threaded through 970 // predecessors of our predecessor block. 971 if (maybeMergeBasicBlockIntoOnlyPred(BB)) 972 return true; 973 974 if (tryToUnfoldSelectInCurrBB(BB)) 975 return true; 976 977 // Look if we can propagate guards to predecessors. 978 if (HasGuards && processGuards(BB)) 979 return true; 980 981 // What kind of constant we're looking for. 982 ConstantPreference Preference = WantInteger; 983 984 // Look to see if the terminator is a conditional branch, switch or indirect 985 // branch, if not we can't thread it. 986 Value *Condition; 987 Instruction *Terminator = BB->getTerminator(); 988 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 989 // Can't thread an unconditional jump. 990 if (BI->isUnconditional()) return false; 991 Condition = BI->getCondition(); 992 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 993 Condition = SI->getCondition(); 994 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 995 // Can't thread indirect branch with no successors. 996 if (IB->getNumSuccessors() == 0) return false; 997 Condition = IB->getAddress()->stripPointerCasts(); 998 Preference = WantBlockAddress; 999 } else { 1000 return false; // Must be an invoke or callbr. 1001 } 1002 1003 // Keep track if we constant folded the condition in this invocation. 1004 bool ConstantFolded = false; 1005 1006 // Run constant folding to see if we can reduce the condition to a simple 1007 // constant. 1008 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 1009 Value *SimpleVal = 1010 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 1011 if (SimpleVal) { 1012 I->replaceAllUsesWith(SimpleVal); 1013 if (isInstructionTriviallyDead(I, TLI)) 1014 I->eraseFromParent(); 1015 Condition = SimpleVal; 1016 ConstantFolded = true; 1017 } 1018 } 1019 1020 // If the terminator is branching on an undef or freeze undef, we can pick any 1021 // of the successors to branch to. Let getBestDestForJumpOnUndef decide. 1022 auto *FI = dyn_cast<FreezeInst>(Condition); 1023 if (isa<UndefValue>(Condition) || 1024 (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) { 1025 unsigned BestSucc = getBestDestForJumpOnUndef(BB); 1026 std::vector<DominatorTree::UpdateType> Updates; 1027 1028 // Fold the branch/switch. 1029 Instruction *BBTerm = BB->getTerminator(); 1030 Updates.reserve(BBTerm->getNumSuccessors()); 1031 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1032 if (i == BestSucc) continue; 1033 BasicBlock *Succ = BBTerm->getSuccessor(i); 1034 Succ->removePredecessor(BB, true); 1035 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1036 } 1037 1038 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1039 << "' folding undef terminator: " << *BBTerm << '\n'); 1040 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 1041 ++NumFolds; 1042 BBTerm->eraseFromParent(); 1043 DTU->applyUpdatesPermissive(Updates); 1044 if (FI) 1045 FI->eraseFromParent(); 1046 return true; 1047 } 1048 1049 // If the terminator of this block is branching on a constant, simplify the 1050 // terminator to an unconditional branch. This can occur due to threading in 1051 // other blocks. 1052 if (getKnownConstant(Condition, Preference)) { 1053 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1054 << "' folding terminator: " << *BB->getTerminator() 1055 << '\n'); 1056 ++NumFolds; 1057 ConstantFoldTerminator(BB, true, nullptr, DTU.get()); 1058 if (auto *BPI = getBPI()) 1059 BPI->eraseBlock(BB); 1060 return true; 1061 } 1062 1063 Instruction *CondInst = dyn_cast<Instruction>(Condition); 1064 1065 // All the rest of our checks depend on the condition being an instruction. 1066 if (!CondInst) { 1067 // FIXME: Unify this with code below. 1068 if (processThreadableEdges(Condition, BB, Preference, Terminator)) 1069 return true; 1070 return ConstantFolded; 1071 } 1072 1073 // Some of the following optimization can safely work on the unfrozen cond. 1074 Value *CondWithoutFreeze = CondInst; 1075 if (auto *FI = dyn_cast<FreezeInst>(CondInst)) 1076 CondWithoutFreeze = FI->getOperand(0); 1077 1078 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondWithoutFreeze)) { 1079 // If we're branching on a conditional, LVI might be able to determine 1080 // it's value at the branch instruction. We only handle comparisons 1081 // against a constant at this time. 1082 if (Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1))) { 1083 LazyValueInfo::Tristate Ret = 1084 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 1085 CondConst, BB->getTerminator(), 1086 /*UseBlockValue=*/false); 1087 if (Ret != LazyValueInfo::Unknown) { 1088 // We can safely replace *some* uses of the CondInst if it has 1089 // exactly one value as returned by LVI. RAUW is incorrect in the 1090 // presence of guards and assumes, that have the `Cond` as the use. This 1091 // is because we use the guards/assume to reason about the `Cond` value 1092 // at the end of block, but RAUW unconditionally replaces all uses 1093 // including the guards/assumes themselves and the uses before the 1094 // guard/assume. 1095 auto *CI = Ret == LazyValueInfo::True ? 1096 ConstantInt::getTrue(CondCmp->getType()) : 1097 ConstantInt::getFalse(CondCmp->getType()); 1098 if (replaceFoldableUses(CondCmp, CI, BB)) 1099 return true; 1100 } 1101 1102 // We did not manage to simplify this branch, try to see whether 1103 // CondCmp depends on a known phi-select pattern. 1104 if (tryToUnfoldSelect(CondCmp, BB)) 1105 return true; 1106 } 1107 } 1108 1109 if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 1110 if (tryToUnfoldSelect(SI, BB)) 1111 return true; 1112 1113 // Check for some cases that are worth simplifying. Right now we want to look 1114 // for loads that are used by a switch or by the condition for the branch. If 1115 // we see one, check to see if it's partially redundant. If so, insert a PHI 1116 // which can then be used to thread the values. 1117 Value *SimplifyValue = CondWithoutFreeze; 1118 1119 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 1120 if (isa<Constant>(CondCmp->getOperand(1))) 1121 SimplifyValue = CondCmp->getOperand(0); 1122 1123 // TODO: There are other places where load PRE would be profitable, such as 1124 // more complex comparisons. 1125 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue)) 1126 if (simplifyPartiallyRedundantLoad(LoadI)) 1127 return true; 1128 1129 // Before threading, try to propagate profile data backwards: 1130 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1131 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1132 updatePredecessorProfileMetadata(PN, BB); 1133 1134 // Handle a variety of cases where we are branching on something derived from 1135 // a PHI node in the current block. If we can prove that any predecessors 1136 // compute a predictable value based on a PHI node, thread those predecessors. 1137 if (processThreadableEdges(CondInst, BB, Preference, Terminator)) 1138 return true; 1139 1140 // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in 1141 // the current block, see if we can simplify. 1142 PHINode *PN = dyn_cast<PHINode>(CondWithoutFreeze); 1143 if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1144 return processBranchOnPHI(PN); 1145 1146 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 1147 if (CondInst->getOpcode() == Instruction::Xor && 1148 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1149 return processBranchOnXOR(cast<BinaryOperator>(CondInst)); 1150 1151 // Search for a stronger dominating condition that can be used to simplify a 1152 // conditional branch leaving BB. 1153 if (processImpliedCondition(BB)) 1154 return true; 1155 1156 return false; 1157 } 1158 1159 bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) { 1160 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1161 if (!BI || !BI->isConditional()) 1162 return false; 1163 1164 Value *Cond = BI->getCondition(); 1165 // Assuming that predecessor's branch was taken, if pred's branch condition 1166 // (V) implies Cond, Cond can be either true, undef, or poison. In this case, 1167 // freeze(Cond) is either true or a nondeterministic value. 1168 // If freeze(Cond) has only one use, we can freely fold freeze(Cond) to true 1169 // without affecting other instructions. 1170 auto *FICond = dyn_cast<FreezeInst>(Cond); 1171 if (FICond && FICond->hasOneUse()) 1172 Cond = FICond->getOperand(0); 1173 else 1174 FICond = nullptr; 1175 1176 BasicBlock *CurrentBB = BB; 1177 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 1178 unsigned Iter = 0; 1179 1180 auto &DL = BB->getModule()->getDataLayout(); 1181 1182 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 1183 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 1184 if (!PBI || !PBI->isConditional()) 1185 return false; 1186 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 1187 return false; 1188 1189 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; 1190 std::optional<bool> Implication = 1191 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); 1192 1193 // If the branch condition of BB (which is Cond) and CurrentPred are 1194 // exactly the same freeze instruction, Cond can be folded into CondIsTrue. 1195 if (!Implication && FICond && isa<FreezeInst>(PBI->getCondition())) { 1196 if (cast<FreezeInst>(PBI->getCondition())->getOperand(0) == 1197 FICond->getOperand(0)) 1198 Implication = CondIsTrue; 1199 } 1200 1201 if (Implication) { 1202 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1); 1203 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0); 1204 RemoveSucc->removePredecessor(BB); 1205 BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI); 1206 UncondBI->setDebugLoc(BI->getDebugLoc()); 1207 ++NumFolds; 1208 BI->eraseFromParent(); 1209 if (FICond) 1210 FICond->eraseFromParent(); 1211 1212 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}}); 1213 if (auto *BPI = getBPI()) 1214 BPI->eraseBlock(BB); 1215 return true; 1216 } 1217 CurrentBB = CurrentPred; 1218 CurrentPred = CurrentBB->getSinglePredecessor(); 1219 } 1220 1221 return false; 1222 } 1223 1224 /// Return true if Op is an instruction defined in the given block. 1225 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { 1226 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1227 if (OpInst->getParent() == BB) 1228 return true; 1229 return false; 1230 } 1231 1232 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially 1233 /// redundant load instruction, eliminate it by replacing it with a PHI node. 1234 /// This is an important optimization that encourages jump threading, and needs 1235 /// to be run interlaced with other jump threading tasks. 1236 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) { 1237 // Don't hack volatile and ordered loads. 1238 if (!LoadI->isUnordered()) return false; 1239 1240 // If the load is defined in a block with exactly one predecessor, it can't be 1241 // partially redundant. 