1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Jump Threading pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Scalar/JumpThreading.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/BlockFrequencyInfo.h" 23 #include "llvm/Analysis/BranchProbabilityInfo.h" 24 #include "llvm/Analysis/CFG.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/DomTreeUpdater.h" 27 #include "llvm/Analysis/GlobalsModRef.h" 28 #include "llvm/Analysis/GuardUtils.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/LazyValueInfo.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/CFG.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/ConstantRange.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/MDBuilder.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/PassManager.h" 53 #include "llvm/IR/PatternMatch.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/Use.h" 56 #include "llvm/IR/User.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/InitializePasses.h" 59 #include "llvm/Pass.h" 60 #include "llvm/Support/BlockFrequency.h" 61 #include "llvm/Support/BranchProbability.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include "llvm/Transforms/Scalar.h" 67 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 68 #include "llvm/Transforms/Utils/Cloning.h" 69 #include "llvm/Transforms/Utils/Local.h" 70 #include "llvm/Transforms/Utils/SSAUpdater.h" 71 #include "llvm/Transforms/Utils/ValueMapper.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <memory> 78 #include <utility> 79 80 using namespace llvm; 81 using namespace jumpthreading; 82 83 #define DEBUG_TYPE "jump-threading" 84 85 STATISTIC(NumThreads, "Number of jumps threaded"); 86 STATISTIC(NumFolds, "Number of terminators folded"); 87 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 88 89 static cl::opt<unsigned> 90 BBDuplicateThreshold("jump-threading-threshold", 91 cl::desc("Max block size to duplicate for jump threading"), 92 cl::init(6), cl::Hidden); 93 94 static cl::opt<unsigned> 95 ImplicationSearchThreshold( 96 "jump-threading-implication-search-threshold", 97 cl::desc("The number of predecessors to search for a stronger " 98 "condition to use to thread over a weaker condition"), 99 cl::init(3), cl::Hidden); 100 101 static cl::opt<bool> PrintLVIAfterJumpThreading( 102 "print-lvi-after-jump-threading", 103 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false), 104 cl::Hidden); 105 106 static cl::opt<bool> ThreadAcrossLoopHeaders( 107 "jump-threading-across-loop-headers", 108 cl::desc("Allow JumpThreading to thread across loop headers, for testing"), 109 cl::init(false), cl::Hidden); 110 111 112 namespace { 113 114 /// This pass performs 'jump threading', which looks at blocks that have 115 /// multiple predecessors and multiple successors. If one or more of the 116 /// predecessors of the block can be proven to always jump to one of the 117 /// successors, we forward the edge from the predecessor to the successor by 118 /// duplicating the contents of this block. 119 /// 120 /// An example of when this can occur is code like this: 121 /// 122 /// if () { ... 123 /// X = 4; 124 /// } 125 /// if (X < 3) { 126 /// 127 /// In this case, the unconditional branch at the end of the first if can be 128 /// revectored to the false side of the second if. 129 class JumpThreading : public FunctionPass { 130 JumpThreadingPass Impl; 131 132 public: 133 static char ID; // Pass identification 134 135 JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) { 136 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 137 } 138 139 bool runOnFunction(Function &F) override; 140 141 void getAnalysisUsage(AnalysisUsage &AU) const override { 142 AU.addRequired<DominatorTreeWrapperPass>(); 143 AU.addPreserved<DominatorTreeWrapperPass>(); 144 AU.addRequired<AAResultsWrapperPass>(); 145 AU.addRequired<LazyValueInfoWrapperPass>(); 146 AU.addPreserved<LazyValueInfoWrapperPass>(); 147 AU.addPreserved<GlobalsAAWrapperPass>(); 148 AU.addRequired<TargetLibraryInfoWrapperPass>(); 149 } 150 151 void releaseMemory() override { Impl.releaseMemory(); } 152 }; 153 154 } // end anonymous namespace 155 156 char JumpThreading::ID = 0; 157 158 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 159 "Jump Threading", false, false) 160 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 161 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 162 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 163 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 164 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 165 "Jump Threading", false, false) 166 167 // Public interface to the Jump Threading pass 168 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { 169 return new JumpThreading(Threshold); 170 } 171 172 JumpThreadingPass::JumpThreadingPass(int T) { 173 DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 174 } 175 176 // Update branch probability information according to conditional 177 // branch probability. This is usually made possible for cloned branches 178 // in inline instances by the context specific profile in the caller. 179 // For instance, 180 // 181 // [Block PredBB] 182 // [Branch PredBr] 183 // if (t) { 184 // Block A; 185 // } else { 186 // Block B; 187 // } 188 // 189 // [Block BB] 190 // cond = PN([true, %A], [..., %B]); // PHI node 191 // [Branch CondBr] 192 // if (cond) { 193 // ... // P(cond == true) = 1% 194 // } 195 // 196 // Here we know that when block A is taken, cond must be true, which means 197 // P(cond == true | A) = 1 198 // 199 // Given that P(cond == true) = P(cond == true | A) * P(A) + 200 // P(cond == true | B) * P(B) 201 // we get: 202 // P(cond == true ) = P(A) + P(cond == true | B) * P(B) 203 // 204 // which gives us: 205 // P(A) is less than P(cond == true), i.e. 206 // P(t == true) <= P(cond == true) 207 // 208 // In other words, if we know P(cond == true) is unlikely, we know 209 // that P(t == true) is also unlikely. 210 // 211 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) { 212 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 213 if (!CondBr) 214 return; 215 216 BranchProbability BP; 217 uint64_t TrueWeight, FalseWeight; 218 if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight)) 219 return; 220 221 // Returns the outgoing edge of the dominating predecessor block 222 // that leads to the PhiNode's incoming block: 223 auto GetPredOutEdge = 224 [](BasicBlock *IncomingBB, 225 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> { 226 auto *PredBB = IncomingBB; 227 auto *SuccBB = PhiBB; 228 SmallPtrSet<BasicBlock *, 16> Visited; 229 while (true) { 230 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 231 if (PredBr && PredBr->isConditional()) 232 return {PredBB, SuccBB}; 233 Visited.insert(PredBB); 234 auto *SinglePredBB = PredBB->getSinglePredecessor(); 235 if (!SinglePredBB) 236 return {nullptr, nullptr}; 237 238 // Stop searching when SinglePredBB has been visited. It means we see 239 // an unreachable loop. 240 if (Visited.count(SinglePredBB)) 241 return {nullptr, nullptr}; 242 243 SuccBB = PredBB; 244 PredBB = SinglePredBB; 245 } 246 }; 247 248 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 249 Value *PhiOpnd = PN->getIncomingValue(i); 250 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd); 251 252 if (!CI || !CI->getType()->isIntegerTy(1)) 253 continue; 254 255 BP = (CI->isOne() ? BranchProbability::getBranchProbability( 256 TrueWeight, TrueWeight + FalseWeight) 257 : BranchProbability::getBranchProbability( 258 FalseWeight, TrueWeight + FalseWeight)); 259 260 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB); 261 if (!PredOutEdge.first) 262 return; 263 264 BasicBlock *PredBB = PredOutEdge.first; 265 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 266 if (!PredBr) 267 return; 268 269 uint64_t PredTrueWeight, PredFalseWeight; 270 // FIXME: We currently only set the profile data when it is missing. 271 // With PGO, this can be used to refine even existing profile data with 272 // context information. This needs to be done after more performance 273 // testing. 274 if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight)) 275 continue; 276 277 // We can not infer anything useful when BP >= 50%, because BP is the 278 // upper bound probability value. 279 if (BP >= BranchProbability(50, 100)) 280 continue; 281 282 SmallVector<uint32_t, 2> Weights; 283 if (PredBr->getSuccessor(0) == PredOutEdge.second) { 284 Weights.push_back(BP.getNumerator()); 285 Weights.push_back(BP.getCompl().getNumerator()); 286 } else { 287 Weights.push_back(BP.getCompl().getNumerator()); 288 Weights.push_back(BP.getNumerator()); 289 } 290 PredBr->setMetadata(LLVMContext::MD_prof, 291 MDBuilder(PredBr->getParent()->getContext()) 292 .createBranchWeights(Weights)); 293 } 294 } 295 296 /// runOnFunction - Toplevel algorithm. 297 bool JumpThreading::runOnFunction(Function &F) { 298 if (skipFunction(F)) 299 return false; 300 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 301 auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 302 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 303 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 304 DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy); 305 std::unique_ptr<BlockFrequencyInfo> BFI; 306 std::unique_ptr<BranchProbabilityInfo> BPI; 307 if (F.hasProfileData()) { 308 LoopInfo LI{DominatorTree(F)}; 309 BPI.reset(new BranchProbabilityInfo(F, LI, TLI)); 310 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 311 } 312 313 bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, F.hasProfileData(), 314 std::move(BFI), std::move(BPI)); 315 if (PrintLVIAfterJumpThreading) { 316 dbgs() << "LVI for function '" << F.getName() << "':\n"; 317 LVI->printLVI(F, DTU.getDomTree(), dbgs()); 318 } 319 return Changed; 320 } 321 322 PreservedAnalyses JumpThreadingPass::run(Function &F, 323 FunctionAnalysisManager &AM) { 324 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 325 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 326 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 327 auto &AA = AM.getResult<AAManager>(F); 328 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 329 330 std::unique_ptr<BlockFrequencyInfo> BFI; 331 std::unique_ptr<BranchProbabilityInfo> BPI; 332 if (F.hasProfileData()) { 333 LoopInfo LI{DominatorTree(F)}; 334 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI)); 335 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 336 } 337 338 bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, F.hasProfileData(), 339 std::move(BFI), std::move(BPI)); 340 341 if (!Changed) 342 return PreservedAnalyses::all(); 343 PreservedAnalyses PA; 344 PA.preserve<GlobalsAA>(); 345 PA.preserve<DominatorTreeAnalysis>(); 346 PA.preserve<LazyValueAnalysis>(); 347 return PA; 348 } 349 350 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 351 LazyValueInfo *LVI_, AliasAnalysis *AA_, 352 DomTreeUpdater *DTU_, bool HasProfileData_, 353 std::unique_ptr<BlockFrequencyInfo> BFI_, 354 std::unique_ptr<BranchProbabilityInfo> BPI_) { 355 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 356 TLI = TLI_; 357 LVI = LVI_; 358 AA = AA_; 359 DTU = DTU_; 360 BFI.reset(); 361 BPI.reset(); 362 // When profile data is available, we need to update edge weights after 363 // successful jump threading, which requires both BPI and BFI being available. 364 HasProfileData = HasProfileData_; 365 auto *GuardDecl = F.getParent()->getFunction( 366 Intrinsic::getName(Intrinsic::experimental_guard)); 367 HasGuards = GuardDecl && !GuardDecl->use_empty(); 368 if (HasProfileData) { 369 BPI = std::move(BPI_); 370 BFI = std::move(BFI_); 371 } 372 373 // Reduce the number of instructions duplicated when optimizing strictly for 374 // size. 375 if (BBDuplicateThreshold.getNumOccurrences()) 376 BBDupThreshold = BBDuplicateThreshold; 377 else if (F.hasFnAttribute(Attribute::MinSize)) 378 BBDupThreshold = 3; 379 else 380 BBDupThreshold = DefaultBBDupThreshold; 381 382 // JumpThreading must not processes blocks unreachable from entry. It's a 383 // waste of compute time and can potentially lead to hangs. 384 SmallPtrSet<BasicBlock *, 16> Unreachable; 385 assert(DTU && "DTU isn't passed into JumpThreading before using it."); 386 assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed."); 387 DominatorTree &DT = DTU->getDomTree(); 388 for (auto &BB : F) 389 if (!DT.isReachableFromEntry(&BB)) 390 Unreachable.insert(&BB); 391 392 if (!ThreadAcrossLoopHeaders) 393 FindLoopHeaders(F); 394 395 bool EverChanged = false; 396 bool Changed; 397 do { 398 Changed = false; 399 for (auto &BB : F) { 400 if (Unreachable.count(&BB)) 401 continue; 402 while (ProcessBlock(&BB)) // Thread all of the branches we can over BB. 403 Changed = true; 404 405 // Jump threading may have introduced redundant debug values into BB 406 // which should be removed. 407 if (Changed) 408 RemoveRedundantDbgInstrs(&BB); 409 410 // Stop processing BB if it's the entry or is now deleted. The following 411 // routines attempt to eliminate BB and locating a suitable replacement 412 // for the entry is non-trivial. 