1242 BasicBlock *LoadBB = LoadI->getParent(); 1243 if (LoadBB->getSinglePredecessor()) 1244 return false; 1245 1246 // If the load is defined in an EH pad, it can't be partially redundant, 1247 // because the edges between the invoke and the EH pad cannot have other 1248 // instructions between them. 1249 if (LoadBB->isEHPad()) 1250 return false; 1251 1252 Value *LoadedPtr = LoadI->getOperand(0); 1253 1254 // If the loaded operand is defined in the LoadBB and its not a phi, 1255 // it can't be available in predecessors. 1256 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) 1257 return false; 1258 1259 // Scan a few instructions up from the load, to see if it is obviously live at 1260 // the entry to its block. 1261 BasicBlock::iterator BBIt(LoadI); 1262 bool IsLoadCSE; 1263 BatchAAResults BatchAA(*AA); 1264 if (Value *AvailableVal = FindAvailableLoadedValue( 1265 LoadI, LoadBB, BBIt, DefMaxInstsToScan, &BatchAA, &IsLoadCSE)) { 1266 // If the value of the load is locally available within the block, just use 1267 // it. This frequently occurs for reg2mem'd allocas. 1268 1269 if (IsLoadCSE) { 1270 LoadInst *NLoadI = cast<LoadInst>(AvailableVal); 1271 combineMetadataForCSE(NLoadI, LoadI, false); 1272 LVI->forgetValue(NLoadI); 1273 }; 1274 1275 // If the returned value is the load itself, replace with poison. This can 1276 // only happen in dead loops. 1277 if (AvailableVal == LoadI) 1278 AvailableVal = PoisonValue::get(LoadI->getType()); 1279 if (AvailableVal->getType() != LoadI->getType()) 1280 AvailableVal = CastInst::CreateBitOrPointerCast( 1281 AvailableVal, LoadI->getType(), "", LoadI); 1282 LoadI->replaceAllUsesWith(AvailableVal); 1283 LoadI->eraseFromParent(); 1284 return true; 1285 } 1286 1287 // Otherwise, if we scanned the whole block and got to the top of the block, 1288 // we know the block is locally transparent to the load. If not, something 1289 // might clobber its value. 1290 if (BBIt != LoadBB->begin()) 1291 return false; 1292 1293 // If all of the loads and stores that feed the value have the same AA tags, 1294 // then we can propagate them onto any newly inserted loads. 1295 AAMDNodes AATags = LoadI->getAAMetadata(); 1296 1297 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1298 1299 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>; 1300 1301 AvailablePredsTy AvailablePreds; 1302 BasicBlock *OneUnavailablePred = nullptr; 1303 SmallVector<LoadInst*, 8> CSELoads; 1304 1305 // If we got here, the loaded value is transparent through to the start of the 1306 // block. Check to see if it is available in any of the predecessor blocks. 1307 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1308 // If we already scanned this predecessor, skip it. 1309 if (!PredsScanned.insert(PredBB).second) 1310 continue; 1311 1312 BBIt = PredBB->end(); 1313 unsigned NumScanedInst = 0; 1314 Value *PredAvailable = nullptr; 1315 // NOTE: We don't CSE load that is volatile or anything stronger than 1316 // unordered, that should have been checked when we entered the function. 1317 assert(LoadI->isUnordered() && 1318 "Attempting to CSE volatile or atomic loads"); 1319 // If this is a load on a phi pointer, phi-translate it and search 1320 // for available load/store to the pointer in predecessors. 1321 Type *AccessTy = LoadI->getType(); 1322 const auto &DL = LoadI->getModule()->getDataLayout(); 1323 MemoryLocation Loc(LoadedPtr->DoPHITranslation(LoadBB, PredBB), 1324 LocationSize::precise(DL.getTypeStoreSize(AccessTy)), 1325 AATags); 1326 PredAvailable = findAvailablePtrLoadStore( 1327 Loc, AccessTy, LoadI->isAtomic(), PredBB, BBIt, DefMaxInstsToScan, 1328 &BatchAA, &IsLoadCSE, &NumScanedInst); 1329 1330 // If PredBB has a single predecessor, continue scanning through the 1331 // single predecessor. 1332 BasicBlock *SinglePredBB = PredBB; 1333 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1334 NumScanedInst < DefMaxInstsToScan) { 1335 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1336 if (SinglePredBB) { 1337 BBIt = SinglePredBB->end(); 1338 PredAvailable = findAvailablePtrLoadStore( 1339 Loc, AccessTy, LoadI->isAtomic(), SinglePredBB, BBIt, 1340 (DefMaxInstsToScan - NumScanedInst), &BatchAA, &IsLoadCSE, 1341 &NumScanedInst); 1342 } 1343 } 1344 1345 if (!PredAvailable) { 1346 OneUnavailablePred = PredBB; 1347 continue; 1348 } 1349 1350 if (IsLoadCSE) 1351 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1352 1353 // If so, this load is partially redundant. Remember this info so that we 1354 // can create a PHI node. 1355 AvailablePreds.emplace_back(PredBB, PredAvailable); 1356 } 1357 1358 // If the loaded value isn't available in any predecessor, it isn't partially 1359 // redundant. 1360 if (AvailablePreds.empty()) return false; 1361 1362 // Okay, the loaded value is available in at least one (and maybe all!) 1363 // predecessors. If the value is unavailable in more than one unique 1364 // predecessor, we want to insert a merge block for those common predecessors. 1365 // This ensures that we only have to insert one reload, thus not increasing 1366 // code size. 1367 BasicBlock *UnavailablePred = nullptr; 1368 1369 // If the value is unavailable in one of predecessors, we will end up 1370 // inserting a new instruction into them. It is only valid if all the 1371 // instructions before LoadI are guaranteed to pass execution to its 1372 // successor, or if LoadI is safe to speculate. 1373 // TODO: If this logic becomes more complex, and we will perform PRE insertion 1374 // farther than to a predecessor, we need to reuse the code from GVN's PRE. 1375 // It requires domination tree analysis, so for this simple case it is an 1376 // overkill. 1377 if (PredsScanned.size() != AvailablePreds.size() && 1378 !isSafeToSpeculativelyExecute(LoadI)) 1379 for (auto I = LoadBB->begin(); &*I != LoadI; ++I) 1380 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 1381 return false; 1382 1383 // If there is exactly one predecessor where the value is unavailable, the 1384 // already computed 'OneUnavailablePred' block is it. If it ends in an 1385 // unconditional branch, we know that it isn't a critical edge. 1386 if (PredsScanned.size() == AvailablePreds.size()+1 && 1387 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1388 UnavailablePred = OneUnavailablePred; 1389 } else if (PredsScanned.size() != AvailablePreds.size()) { 1390 // Otherwise, we had multiple unavailable predecessors or we had a critical 1391 // edge from the one. 1392 SmallVector<BasicBlock*, 8> PredsToSplit; 1393 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1394 1395 for (const auto &AvailablePred : AvailablePreds) 1396 AvailablePredSet.insert(AvailablePred.first); 1397 1398 // Add all the unavailable predecessors to the PredsToSplit list. 1399 for (BasicBlock *P : predecessors(LoadBB)) { 1400 // If the predecessor is an indirect goto, we can't split the edge. 1401 if (isa<IndirectBrInst>(P->getTerminator())) 1402 return false; 1403 1404 if (!AvailablePredSet.count(P)) 1405 PredsToSplit.push_back(P); 1406 } 1407 1408 // Split them out to their own block. 1409 UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1410 } 1411 1412 // If the value isn't available in all predecessors, then there will be 1413 // exactly one where it isn't available. Insert a load on that edge and add 1414 // it to the AvailablePreds list. 1415 if (UnavailablePred) { 1416 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1417 "Can't handle critical edge here!"); 1418 LoadInst *NewVal = new LoadInst( 1419 LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), 1420 LoadI->getName() + ".pr", false, LoadI->getAlign(), 1421 LoadI->getOrdering(), LoadI->getSyncScopeID(), 1422 UnavailablePred->getTerminator()); 1423 NewVal->setDebugLoc(LoadI->getDebugLoc()); 1424 if (AATags) 1425 NewVal->setAAMetadata(AATags); 1426 1427 AvailablePreds.emplace_back(UnavailablePred, NewVal); 1428 } 1429 1430 // Now we know that each predecessor of this block has a value in 1431 // AvailablePreds, sort them for efficient access as we're walking the preds. 1432 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1433 1434 // Create a PHI node at the start of the block for the PRE'd load value. 1435 PHINode *PN = PHINode::Create(LoadI->getType(), pred_size(LoadBB), ""); 1436 PN->insertBefore(LoadBB->begin()); 1437 PN->takeName(LoadI); 1438 PN->setDebugLoc(LoadI->getDebugLoc()); 1439 1440 // Insert new entries into the PHI for each predecessor. A single block may 1441 // have multiple entries here. 1442 for (BasicBlock *P : predecessors(LoadBB)) { 1443 AvailablePredsTy::iterator I = 1444 llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr)); 1445 1446 assert(I != AvailablePreds.end() && I->first == P && 1447 "Didn't find entry for predecessor!"); 1448 1449 // If we have an available predecessor but it requires casting, insert the 1450 // cast in the predecessor and use the cast. Note that we have to update the 1451 // AvailablePreds vector as we go so that all of the PHI entries for this 1452 // predecessor use the same bitcast. 1453 Value *&PredV = I->second; 1454 if (PredV->getType() != LoadI->getType()) 1455 PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "", 1456 P->getTerminator()); 1457 1458 PN->addIncoming(PredV, I->first); 1459 } 1460 1461 for (LoadInst *PredLoadI : CSELoads) { 1462 combineMetadataForCSE(PredLoadI, LoadI, true); 1463 LVI->forgetValue(PredLoadI); 1464 } 1465 1466 LoadI->replaceAllUsesWith(PN); 1467 LoadI->eraseFromParent(); 1468 1469 return true; 1470 } 1471 1472 /// findMostPopularDest - The specified list contains multiple possible 1473 /// threadable destinations. Pick the one that occurs the most frequently in 1474 /// the list. 1475 static BasicBlock * 1476 findMostPopularDest(BasicBlock *BB, 1477 const SmallVectorImpl<std::pair<BasicBlock *, 1478 BasicBlock *>> &PredToDestList) { 1479 assert(!PredToDestList.empty()); 1480 1481 // Determine popularity. If there are multiple possible destinations, we 1482 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1483 // blocks with known and real destinations to threading undef. We'll handle 1484 // them later if interesting. 1485 MapVector<BasicBlock *, unsigned> DestPopularity; 1486 1487 // Populate DestPopularity with the successors in the order they appear in the 1488 // successor list. This way, we ensure determinism by iterating it in the 1489 // same order in std::max_element below. We map nullptr to 0 so that we can 1490 // return nullptr when PredToDestList contains nullptr only. 1491 DestPopularity[nullptr] = 0; 1492 for (auto *SuccBB : successors(BB)) 1493 DestPopularity[SuccBB] = 0; 1494 1495 for (const auto &PredToDest : PredToDestList) 1496 if (PredToDest.second) 1497 DestPopularity[PredToDest.second]++; 1498 1499 // Find the most popular dest. 1500 auto MostPopular = std::max_element( 1501 DestPopularity.begin(), DestPopularity.end(), llvm::less_second()); 1502 1503 // Okay, we have finally picked the most popular destination. 