413 if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB)) 414 continue; 415 416 if (pred_empty(&BB)) { 417 // When ProcessBlock makes BB unreachable it doesn't bother to fix up 418 // the instructions in it. We must remove BB to prevent invalid IR. 419 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName() 420 << "' with terminator: " << *BB.getTerminator() 421 << '\n'); 422 LoopHeaders.erase(&BB); 423 LVI->eraseBlock(&BB); 424 DeleteDeadBlock(&BB, DTU); 425 Changed = true; 426 continue; 427 } 428 429 // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB 430 // is "almost empty", we attempt to merge BB with its sole successor. 431 auto *BI = dyn_cast<BranchInst>(BB.getTerminator()); 432 if (BI && BI->isUnconditional()) { 433 BasicBlock *Succ = BI->getSuccessor(0); 434 if ( 435 // The terminator must be the only non-phi instruction in BB. 436 BB.getFirstNonPHIOrDbg()->isTerminator() && 437 // Don't alter Loop headers and latches to ensure another pass can 438 // detect and transform nested loops later. 439 !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) && 440 TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) { 441 RemoveRedundantDbgInstrs(Succ); 442 // BB is valid for cleanup here because we passed in DTU. F remains 443 // BB's parent until a DTU->getDomTree() event. 444 LVI->eraseBlock(&BB); 445 Changed = true; 446 } 447 } 448 } 449 EverChanged |= Changed; 450 } while (Changed); 451 452 LoopHeaders.clear(); 453 return EverChanged; 454 } 455 456 // Replace uses of Cond with ToVal when safe to do so. If all uses are 457 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond 458 // because we may incorrectly replace uses when guards/assumes are uses of 459 // of `Cond` and we used the guards/assume to reason about the `Cond` value 460 // at the end of block. RAUW unconditionally replaces all uses 461 // including the guards/assumes themselves and the uses before the 462 // guard/assume. 463 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) { 464 assert(Cond->getType() == ToVal->getType()); 465 auto *BB = Cond->getParent(); 466 // We can unconditionally replace all uses in non-local blocks (i.e. uses 467 // strictly dominated by BB), since LVI information is true from the 468 // terminator of BB. 469 replaceNonLocalUsesWith(Cond, ToVal); 470 for (Instruction &I : reverse(*BB)) { 471 // Reached the Cond whose uses we are trying to replace, so there are no 472 // more uses. 473 if (&I == Cond) 474 break; 475 // We only replace uses in instructions that are guaranteed to reach the end 476 // of BB, where we know Cond is ToVal. 477 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 478 break; 479 I.replaceUsesOfWith(Cond, ToVal); 480 } 481 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) 482 Cond->eraseFromParent(); 483 } 484 485 /// Return the cost of duplicating a piece of this block from first non-phi 486 /// and before StopAt instruction to thread across it. Stop scanning the block 487 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 488 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB, 489 Instruction *StopAt, 490 unsigned Threshold) { 491 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 492 /// Ignore PHI nodes, these will be flattened when duplication happens. 493 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 494 495 // FIXME: THREADING will delete values that are just used to compute the 496 // branch, so they shouldn't count against the duplication cost. 497 498 unsigned Bonus = 0; 499 if (BB->getTerminator() == StopAt) { 500 // Threading through a switch statement is particularly profitable. If this 501 // block ends in a switch, decrease its cost to make it more likely to 502 // happen. 503 if (isa<SwitchInst>(StopAt)) 504 Bonus = 6; 505 506 // The same holds for indirect branches, but slightly more so. 507 if (isa<IndirectBrInst>(StopAt)) 508 Bonus = 8; 509 } 510 511 // Bump the threshold up so the early exit from the loop doesn't skip the 512 // terminator-based Size adjustment at the end. 513 Threshold += Bonus; 514 515 // Sum up the cost of each instruction until we get to the terminator. Don't 516 // include the terminator because the copy won't include it. 517 unsigned Size = 0; 518 for (; &*I != StopAt; ++I) { 519 520 // Stop scanning the block if we've reached the threshold. 521 if (Size > Threshold) 522 return Size; 523 524 // Debugger intrinsics don't incur code size. 525 if (isa<DbgInfoIntrinsic>(I)) continue; 526 527 // If this is a pointer->pointer bitcast, it is free. 528 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 529 continue; 530 531 // Bail out if this instruction gives back a token type, it is not possible 532 // to duplicate it if it is used outside this BB. 533 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 534 return ~0U; 535 536 // All other instructions count for at least one unit. 537 ++Size; 538 539 // Calls are more expensive. If they are non-intrinsic calls, we model them 540 // as having cost of 4. If they are a non-vector intrinsic, we model them 541 // as having cost of 2 total, and if they are a vector intrinsic, we model 542 // them as having cost 1. 543 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 544 if (CI->cannotDuplicate() || CI->isConvergent()) 545 // Blocks with NoDuplicate are modelled as having infinite cost, so they 546 // are never duplicated. 547 return ~0U; 548 else if (!isa<IntrinsicInst>(CI)) 549 Size += 3; 550 else if (!CI->getType()->isVectorTy()) 551 Size += 1; 552 } 553 } 554 555 return Size > Bonus ? Size - Bonus : 0; 556 } 557 558 /// FindLoopHeaders - We do not want jump threading to turn proper loop 559 /// structures into irreducible loops. Doing this breaks up the loop nesting 560 /// hierarchy and pessimizes later transformations. To prevent this from 561 /// happening, we first have to find the loop headers. Here we approximate this 562 /// by finding targets of backedges in the CFG. 563 /// 564 /// Note that there definitely are cases when we want to allow threading of 565 /// edges across a loop header. For example, threading a jump from outside the 566 /// loop (the preheader) to an exit block of the loop is definitely profitable. 567 /// It is also almost always profitable to thread backedges from within the loop 568 /// to exit blocks, and is often profitable to thread backedges to other blocks 569 /// within the loop (forming a nested loop). This simple analysis is not rich 570 /// enough to track all of these properties and keep it up-to-date as the CFG 571 /// mutates, so we don't allow any of these transformations. 572 void JumpThreadingPass::FindLoopHeaders(Function &F) { 573 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 574 FindFunctionBackedges(F, Edges); 575 576 for (const auto &Edge : Edges) 577 LoopHeaders.insert(Edge.second); 578 } 579 580 /// getKnownConstant - Helper method to determine if we can thread over a 581 /// terminator with the given value as its condition, and if so what value to 582 /// use for that. What kind of value this is depends on whether we want an 583 /// integer or a block address, but an undef is always accepted. 584 /// Returns null if Val is null or not an appropriate constant. 585 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 586 if (!Val) 587 return nullptr; 588 589 // Undef is "known" enough. 590 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 591 return U; 592 593 if (Preference == WantBlockAddress) 594 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 595 596 return dyn_cast<ConstantInt>(Val); 597 } 598 599 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 600 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 601 /// in any of our predecessors. If so, return the known list of value and pred 602 /// BB in the result vector. 603 /// 604 /// This returns true if there were any known values. 605 bool JumpThreadingPass::ComputeValueKnownInPredecessorsImpl( 606 Value *V, BasicBlock *BB, PredValueInfo &Result, 607 ConstantPreference Preference, DenseSet<Value *> &RecursionSet, 608 Instruction *CxtI) { 609 // This method walks up use-def chains recursively. Because of this, we could 610 // get into an infinite loop going around loops in the use-def chain. To 611 // prevent this, keep track of what (value, block) pairs we've already visited 612 // and terminate the search if we loop back to them 613 if (!RecursionSet.insert(V).second) 614 return false; 615 616 // If V is a constant, then it is known in all predecessors. 617 if (Constant *KC = getKnownConstant(V, Preference)) { 618 for (BasicBlock *Pred : predecessors(BB)) 619 Result.push_back(std::make_pair(KC, Pred)); 620 621 return !Result.empty(); 622 } 623 624 // If V is a non-instruction value, or an instruction in a different block, 625 // then it can't be derived from a PHI. 626 Instruction *I = dyn_cast<Instruction>(V); 627 if (!I || I->getParent() != BB) { 628 629 // Okay, if this is a live-in value, see if it has a known value at the end 630 // of any of our predecessors. 631 // 632 // FIXME: This should be an edge property, not a block end property. 633 /// TODO: Per PR2563, we could infer value range information about a 634 /// predecessor based on its terminator. 635 // 636 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 637 // "I" is a non-local compare-with-a-constant instruction. This would be 638 // able to handle value inequalities better, for example if the compare is 639 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 640 // Perhaps getConstantOnEdge should be smart enough to do this? 641 for (BasicBlock *P : predecessors(BB)) { 642 // If the value is known by LazyValueInfo to be a constant in a 643 // predecessor, use that information to try to thread this block. 644 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 645 if (Constant *KC = getKnownConstant(PredCst, Preference)) 646 Result.push_back(std::make_pair(KC, P)); 647 } 648 649 return !Result.empty(); 650 } 651 652 /// If I is a PHI node, then we know the incoming values for any constants. 653 if (PHINode *PN = dyn_cast<PHINode>(I)) { 654 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 655 Value *InVal = PN->getIncomingValue(i); 656 if (Constant *KC = getKnownConstant(InVal, Preference)) { 657 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 658 } else { 659 Constant *CI = LVI->getConstantOnEdge(InVal, 660 PN->getIncomingBlock(i), 661 BB, CxtI); 662 if (Constant *KC = getKnownConstant(CI, Preference)) 663 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 664 } 665 } 666 667 return !Result.empty(); 668 } 669 670 // Handle Cast instructions. Only see through Cast when the source operand is 671 // PHI or Cmp to save the compilation time. 672 if (CastInst *CI = dyn_cast<CastInst>(I)) { 673 Value *Source = CI->getOperand(0); 674 if (!isa<PHINode>(Source) && !isa<CmpInst>(Source)) 675 return false; 676 ComputeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, 677 RecursionSet, CxtI); 678 if (Result.empty()) 679 return false; 680 681 // Convert the known values. 682 for (auto &R : Result) 683 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 684 685 return true; 686 } 687 688 // Handle some boolean conditions. 689 if (I->getType()->getPrimitiveSizeInBits() == 1) { 690 assert(Preference == WantInteger && "One-bit non-integer type?"); 691 // X | true -> true 692 // X & false -> false 693 if (I->getOpcode() == Instruction::Or || 694 I->getOpcode() == Instruction::And) { 695 PredValueInfoTy LHSVals, RHSVals; 696 697 ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, 698 WantInteger, RecursionSet, CxtI); 699 ComputeValueKnownInPredecessorsImpl(I->getOperand(1), BB, RHSVals, 700 WantInteger, RecursionSet, CxtI); 701 702 if (LHSVals.empty() && RHSVals.empty()) 703 return false; 704 705 ConstantInt *InterestingVal; 706 if (I->getOpcode() == Instruction::Or) 707 InterestingVal = ConstantInt::getTrue(I->getContext()); 708 else 709 InterestingVal = ConstantInt::getFalse(I->getContext()); 710 711 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 712 713 // Scan for the sentinel. If we find an undef, force it to the 714 // interesting value: x|undef -> true and x&undef -> false. 715 for (const auto &LHSVal : LHSVals) 716 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 717 Result.emplace_back(InterestingVal, LHSVal.second); 718 LHSKnownBBs.insert(LHSVal.second); 719 } 720 for (const auto &RHSVal : RHSVals) 721 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 722 // If we already inferred a value for this block on the LHS, don't 723 // re-add it. 724 if (!LHSKnownBBs.count(RHSVal.second)) 725 Result.emplace_back(InterestingVal, RHSVal.second); 726 } 727 728 return !Result.empty(); 729 } 730 731 // Handle the NOT form of XOR. 732 if (I->getOpcode() == Instruction::Xor && 733 isa<ConstantInt>(I->getOperand(1)) && 734 cast<ConstantInt>(I->getOperand(1))->isOne()) { 735 ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result, 736 WantInteger, RecursionSet, CxtI); 737 if (Result.empty()) 738 return false; 739 740 // Invert the known values. 741 for (auto &R : Result) 742 R.first = ConstantExpr::getNot(R.first); 743 744 return true; 745 } 746 747 // Try to simplify some other binary operator values. 748 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 749 assert(Preference != WantBlockAddress 750 && "A binary operator creating a block address?"); 751 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 752 PredValueInfoTy LHSVals; 753 ComputeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals, 754 WantInteger, RecursionSet, CxtI); 755 756 // Try to use constant folding to simplify the binary operator. 757 for (const auto &LHSVal : LHSVals) { 758 Constant *V = LHSVal.first; 759 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 760 761 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 762 Result.push_back(std::make_pair(KC, LHSVal.second)); 763 } 764 } 765 766 return !Result.empty(); 767 } 768 769 // Handle compare with phi operand, where the PHI is defined in this block. 770 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 771 assert(Preference == WantInteger && "Compares only produce integers"); 772 Type *CmpType = Cmp->getType(); 773 Value *CmpLHS = Cmp->getOperand(0); 774 Value *CmpRHS = Cmp->getOperand(1); 775 CmpInst::Predicate Pred = Cmp->getPredicate(); 776 777 PHINode *PN = dyn_cast<PHINode>(CmpLHS); 778 if (!PN) 779 PN = dyn_cast<PHINode>(CmpRHS); 780 if (PN && PN->getParent() == BB) { 781 const DataLayout &DL = PN->getModule()->getDataLayout(); 782 // We can do this simplification if any comparisons fold to true or false. 783 // See if any do. 784 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 785 BasicBlock *PredBB = PN->getIncomingBlock(i); 786 Value *LHS, *RHS; 787 if (PN == CmpLHS) { 788 LHS = PN->getIncomingValue(i); 789 RHS = CmpRHS->DoPHITranslation(BB, PredBB); 790 } else { 791 LHS = CmpLHS->DoPHITranslation(BB, PredBB); 792 RHS = PN->getIncomingValue(i); 793 } 794 Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL}); 795 if (!Res) { 796 if (!isa<Constant>(RHS)) 797 continue; 798 799 // getPredicateOnEdge call will make no sense if LHS is defined in BB. 800 auto LHSInst = dyn_cast<Instruction>(LHS); 801 if (LHSInst && LHSInst->getParent() == BB) 802 continue; 803 804 LazyValueInfo::Tristate 805 ResT = LVI->getPredicateOnEdge(Pred, LHS, 806 cast<Constant>(RHS), PredBB, BB, 807 CxtI ? CxtI : Cmp); 808 if (ResT == LazyValueInfo::Unknown) 809 continue; 810 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 811 } 812 813 if (Constant *KC = getKnownConstant(Res, WantInteger)) 814 Result.push_back(std::make_pair(KC, PredBB)); 815 } 816 817 return !Result.empty(); 818 } 819 820 // If comparing a live-in value against a constant, see if we know the 821 // live-in value on any predecessors. 822 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) { 823 Constant *CmpConst = cast<Constant>(CmpRHS); 824 825 if (!isa<Instruction>(CmpLHS) || 826 cast<Instruction>(CmpLHS)->getParent() != BB) { 827 for (BasicBlock *P : predecessors(BB)) { 828 // If the value is known by LazyValueInfo to be a constant in a 829 // predecessor, use that information to try to thread this block. 830 LazyValueInfo::Tristate Res = 831 LVI->getPredicateOnEdge(Pred, CmpLHS, 832 CmpConst, P, BB, CxtI ? CxtI : Cmp); 833 if (Res == LazyValueInfo::Unknown) 834 continue; 835 836 Constant *ResC = ConstantInt::get(CmpType, Res); 837 Result.push_back(std::make_pair(ResC, P)); 838 } 839 840 return !Result.empty(); 841 } 842 843 // InstCombine can fold some forms of constant range checks into 844 // (icmp (add (x, C1)), C2). See if we have we have such a thing with 845 // x as a live-in. 846 { 847 using namespace PatternMatch; 848 849 Value *AddLHS; 850 ConstantInt *AddConst; 851 if (isa<ConstantInt>(CmpConst) && 852 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { 853 if (!isa<Instruction>(AddLHS) || 854 cast<Instruction>(AddLHS)->getParent() != BB) { 855 for (BasicBlock *P : predecessors(BB)) { 856 // If the value is known by LazyValueInfo to be a ConstantRange in 857 // a predecessor, use that information to try to thread this 858 // block. 859 ConstantRange CR = LVI->getConstantRangeOnEdge( 860 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS)); 861 // Propagate the range through the addition. 862 CR = CR.add(AddConst->getValue()); 863 864 // Get the range where the compare returns true. 865 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( 866 Pred, cast<ConstantInt>(CmpConst)->getValue()); 867 868 Constant *ResC; 869 if (CmpRange.contains(CR)) 870 ResC = ConstantInt::getTrue(CmpType); 871 else if (CmpRange.inverse().contains(CR)) 872 ResC = ConstantInt::getFalse(CmpType); 873 else 874 continue; 875 876 Result.push_back(std::make_pair(ResC, P)); 877 } 878 879 return !Result.empty(); 880 } 881 } 882 } 883 884 // Try to find a constant value for the LHS of a comparison, 885 // and evaluate it statically if we can. 886 PredValueInfoTy LHSVals; 887 ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, 888 WantInteger, RecursionSet, CxtI); 889 890 for (const auto &LHSVal : LHSVals) { 891 Constant *V = LHSVal.first; 892 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst); 893 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 894 Result.push_back(std::make_pair(KC, LHSVal.second)); 895 } 896 897 return !Result.empty(); 898 } 899 } 900 901 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 902 // Handle select instructions where at least one operand is a known constant 903 // and we can figure out the condition value for any predecessor block. 904 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 905 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 906 PredValueInfoTy Conds; 907 if ((TrueVal || FalseVal) && 908 ComputeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds, 909 WantInteger, RecursionSet, CxtI)) { 910 for (auto &C : Conds) { 911 Constant *Cond = C.first; 912 913 // Figure out what value to use for the condition. 914 bool KnownCond; 915 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 916 // A known boolean. 917 KnownCond = CI->isOne(); 918 } else { 919 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 920 // Either operand will do, so be sure to pick the one that's a known 921 // constant. 922 // FIXME: Do this more cleverly if both values are known constants? 923 KnownCond = (TrueVal != nullptr); 924 } 925 926 // See if the select has a known constant value for this predecessor. 927 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 928 Result.push_back(std::make_pair(Val, C.second)); 929 } 930 931 return !Result.empty(); 932 } 933 } 934 935 // If all else fails, see if LVI can figure out a constant value for us. 936 Constant *CI = LVI->getConstant(V, BB, CxtI); 937 if (Constant *KC = getKnownConstant(CI, Preference)) { 938 for (BasicBlock *Pred : predecessors(BB)) 939 Result.push_back(std::make_pair(KC, Pred)); 940 } 941 942 return !Result.empty(); 943 } 944 945 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 946 /// in an undefined jump, decide which block is best to revector to. 947 /// 948 /// Since we can pick an arbitrary destination, we pick the successor with the 949 /// fewest predecessors. This should reduce the in-degree of the others. 950 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 951 Instruction *BBTerm = BB->getTerminator(); 952 unsigned MinSucc = 0; 953 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 954 // Compute the successor with the minimum number of predecessors. 955 unsigned MinNumPreds = pred_size(TestBB); 956 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 957 TestBB = BBTerm->getSuccessor(i); 958 unsigned NumPreds = pred_size(TestBB); 959 if (NumPreds < MinNumPreds) { 960 MinSucc = i; 961 MinNumPreds = NumPreds; 962 } 963 } 964 965 return MinSucc; 966 } 967 968 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 969 if (!BB->hasAddressTaken()) return false; 970 971 // If the block has its address taken, it may be a tree of dead constants 972 // hanging off of it. These shouldn't keep the block alive. 973 BlockAddress *BA = BlockAddress::get(BB); 974 BA->removeDeadConstantUsers(); 975 return !BA->use_empty(); 976 } 977 978 /// ProcessBlock - If there are any predecessors whose control can be threaded 979 /// through to a successor, transform them now. 980 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) { 981 // If the block is trivially dead, just return and let the caller nuke it. 982 // This simplifies other transformations. 983 if (DTU->isBBPendingDeletion(BB) || 984 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock())) 985 return false; 986 987 // If this block has a single predecessor, and if that pred has a single 988 // successor, merge the blocks. This encourages recursive jump threading 989 // because now the condition in this block can be threaded through 990 // predecessors of our predecessor block. 991 if (MaybeMergeBasicBlockIntoOnlyPred(BB)) 992 return true; 993 994 if (TryToUnfoldSelectInCurrBB(BB)) 995 return true; 996 997 // Look if we can propagate guards to predecessors. 998 if (HasGuards && ProcessGuards(BB)) 999 return true; 1000 1001 // What kind of constant we're looking for. 1002 ConstantPreference Preference = WantInteger; 1003 1004 // Look to see if the terminator is a conditional branch, switch or indirect 1005 // branch, if not we can't thread it. 1006 Value *Condition; 1007 Instruction *Terminator = BB->getTerminator(); 1008 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 1009 // Can't thread an unconditional jump. 1010 if (BI->isUnconditional()) return false; 1011 Condition = BI->getCondition(); 1012 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 1013 Condition = SI->getCondition(); 1014 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 1015 // Can't thread indirect branch with no successors. 1016 if (IB->getNumSuccessors() == 0) return false; 1017 Condition = IB->getAddress()->stripPointerCasts(); 1018 Preference = WantBlockAddress; 1019 } else { 1020 return false; // Must be an invoke or callbr. 1021 } 1022 1023 // Run constant folding to see if we can reduce the condition to a simple 1024 // constant. 1025 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 1026 Value *SimpleVal = 1027 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 1028 if (SimpleVal) { 1029 I->replaceAllUsesWith(SimpleVal); 1030 if (isInstructionTriviallyDead(I, TLI)) 1031 I->eraseFromParent(); 1032 Condition = SimpleVal; 1033 } 1034 } 1035 1036 // If the terminator is branching on an undef, we can pick any of the 1037 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 1038 if (isa<UndefValue>(Condition)) { 1039 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 1040 std::vector<DominatorTree::UpdateType> Updates; 1041 1042 // Fold the branch/switch. 1043 Instruction *BBTerm = BB->getTerminator(); 1044 Updates.reserve(BBTerm->getNumSuccessors()); 1045 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1046 if (i == BestSucc) continue; 1047 BasicBlock *Succ = BBTerm->getSuccessor(i); 1048 Succ->removePredecessor(BB, true); 1049 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1050 } 1051 1052 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1053 << "' folding undef terminator: " << *BBTerm << '\n'); 1054 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 1055 BBTerm->eraseFromParent(); 1056 DTU->applyUpdatesPermissive(Updates); 1057 return true; 1058 } 1059 1060 // If the terminator of this block is branching on a constant, simplify the 1061 // terminator to an unconditional branch. This can occur due to threading in 1062 // other blocks. 1063 if (getKnownConstant(Condition, Preference)) { 1064 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1065 << "' folding terminator: " << *BB->getTerminator() 1066 << '\n'); 1067 ++NumFolds; 1068 ConstantFoldTerminator(BB, true, nullptr, DTU); 1069 return true; 1070 } 1071 1072 Instruction *CondInst = dyn_cast<Instruction>(Condition); 1073 1074 // All the rest of our checks depend on the condition being an instruction. 1075 if (!CondInst) { 1076 // FIXME: Unify this with code below. 1077 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 1078 return true; 1079 return false; 1080 } 1081 1082 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 1083 // If we're branching on a conditional, LVI might be able to determine 1084 // it's value at the branch instruction. We only handle comparisons 1085 // against a constant at this time. 1086 // TODO: This should be extended to handle switches as well. 1087 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1088 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 1089 if (CondBr && CondConst) { 1090 // We should have returned as soon as we turn a conditional branch to 1091 // unconditional. Because its no longer interesting as far as jump 1092 // threading is concerned. 