1504 return MostPopular->first; 1505 } 1506 1507 // Try to evaluate the value of V when the control flows from PredPredBB to 1508 // BB->getSinglePredecessor() and then on to BB. 1509 Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB, 1510 BasicBlock *PredPredBB, 1511 Value *V) { 1512 BasicBlock *PredBB = BB->getSinglePredecessor(); 1513 assert(PredBB && "Expected a single predecessor"); 1514 1515 if (Constant *Cst = dyn_cast<Constant>(V)) { 1516 return Cst; 1517 } 1518 1519 // Consult LVI if V is not an instruction in BB or PredBB. 1520 Instruction *I = dyn_cast<Instruction>(V); 1521 if (!I || (I->getParent() != BB && I->getParent() != PredBB)) { 1522 return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr); 1523 } 1524 1525 // Look into a PHI argument. 1526 if (PHINode *PHI = dyn_cast<PHINode>(V)) { 1527 if (PHI->getParent() == PredBB) 1528 return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB)); 1529 return nullptr; 1530 } 1531 1532 // If we have a CmpInst, try to fold it for each incoming edge into PredBB. 1533 if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) { 1534 if (CondCmp->getParent() == BB) { 1535 Constant *Op0 = 1536 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0)); 1537 Constant *Op1 = 1538 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1)); 1539 if (Op0 && Op1) { 1540 return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1); 1541 } 1542 } 1543 return nullptr; 1544 } 1545 1546 return nullptr; 1547 } 1548 1549 bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB, 1550 ConstantPreference Preference, 1551 Instruction *CxtI) { 1552 // If threading this would thread across a loop header, don't even try to 1553 // thread the edge. 1554 if (LoopHeaders.count(BB)) 1555 return false; 1556 1557 PredValueInfoTy PredValues; 1558 if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference, 1559 CxtI)) { 1560 // We don't have known values in predecessors. See if we can thread through 1561 // BB and its sole predecessor. 1562 return maybethreadThroughTwoBasicBlocks(BB, Cond); 1563 } 1564 1565 assert(!PredValues.empty() && 1566 "computeValueKnownInPredecessors returned true with no values"); 1567 1568 LLVM_DEBUG(dbgs() << "IN BB: " << *BB; 1569 for (const auto &PredValue : PredValues) { 1570 dbgs() << " BB '" << BB->getName() 1571 << "': FOUND condition = " << *PredValue.first 1572 << " for pred '" << PredValue.second->getName() << "'.\n"; 1573 }); 1574 1575 // Decide what we want to thread through. Convert our list of known values to 1576 // a list of known destinations for each pred. This also discards duplicate 1577 // predecessors and keeps track of the undefined inputs (which are represented 1578 // as a null dest in the PredToDestList). 1579 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1580 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1581 1582 BasicBlock *OnlyDest = nullptr; 1583 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1584 Constant *OnlyVal = nullptr; 1585 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; 1586 1587 for (const auto &PredValue : PredValues) { 1588 BasicBlock *Pred = PredValue.second; 1589 if (!SeenPreds.insert(Pred).second) 1590 continue; // Duplicate predecessor entry. 1591 1592 Constant *Val = PredValue.first; 1593 1594 BasicBlock *DestBB; 1595 if (isa<UndefValue>(Val)) 1596 DestBB = nullptr; 1597 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 1598 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1599 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1600 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1601 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1602 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); 1603 } else { 1604 assert(isa<IndirectBrInst>(BB->getTerminator()) 1605 && "Unexpected terminator"); 1606 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); 1607 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1608 } 1609 1610 // If we have exactly one destination, remember it for efficiency below. 1611 if (PredToDestList.empty()) { 1612 OnlyDest = DestBB; 1613 OnlyVal = Val; 1614 } else { 1615 if (OnlyDest != DestBB) 1616 OnlyDest = MultipleDestSentinel; 1617 // It possible we have same destination, but different value, e.g. default 1618 // case in switchinst. 1619 if (Val != OnlyVal) 1620 OnlyVal = MultipleVal; 1621 } 1622 1623 // If the predecessor ends with an indirect goto, we can't change its 1624 // destination. 1625 if (isa<IndirectBrInst>(Pred->getTerminator())) 1626 continue; 1627 1628 PredToDestList.emplace_back(Pred, DestBB); 1629 } 1630 1631 // If all edges were unthreadable, we fail. 1632 if (PredToDestList.empty()) 1633 return false; 1634 1635 // If all the predecessors go to a single known successor, we want to fold, 1636 // not thread. By doing so, we do not need to duplicate the current block and 1637 // also miss potential opportunities in case we dont/cant duplicate. 1638 if (OnlyDest && OnlyDest != MultipleDestSentinel) { 1639 if (BB->hasNPredecessors(PredToDestList.size())) { 1640 bool SeenFirstBranchToOnlyDest = false; 1641 std::vector <DominatorTree::UpdateType> Updates; 1642 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1); 1643 for (BasicBlock *SuccBB : successors(BB)) { 1644 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) { 1645 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. 1646 } else { 1647 SuccBB->removePredecessor(BB, true); // This is unreachable successor. 1648 Updates.push_back({DominatorTree::Delete, BB, SuccBB}); 1649 } 1650 } 1651 1652 // Finally update the terminator. 1653 Instruction *Term = BB->getTerminator(); 1654 BranchInst::Create(OnlyDest, Term); 1655 ++NumFolds; 1656 Term->eraseFromParent(); 1657 DTU->applyUpdatesPermissive(Updates); 1658 if (auto *BPI = getBPI()) 1659 BPI->eraseBlock(BB); 1660 1661 // If the condition is now dead due to the removal of the old terminator, 1662 // erase it. 1663 if (auto *CondInst = dyn_cast<Instruction>(Cond)) { 1664 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) 1665 CondInst->eraseFromParent(); 1666 // We can safely replace *some* uses of the CondInst if it has 1667 // exactly one value as returned by LVI. RAUW is incorrect in the 1668 // presence of guards and assumes, that have the `Cond` as the use. This 1669 // is because we use the guards/assume to reason about the `Cond` value 1670 // at the end of block, but RAUW unconditionally replaces all uses 1671 // including the guards/assumes themselves and the uses before the 1672 // guard/assume. 1673 else if (OnlyVal && OnlyVal != MultipleVal) 1674 replaceFoldableUses(CondInst, OnlyVal, BB); 1675 } 1676 return true; 1677 } 1678 } 1679 1680 // Determine which is the most common successor. If we have many inputs and 1681 // this block is a switch, we want to start by threading the batch that goes 1682 // to the most popular destination first. If we only know about one 1683 // threadable destination (the common case) we can avoid this. 1684 BasicBlock *MostPopularDest = OnlyDest; 1685 1686 if (MostPopularDest == MultipleDestSentinel) { 1687 // Remove any loop headers from the Dest list, threadEdge conservatively 1688 // won't process them, but we might have other destination that are eligible 1689 // and we still want to process. 1690 erase_if(PredToDestList, 1691 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) { 1692 return LoopHeaders.contains(PredToDest.second); 1693 }); 1694 1695 if (PredToDestList.empty()) 1696 return false; 1697 1698 MostPopularDest = findMostPopularDest(BB, PredToDestList); 1699 } 1700 1701 // Now that we know what the most popular destination is, factor all 1702 // predecessors that will jump to it into a single predecessor. 1703 SmallVector<BasicBlock*, 16> PredsToFactor; 1704 for (const auto &PredToDest : PredToDestList) 1705 if (PredToDest.second == MostPopularDest) { 1706 BasicBlock *Pred = PredToDest.first; 1707 1708 // This predecessor may be a switch or something else that has multiple 1709 // edges to the block. Factor each of these edges by listing them 1710 // according to # occurrences in PredsToFactor. 1711 for (BasicBlock *Succ : successors(Pred)) 1712 if (Succ == BB) 1713 PredsToFactor.push_back(Pred); 1714 } 1715 1716 // If the threadable edges are branching on an undefined value, we get to pick 1717 // the destination that these predecessors should get to. 1718 if (!MostPopularDest) 1719 MostPopularDest = BB->getTerminator()-> 1720 getSuccessor(getBestDestForJumpOnUndef(BB)); 1721 1722 // Ok, try to thread it! 1723 return tryThreadEdge(BB, PredsToFactor, MostPopularDest); 1724 } 1725 1726 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on 1727 /// a PHI node (or freeze PHI) in the current block. See if there are any 1728 /// simplifications we can do based on inputs to the phi node. 1729 bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) { 1730 BasicBlock *BB = PN->getParent(); 1731 1732 // TODO: We could make use of this to do it once for blocks with common PHI 1733 // values. 1734 SmallVector<BasicBlock*, 1> PredBBs; 1735 PredBBs.resize(1); 1736 1737 // If any of the predecessor blocks end in an unconditional branch, we can 1738 // *duplicate* the conditional branch into that block in order to further 1739 // encourage jump threading and to eliminate cases where we have branch on a 1740 // phi of an icmp (branch on icmp is much better). 1741 // This is still beneficial when a frozen phi is used as the branch condition 1742 // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp)) 1743 // to br(icmp(freeze ...)). 1744 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1745 BasicBlock *PredBB = PN->getIncomingBlock(i); 1746 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1747 if (PredBr->isUnconditional()) { 1748 PredBBs[0] = PredBB; 1749 // Try to duplicate BB into PredBB. 1750 if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1751 return true; 1752 } 1753 } 1754 1755 return false; 1756 } 1757 1758 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on 1759 /// a xor instruction in the current block. See if there are any 1760 /// simplifications we can do based on inputs to the xor. 1761 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) { 1762 BasicBlock *BB = BO->getParent(); 1763 1764 // If either the LHS or RHS of the xor is a constant, don't do this 1765 // optimization. 1766 if (isa<ConstantInt>(BO->getOperand(0)) || 1767 isa<ConstantInt>(BO->getOperand(1))) 1768 return false; 1769 1770 // If the first instruction in BB isn't a phi, we won't be able to infer 1771 // anything special about any particular predecessor. 1772 if (!isa<PHINode>(BB->front())) 1773 return false; 1774 1775 // If this BB is a landing pad, we won't be able to split the edge into it. 1776 if (BB->isEHPad()) 1777 return false; 1778 1779 // If we have a xor as the branch input to this block, and we know that the 1780 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1781 // the condition into the predecessor and fix that value to true, saving some 1782 // logical ops on that path and encouraging other paths to simplify. 1783 // 1784 // This copies something like this: 1785 // 1786 // BB: 1787 // %X = phi i1 [1], [%X'] 1788 // %Y = icmp eq i32 %A, %B 1789 // %Z = xor i1 %X, %Y 1790 // br i1 %Z, ... 