1093 assert(CondBr->isConditional() && "Threading on unconditional terminator"); 1094 1095 LazyValueInfo::Tristate Ret = 1096 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 1097 CondConst, CondBr); 1098 if (Ret != LazyValueInfo::Unknown) { 1099 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 1100 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 1101 BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove); 1102 ToRemoveSucc->removePredecessor(BB, true); 1103 BranchInst *UncondBr = 1104 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 1105 UncondBr->setDebugLoc(CondBr->getDebugLoc()); 1106 CondBr->eraseFromParent(); 1107 if (CondCmp->use_empty()) 1108 CondCmp->eraseFromParent(); 1109 // We can safely replace *some* uses of the CondInst if it has 1110 // exactly one value as returned by LVI. RAUW is incorrect in the 1111 // presence of guards and assumes, that have the `Cond` as the use. This 1112 // is because we use the guards/assume to reason about the `Cond` value 1113 // at the end of block, but RAUW unconditionally replaces all uses 1114 // including the guards/assumes themselves and the uses before the 1115 // guard/assume. 1116 else if (CondCmp->getParent() == BB) { 1117 auto *CI = Ret == LazyValueInfo::True ? 1118 ConstantInt::getTrue(CondCmp->getType()) : 1119 ConstantInt::getFalse(CondCmp->getType()); 1120 ReplaceFoldableUses(CondCmp, CI); 1121 } 1122 DTU->applyUpdatesPermissive( 1123 {{DominatorTree::Delete, BB, ToRemoveSucc}}); 1124 return true; 1125 } 1126 1127 // We did not manage to simplify this branch, try to see whether 1128 // CondCmp depends on a known phi-select pattern. 1129 if (TryToUnfoldSelect(CondCmp, BB)) 1130 return true; 1131 } 1132 } 1133 1134 if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 1135 if (TryToUnfoldSelect(SI, BB)) 1136 return true; 1137 1138 // Check for some cases that are worth simplifying. Right now we want to look 1139 // for loads that are used by a switch or by the condition for the branch. If 1140 // we see one, check to see if it's partially redundant. If so, insert a PHI 1141 // which can then be used to thread the values. 1142 Value *SimplifyValue = CondInst; 1143 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 1144 if (isa<Constant>(CondCmp->getOperand(1))) 1145 SimplifyValue = CondCmp->getOperand(0); 1146 1147 // TODO: There are other places where load PRE would be profitable, such as 1148 // more complex comparisons. 1149 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue)) 1150 if (SimplifyPartiallyRedundantLoad(LoadI)) 1151 return true; 1152 1153 // Before threading, try to propagate profile data backwards: 1154 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1155 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1156 updatePredecessorProfileMetadata(PN, BB); 1157 1158 // Handle a variety of cases where we are branching on something derived from 1159 // a PHI node in the current block. If we can prove that any predecessors 1160 // compute a predictable value based on a PHI node, thread those predecessors. 1161 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 1162 return true; 1163 1164 // If this is an otherwise-unfoldable branch on a phi node in the current 1165 // block, see if we can simplify. 1166 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1167 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1168 return ProcessBranchOnPHI(PN); 1169 1170 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 1171 if (CondInst->getOpcode() == Instruction::Xor && 1172 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1173 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 1174 1175 // Search for a stronger dominating condition that can be used to simplify a 1176 // conditional branch leaving BB. 1177 if (ProcessImpliedCondition(BB)) 1178 return true; 1179 1180 return false; 1181 } 1182 1183 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) { 1184 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1185 if (!BI || !BI->isConditional()) 1186 return false; 1187 1188 Value *Cond = BI->getCondition(); 1189 BasicBlock *CurrentBB = BB; 1190 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 1191 unsigned Iter = 0; 1192 1193 auto &DL = BB->getModule()->getDataLayout(); 1194 1195 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 1196 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 1197 if (!PBI || !PBI->isConditional()) 1198 return false; 1199 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 1200 return false; 1201 1202 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; 1203 Optional<bool> Implication = 1204 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); 1205 if (Implication) { 1206 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1); 1207 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0); 1208 RemoveSucc->removePredecessor(BB); 1209 BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI); 1210 UncondBI->setDebugLoc(BI->getDebugLoc()); 1211 BI->eraseFromParent(); 1212 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}}); 1213 return true; 1214 } 1215 CurrentBB = CurrentPred; 1216 CurrentPred = CurrentBB->getSinglePredecessor(); 1217 } 1218 1219 return false; 1220 } 1221 1222 /// Return true if Op is an instruction defined in the given block. 1223 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { 1224 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1225 if (OpInst->getParent() == BB) 1226 return true; 1227 return false; 1228 } 1229 1230 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially 1231 /// redundant load instruction, eliminate it by replacing it with a PHI node. 1232 /// This is an important optimization that encourages jump threading, and needs 1233 /// to be run interlaced with other jump threading tasks. 1234 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) { 1235 // Don't hack volatile and ordered loads. 1236 if (!LoadI->isUnordered()) return false; 1237 1238 // If the load is defined in a block with exactly one predecessor, it can't be 1239 // partially redundant. 1240 BasicBlock *LoadBB = LoadI->getParent(); 1241 if (LoadBB->getSinglePredecessor()) 1242 return false; 1243 1244 // If the load is defined in an EH pad, it can't be partially redundant, 1245 // because the edges between the invoke and the EH pad cannot have other 1246 // instructions between them. 1247 if (LoadBB->isEHPad()) 1248 return false; 1249 1250 Value *LoadedPtr = LoadI->getOperand(0); 1251 1252 // If the loaded operand is defined in the LoadBB and its not a phi, 1253 // it can't be available in predecessors. 1254 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) 1255 return false; 1256 1257 // Scan a few instructions up from the load, to see if it is obviously live at 1258 // the entry to its block. 1259 BasicBlock::iterator BBIt(LoadI); 1260 bool IsLoadCSE; 1261 if (Value *AvailableVal = FindAvailableLoadedValue( 1262 LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1263 // If the value of the load is locally available within the block, just use 1264 // it. This frequently occurs for reg2mem'd allocas. 1265 1266 if (IsLoadCSE) { 1267 LoadInst *NLoadI = cast<LoadInst>(AvailableVal); 1268 combineMetadataForCSE(NLoadI, LoadI, false); 1269 }; 1270 1271 // If the returned value is the load itself, replace with an undef. This can 1272 // only happen in dead loops. 1273 if (AvailableVal == LoadI) 1274 AvailableVal = UndefValue::get(LoadI->getType()); 1275 if (AvailableVal->getType() != LoadI->getType()) 1276 AvailableVal = CastInst::CreateBitOrPointerCast( 1277 AvailableVal, LoadI->getType(), "", LoadI); 1278 LoadI->replaceAllUsesWith(AvailableVal); 1279 LoadI->eraseFromParent(); 1280 return true; 1281 } 1282 1283 // Otherwise, if we scanned the whole block and got to the top of the block, 1284 // we know the block is locally transparent to the load. If not, something 1285 // might clobber its value. 1286 if (BBIt != LoadBB->begin()) 1287 return false; 1288 1289 // If all of the loads and stores that feed the value have the same AA tags, 1290 // then we can propagate them onto any newly inserted loads. 1291 AAMDNodes AATags; 1292 LoadI->getAAMetadata(AATags); 1293 1294 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1295 1296 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>; 1297 1298 AvailablePredsTy AvailablePreds; 1299 BasicBlock *OneUnavailablePred = nullptr; 1300 SmallVector<LoadInst*, 8> CSELoads; 1301 1302 // If we got here, the loaded value is transparent through to the start of the 1303 // block. Check to see if it is available in any of the predecessor blocks. 1304 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1305 // If we already scanned this predecessor, skip it. 1306 if (!PredsScanned.insert(PredBB).second) 1307 continue; 1308 1309 BBIt = PredBB->end(); 1310 unsigned NumScanedInst = 0; 1311 Value *PredAvailable = nullptr; 1312 // NOTE: We don't CSE load that is volatile or anything stronger than 1313 // unordered, that should have been checked when we entered the function. 1314 assert(LoadI->isUnordered() && 1315 "Attempting to CSE volatile or atomic loads"); 1316 // If this is a load on a phi pointer, phi-translate it and search 1317 // for available load/store to the pointer in predecessors. 1318 Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB); 1319 PredAvailable = FindAvailablePtrLoadStore( 1320 Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt, 1321 DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst); 1322 1323 // If PredBB has a single predecessor, continue scanning through the 1324 // single predecessor. 1325 BasicBlock *SinglePredBB = PredBB; 1326 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1327 NumScanedInst < DefMaxInstsToScan) { 1328 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1329 if (SinglePredBB) { 1330 BBIt = SinglePredBB->end(); 1331 PredAvailable = FindAvailablePtrLoadStore( 1332 Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt, 1333 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE, 1334 &NumScanedInst); 1335 } 1336 } 1337 1338 if (!PredAvailable) { 1339 OneUnavailablePred = PredBB; 1340 continue; 1341 } 1342 1343 if (IsLoadCSE) 1344 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1345 1346 // If so, this load is partially redundant. Remember this info so that we 1347 // can create a PHI node. 1348 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 1349 } 1350 1351 // If the loaded value isn't available in any predecessor, it isn't partially 1352 // redundant. 1353 if (AvailablePreds.empty()) return false; 1354 1355 // Okay, the loaded value is available in at least one (and maybe all!) 1356 // predecessors. If the value is unavailable in more than one unique 1357 // predecessor, we want to insert a merge block for those common predecessors. 1358 // This ensures that we only have to insert one reload, thus not increasing 1359 // code size. 1360 BasicBlock *UnavailablePred = nullptr; 1361 1362 // If the value is unavailable in one of predecessors, we will end up 1363 // inserting a new instruction into them. It is only valid if all the 1364 // instructions before LoadI are guaranteed to pass execution to its 1365 // successor, or if LoadI is safe to speculate. 1366 // TODO: If this logic becomes more complex, and we will perform PRE insertion 1367 // farther than to a predecessor, we need to reuse the code from GVN's PRE. 1368 // It requires domination tree analysis, so for this simple case it is an 1369 // overkill. 1370 if (PredsScanned.size() != AvailablePreds.size() && 1371 !isSafeToSpeculativelyExecute(LoadI)) 1372 for (auto I = LoadBB->begin(); &*I != LoadI; ++I) 1373 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 1374 return false; 1375 1376 // If there is exactly one predecessor where the value is unavailable, the 1377 // already computed 'OneUnavailablePred' block is it. If it ends in an 1378 // unconditional branch, we know that it isn't a critical edge. 1379 if (PredsScanned.size() == AvailablePreds.size()+1 && 1380 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1381 UnavailablePred = OneUnavailablePred; 1382 } else if (PredsScanned.size() != AvailablePreds.size()) { 1383 // Otherwise, we had multiple unavailable predecessors or we had a critical 1384 // edge from the one. 1385 SmallVector<BasicBlock*, 8> PredsToSplit; 1386 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1387 1388 for (const auto &AvailablePred : AvailablePreds) 1389 AvailablePredSet.insert(AvailablePred.first); 1390 1391 // Add all the unavailable predecessors to the PredsToSplit list. 1392 for (BasicBlock *P : predecessors(LoadBB)) { 1393 // If the predecessor is an indirect goto, we can't split the edge. 1394 // Same for CallBr. 1395 if (isa<IndirectBrInst>(P->getTerminator()) || 1396 isa<CallBrInst>(P->getTerminator())) 1397 return false; 1398 1399 if (!AvailablePredSet.count(P)) 1400 PredsToSplit.push_back(P); 1401 } 1402 1403 // Split them out to their own block. 1404 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1405 } 1406 1407 // If the value isn't available in all predecessors, then there will be 1408 // exactly one where it isn't available. Insert a load on that edge and add 1409 // it to the AvailablePreds list. 1410 if (UnavailablePred) { 1411 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1412 "Can't handle critical edge here!"); 1413 LoadInst *NewVal = new LoadInst( 1414 LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), 1415 LoadI->getName() + ".pr", false, LoadI->getAlign(), 1416 LoadI->getOrdering(), LoadI->getSyncScopeID(), 1417 UnavailablePred->getTerminator()); 1418 NewVal->setDebugLoc(LoadI->getDebugLoc()); 1419 if (AATags) 1420 NewVal->setAAMetadata(AATags); 1421 1422 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1423 } 1424 1425 // Now we know that each predecessor of this block has a value in 1426 // AvailablePreds, sort them for efficient access as we're walking the preds. 1427 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1428 1429 // Create a PHI node at the start of the block for the PRE'd load value. 1430 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1431 PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "", 1432 &LoadBB->front()); 1433 PN->takeName(LoadI); 1434 PN->setDebugLoc(LoadI->getDebugLoc()); 1435 1436 // Insert new entries into the PHI for each predecessor. A single block may 1437 // have multiple entries here. 1438 for (pred_iterator PI = PB; PI != PE; ++PI) { 1439 BasicBlock *P = *PI; 1440 AvailablePredsTy::iterator I = 1441 llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr)); 1442 1443 assert(I != AvailablePreds.end() && I->first == P && 1444 "Didn't find entry for predecessor!"); 1445 1446 // If we have an available predecessor but it requires casting, insert the 1447 // cast in the predecessor and use the cast. Note that we have to update the 1448 // AvailablePreds vector as we go so that all of the PHI entries for this 1449 // predecessor use the same bitcast. 1450 Value *&PredV = I->second; 1451 if (PredV->getType() != LoadI->getType()) 1452 PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "", 1453 P->getTerminator()); 1454 1455 PN->addIncoming(PredV, I->first); 1456 } 1457 1458 for (LoadInst *PredLoadI : CSELoads) { 1459 combineMetadataForCSE(PredLoadI, LoadI, true); 1460 } 1461 1462 LoadI->replaceAllUsesWith(PN); 1463 LoadI->eraseFromParent(); 1464 1465 return true; 1466 } 1467 1468 /// FindMostPopularDest - The specified list contains multiple possible 1469 /// threadable destinations. Pick the one that occurs the most frequently in 1470 /// the list. 1471 static BasicBlock * 1472 FindMostPopularDest(BasicBlock *BB, 1473 const SmallVectorImpl<std::pair<BasicBlock *, 1474 BasicBlock *>> &PredToDestList) { 1475 assert(!PredToDestList.empty()); 1476 1477 // Determine popularity. If there are multiple possible destinations, we 1478 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1479 // blocks with known and real destinations to threading undef. We'll handle 1480 // them later if interesting. 1481 DenseMap<BasicBlock*, unsigned> DestPopularity; 1482 for (const auto &PredToDest : PredToDestList) 1483 if (PredToDest.second) 1484 DestPopularity[PredToDest.second]++; 1485 1486 if (DestPopularity.empty()) 1487 return nullptr; 1488 1489 // Find the most popular dest. 1490 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1491 BasicBlock *MostPopularDest = DPI->first; 1492 unsigned Popularity = DPI->second; 1493 SmallVector<BasicBlock*, 4> SamePopularity; 1494 1495 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1496 // If the popularity of this entry isn't higher than the popularity we've 1497 // seen so far, ignore it. 1498 if (DPI->second < Popularity) 1499 ; // ignore. 1500 else if (DPI->second == Popularity) { 1501 // If it is the same as what we've seen so far, keep track of it. 1502 SamePopularity.push_back(DPI->first); 1503 } else { 1504 // If it is more popular, remember it. 1505 SamePopularity.clear(); 1506 MostPopularDest = DPI->first; 1507 Popularity = DPI->second; 1508 } 1509 } 1510 1511 // Okay, now we know the most popular destination. If there is more than one 1512 // destination, we need to determine one. This is arbitrary, but we need 1513 // to make a deterministic decision. Pick the first one that appears in the 1514 // successor list. 1515 if (!SamePopularity.empty()) { 1516 SamePopularity.push_back(MostPopularDest); 1517 Instruction *TI = BB->getTerminator(); 1518 for (unsigned i = 0; ; ++i) { 1519 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1520 1521 if (!is_contained(SamePopularity, TI->getSuccessor(i))) 1522 continue; 1523 1524 MostPopularDest = TI->getSuccessor(i); 1525 break; 1526 } 1527 } 1528 1529 // Okay, we have finally picked the most popular destination. 1530 return MostPopularDest; 1531 } 1532 1533 // Try to evaluate the value of V when the control flows from PredPredBB to 1534 // BB->getSinglePredecessor() and then on to BB. 1535 Constant *JumpThreadingPass::EvaluateOnPredecessorEdge(BasicBlock *BB, 1536 BasicBlock *PredPredBB, 1537 Value *V) { 1538 BasicBlock *PredBB = BB->getSinglePredecessor(); 1539 assert(PredBB && "Expected a single predecessor"); 1540 1541 if (Constant *Cst = dyn_cast<Constant>(V)) { 1542 return Cst; 1543 } 1544 1545 // Consult LVI if V is not an instruction in BB or PredBB. 1546 Instruction *I = dyn_cast<Instruction>(V); 1547 if (!I || (I->getParent() != BB && I->getParent() != PredBB)) { 1548 return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr); 1549 } 1550 1551 // Look into a PHI argument. 1552 if (PHINode *PHI = dyn_cast<PHINode>(V)) { 1553 if (PHI->getParent() == PredBB) 1554 return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB)); 1555 return nullptr; 1556 } 1557 1558 // If we have a CmpInst, try to fold it for each incoming edge into PredBB. 1559 if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) { 1560 if (CondCmp->getParent() == BB) { 1561 Constant *Op0 = 1562 EvaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0)); 1563 Constant *Op1 = 1564 EvaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1)); 1565 if (Op0 && Op1) { 1566 return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1); 1567 } 1568 } 1569 return nullptr; 1570 } 1571 1572 return nullptr; 1573 } 1574 1575 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1576 ConstantPreference Preference, 1577 Instruction *CxtI) { 1578 // If threading this would thread across a loop header, don't even try to 1579 // thread the edge. 1580 if (LoopHeaders.count(BB)) 1581 return false; 1582 1583 PredValueInfoTy PredValues; 1584 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, 1585 CxtI)) { 1586 // We don't have known values in predecessors. See if we can thread through 1587 // BB and its sole predecessor. 1588 return MaybeThreadThroughTwoBasicBlocks(BB, Cond); 1589 } 1590 1591 assert(!PredValues.empty() && 1592 "ComputeValueKnownInPredecessors returned true with no values"); 1593 1594 LLVM_DEBUG(dbgs() << "IN BB: " << *BB; 1595 for (const auto &PredValue : PredValues) { 1596 dbgs() << " BB '" << BB->getName() 1597 << "': FOUND condition = " << *PredValue.first 1598 << " for pred '" << PredValue.second->getName() << "'.\n"; 1599 }); 1600 1601 // Decide what we want to thread through. Convert our list of known values to 1602 // a list of known destinations for each pred. This also discards duplicate 1603 // predecessors and keeps track of the undefined inputs (which are represented 1604 // as a null dest in the PredToDestList). 1605 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1606 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1607 1608 BasicBlock *OnlyDest = nullptr; 1609 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1610 Constant *OnlyVal = nullptr; 1611 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; 1612 1613 for (const auto &PredValue : PredValues) { 1614 BasicBlock *Pred = PredValue.second; 1615 if (!SeenPreds.insert(Pred).second) 1616 continue; // Duplicate predecessor entry. 1617 1618 Constant *Val = PredValue.first; 1619 1620 BasicBlock *DestBB; 1621 if (isa<UndefValue>(Val)) 1622 DestBB = nullptr; 1623 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 1624 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1625 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1626 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1627 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1628 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); 1629 } else { 1630 assert(isa<IndirectBrInst>(BB->getTerminator()) 1631 && "Unexpected terminator"); 1632 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); 1633 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1634 } 1635 1636 // If we have exactly one destination, remember it for efficiency below. 1637 if (PredToDestList.empty()) { 1638 OnlyDest = DestBB; 1639 OnlyVal = Val; 1640 } else { 1641 if (OnlyDest != DestBB) 1642 OnlyDest = MultipleDestSentinel; 1643 // It possible we have same destination, but different value, e.g. default 1644 // case in switchinst. 1645 if (Val != OnlyVal) 1646 OnlyVal = MultipleVal; 1647 } 1648 1649 // If the predecessor ends with an indirect goto, we can't change its 1650 // destination. Same for CallBr. 1651 if (isa<IndirectBrInst>(Pred->getTerminator()) || 1652 isa<CallBrInst>(Pred->getTerminator())) 1653 continue; 1654 1655 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1656 } 1657 1658 // If all edges were unthreadable, we fail. 1659 if (PredToDestList.empty()) 1660 return false; 1661 1662 // If all the predecessors go to a single known successor, we want to fold, 1663 // not thread. By doing so, we do not need to duplicate the current block and 1664 // also miss potential opportunities in case we dont/cant duplicate. 1665 if (OnlyDest && OnlyDest != MultipleDestSentinel) { 1666 if (BB->hasNPredecessors(PredToDestList.size())) { 1667 bool SeenFirstBranchToOnlyDest = false; 1668 std::vector <DominatorTree::UpdateType> Updates; 1669 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1); 1670 for (BasicBlock *SuccBB : successors(BB)) { 1671 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) { 1672 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. 1673 } else { 1674 SuccBB->removePredecessor(BB, true); // This is unreachable successor. 1675 Updates.push_back({DominatorTree::Delete, BB, SuccBB}); 1676 } 1677 } 1678 1679 // Finally update the terminator. 1680 Instruction *Term = BB->getTerminator(); 1681 BranchInst::Create(OnlyDest, Term); 1682 Term->eraseFromParent(); 1683 DTU->applyUpdatesPermissive(Updates); 1684 1685 // If the condition is now dead due to the removal of the old terminator, 1686 // erase it. 1687 if (auto *CondInst = dyn_cast<Instruction>(Cond)) { 1688 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) 1689 CondInst->eraseFromParent(); 1690 // We can safely replace *some* uses of the CondInst if it has 1691 // exactly one value as returned by LVI. RAUW is incorrect in the 1692 // presence of guards and assumes, that have the `Cond` as the use. This 1693 // is because we use the guards/assume to reason about the `Cond` value 1694 // at the end of block, but RAUW unconditionally replaces all uses 1695 // including the guards/assumes themselves and the uses before the 1696 // guard/assume. 1697 else if (OnlyVal && OnlyVal != MultipleVal && 1698 CondInst->getParent() == BB) 1699 ReplaceFoldableUses(CondInst, OnlyVal); 1700 } 1701 return true; 1702 } 1703 } 1704 1705 // Determine which is the most common successor. If we have many inputs and 1706 // this block is a switch, we want to start by threading the batch that goes 1707 // to the most popular destination first. If we only know about one 1708 // threadable destination (the common case) we can avoid this. 1709 BasicBlock *MostPopularDest = OnlyDest; 1710 1711 if (MostPopularDest == MultipleDestSentinel) { 1712 // Remove any loop headers from the Dest list, ThreadEdge conservatively 1713 // won't process them, but we might have other destination that are eligible 1714 // and we still want to process. 1715 erase_if(PredToDestList, 1716 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) { 1717 return LoopHeaders.count(PredToDest.second) != 0; 1718 }); 1719 1720 if (PredToDestList.empty()) 1721 return false; 1722 1723 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1724 } 1725 1726 // Now that we know what the most popular destination is, factor all 1727 // predecessors that will jump to it into a single predecessor. 1728 SmallVector<BasicBlock*, 16> PredsToFactor; 1729 for (const auto &PredToDest : PredToDestList) 1730 if (PredToDest.second == MostPopularDest) { 1731 BasicBlock *Pred = PredToDest.first; 1732 1733 // This predecessor may be a switch or something else that has multiple 1734 // edges to the block. Factor each of these edges by listing them 1735 // according to # occurrences in PredsToFactor. 1736 for (BasicBlock *Succ : successors(Pred)) 1737 if (Succ == BB) 1738 PredsToFactor.push_back(Pred); 1739 } 1740 1741 // If the threadable edges are branching on an undefined value, we get to pick 1742 // the destination that these predecessors should get to. 1743 if (!MostPopularDest) 1744 MostPopularDest = BB->getTerminator()-> 1745 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1746 1747 // Ok, try to thread it! 1748 return TryThreadEdge(BB, PredsToFactor, MostPopularDest); 1749 } 1750 1751 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1752 /// a PHI node in the current block. See if there are any simplifications we 1753 /// can do based on inputs to the phi node. 1754 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) { 1755 BasicBlock *BB = PN->getParent(); 1756 1757 // TODO: We could make use of this to do it once for blocks with common PHI 1758 // values. 