1791 // 1792 // Into: 1793 // BB': 1794 // %Y = icmp ne i32 %A, %B 1795 // br i1 %Y, ... 1796 1797 PredValueInfoTy XorOpValues; 1798 bool isLHS = true; 1799 if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1800 WantInteger, BO)) { 1801 assert(XorOpValues.empty()); 1802 if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1803 WantInteger, BO)) 1804 return false; 1805 isLHS = false; 1806 } 1807 1808 assert(!XorOpValues.empty() && 1809 "computeValueKnownInPredecessors returned true with no values"); 1810 1811 // Scan the information to see which is most popular: true or false. The 1812 // predecessors can be of the set true, false, or undef. 1813 unsigned NumTrue = 0, NumFalse = 0; 1814 for (const auto &XorOpValue : XorOpValues) { 1815 if (isa<UndefValue>(XorOpValue.first)) 1816 // Ignore undefs for the count. 1817 continue; 1818 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1819 ++NumFalse; 1820 else 1821 ++NumTrue; 1822 } 1823 1824 // Determine which value to split on, true, false, or undef if neither. 1825 ConstantInt *SplitVal = nullptr; 1826 if (NumTrue > NumFalse) 1827 SplitVal = ConstantInt::getTrue(BB->getContext()); 1828 else if (NumTrue != 0 || NumFalse != 0) 1829 SplitVal = ConstantInt::getFalse(BB->getContext()); 1830 1831 // Collect all of the blocks that this can be folded into so that we can 1832 // factor this once and clone it once. 1833 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1834 for (const auto &XorOpValue : XorOpValues) { 1835 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1836 continue; 1837 1838 BlocksToFoldInto.push_back(XorOpValue.second); 1839 } 1840 1841 // If we inferred a value for all of the predecessors, then duplication won't 1842 // help us. However, we can just replace the LHS or RHS with the constant. 1843 if (BlocksToFoldInto.size() == 1844 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1845 if (!SplitVal) { 1846 // If all preds provide undef, just nuke the xor, because it is undef too. 1847 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1848 BO->eraseFromParent(); 1849 } else if (SplitVal->isZero() && BO != BO->getOperand(isLHS)) { 1850 // If all preds provide 0, replace the xor with the other input. 1851 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1852 BO->eraseFromParent(); 1853 } else { 1854 // If all preds provide 1, set the computed value to 1. 1855 BO->setOperand(!isLHS, SplitVal); 1856 } 1857 1858 return true; 1859 } 1860 1861 // If any of predecessors end with an indirect goto, we can't change its 1862 // destination. 1863 if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) { 1864 return isa<IndirectBrInst>(Pred->getTerminator()); 1865 })) 1866 return false; 1867 1868 // Try to duplicate BB into PredBB. 1869 return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1870 } 1871 1872 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1873 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1874 /// NewPred using the entries from OldPred (suitably mapped). 1875 static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1876 BasicBlock *OldPred, 1877 BasicBlock *NewPred, 1878 DenseMap<Instruction*, Value*> &ValueMap) { 1879 for (PHINode &PN : PHIBB->phis()) { 1880 // Ok, we have a PHI node. Figure out what the incoming value was for the 1881 // DestBlock. 1882 Value *IV = PN.getIncomingValueForBlock(OldPred); 1883 1884 // Remap the value if necessary. 1885 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1886 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1887 if (I != ValueMap.end()) 1888 IV = I->second; 1889 } 1890 1891 PN.addIncoming(IV, NewPred); 1892 } 1893 } 1894 1895 /// Merge basic block BB into its sole predecessor if possible. 1896 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) { 1897 BasicBlock *SinglePred = BB->getSinglePredecessor(); 1898 if (!SinglePred) 1899 return false; 1900 1901 const Instruction *TI = SinglePred->getTerminator(); 1902 if (TI->isSpecialTerminator() || TI->getNumSuccessors() != 1 || 1903 SinglePred == BB || hasAddressTakenAndUsed(BB)) 1904 return false; 1905 1906 // If SinglePred was a loop header, BB becomes one. 1907 if (LoopHeaders.erase(SinglePred)) 1908 LoopHeaders.insert(BB); 1909 1910 LVI->eraseBlock(SinglePred); 1911 MergeBasicBlockIntoOnlyPred(BB, DTU.get()); 1912 1913 // Now that BB is merged into SinglePred (i.e. SinglePred code followed by 1914 // BB code within one basic block `BB`), we need to invalidate the LVI 1915 // information associated with BB, because the LVI information need not be 1916 // true for all of BB after the merge. For example, 1917 // Before the merge, LVI info and code is as follows: 1918 // SinglePred: <LVI info1 for %p val> 1919 // %y = use of %p 1920 // call @exit() // need not transfer execution to successor. 1921 // assume(%p) // from this point on %p is true 1922 // br label %BB 1923 // BB: <LVI info2 for %p val, i.e. %p is true> 1924 // %x = use of %p 1925 // br label exit 1926 // 1927 // Note that this LVI info for blocks BB and SinglPred is correct for %p 1928 // (info2 and info1 respectively). After the merge and the deletion of the 1929 // LVI info1 for SinglePred. We have the following code: 1930 // BB: <LVI info2 for %p val> 1931 // %y = use of %p 1932 // call @exit() 1933 // assume(%p) 1934 // %x = use of %p <-- LVI info2 is correct from here onwards. 1935 // br label exit 1936 // LVI info2 for BB is incorrect at the beginning of BB. 1937 1938 // Invalidate LVI information for BB if the LVI is not provably true for 1939 // all of BB. 1940 if (!isGuaranteedToTransferExecutionToSuccessor(BB)) 1941 LVI->eraseBlock(BB); 1942 return true; 1943 } 1944 1945 /// Update the SSA form. NewBB contains instructions that are copied from BB. 1946 /// ValueMapping maps old values in BB to new ones in NewBB. 1947 void JumpThreadingPass::updateSSA( 1948 BasicBlock *BB, BasicBlock *NewBB, 1949 DenseMap<Instruction *, Value *> &ValueMapping) { 1950 // If there were values defined in BB that are used outside the block, then we 1951 // now have to update all uses of the value to use either the original value, 1952 // the cloned value, or some PHI derived value. This can require arbitrary 1953 // PHI insertion, of which we are prepared to do, clean these up now. 1954 SSAUpdater SSAUpdate; 1955 SmallVector<Use *, 16> UsesToRename; 1956 SmallVector<DbgValueInst *, 4> DbgValues; 1957 SmallVector<DPValue *, 4> DPValues; 1958 1959 for (Instruction &I : *BB) { 1960 // Scan all uses of this instruction to see if it is used outside of its 1961 // block, and if so, record them in UsesToRename. 1962 for (Use &U : I.uses()) { 1963 Instruction *User = cast<Instruction>(U.getUser()); 1964 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1965 if (UserPN->getIncomingBlock(U) == BB) 1966 continue; 1967 } else if (User->getParent() == BB) 1968 continue; 1969 1970 UsesToRename.push_back(&U); 1971 } 1972 1973 // Find debug values outside of the block 1974 findDbgValues(DbgValues, &I, &DPValues); 1975 llvm::erase_if(DbgValues, [&](const DbgValueInst *DbgVal) { 1976 return DbgVal->getParent() == BB; 1977 }); 1978 llvm::erase_if(DPValues, [&](const DPValue *DPVal) { 1979 return DPVal->getParent() == BB; 1980 }); 1981 1982 // If there are no uses outside the block, we're done with this instruction. 1983 if (UsesToRename.empty() && DbgValues.empty() && DPValues.empty()) 1984 continue; 1985 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 1986 1987 // We found a use of I outside of BB. Rename all uses of I that are outside 1988 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1989 // with the two values we know. 1990 SSAUpdate.Initialize(I.getType(), I.getName()); 1991 SSAUpdate.AddAvailableValue(BB, &I); 1992 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 1993 1994 while (!UsesToRename.empty()) 1995 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1996 if (!DbgValues.empty() || !DPValues.empty()) { 1997 SSAUpdate.UpdateDebugValues(&I, DbgValues); 1998 SSAUpdate.UpdateDebugValues(&I, DPValues); 1999 DbgValues.clear(); 2000 DPValues.clear(); 2001 } 2002 2003 LLVM_DEBUG(dbgs() << "\n"); 2004 } 2005 } 2006 2007 /// Clone instructions in range [BI, BE) to NewBB. For PHI nodes, we only clone 2008 /// arguments that come from PredBB. Return the map from the variables in the 2009 /// source basic block to the variables in the newly created basic block. 2010 DenseMap<Instruction *, Value *> 2011 JumpThreadingPass::cloneInstructions(BasicBlock::iterator BI, 2012 BasicBlock::iterator BE, BasicBlock *NewBB, 2013 BasicBlock *PredBB) { 2014 // We are going to have to map operands from the source basic block to the new 2015 // copy of the block 'NewBB'. If there are PHI nodes in the source basic 2016 // block, evaluate them to account for entry from PredBB. 2017 DenseMap<Instruction *, Value *> ValueMapping; 2018 2019 // Retargets llvm.dbg.value to any renamed variables. 2020 auto RetargetDbgValueIfPossible = [&](Instruction *NewInst) -> bool { 2021 auto DbgInstruction = dyn_cast<DbgValueInst>(NewInst); 2022 if (!DbgInstruction) 2023 return false; 2024 2025 SmallSet<std::pair<Value *, Value *>, 16> OperandsToRemap; 2026 for (auto DbgOperand : DbgInstruction->location_ops()) { 2027 auto DbgOperandInstruction = dyn_cast<Instruction>(DbgOperand); 2028 if (!DbgOperandInstruction) 2029 continue; 2030 2031 auto I = ValueMapping.find(DbgOperandInstruction); 2032 if (I != ValueMapping.end()) { 2033 OperandsToRemap.insert( 2034 std::pair<Value *, Value *>(DbgOperand, I->second)); 2035 } 2036 } 2037 2038 for (auto &[OldOp, MappedOp] : OperandsToRemap) 2039 DbgInstruction->replaceVariableLocationOp(OldOp, MappedOp); 2040 return true; 2041 }; 2042 2043 // Duplicate implementation of the above dbg.value code, using DPValues 2044 // instead. 2045 auto RetargetDPValueIfPossible = [&](DPValue *DPV) { 2046 SmallSet<std::pair<Value *, Value *>, 16> OperandsToRemap; 2047 for (auto *Op : DPV->location_ops()) { 2048 Instruction *OpInst = dyn_cast<Instruction>(Op); 2049 if (!OpInst) 2050 continue; 2051 2052 auto I = ValueMapping.find(OpInst); 2053 if (I != ValueMapping.end()) 2054 OperandsToRemap.insert({OpInst, I->second}); 2055 } 2056 2057 for (auto &[OldOp, MappedOp] : OperandsToRemap) 2058 DPV->replaceVariableLocationOp(OldOp, MappedOp); 2059 }; 2060 2061 BasicBlock *RangeBB = BI->getParent(); 2062 2063 // Clone the phi nodes of the source basic block into NewBB. The resulting 2064 // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater 2065 // might need to rewrite the operand of the cloned phi. 2066 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2067 PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB); 2068 NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB); 2069 ValueMapping[PN] = NewPN; 2070 } 2071 2072 // Clone noalias scope declarations in the threaded block. When threading a 2073 // loop exit, we would otherwise end up with two idential scope declarations 2074 // visible at the same time. 2075 SmallVector<MDNode *> NoAliasScopes; 2076 DenseMap<MDNode *, MDNode *> ClonedScopes; 2077 LLVMContext &Context = PredBB->getContext(); 2078 identifyNoAliasScopesToClone(BI, BE, NoAliasScopes); 2079 cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context); 2080 2081 auto CloneAndRemapDbgInfo = [&](Instruction *NewInst, Instruction *From) { 2082 auto DPVRange = NewInst->cloneDebugInfoFrom(From); 2083 for (DPValue &DPV : DPVRange) 2084 RetargetDPValueIfPossible(&DPV); 2085 }; 2086 2087 // Clone the non-phi instructions of the source basic block into NewBB, 2088 // keeping track of the mapping and using it to remap operands in the cloned 2089 // instructions. 