1759 SmallVector<BasicBlock*, 1> PredBBs; 1760 PredBBs.resize(1); 1761 1762 // If any of the predecessor blocks end in an unconditional branch, we can 1763 // *duplicate* the conditional branch into that block in order to further 1764 // encourage jump threading and to eliminate cases where we have branch on a 1765 // phi of an icmp (branch on icmp is much better). 1766 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1767 BasicBlock *PredBB = PN->getIncomingBlock(i); 1768 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1769 if (PredBr->isUnconditional()) { 1770 PredBBs[0] = PredBB; 1771 // Try to duplicate BB into PredBB. 1772 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1773 return true; 1774 } 1775 } 1776 1777 return false; 1778 } 1779 1780 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1781 /// a xor instruction in the current block. See if there are any 1782 /// simplifications we can do based on inputs to the xor. 1783 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) { 1784 BasicBlock *BB = BO->getParent(); 1785 1786 // If either the LHS or RHS of the xor is a constant, don't do this 1787 // optimization. 1788 if (isa<ConstantInt>(BO->getOperand(0)) || 1789 isa<ConstantInt>(BO->getOperand(1))) 1790 return false; 1791 1792 // If the first instruction in BB isn't a phi, we won't be able to infer 1793 // anything special about any particular predecessor. 1794 if (!isa<PHINode>(BB->front())) 1795 return false; 1796 1797 // If this BB is a landing pad, we won't be able to split the edge into it. 1798 if (BB->isEHPad()) 1799 return false; 1800 1801 // If we have a xor as the branch input to this block, and we know that the 1802 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1803 // the condition into the predecessor and fix that value to true, saving some 1804 // logical ops on that path and encouraging other paths to simplify. 1805 // 1806 // This copies something like this: 1807 // 1808 // BB: 1809 // %X = phi i1 [1], [%X'] 1810 // %Y = icmp eq i32 %A, %B 1811 // %Z = xor i1 %X, %Y 1812 // br i1 %Z, ... 1813 // 1814 // Into: 1815 // BB': 1816 // %Y = icmp ne i32 %A, %B 1817 // br i1 %Y, ... 1818 1819 PredValueInfoTy XorOpValues; 1820 bool isLHS = true; 1821 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1822 WantInteger, BO)) { 1823 assert(XorOpValues.empty()); 1824 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1825 WantInteger, BO)) 1826 return false; 1827 isLHS = false; 1828 } 1829 1830 assert(!XorOpValues.empty() && 1831 "ComputeValueKnownInPredecessors returned true with no values"); 1832 1833 // Scan the information to see which is most popular: true or false. The 1834 // predecessors can be of the set true, false, or undef. 1835 unsigned NumTrue = 0, NumFalse = 0; 1836 for (const auto &XorOpValue : XorOpValues) { 1837 if (isa<UndefValue>(XorOpValue.first)) 1838 // Ignore undefs for the count. 1839 continue; 1840 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1841 ++NumFalse; 1842 else 1843 ++NumTrue; 1844 } 1845 1846 // Determine which value to split on, true, false, or undef if neither. 1847 ConstantInt *SplitVal = nullptr; 1848 if (NumTrue > NumFalse) 1849 SplitVal = ConstantInt::getTrue(BB->getContext()); 1850 else if (NumTrue != 0 || NumFalse != 0) 1851 SplitVal = ConstantInt::getFalse(BB->getContext()); 1852 1853 // Collect all of the blocks that this can be folded into so that we can 1854 // factor this once and clone it once. 1855 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1856 for (const auto &XorOpValue : XorOpValues) { 1857 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1858 continue; 1859 1860 BlocksToFoldInto.push_back(XorOpValue.second); 1861 } 1862 1863 // If we inferred a value for all of the predecessors, then duplication won't 1864 // help us. However, we can just replace the LHS or RHS with the constant. 1865 if (BlocksToFoldInto.size() == 1866 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1867 if (!SplitVal) { 1868 // If all preds provide undef, just nuke the xor, because it is undef too. 1869 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1870 BO->eraseFromParent(); 1871 } else if (SplitVal->isZero()) { 1872 // If all preds provide 0, replace the xor with the other input. 1873 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1874 BO->eraseFromParent(); 1875 } else { 1876 // If all preds provide 1, set the computed value to 1. 1877 BO->setOperand(!isLHS, SplitVal); 1878 } 1879 1880 return true; 1881 } 1882 1883 // Try to duplicate BB into PredBB. 1884 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1885 } 1886 1887 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1888 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1889 /// NewPred using the entries from OldPred (suitably mapped). 1890 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1891 BasicBlock *OldPred, 1892 BasicBlock *NewPred, 1893 DenseMap<Instruction*, Value*> &ValueMap) { 1894 for (PHINode &PN : PHIBB->phis()) { 1895 // Ok, we have a PHI node. Figure out what the incoming value was for the 1896 // DestBlock. 1897 Value *IV = PN.getIncomingValueForBlock(OldPred); 1898 1899 // Remap the value if necessary. 1900 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1901 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1902 if (I != ValueMap.end()) 1903 IV = I->second; 1904 } 1905 1906 PN.addIncoming(IV, NewPred); 1907 } 1908 } 1909 1910 /// Merge basic block BB into its sole predecessor if possible. 1911 bool JumpThreadingPass::MaybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) { 1912 BasicBlock *SinglePred = BB->getSinglePredecessor(); 1913 if (!SinglePred) 1914 return false; 1915 1916 const Instruction *TI = SinglePred->getTerminator(); 1917 if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 || 1918 SinglePred == BB || hasAddressTakenAndUsed(BB)) 1919 return false; 1920 1921 // If SinglePred was a loop header, BB becomes one. 1922 if (LoopHeaders.erase(SinglePred)) 1923 LoopHeaders.insert(BB); 1924 1925 LVI->eraseBlock(SinglePred); 1926 MergeBasicBlockIntoOnlyPred(BB, DTU); 1927 1928 // Now that BB is merged into SinglePred (i.e. SinglePred code followed by 1929 // BB code within one basic block `BB`), we need to invalidate the LVI 1930 // information associated with BB, because the LVI information need not be 1931 // true for all of BB after the merge. For example, 1932 // Before the merge, LVI info and code is as follows: 1933 // SinglePred: <LVI info1 for %p val> 1934 // %y = use of %p 1935 // call @exit() // need not transfer execution to successor. 1936 // assume(%p) // from this point on %p is true 1937 // br label %BB 1938 // BB: <LVI info2 for %p val, i.e. %p is true> 1939 // %x = use of %p 1940 // br label exit 1941 // 1942 // Note that this LVI info for blocks BB and SinglPred is correct for %p 1943 // (info2 and info1 respectively). After the merge and the deletion of the 1944 // LVI info1 for SinglePred. We have the following code: 1945 // BB: <LVI info2 for %p val> 1946 // %y = use of %p 1947 // call @exit() 1948 // assume(%p) 1949 // %x = use of %p <-- LVI info2 is correct from here onwards. 1950 // br label exit 1951 // LVI info2 for BB is incorrect at the beginning of BB. 1952 1953 // Invalidate LVI information for BB if the LVI is not provably true for 1954 // all of BB. 1955 if (!isGuaranteedToTransferExecutionToSuccessor(BB)) 1956 LVI->eraseBlock(BB); 1957 return true; 1958 } 1959 1960 /// Update the SSA form. NewBB contains instructions that are copied from BB. 1961 /// ValueMapping maps old values in BB to new ones in NewBB. 1962 void JumpThreadingPass::UpdateSSA( 1963 BasicBlock *BB, BasicBlock *NewBB, 1964 DenseMap<Instruction *, Value *> &ValueMapping) { 1965 // If there were values defined in BB that are used outside the block, then we 1966 // now have to update all uses of the value to use either the original value, 1967 // the cloned value, or some PHI derived value. This can require arbitrary 1968 // PHI insertion, of which we are prepared to do, clean these up now. 1969 SSAUpdater SSAUpdate; 1970 SmallVector<Use *, 16> UsesToRename; 1971 1972 for (Instruction &I : *BB) { 1973 // Scan all uses of this instruction to see if it is used outside of its 1974 // block, and if so, record them in UsesToRename. 1975 for (Use &U : I.uses()) { 1976 Instruction *User = cast<Instruction>(U.getUser()); 1977 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1978 if (UserPN->getIncomingBlock(U) == BB) 1979 continue; 1980 } else if (User->getParent() == BB) 1981 continue; 1982 1983 UsesToRename.push_back(&U); 1984 } 1985 1986 // If there are no uses outside the block, we're done with this instruction. 1987 if (UsesToRename.empty()) 1988 continue; 1989 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 1990 1991 // We found a use of I outside of BB. Rename all uses of I that are outside 1992 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1993 // with the two values we know. 1994 SSAUpdate.Initialize(I.getType(), I.getName()); 1995 SSAUpdate.AddAvailableValue(BB, &I); 1996 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 1997 1998 while (!UsesToRename.empty()) 1999 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2000 LLVM_DEBUG(dbgs() << "\n"); 2001 } 2002 } 2003 2004 /// Clone instructions in range [BI, BE) to NewBB. For PHI nodes, we only clone 2005 /// arguments that come from PredBB. Return the map from the variables in the 2006 /// source basic block to the variables in the newly created basic block. 2007 DenseMap<Instruction *, Value *> 2008 JumpThreadingPass::CloneInstructions(BasicBlock::iterator BI, 2009 BasicBlock::iterator BE, BasicBlock *NewBB, 2010 BasicBlock *PredBB) { 2011 // We are going to have to map operands from the source basic block to the new 2012 // copy of the block 'NewBB'. If there are PHI nodes in the source basic 2013 // block, evaluate them to account for entry from PredBB. 2014 DenseMap<Instruction *, Value *> ValueMapping; 2015 2016 // Clone the phi nodes of the source basic block into NewBB. The resulting 2017 // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater 2018 // might need to rewrite the operand of the cloned phi. 2019 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2020 PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB); 2021 NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB); 2022 ValueMapping[PN] = NewPN; 2023 } 2024 2025 // Clone the non-phi instructions of the source basic block into NewBB, 2026 // keeping track of the mapping and using it to remap operands in the cloned 2027 // instructions. 2028 for (; BI != BE; ++BI) { 2029 Instruction *New = BI->clone(); 2030 New->setName(BI->getName()); 2031 NewBB->getInstList().push_back(New); 2032 ValueMapping[&*BI] = New; 2033 2034 // Remap operands to patch up intra-block references. 2035 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2036 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2037 DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst); 2038 if (I != ValueMapping.end()) 2039 New->setOperand(i, I->second); 2040 } 2041 } 2042 2043 return ValueMapping; 2044 } 2045 2046 /// Attempt to thread through two successive basic blocks. 2047 bool JumpThreadingPass::MaybeThreadThroughTwoBasicBlocks(BasicBlock *BB, 2048 Value *Cond) { 2049 // Consider: 2050 // 2051 // PredBB: 2052 // %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ] 2053 // %tobool = icmp eq i32 %cond, 0 2054 // br i1 %tobool, label %BB, label ... 2055 // 2056 // BB: 2057 // %cmp = icmp eq i32* %var, null 2058 // br i1 %cmp, label ..., label ... 2059 // 2060 // We don't know the value of %var at BB even if we know which incoming edge 2061 // we take to BB. However, once we duplicate PredBB for each of its incoming 2062 // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of 2063 // PredBB. Then we can thread edges PredBB1->BB and PredBB2->BB through BB. 2064 2065 // Require that BB end with a Branch for simplicity. 2066 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2067 if (!CondBr) 2068 return false; 2069 2070 // BB must have exactly one predecessor. 2071 BasicBlock *PredBB = BB->getSinglePredecessor(); 2072 if (!PredBB) 2073 return false; 2074 2075 // Require that PredBB end with a conditional Branch. If PredBB ends with an 2076 // unconditional branch, we should be merging PredBB and BB instead. For 2077 // simplicity, we don't deal with a switch. 2078 BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2079 if (!PredBBBranch || PredBBBranch->isUnconditional()) 2080 return false; 2081 2082 // If PredBB has exactly one incoming edge, we don't gain anything by copying 2083 // PredBB. 2084 if (PredBB->getSinglePredecessor()) 2085 return false; 2086 2087 // Don't thread through PredBB if it contains a successor edge to itself, in 2088 // which case we would infinite loop. Suppose we are threading an edge from 2089 // PredPredBB through PredBB and BB to SuccBB with PredBB containing a 2090 // successor edge to itself. If we allowed jump threading in this case, we 2091 // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread. Since 2092 // PredBB.thread has a successor edge to PredBB, we would immediately come up 2093 // with another jump threading opportunity from PredBB.thread through PredBB 2094 // and BB to SuccBB. This jump threading would repeatedly occur. That is, we 2095 // would keep peeling one iteration from PredBB. 