2090 for (; BI != BE; ++BI) { 2091 Instruction *New = BI->clone(); 2092 New->setName(BI->getName()); 2093 New->insertInto(NewBB, NewBB->end()); 2094 ValueMapping[&*BI] = New; 2095 adaptNoAliasScopes(New, ClonedScopes, Context); 2096 2097 CloneAndRemapDbgInfo(New, &*BI); 2098 2099 if (RetargetDbgValueIfPossible(New)) 2100 continue; 2101 2102 // Remap operands to patch up intra-block references. 2103 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2104 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2105 DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst); 2106 if (I != ValueMapping.end()) 2107 New->setOperand(i, I->second); 2108 } 2109 } 2110 2111 // There may be DPValues on the terminator, clone directly from marker 2112 // to marker as there isn't an instruction there. 2113 if (BE != RangeBB->end() && BE->hasDbgValues()) { 2114 // Dump them at the end. 2115 DPMarker *Marker = RangeBB->getMarker(BE); 2116 DPMarker *EndMarker = NewBB->createMarker(NewBB->end()); 2117 auto DPVRange = EndMarker->cloneDebugInfoFrom(Marker, std::nullopt); 2118 for (DPValue &DPV : DPVRange) 2119 RetargetDPValueIfPossible(&DPV); 2120 } 2121 2122 return ValueMapping; 2123 } 2124 2125 /// Attempt to thread through two successive basic blocks. 2126 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB, 2127 Value *Cond) { 2128 // Consider: 2129 // 2130 // PredBB: 2131 // %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ] 2132 // %tobool = icmp eq i32 %cond, 0 2133 // br i1 %tobool, label %BB, label ... 2134 // 2135 // BB: 2136 // %cmp = icmp eq i32* %var, null 2137 // br i1 %cmp, label ..., label ... 2138 // 2139 // We don't know the value of %var at BB even if we know which incoming edge 2140 // we take to BB. However, once we duplicate PredBB for each of its incoming 2141 // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of 2142 // PredBB. Then we can thread edges PredBB1->BB and PredBB2->BB through BB. 2143 2144 // Require that BB end with a Branch for simplicity. 2145 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2146 if (!CondBr) 2147 return false; 2148 2149 // BB must have exactly one predecessor. 2150 BasicBlock *PredBB = BB->getSinglePredecessor(); 2151 if (!PredBB) 2152 return false; 2153 2154 // Require that PredBB end with a conditional Branch. If PredBB ends with an 2155 // unconditional branch, we should be merging PredBB and BB instead. For 2156 // simplicity, we don't deal with a switch. 2157 BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2158 if (!PredBBBranch || PredBBBranch->isUnconditional()) 2159 return false; 2160 2161 // If PredBB has exactly one incoming edge, we don't gain anything by copying 2162 // PredBB. 2163 if (PredBB->getSinglePredecessor()) 2164 return false; 2165 2166 // Don't thread through PredBB if it contains a successor edge to itself, in 2167 // which case we would infinite loop. Suppose we are threading an edge from 2168 // PredPredBB through PredBB and BB to SuccBB with PredBB containing a 2169 // successor edge to itself. If we allowed jump threading in this case, we 2170 // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread. Since 2171 // PredBB.thread has a successor edge to PredBB, we would immediately come up 2172 // with another jump threading opportunity from PredBB.thread through PredBB 2173 // and BB to SuccBB. This jump threading would repeatedly occur. That is, we 2174 // would keep peeling one iteration from PredBB. 2175 if (llvm::is_contained(successors(PredBB), PredBB)) 2176 return false; 2177 2178 // Don't thread across a loop header. 2179 if (LoopHeaders.count(PredBB)) 2180 return false; 2181 2182 // Avoid complication with duplicating EH pads. 2183 if (PredBB->isEHPad()) 2184 return false; 2185 2186 // Find a predecessor that we can thread. For simplicity, we only consider a 2187 // successor edge out of BB to which we thread exactly one incoming edge into 2188 // PredBB. 2189 unsigned ZeroCount = 0; 2190 unsigned OneCount = 0; 2191 BasicBlock *ZeroPred = nullptr; 2192 BasicBlock *OnePred = nullptr; 2193 for (BasicBlock *P : predecessors(PredBB)) { 2194 // If PredPred ends with IndirectBrInst, we can't handle it. 2195 if (isa<IndirectBrInst>(P->getTerminator())) 2196 continue; 2197 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>( 2198 evaluateOnPredecessorEdge(BB, P, Cond))) { 2199 if (CI->isZero()) { 2200 ZeroCount++; 2201 ZeroPred = P; 2202 } else if (CI->isOne()) { 2203 OneCount++; 2204 OnePred = P; 2205 } 2206 } 2207 } 2208 2209 // Disregard complicated cases where we have to thread multiple edges. 2210 BasicBlock *PredPredBB; 2211 if (ZeroCount == 1) { 2212 PredPredBB = ZeroPred; 2213 } else if (OneCount == 1) { 2214 PredPredBB = OnePred; 2215 } else { 2216 return false; 2217 } 2218 2219 BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred); 2220 2221 // If threading to the same block as we come from, we would infinite loop. 2222 if (SuccBB == BB) { 2223 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 2224 << "' - would thread to self!\n"); 2225 return false; 2226 } 2227 2228 // If threading this would thread across a loop header, don't thread the edge. 2229 // See the comments above findLoopHeaders for justifications and caveats. 2230 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 2231 LLVM_DEBUG({ 2232 bool BBIsHeader = LoopHeaders.count(BB); 2233 bool SuccIsHeader = LoopHeaders.count(SuccBB); 2234 dbgs() << " Not threading across " 2235 << (BBIsHeader ? "loop header BB '" : "block BB '") 2236 << BB->getName() << "' to dest " 2237 << (SuccIsHeader ? "loop header BB '" : "block BB '") 2238 << SuccBB->getName() 2239 << "' - it might create an irreducible loop!\n"; 2240 }); 2241 return false; 2242 } 2243 2244 // Compute the cost of duplicating BB and PredBB. 2245 unsigned BBCost = getJumpThreadDuplicationCost( 2246 TTI, BB, BB->getTerminator(), BBDupThreshold); 2247 unsigned PredBBCost = getJumpThreadDuplicationCost( 2248 TTI, PredBB, PredBB->getTerminator(), BBDupThreshold); 2249 2250 // Give up if costs are too high. We need to check BBCost and PredBBCost 2251 // individually before checking their sum because getJumpThreadDuplicationCost 2252 // return (unsigned)~0 for those basic blocks that cannot be duplicated. 2253 if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold || 2254 BBCost + PredBBCost > BBDupThreshold) { 2255 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 2256 << "' - Cost is too high: " << PredBBCost 2257 << " for PredBB, " << BBCost << "for BB\n"); 2258 return false; 2259 } 2260 2261 // Now we are ready to duplicate PredBB. 2262 threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB); 2263 return true; 2264 } 2265 2266 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB, 2267 BasicBlock *PredBB, 2268 BasicBlock *BB, 2269 BasicBlock *SuccBB) { 2270 LLVM_DEBUG(dbgs() << " Threading through '" << PredBB->getName() << "' and '" 2271 << BB->getName() << "'\n"); 2272 2273 // Build BPI/BFI before any changes are made to IR. 2274 bool HasProfile = doesBlockHaveProfileData(BB); 2275 auto *BFI = getOrCreateBFI(HasProfile); 2276 auto *BPI = getOrCreateBPI(BFI != nullptr); 2277 2278 BranchInst *CondBr = cast<BranchInst>(BB->getTerminator()); 2279 BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator()); 2280 2281 BasicBlock *NewBB = 2282 BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread", 2283 PredBB->getParent(), PredBB); 2284 NewBB->moveAfter(PredBB); 2285 2286 // Set the block frequency of NewBB. 2287 if (BFI) { 2288 assert(BPI && "It's expected BPI to exist along with BFI"); 2289 auto NewBBFreq = BFI->getBlockFreq(PredPredBB) * 2290 BPI->getEdgeProbability(PredPredBB, PredBB); 2291 BFI->setBlockFreq(NewBB, NewBBFreq); 2292 } 2293 2294 // We are going to have to map operands from the original BB block to the new 2295 // copy of the block 'NewBB'. If there are PHI nodes in PredBB, evaluate them 2296 // to account for entry from PredPredBB. 2297 DenseMap<Instruction *, Value *> ValueMapping = 2298 cloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB); 2299 2300 // Copy the edge probabilities from PredBB to NewBB. 2301 if (BPI) 2302 BPI->copyEdgeProbabilities(PredBB, NewBB); 2303 2304 // Update the terminator of PredPredBB to jump to NewBB instead of PredBB. 2305 // This eliminates predecessors from PredPredBB, which requires us to simplify 2306 // any PHI nodes in PredBB. 2307 Instruction *PredPredTerm = PredPredBB->getTerminator(); 2308 for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i) 2309 if (PredPredTerm->getSuccessor(i) == PredBB) { 2310 PredBB->removePredecessor(PredPredBB, true); 2311 PredPredTerm->setSuccessor(i, NewBB); 2312 } 2313 2314 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB, 2315 ValueMapping); 2316 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB, 2317 ValueMapping); 2318 2319 DTU->applyUpdatesPermissive( 2320 {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)}, 2321 {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)}, 2322 {DominatorTree::Insert, PredPredBB, NewBB}, 2323 {DominatorTree::Delete, PredPredBB, PredBB}}); 2324 2325 updateSSA(PredBB, NewBB, ValueMapping); 2326 2327 // Clean up things like PHI nodes with single operands, dead instructions, 2328 // etc. 2329 SimplifyInstructionsInBlock(NewBB, TLI); 2330 SimplifyInstructionsInBlock(PredBB, TLI); 2331 2332 SmallVector<BasicBlock *, 1> PredsToFactor; 2333 PredsToFactor.push_back(NewBB); 2334 threadEdge(BB, PredsToFactor, SuccBB); 2335 } 2336 2337 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so. 2338 bool JumpThreadingPass::tryThreadEdge( 2339 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs, 2340 BasicBlock *SuccBB) { 2341 // If threading to the same block as we come from, we would infinite loop. 2342 if (SuccBB == BB) { 2343 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 2344 << "' - would thread to self!\n"); 2345 return false; 2346 } 2347 2348 // If threading this would thread across a loop header, don't thread the edge. 2349 // See the comments above findLoopHeaders for justifications and caveats. 2350 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 2351 LLVM_DEBUG({ 2352 bool BBIsHeader = LoopHeaders.count(BB); 2353 bool SuccIsHeader = LoopHeaders.count(SuccBB); 2354 dbgs() << " Not threading across " 2355 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() 2356 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") 2357 << SuccBB->getName() << "' - it might create an irreducible loop!\n"; 2358 }); 2359 return false; 2360 } 2361 2362 unsigned JumpThreadCost = getJumpThreadDuplicationCost( 2363 TTI, BB, BB->getTerminator(), BBDupThreshold); 2364 if (JumpThreadCost > BBDupThreshold) { 2365 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 2366 << "' - Cost is too high: " << JumpThreadCost << "\n"); 2367 return false; 2368 } 2369 2370 threadEdge(BB, PredBBs, SuccBB); 2371 return true; 2372 } 2373 2374 /// threadEdge - We have decided that it is safe and profitable to factor the 2375 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 2376 /// across BB. Transform the IR to reflect this change. 2377 void JumpThreadingPass::threadEdge(BasicBlock *BB, 2378 const SmallVectorImpl<BasicBlock *> &PredBBs, 2379 BasicBlock *SuccBB) { 2380 assert(SuccBB != BB && "Don't create an infinite loop"); 2381 2382 assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) && 2383 "Don't thread across loop headers"); 2384 2385 // Build BPI/BFI before any changes are made to IR. 2386 bool HasProfile = doesBlockHaveProfileData(BB); 2387 auto *BFI = getOrCreateBFI(HasProfile); 2388 auto *BPI = getOrCreateBPI(BFI != nullptr); 2389 2390 // And finally, do it! Start by factoring the predecessors if needed. 2391 BasicBlock *PredBB; 2392 if (PredBBs.size() == 1) 2393 PredBB = PredBBs[0]; 2394 else { 2395 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2396 << " common predecessors.\n"); 2397 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm"); 2398 } 2399 2400 // And finally, do it! 2401 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() 2402 << "' to '" << SuccBB->getName() 2403 << ", across block:\n " << *BB << "\n"); 2404 2405 LVI->threadEdge(PredBB, BB, SuccBB); 2406 2407 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 2408 BB->getName()+".thread", 2409 BB->getParent(), BB); 2410 NewBB->moveAfter(PredBB); 2411 2412 // Set the block frequency of NewBB. 2413 if (BFI) { 2414 assert(BPI && "It's expected BPI to exist along with BFI"); 2415 auto NewBBFreq = 2416 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 2417 BFI->setBlockFreq(NewBB, NewBBFreq); 2418 } 2419 2420 // Copy all the instructions from BB to NewBB except the terminator. 2421 DenseMap<Instruction *, Value *> ValueMapping = 2422 cloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB); 2423 2424 // We didn't copy the terminator from BB over to NewBB, because there is now 2425 // an unconditional jump to SuccBB. Insert the unconditional jump. 2426 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 2427 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 2428 2429 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 2430 // PHI nodes for NewBB now. 2431 addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 2432 2433 // Update the terminator of PredBB to jump to NewBB instead of BB. This 2434 // eliminates predecessors from BB, which requires us to simplify any PHI 2435 // nodes in BB. 2436 Instruction *PredTerm = PredBB->getTerminator(); 2437 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 2438 if (PredTerm->getSuccessor(i) == BB) { 2439 BB->removePredecessor(PredBB, true); 2440 PredTerm->setSuccessor(i, NewBB); 2441 } 2442 2443 // Enqueue required DT updates. 2444 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB}, 2445 {DominatorTree::Insert, PredBB, NewBB}, 2446 {DominatorTree::Delete, PredBB, BB}}); 2447 2448 updateSSA(BB, NewBB, ValueMapping); 2449 2450 // At this point, the IR is fully up to date and consistent. Do a quick scan 2451 // over the new instructions and zap any that are constants or dead. This 2452 // frequently happens because of phi translation. 2453 SimplifyInstructionsInBlock(NewBB, TLI); 2454 2455 // Update the edge weight from BB to SuccBB, which should be less than before. 2456 updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB, BFI, BPI, HasProfile); 2457 2458 // Threaded an edge! 2459 ++NumThreads; 2460 } 2461 2462 /// Create a new basic block that will be the predecessor of BB and successor of 2463 /// all blocks in Preds. When profile data is available, update the frequency of 2464 /// this new block. 2465 BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB, 2466 ArrayRef<BasicBlock *> Preds, 2467 const char *Suffix) { 2468 SmallVector<BasicBlock *, 2> NewBBs; 2469 2470 // Collect the frequencies of all predecessors of BB, which will be used to 2471 // update the edge weight of the result of splitting predecessors. 2472 DenseMap<BasicBlock *, BlockFrequency> FreqMap; 2473 auto *BFI = getBFI(); 2474 if (BFI) { 2475 auto *BPI = getOrCreateBPI(true); 2476 for (auto *Pred : Preds) 2477 FreqMap.insert(std::make_pair( 2478 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB))); 2479 } 2480 2481 // In the case when BB is a LandingPad block we create 2 new predecessors 2482 // instead of just one. 2483 if (BB->isLandingPad()) { 2484 std::string NewName = std::string(Suffix) + ".split-lp"; 2485 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs); 2486 } else { 2487 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix)); 2488 } 2489 2490 std::vector<DominatorTree::UpdateType> Updates; 2491 Updates.reserve((2 * Preds.size()) + NewBBs.size()); 2492 for (auto *NewBB : NewBBs) { 2493 BlockFrequency NewBBFreq(0); 2494 Updates.push_back({DominatorTree::Insert, NewBB, BB}); 2495 for (auto *Pred : predecessors(NewBB)) { 2496 Updates.push_back({DominatorTree::Delete, Pred, BB}); 2497 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 2498 if (BFI) // Update frequencies between Pred -> NewBB. 2499 NewBBFreq += FreqMap.lookup(Pred); 2500 } 2501 if (BFI) // Apply the summed frequency to NewBB. 2502 BFI->setBlockFreq(NewBB, NewBBFreq); 2503 } 2504 2505 DTU->applyUpdatesPermissive(Updates); 2506 return NewBBs[0]; 2507 } 2508 2509 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 2510 const Instruction *TI = BB->getTerminator(); 2511 if (!TI || TI->getNumSuccessors() < 2) 2512 return false; 2513 2514 return hasValidBranchWeightMD(*TI); 2515 } 2516 2517 /// Update the block frequency of BB and branch weight and the metadata on the 2518 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 2519 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 2520 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 2521 BasicBlock *BB, 2522 BasicBlock *NewBB, 2523 BasicBlock *SuccBB, 2524 BlockFrequencyInfo *BFI, 2525 BranchProbabilityInfo *BPI, 2526 bool HasProfile) { 2527 assert(((BFI && BPI) || (!BFI && !BFI)) && 2528 "Both BFI & BPI should either be set or unset"); 2529 2530 if (!BFI) { 2531 assert(!HasProfile && 2532 "It's expected to have BFI/BPI when profile info exists"); 2533 return; 2534 } 2535 2536 // As the edge from PredBB to BB is deleted, we have to update the block 2537 // frequency of BB. 2538 auto BBOrigFreq = BFI->getBlockFreq(BB); 2539 auto NewBBFreq = BFI->getBlockFreq(NewBB); 2540 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 2541 auto BBNewFreq = BBOrigFreq - NewBBFreq; 2542 BFI->setBlockFreq(BB, BBNewFreq); 2543 2544 // Collect updated outgoing edges' frequencies from BB and use them to update 2545 // edge probabilities. 2546 SmallVector<uint64_t, 4> BBSuccFreq; 2547 for (BasicBlock *Succ : successors(BB)) { 2548 auto SuccFreq = (Succ == SuccBB) 2549 ? BB2SuccBBFreq - NewBBFreq 2550 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 2551 BBSuccFreq.push_back(SuccFreq.getFrequency()); 2552 } 2553 2554 uint64_t MaxBBSuccFreq = 2555 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 2556 2557 SmallVector<BranchProbability, 4> BBSuccProbs; 2558 if (MaxBBSuccFreq == 0) 2559 BBSuccProbs.assign(BBSuccFreq.size(), 2560 {1, static_cast<unsigned>(BBSuccFreq.size())}); 2561 else { 2562 for (uint64_t Freq : BBSuccFreq) 2563 BBSuccProbs.push_back( 2564 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 2565 // Normalize edge probabilities so that they sum up to one. 2566 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 2567 BBSuccProbs.end()); 2568 } 2569 2570 // Update edge probabilities in BPI. 2571 BPI->setEdgeProbability(BB, BBSuccProbs); 2572 2573 // Update the profile metadata as well. 2574 // 2575 // Don't do this if the profile of the transformed blocks was statically 2576 // estimated. (This could occur despite the function having an entry 2577 // frequency in completely cold parts of the CFG.) 2578 // 2579 // In this case we don't want to suggest to subsequent passes that the 2580 // calculated weights are fully consistent. Consider this graph: 2581 // 2582 // check_1 2583 // 50% / | 2584 // eq_1 | 50% 2585 // \ | 2586 // check_2 2587 // 50% / | 2588 // eq_2 | 50% 2589 // \ | 2590 // check_3 2591 // 50% / | 2592 // eq_3 | 50% 2593 // \ | 2594 // 2595 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 2596 // the overall probabilities are inconsistent; the total probability that the 2597 // value is either 1, 2 or 3 is 150%. 2598 // 2599 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 2600 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 2601 // the loop exit edge. Then based solely on static estimation we would assume 2602 // the loop was extremely hot. 2603 // 2604 // FIXME this locally as well so that BPI and BFI are consistent as well. We 2605 // shouldn't make edges extremely likely or unlikely based solely on static 2606 // estimation. 2607 if (BBSuccProbs.size() >= 2 && HasProfile) { 2608 SmallVector<uint32_t, 4> Weights; 2609 for (auto Prob : BBSuccProbs) 2610 Weights.push_back(Prob.getNumerator()); 2611 2612 auto TI = BB->getTerminator(); 2613 setBranchWeights(*TI, Weights); 2614 } 2615 } 2616 2617 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 2618 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 2619 /// If we can duplicate the contents of BB up into PredBB do so now, this 2620 /// improves the odds that the branch will be on an analyzable instruction like 2621 /// a compare. 2622 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred( 2623 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 2624 assert(!PredBBs.empty() && "Can't handle an empty set"); 2625 2626 // If BB is a loop header, then duplicating this block outside the loop would 2627 // cause us to transform this into an irreducible loop, don't do this. 2628 // See the comments above findLoopHeaders for justifications and caveats. 2629 if (LoopHeaders.count(BB)) { 2630 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 2631 << "' into predecessor block '" << PredBBs[0]->getName() 2632 << "' - it might create an irreducible loop!\n"); 2633 return false; 2634 } 2635 2636 unsigned DuplicationCost = getJumpThreadDuplicationCost( 2637 TTI, BB, BB->getTerminator(), BBDupThreshold); 2638 if (DuplicationCost > BBDupThreshold) { 2639 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 2640 << "' - Cost is too high: " << DuplicationCost << "\n"); 2641 return false; 2642 } 2643 2644 // And finally, do it! Start by factoring the predecessors if needed. 