2096 if (llvm::is_contained(successors(PredBB), PredBB)) 2097 return false; 2098 2099 // Don't thread across a loop header. 2100 if (LoopHeaders.count(PredBB)) 2101 return false; 2102 2103 // Avoid complication with duplicating EH pads. 2104 if (PredBB->isEHPad()) 2105 return false; 2106 2107 // Find a predecessor that we can thread. For simplicity, we only consider a 2108 // successor edge out of BB to which we thread exactly one incoming edge into 2109 // PredBB. 2110 unsigned ZeroCount = 0; 2111 unsigned OneCount = 0; 2112 BasicBlock *ZeroPred = nullptr; 2113 BasicBlock *OnePred = nullptr; 2114 for (BasicBlock *P : predecessors(PredBB)) { 2115 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>( 2116 EvaluateOnPredecessorEdge(BB, P, Cond))) { 2117 if (CI->isZero()) { 2118 ZeroCount++; 2119 ZeroPred = P; 2120 } else if (CI->isOne()) { 2121 OneCount++; 2122 OnePred = P; 2123 } 2124 } 2125 } 2126 2127 // Disregard complicated cases where we have to thread multiple edges. 2128 BasicBlock *PredPredBB; 2129 if (ZeroCount == 1) { 2130 PredPredBB = ZeroPred; 2131 } else if (OneCount == 1) { 2132 PredPredBB = OnePred; 2133 } else { 2134 return false; 2135 } 2136 2137 BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred); 2138 2139 // If threading to the same block as we come from, we would infinite loop. 2140 if (SuccBB == BB) { 2141 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 2142 << "' - would thread to self!\n"); 2143 return false; 2144 } 2145 2146 // If threading this would thread across a loop header, don't thread the edge. 2147 // See the comments above FindLoopHeaders for justifications and caveats. 2148 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 2149 LLVM_DEBUG({ 2150 bool BBIsHeader = LoopHeaders.count(BB); 2151 bool SuccIsHeader = LoopHeaders.count(SuccBB); 2152 dbgs() << " Not threading across " 2153 << (BBIsHeader ? "loop header BB '" : "block BB '") 2154 << BB->getName() << "' to dest " 2155 << (SuccIsHeader ? "loop header BB '" : "block BB '") 2156 << SuccBB->getName() 2157 << "' - it might create an irreducible loop!\n"; 2158 }); 2159 return false; 2160 } 2161 2162 // Compute the cost of duplicating BB and PredBB. 2163 unsigned BBCost = 2164 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2165 unsigned PredBBCost = getJumpThreadDuplicationCost( 2166 PredBB, PredBB->getTerminator(), BBDupThreshold); 2167 2168 // Give up if costs are too high. We need to check BBCost and PredBBCost 2169 // individually before checking their sum because getJumpThreadDuplicationCost 2170 // return (unsigned)~0 for those basic blocks that cannot be duplicated. 2171 if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold || 2172 BBCost + PredBBCost > BBDupThreshold) { 2173 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 2174 << "' - Cost is too high: " << PredBBCost 2175 << " for PredBB, " << BBCost << "for BB\n"); 2176 return false; 2177 } 2178 2179 // Now we are ready to duplicate PredBB. 2180 ThreadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB); 2181 return true; 2182 } 2183 2184 void JumpThreadingPass::ThreadThroughTwoBasicBlocks(BasicBlock *PredPredBB, 2185 BasicBlock *PredBB, 2186 BasicBlock *BB, 2187 BasicBlock *SuccBB) { 2188 LLVM_DEBUG(dbgs() << " Threading through '" << PredBB->getName() << "' and '" 2189 << BB->getName() << "'\n"); 2190 2191 BranchInst *CondBr = cast<BranchInst>(BB->getTerminator()); 2192 BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator()); 2193 2194 BasicBlock *NewBB = 2195 BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread", 2196 PredBB->getParent(), PredBB); 2197 NewBB->moveAfter(PredBB); 2198 2199 // Set the block frequency of NewBB. 2200 if (HasProfileData) { 2201 auto NewBBFreq = BFI->getBlockFreq(PredPredBB) * 2202 BPI->getEdgeProbability(PredPredBB, PredBB); 2203 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2204 } 2205 2206 // We are going to have to map operands from the original BB block to the new 2207 // copy of the block 'NewBB'. If there are PHI nodes in PredBB, evaluate them 2208 // to account for entry from PredPredBB. 2209 DenseMap<Instruction *, Value *> ValueMapping = 2210 CloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB); 2211 2212 // Update the terminator of PredPredBB to jump to NewBB instead of PredBB. 2213 // This eliminates predecessors from PredPredBB, which requires us to simplify 2214 // any PHI nodes in PredBB. 2215 Instruction *PredPredTerm = PredPredBB->getTerminator(); 2216 for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i) 2217 if (PredPredTerm->getSuccessor(i) == PredBB) { 2218 PredBB->removePredecessor(PredPredBB, true); 2219 PredPredTerm->setSuccessor(i, NewBB); 2220 } 2221 2222 AddPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB, 2223 ValueMapping); 2224 AddPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB, 2225 ValueMapping); 2226 2227 DTU->applyUpdatesPermissive( 2228 {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)}, 2229 {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)}, 2230 {DominatorTree::Insert, PredPredBB, NewBB}, 2231 {DominatorTree::Delete, PredPredBB, PredBB}}); 2232 2233 UpdateSSA(PredBB, NewBB, ValueMapping); 2234 2235 // Clean up things like PHI nodes with single operands, dead instructions, 2236 // etc. 2237 SimplifyInstructionsInBlock(NewBB, TLI); 2238 SimplifyInstructionsInBlock(PredBB, TLI); 2239 2240 SmallVector<BasicBlock *, 1> PredsToFactor; 2241 PredsToFactor.push_back(NewBB); 2242 ThreadEdge(BB, PredsToFactor, SuccBB); 2243 } 2244 2245 /// TryThreadEdge - Thread an edge if it's safe and profitable to do so. 2246 bool JumpThreadingPass::TryThreadEdge( 2247 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs, 2248 BasicBlock *SuccBB) { 2249 // If threading to the same block as we come from, we would infinite loop. 2250 if (SuccBB == BB) { 2251 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 2252 << "' - would thread to self!\n"); 2253 return false; 2254 } 2255 2256 // If threading this would thread across a loop header, don't thread the edge. 2257 // See the comments above FindLoopHeaders for justifications and caveats. 2258 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 2259 LLVM_DEBUG({ 2260 bool BBIsHeader = LoopHeaders.count(BB); 2261 bool SuccIsHeader = LoopHeaders.count(SuccBB); 2262 dbgs() << " Not threading across " 2263 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() 2264 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") 2265 << SuccBB->getName() << "' - it might create an irreducible loop!\n"; 2266 }); 2267 return false; 2268 } 2269 2270 unsigned JumpThreadCost = 2271 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2272 if (JumpThreadCost > BBDupThreshold) { 2273 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 2274 << "' - Cost is too high: " << JumpThreadCost << "\n"); 2275 return false; 2276 } 2277 2278 ThreadEdge(BB, PredBBs, SuccBB); 2279 return true; 2280 } 2281 2282 /// ThreadEdge - We have decided that it is safe and profitable to factor the 2283 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 2284 /// across BB. Transform the IR to reflect this change. 2285 void JumpThreadingPass::ThreadEdge(BasicBlock *BB, 2286 const SmallVectorImpl<BasicBlock *> &PredBBs, 2287 BasicBlock *SuccBB) { 2288 assert(SuccBB != BB && "Don't create an infinite loop"); 2289 2290 assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) && 2291 "Don't thread across loop headers"); 2292 2293 // And finally, do it! Start by factoring the predecessors if needed. 2294 BasicBlock *PredBB; 2295 if (PredBBs.size() == 1) 2296 PredBB = PredBBs[0]; 2297 else { 2298 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2299 << " common predecessors.\n"); 2300 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 2301 } 2302 2303 // And finally, do it! 2304 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() 2305 << "' to '" << SuccBB->getName() 2306 << ", across block:\n " << *BB << "\n"); 2307 2308 LVI->threadEdge(PredBB, BB, SuccBB); 2309 2310 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 2311 BB->getName()+".thread", 2312 BB->getParent(), BB); 2313 NewBB->moveAfter(PredBB); 2314 2315 // Set the block frequency of NewBB. 2316 if (HasProfileData) { 2317 auto NewBBFreq = 2318 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 2319 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2320 } 2321 2322 // Copy all the instructions from BB to NewBB except the terminator. 2323 DenseMap<Instruction *, Value *> ValueMapping = 2324 CloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB); 2325 2326 // We didn't copy the terminator from BB over to NewBB, because there is now 2327 // an unconditional jump to SuccBB. Insert the unconditional jump. 2328 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 2329 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 2330 2331 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 2332 // PHI nodes for NewBB now. 2333 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 2334 2335 // Update the terminator of PredBB to jump to NewBB instead of BB. This 2336 // eliminates predecessors from BB, which requires us to simplify any PHI 2337 // nodes in BB. 2338 Instruction *PredTerm = PredBB->getTerminator(); 2339 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 2340 if (PredTerm->getSuccessor(i) == BB) { 2341 BB->removePredecessor(PredBB, true); 2342 PredTerm->setSuccessor(i, NewBB); 2343 } 2344 2345 // Enqueue required DT updates. 2346 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB}, 2347 {DominatorTree::Insert, PredBB, NewBB}, 2348 {DominatorTree::Delete, PredBB, BB}}); 2349 2350 UpdateSSA(BB, NewBB, ValueMapping); 2351 2352 // At this point, the IR is fully up to date and consistent. Do a quick scan 2353 // over the new instructions and zap any that are constants or dead. This 2354 // frequently happens because of phi translation. 2355 SimplifyInstructionsInBlock(NewBB, TLI); 2356 2357 // Update the edge weight from BB to SuccBB, which should be less than before. 2358 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 2359 2360 // Threaded an edge! 2361 ++NumThreads; 2362 } 2363 2364 /// Create a new basic block that will be the predecessor of BB and successor of 2365 /// all blocks in Preds. When profile data is available, update the frequency of 2366 /// this new block. 2367 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB, 2368 ArrayRef<BasicBlock *> Preds, 2369 const char *Suffix) { 2370 SmallVector<BasicBlock *, 2> NewBBs; 2371 2372 // Collect the frequencies of all predecessors of BB, which will be used to 2373 // update the edge weight of the result of splitting predecessors. 2374 DenseMap<BasicBlock *, BlockFrequency> FreqMap; 2375 if (HasProfileData) 2376 for (auto Pred : Preds) 2377 FreqMap.insert(std::make_pair( 2378 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB))); 2379 2380 // In the case when BB is a LandingPad block we create 2 new predecessors 2381 // instead of just one. 2382 if (BB->isLandingPad()) { 2383 std::string NewName = std::string(Suffix) + ".split-lp"; 2384 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs); 2385 } else { 2386 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix)); 2387 } 2388 2389 std::vector<DominatorTree::UpdateType> Updates; 2390 Updates.reserve((2 * Preds.size()) + NewBBs.size()); 2391 for (auto NewBB : NewBBs) { 2392 BlockFrequency NewBBFreq(0); 2393 Updates.push_back({DominatorTree::Insert, NewBB, BB}); 2394 for (auto Pred : predecessors(NewBB)) { 2395 Updates.push_back({DominatorTree::Delete, Pred, BB}); 2396 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 2397 if (HasProfileData) // Update frequencies between Pred -> NewBB. 2398 NewBBFreq += FreqMap.lookup(Pred); 2399 } 2400 if (HasProfileData) // Apply the summed frequency to NewBB. 2401 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2402 } 2403 2404 DTU->applyUpdatesPermissive(Updates); 2405 return NewBBs[0]; 2406 } 2407 2408 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 2409 const Instruction *TI = BB->getTerminator(); 2410 assert(TI->getNumSuccessors() > 1 && "not a split"); 2411 2412 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 2413 if (!WeightsNode) 2414 return false; 2415 2416 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0)); 2417 if (MDName->getString() != "branch_weights") 2418 return false; 2419 2420 // Ensure there are weights for all of the successors. Note that the first 2421 // operand to the metadata node is a name, not a weight. 