2645 std::vector<DominatorTree::UpdateType> Updates; 2646 BasicBlock *PredBB; 2647 if (PredBBs.size() == 1) 2648 PredBB = PredBBs[0]; 2649 else { 2650 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2651 << " common predecessors.\n"); 2652 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm"); 2653 } 2654 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2655 2656 // Okay, we decided to do this! Clone all the instructions in BB onto the end 2657 // of PredBB. 2658 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName() 2659 << "' into end of '" << PredBB->getName() 2660 << "' to eliminate branch on phi. Cost: " 2661 << DuplicationCost << " block is:" << *BB << "\n"); 2662 2663 // Unless PredBB ends with an unconditional branch, split the edge so that we 2664 // can just clone the bits from BB into the end of the new PredBB. 2665 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2666 2667 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 2668 BasicBlock *OldPredBB = PredBB; 2669 PredBB = SplitEdge(OldPredBB, BB); 2670 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB}); 2671 Updates.push_back({DominatorTree::Insert, PredBB, BB}); 2672 Updates.push_back({DominatorTree::Delete, OldPredBB, BB}); 2673 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 2674 } 2675 2676 // We are going to have to map operands from the original BB block into the 2677 // PredBB block. Evaluate PHI nodes in BB. 2678 DenseMap<Instruction*, Value*> ValueMapping; 2679 2680 BasicBlock::iterator BI = BB->begin(); 2681 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 2682 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 2683 // Clone the non-phi instructions of BB into PredBB, keeping track of the 2684 // mapping and using it to remap operands in the cloned instructions. 2685 for (; BI != BB->end(); ++BI) { 2686 Instruction *New = BI->clone(); 2687 New->insertInto(PredBB, OldPredBranch->getIterator()); 2688 2689 // Remap operands to patch up intra-block references. 2690 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2691 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2692 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 2693 if (I != ValueMapping.end()) 2694 New->setOperand(i, I->second); 2695 } 2696 2697 // If this instruction can be simplified after the operands are updated, 2698 // just use the simplified value instead. This frequently happens due to 2699 // phi translation. 2700 if (Value *IV = simplifyInstruction( 2701 New, 2702 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) { 2703 ValueMapping[&*BI] = IV; 2704 if (!New->mayHaveSideEffects()) { 2705 New->eraseFromParent(); 2706 New = nullptr; 2707 // Clone debug-info on the elided instruction to the destination 2708 // position. 2709 OldPredBranch->cloneDebugInfoFrom(&*BI, std::nullopt, true); 2710 } 2711 } else { 2712 ValueMapping[&*BI] = New; 2713 } 2714 if (New) { 2715 // Otherwise, insert the new instruction into the block. 2716 New->setName(BI->getName()); 2717 // Clone across any debug-info attached to the old instruction. 2718 New->cloneDebugInfoFrom(&*BI); 2719 // Update Dominance from simplified New instruction operands. 2720 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2721 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i))) 2722 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB}); 2723 } 2724 } 2725 2726 // Check to see if the targets of the branch had PHI nodes. If so, we need to 2727 // add entries to the PHI nodes for branch from PredBB now. 2728 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 2729 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 2730 ValueMapping); 2731 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 2732 ValueMapping); 2733 2734 updateSSA(BB, PredBB, ValueMapping); 2735 2736 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 2737 // that we nuked. 2738 BB->removePredecessor(PredBB, true); 2739 2740 // Remove the unconditional branch at the end of the PredBB block. 2741 OldPredBranch->eraseFromParent(); 2742 if (auto *BPI = getBPI()) 2743 BPI->copyEdgeProbabilities(BB, PredBB); 2744 DTU->applyUpdatesPermissive(Updates); 2745 2746 ++NumDupes; 2747 return true; 2748 } 2749 2750 // Pred is a predecessor of BB with an unconditional branch to BB. SI is 2751 // a Select instruction in Pred. BB has other predecessors and SI is used in 2752 // a PHI node in BB. SI has no other use. 2753 // A new basic block, NewBB, is created and SI is converted to compare and 2754 // conditional branch. SI is erased from parent. 2755 void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB, 2756 SelectInst *SI, PHINode *SIUse, 2757 unsigned Idx) { 2758 // Expand the select. 2759 // 2760 // Pred -- 2761 // | v 2762 // | NewBB 2763 // | | 2764 // |----- 2765 // v 2766 // BB 2767 BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator()); 2768 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 2769 BB->getParent(), BB); 2770 // Move the unconditional branch to NewBB. 2771 PredTerm->removeFromParent(); 2772 PredTerm->insertInto(NewBB, NewBB->end()); 2773 // Create a conditional branch and update PHI nodes. 2774 auto *BI = BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 2775 BI->applyMergedLocation(PredTerm->getDebugLoc(), SI->getDebugLoc()); 2776 BI->copyMetadata(*SI, {LLVMContext::MD_prof}); 2777 SIUse->setIncomingValue(Idx, SI->getFalseValue()); 2778 SIUse->addIncoming(SI->getTrueValue(), NewBB); 2779 2780 uint64_t TrueWeight = 1; 2781 uint64_t FalseWeight = 1; 2782 // Copy probabilities from 'SI' to created conditional branch in 'Pred'. 2783 if (extractBranchWeights(*SI, TrueWeight, FalseWeight) && 2784 (TrueWeight + FalseWeight) != 0) { 2785 SmallVector<BranchProbability, 2> BP; 2786 BP.emplace_back(BranchProbability::getBranchProbability( 2787 TrueWeight, TrueWeight + FalseWeight)); 2788 BP.emplace_back(BranchProbability::getBranchProbability( 2789 FalseWeight, TrueWeight + FalseWeight)); 2790 // Update BPI if exists. 2791 if (auto *BPI = getBPI()) 2792 BPI->setEdgeProbability(Pred, BP); 2793 } 2794 // Set the block frequency of NewBB. 2795 if (auto *BFI = getBFI()) { 2796 if ((TrueWeight + FalseWeight) == 0) { 2797 TrueWeight = 1; 2798 FalseWeight = 1; 2799 } 2800 BranchProbability PredToNewBBProb = BranchProbability::getBranchProbability( 2801 TrueWeight, TrueWeight + FalseWeight); 2802 auto NewBBFreq = BFI->getBlockFreq(Pred) * PredToNewBBProb; 2803 BFI->setBlockFreq(NewBB, NewBBFreq); 2804 } 2805 2806 // The select is now dead. 2807 SI->eraseFromParent(); 2808 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB}, 2809 {DominatorTree::Insert, Pred, NewBB}}); 2810 2811 // Update any other PHI nodes in BB. 2812 for (BasicBlock::iterator BI = BB->begin(); 2813 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 2814 if (Phi != SIUse) 2815 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 2816 } 2817 2818 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) { 2819 PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition()); 2820 2821 if (!CondPHI || CondPHI->getParent() != BB) 2822 return false; 2823 2824 for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) { 2825 BasicBlock *Pred = CondPHI->getIncomingBlock(I); 2826 SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I)); 2827 2828 // The second and third condition can be potentially relaxed. Currently 2829 // the conditions help to simplify the code and allow us to reuse existing 2830 // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *) 2831 if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse()) 2832 continue; 2833 2834 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2835 if (!PredTerm || !PredTerm->isUnconditional()) 2836 continue; 2837 2838 unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I); 2839 return true; 2840 } 2841 return false; 2842 } 2843 2844 /// tryToUnfoldSelect - Look for blocks of the form 2845 /// bb1: 2846 /// %a = select 2847 /// br bb2 2848 /// 2849 /// bb2: 2850 /// %p = phi [%a, %bb1] ... 2851 /// %c = icmp %p 2852 /// br i1 %c 2853 /// 2854 /// And expand the select into a branch structure if one of its arms allows %c 2855 /// to be folded. This later enables threading from bb1 over bb2. 2856 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 2857 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2858 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 2859 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 2860 2861 if (!CondBr || !CondBr->isConditional() || !CondLHS || 2862 CondLHS->getParent() != BB) 2863 return false; 2864 2865 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 2866 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 2867 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 2868 2869 // Look if one of the incoming values is a select in the corresponding 2870 // predecessor. 2871 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 2872 continue; 2873 2874 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2875 if (!PredTerm || !PredTerm->isUnconditional()) 2876 continue; 2877 2878 // Now check if one of the select values would allow us to constant fold the 2879 // terminator in BB. We don't do the transform if both sides fold, those 2880 // cases will be threaded in any case. 2881 LazyValueInfo::Tristate LHSFolds = 2882 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 2883 CondRHS, Pred, BB, CondCmp); 2884 LazyValueInfo::Tristate RHSFolds = 2885 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 2886 CondRHS, Pred, BB, CondCmp); 2887 if ((LHSFolds != LazyValueInfo::Unknown || 2888 RHSFolds != LazyValueInfo::Unknown) && 2889 LHSFolds != RHSFolds) { 2890 unfoldSelectInstr(Pred, BB, SI, CondLHS, I); 2891 return true; 2892 } 2893 } 2894 return false; 2895 } 2896 2897 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the 2898 /// same BB in the form 2899 /// bb: 2900 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 2901 /// %s = select %p, trueval, falseval 2902 /// 2903 /// or 2904 /// 2905 /// bb: 2906 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... 2907 /// %c = cmp %p, 0 2908 /// %s = select %c, trueval, falseval 2909 /// 2910 /// And expand the select into a branch structure. This later enables 2911 /// jump-threading over bb in this pass. 2912 /// 2913 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2914 /// select if the associated PHI has at least one constant. If the unfolded 2915 /// select is not jump-threaded, it will be folded again in the later 2916 /// optimizations. 2917 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2918 // This transform would reduce the quality of msan diagnostics. 2919 // Disable this transform under MemorySanitizer. 2920 if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 2921 return false; 2922 2923 // If threading this would thread across a loop header, don't thread the edge. 2924 // See the comments above findLoopHeaders for justifications and caveats. 2925 if (LoopHeaders.count(BB)) 2926 return false; 2927 2928 for (BasicBlock::iterator BI = BB->begin(); 2929 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2930 // Look for a Phi having at least one constant incoming value. 2931 if (llvm::all_of(PN->incoming_values(), 2932 [](Value *V) { return !isa<ConstantInt>(V); })) 2933 continue; 2934 2935 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { 2936 using namespace PatternMatch; 2937 2938 // Check if SI is in BB and use V as condition. 2939 if (SI->getParent() != BB) 2940 return false; 2941 Value *Cond = SI->getCondition(); 2942 bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr())); 2943 return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr; 2944 }; 2945 2946 SelectInst *SI = nullptr; 2947 for (Use &U : PN->uses()) { 2948 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2949 // Look for a ICmp in BB that compares PN with a constant and is the 2950 // condition of a Select. 2951 if (Cmp->getParent() == BB && Cmp->hasOneUse() && 2952 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo()))) 2953 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back())) 2954 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { 2955 SI = SelectI; 2956 break; 2957 } 2958 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) { 2959 // Look for a Select in BB that uses PN as condition. 2960 if (isUnfoldCandidate(SelectI, U.get())) { 2961 SI = SelectI; 2962 break; 2963 } 2964 } 2965 } 2966 2967 if (!SI) 2968 continue; 2969 // Expand the select. 2970 Value *Cond = SI->getCondition(); 2971 if (!isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI)) 2972 Cond = new FreezeInst(Cond, "cond.fr", SI); 2973 MDNode *BranchWeights = getBranchWeightMDNode(*SI); 2974 Instruction *Term = 2975 SplitBlockAndInsertIfThen(Cond, SI, false, BranchWeights); 2976 BasicBlock *SplitBB = SI->getParent(); 2977 BasicBlock *NewBB = Term->getParent(); 2978 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 2979 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2980 NewPN->addIncoming(SI->getFalseValue(), BB); 2981 SI->replaceAllUsesWith(NewPN); 2982 SI->eraseFromParent(); 2983 // NewBB and SplitBB are newly created blocks which require insertion. 2984 std::vector<DominatorTree::UpdateType> Updates; 2985 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3); 2986 Updates.push_back({DominatorTree::Insert, BB, SplitBB}); 2987 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 2988 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB}); 2989 // BB's successors were moved to SplitBB, update DTU accordingly. 2990 for (auto *Succ : successors(SplitBB)) { 2991 Updates.push_back({DominatorTree::Delete, BB, Succ}); 2992 Updates.push_back({DominatorTree::Insert, SplitBB, Succ}); 2993 } 2994 DTU->applyUpdatesPermissive(Updates); 2995 return true; 2996 } 2997 return false; 2998 } 2999 3000 /// Try to propagate a guard from the current BB into one of its predecessors 3001 /// in case if another branch of execution implies that the condition of this 3002 /// guard is always true. Currently we only process the simplest case that 3003 /// looks like: 3004 /// 3005 /// Start: 3006 /// %cond = ... 3007 /// br i1 %cond, label %T1, label %F1 3008 /// T1: 3009 /// br label %Merge 3010 /// F1: 3011 /// br label %Merge 3012 /// Merge: 3013 /// %condGuard = ... 3014 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 3015 /// 3016 /// And cond either implies condGuard or !condGuard. In this case all the 3017 /// instructions before the guard can be duplicated in both branches, and the 3018 /// guard is then threaded to one of them. 3019 bool JumpThreadingPass::processGuards(BasicBlock *BB) { 3020 using namespace PatternMatch; 3021 3022 // We only want to deal with two predecessors. 3023 BasicBlock *Pred1, *Pred2; 3024 auto PI = pred_begin(BB), PE = pred_end(BB); 3025 if (PI == PE) 3026 return false; 3027 Pred1 = *PI++; 3028 if (PI == PE) 3029 return false; 3030 Pred2 = *PI++; 3031 if (PI != PE) 3032 return false; 3033 if (Pred1 == Pred2) 3034 return false; 3035 3036 // Try to thread one of the guards of the block. 3037 // TODO: Look up deeper than to immediate predecessor? 3038 auto *Parent = Pred1->getSinglePredecessor(); 3039 if (!Parent || Parent != Pred2->getSinglePredecessor()) 3040 return false; 3041 3042 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 3043 for (auto &I : *BB) 3044 if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI)) 3045 return true; 3046 3047 return false; 3048 } 3049 3050 /// Try to propagate the guard from BB which is the lower block of a diamond 3051 /// to one of its branches, in case if diamond's condition implies guard's 3052 /// condition. 3053 bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard, 3054 BranchInst *BI) { 3055 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 3056 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 3057 Value *GuardCond = Guard->getArgOperand(0); 3058 Value *BranchCond = BI->getCondition(); 3059 BasicBlock *TrueDest = BI->getSuccessor(0); 3060 BasicBlock *FalseDest = BI->getSuccessor(1); 3061 3062 auto &DL = BB->getModule()->getDataLayout(); 3063 bool TrueDestIsSafe = false; 3064 bool FalseDestIsSafe = false; 3065 3066 // True dest is safe if BranchCond => GuardCond. 3067 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 3068 if (Impl && *Impl) 3069 TrueDestIsSafe = true; 3070 else { 3071 // False dest is safe if !BranchCond => GuardCond. 3072 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); 3073 if (Impl && *Impl) 3074 FalseDestIsSafe = true; 3075 } 3076 3077 if (!TrueDestIsSafe && !FalseDestIsSafe) 3078 return false; 3079 3080 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 3081 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 3082 3083 ValueToValueMapTy UnguardedMapping, GuardedMapping; 3084 Instruction *AfterGuard = Guard->getNextNode(); 3085 unsigned Cost = 3086 getJumpThreadDuplicationCost(TTI, BB, AfterGuard, BBDupThreshold); 3087 if (Cost > BBDupThreshold) 3088 return false; 3089 // Duplicate all instructions before the guard and the guard itself to the 3090 // branch where implication is not proved. 3091 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween( 3092 BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU); 3093 assert(GuardedBlock && "Could not create the guarded block?"); 3094 // Duplicate all instructions before the guard in the unguarded branch. 3095 // Since we have successfully duplicated the guarded block and this block 3096 // has fewer instructions, we expect it to succeed. 3097 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween( 3098 BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU); 3099 assert(UnguardedBlock && "Could not create the unguarded block?"); 3100 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 3101 << GuardedBlock->getName() << "\n"); 3102 // Some instructions before the guard may still have uses. For them, we need 3103 // to create Phi nodes merging their copies in both guarded and unguarded 3104 // branches. Those instructions that have no uses can be just removed. 3105 SmallVector<Instruction *, 4> ToRemove; 3106 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 3107 if (!isa<PHINode>(&*BI)) 3108 ToRemove.push_back(&*BI); 3109 3110 BasicBlock::iterator InsertionPoint = BB->getFirstInsertionPt(); 3111 assert(InsertionPoint != BB->end() && "Empty block?"); 3112 // Substitute with Phis & remove. 3113 for (auto *Inst : reverse(ToRemove)) { 3114 if (!Inst->use_empty()) { 3115 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 3116 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 3117 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 3118 NewPN->insertBefore(InsertionPoint); 3119 Inst->replaceAllUsesWith(NewPN); 3120 } 3121 Inst->dropDbgValues(); 3122 Inst->eraseFromParent(); 3123 } 3124 return true; 3125 } 3126 3127 PreservedAnalyses JumpThreadingPass::getPreservedAnalysis() const { 3128 PreservedAnalyses PA; 3129 PA.preserve<LazyValueAnalysis>(); 3130 PA.preserve<DominatorTreeAnalysis>(); 3131 3132 // TODO: We would like to preserve BPI/BFI. Enable once all paths update them. 3133 // TODO: Would be nice to verify BPI/BFI consistency as well. 3134 return PA; 3135 } 3136 3137 template <typename AnalysisT> 3138 typename AnalysisT::Result *JumpThreadingPass::runExternalAnalysis() { 3139 assert(FAM && "Can't run external analysis without FunctionAnalysisManager"); 3140 3141 // If there were no changes since last call to 'runExternalAnalysis' then all 3142 // analysis is either up to date or explicitly invalidated. Just go ahead and 3143 // run the "external" analysis. 3144 if (!ChangedSinceLastAnalysisUpdate) { 3145 assert(!DTU->hasPendingUpdates() && 3146 "Lost update of 'ChangedSinceLastAnalysisUpdate'?"); 3147 // Run the "external" analysis. 3148 return &FAM->getResult<AnalysisT>(*F); 3149 } 3150 ChangedSinceLastAnalysisUpdate = false; 3151 3152 auto PA = getPreservedAnalysis(); 3153 // TODO: This shouldn't be needed once 'getPreservedAnalysis' reports BPI/BFI 3154 // as preserved. 3155 PA.preserve<BranchProbabilityAnalysis>(); 3156 PA.preserve<BlockFrequencyAnalysis>(); 3157 // Report everything except explicitly preserved as invalid. 3158 FAM->invalidate(*F, PA); 3159 // Update DT/PDT. 3160 DTU->flush(); 3161 // Make sure DT/PDT are valid before running "external" analysis. 3162 assert(DTU->getDomTree().verify(DominatorTree::VerificationLevel::Fast)); 3163 assert((!DTU->hasPostDomTree() || 3164 DTU->getPostDomTree().verify( 3165 PostDominatorTree::VerificationLevel::Fast))); 3166 // Run the "external" analysis. 3167 auto *Result = &FAM->getResult<AnalysisT>(*F); 3168 // Update analysis JumpThreading depends on and not explicitly preserved. 3169 TTI = &FAM->getResult<TargetIRAnalysis>(*F); 3170 TLI = &FAM->getResult<TargetLibraryAnalysis>(*F); 3171 AA = &FAM->getResult<AAManager>(*F); 3172 3173 return Result; 3174 } 3175 3176 BranchProbabilityInfo *JumpThreadingPass::getBPI() { 3177 if (!BPI) { 3178 assert(FAM && "Can't create BPI without FunctionAnalysisManager"); 3179 BPI = FAM->getCachedResult<BranchProbabilityAnalysis>(*F); 3180 } 3181 return *BPI; 3182 } 3183 3184 BlockFrequencyInfo *JumpThreadingPass::getBFI() { 3185 if (!BFI) { 3186 assert(FAM && "Can't create BFI without FunctionAnalysisManager"); 3187 BFI = FAM->getCachedResult<BlockFrequencyAnalysis>(*F); 3188 } 3189 return *BFI; 3190 } 3191 3192 // Important note on validity of BPI/BFI. JumpThreading tries to preserve 3193 // BPI/BFI as it goes. Thus if cached instance exists it will be updated. 3194 // Otherwise, new instance of BPI/BFI is created (up to date by definition). 3195 BranchProbabilityInfo *JumpThreadingPass::getOrCreateBPI(bool Force) { 3196 auto *Res = getBPI(); 3197 if (Res) 3198 return Res; 3199 3200 if (Force) 3201 BPI = runExternalAnalysis<BranchProbabilityAnalysis>(); 3202 3203 return *BPI; 3204 } 3205 3206 BlockFrequencyInfo *JumpThreadingPass::getOrCreateBFI(bool Force) { 3207 auto *Res = getBFI(); 3208 if (Res) 3209 return Res; 3210 3211 if (Force) 3212 BFI = runExternalAnalysis<BlockFrequencyAnalysis>(); 3213 3214 return *BFI; 3215 } 3216