2422 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1; 2423 } 2424 2425 /// Update the block frequency of BB and branch weight and the metadata on the 2426 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 2427 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 2428 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 2429 BasicBlock *BB, 2430 BasicBlock *NewBB, 2431 BasicBlock *SuccBB) { 2432 if (!HasProfileData) 2433 return; 2434 2435 assert(BFI && BPI && "BFI & BPI should have been created here"); 2436 2437 // As the edge from PredBB to BB is deleted, we have to update the block 2438 // frequency of BB. 2439 auto BBOrigFreq = BFI->getBlockFreq(BB); 2440 auto NewBBFreq = BFI->getBlockFreq(NewBB); 2441 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 2442 auto BBNewFreq = BBOrigFreq - NewBBFreq; 2443 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 2444 2445 // Collect updated outgoing edges' frequencies from BB and use them to update 2446 // edge probabilities. 2447 SmallVector<uint64_t, 4> BBSuccFreq; 2448 for (BasicBlock *Succ : successors(BB)) { 2449 auto SuccFreq = (Succ == SuccBB) 2450 ? BB2SuccBBFreq - NewBBFreq 2451 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 2452 BBSuccFreq.push_back(SuccFreq.getFrequency()); 2453 } 2454 2455 uint64_t MaxBBSuccFreq = 2456 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 2457 2458 SmallVector<BranchProbability, 4> BBSuccProbs; 2459 if (MaxBBSuccFreq == 0) 2460 BBSuccProbs.assign(BBSuccFreq.size(), 2461 {1, static_cast<unsigned>(BBSuccFreq.size())}); 2462 else { 2463 for (uint64_t Freq : BBSuccFreq) 2464 BBSuccProbs.push_back( 2465 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 2466 // Normalize edge probabilities so that they sum up to one. 2467 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 2468 BBSuccProbs.end()); 2469 } 2470 2471 // Update edge probabilities in BPI. 2472 BPI->setEdgeProbability(BB, BBSuccProbs); 2473 2474 // Update the profile metadata as well. 2475 // 2476 // Don't do this if the profile of the transformed blocks was statically 2477 // estimated. (This could occur despite the function having an entry 2478 // frequency in completely cold parts of the CFG.) 2479 // 2480 // In this case we don't want to suggest to subsequent passes that the 2481 // calculated weights are fully consistent. Consider this graph: 2482 // 2483 // check_1 2484 // 50% / | 2485 // eq_1 | 50% 2486 // \ | 2487 // check_2 2488 // 50% / | 2489 // eq_2 | 50% 2490 // \ | 2491 // check_3 2492 // 50% / | 2493 // eq_3 | 50% 2494 // \ | 2495 // 2496 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 2497 // the overall probabilities are inconsistent; the total probability that the 2498 // value is either 1, 2 or 3 is 150%. 2499 // 2500 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 2501 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 2502 // the loop exit edge. Then based solely on static estimation we would assume 2503 // the loop was extremely hot. 2504 // 2505 // FIXME this locally as well so that BPI and BFI are consistent as well. We 2506 // shouldn't make edges extremely likely or unlikely based solely on static 2507 // estimation. 2508 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { 2509 SmallVector<uint32_t, 4> Weights; 2510 for (auto Prob : BBSuccProbs) 2511 Weights.push_back(Prob.getNumerator()); 2512 2513 auto TI = BB->getTerminator(); 2514 TI->setMetadata( 2515 LLVMContext::MD_prof, 2516 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 2517 } 2518 } 2519 2520 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 2521 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 2522 /// If we can duplicate the contents of BB up into PredBB do so now, this 2523 /// improves the odds that the branch will be on an analyzable instruction like 2524 /// a compare. 2525 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred( 2526 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 2527 assert(!PredBBs.empty() && "Can't handle an empty set"); 2528 2529 // If BB is a loop header, then duplicating this block outside the loop would 2530 // cause us to transform this into an irreducible loop, don't do this. 2531 // See the comments above FindLoopHeaders for justifications and caveats. 2532 if (LoopHeaders.count(BB)) { 2533 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 2534 << "' into predecessor block '" << PredBBs[0]->getName() 2535 << "' - it might create an irreducible loop!\n"); 2536 return false; 2537 } 2538 2539 unsigned DuplicationCost = 2540 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2541 if (DuplicationCost > BBDupThreshold) { 2542 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 2543 << "' - Cost is too high: " << DuplicationCost << "\n"); 2544 return false; 2545 } 2546 2547 // And finally, do it! Start by factoring the predecessors if needed. 2548 std::vector<DominatorTree::UpdateType> Updates; 2549 BasicBlock *PredBB; 2550 if (PredBBs.size() == 1) 2551 PredBB = PredBBs[0]; 2552 else { 2553 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2554 << " common predecessors.\n"); 2555 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 2556 } 2557 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2558 2559 // Okay, we decided to do this! Clone all the instructions in BB onto the end 2560 // of PredBB. 2561 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName() 2562 << "' into end of '" << PredBB->getName() 2563 << "' to eliminate branch on phi. Cost: " 2564 << DuplicationCost << " block is:" << *BB << "\n"); 2565 2566 // Unless PredBB ends with an unconditional branch, split the edge so that we 2567 // can just clone the bits from BB into the end of the new PredBB. 2568 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2569 2570 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 2571 BasicBlock *OldPredBB = PredBB; 2572 PredBB = SplitEdge(OldPredBB, BB); 2573 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB}); 2574 Updates.push_back({DominatorTree::Insert, PredBB, BB}); 2575 Updates.push_back({DominatorTree::Delete, OldPredBB, BB}); 2576 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 2577 } 2578 2579 // We are going to have to map operands from the original BB block into the 2580 // PredBB block. Evaluate PHI nodes in BB. 2581 DenseMap<Instruction*, Value*> ValueMapping; 2582 2583 BasicBlock::iterator BI = BB->begin(); 2584 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 2585 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 2586 // Clone the non-phi instructions of BB into PredBB, keeping track of the 2587 // mapping and using it to remap operands in the cloned instructions. 2588 for (; BI != BB->end(); ++BI) { 2589 Instruction *New = BI->clone(); 2590 2591 // Remap operands to patch up intra-block references. 2592 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2593 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2594 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 2595 if (I != ValueMapping.end()) 2596 New->setOperand(i, I->second); 2597 } 2598 2599 // If this instruction can be simplified after the operands are updated, 2600 // just use the simplified value instead. This frequently happens due to 2601 // phi translation. 2602 if (Value *IV = SimplifyInstruction( 2603 New, 2604 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) { 2605 ValueMapping[&*BI] = IV; 2606 if (!New->mayHaveSideEffects()) { 2607 New->deleteValue(); 2608 New = nullptr; 2609 } 2610 } else { 2611 ValueMapping[&*BI] = New; 2612 } 2613 if (New) { 2614 // Otherwise, insert the new instruction into the block. 2615 New->setName(BI->getName()); 2616 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 2617 // Update Dominance from simplified New instruction operands. 2618 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2619 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i))) 2620 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB}); 2621 } 2622 } 2623 2624 // Check to see if the targets of the branch had PHI nodes. If so, we need to 2625 // add entries to the PHI nodes for branch from PredBB now. 2626 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 2627 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 2628 ValueMapping); 2629 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 2630 ValueMapping); 2631 2632 UpdateSSA(BB, PredBB, ValueMapping); 2633 2634 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 2635 // that we nuked. 2636 BB->removePredecessor(PredBB, true); 2637 2638 // Remove the unconditional branch at the end of the PredBB block. 2639 OldPredBranch->eraseFromParent(); 2640 DTU->applyUpdatesPermissive(Updates); 2641 2642 ++NumDupes; 2643 return true; 2644 } 2645 2646 // Pred is a predecessor of BB with an unconditional branch to BB. SI is 2647 // a Select instruction in Pred. BB has other predecessors and SI is used in 2648 // a PHI node in BB. SI has no other use. 2649 // A new basic block, NewBB, is created and SI is converted to compare and 2650 // conditional branch. SI is erased from parent. 2651 void JumpThreadingPass::UnfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB, 2652 SelectInst *SI, PHINode *SIUse, 2653 unsigned Idx) { 2654 // Expand the select. 2655 // 2656 // Pred -- 2657 // | v 2658 // | NewBB 2659 // | | 2660 // |----- 2661 // v 2662 // BB 2663 BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator()); 2664 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 2665 BB->getParent(), BB); 2666 // Move the unconditional branch to NewBB. 2667 PredTerm->removeFromParent(); 2668 NewBB->getInstList().insert(NewBB->end(), PredTerm); 2669 // Create a conditional branch and update PHI nodes. 2670 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 2671 SIUse->setIncomingValue(Idx, SI->getFalseValue()); 2672 SIUse->addIncoming(SI->getTrueValue(), NewBB); 2673 2674 // The select is now dead. 2675 SI->eraseFromParent(); 2676 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB}, 2677 {DominatorTree::Insert, Pred, NewBB}}); 2678 2679 // Update any other PHI nodes in BB. 2680 for (BasicBlock::iterator BI = BB->begin(); 2681 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 2682 if (Phi != SIUse) 2683 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 2684 } 2685 2686 bool JumpThreadingPass::TryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) { 2687 PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition()); 2688 2689 if (!CondPHI || CondPHI->getParent() != BB) 2690 return false; 2691 2692 for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) { 2693 BasicBlock *Pred = CondPHI->getIncomingBlock(I); 2694 SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I)); 2695 2696 // The second and third condition can be potentially relaxed. Currently 2697 // the conditions help to simplify the code and allow us to reuse existing 2698 // code, developed for TryToUnfoldSelect(CmpInst *, BasicBlock *) 2699 if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse()) 2700 continue; 2701 2702 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2703 if (!PredTerm || !PredTerm->isUnconditional()) 2704 continue; 2705 2706 UnfoldSelectInstr(Pred, BB, PredSI, CondPHI, I); 2707 return true; 2708 } 2709 return false; 2710 } 2711 2712 /// TryToUnfoldSelect - Look for blocks of the form 2713 /// bb1: 2714 /// %a = select 2715 /// br bb2 2716 /// 2717 /// bb2: 2718 /// %p = phi [%a, %bb1] ... 2719 /// %c = icmp %p 2720 /// br i1 %c 2721 /// 2722 /// And expand the select into a branch structure if one of its arms allows %c 2723 /// to be folded. This later enables threading from bb1 over bb2. 2724 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 2725 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2726 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 2727 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 2728 2729 if (!CondBr || !CondBr->isConditional() || !CondLHS || 2730 CondLHS->getParent() != BB) 2731 return false; 2732 2733 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 2734 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 2735 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 2736 2737 // Look if one of the incoming values is a select in the corresponding 2738 // predecessor. 2739 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 2740 continue; 2741 2742 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2743 if (!PredTerm || !PredTerm->isUnconditional()) 2744 continue; 2745 2746 // Now check if one of the select values would allow us to constant fold the 2747 // terminator in BB. We don't do the transform if both sides fold, those 2748 // cases will be threaded in any case. 2749 LazyValueInfo::Tristate LHSFolds = 2750 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 2751 CondRHS, Pred, BB, CondCmp); 2752 LazyValueInfo::Tristate RHSFolds = 2753 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 2754 CondRHS, Pred, BB, CondCmp); 2755 if ((LHSFolds != LazyValueInfo::Unknown || 2756 RHSFolds != LazyValueInfo::Unknown) && 2757 LHSFolds != RHSFolds) { 2758 UnfoldSelectInstr(Pred, BB, SI, CondLHS, I); 2759 return true; 2760 } 2761 } 2762 return false; 2763 } 2764 2765 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the 2766 /// same BB in the form 2767 /// bb: 2768 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 2769 /// %s = select %p, trueval, falseval 2770 /// 2771 /// or 2772 /// 2773 /// bb: 2774 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... 2775 /// %c = cmp %p, 0 2776 /// %s = select %c, trueval, falseval 2777 /// 2778 /// And expand the select into a branch structure. This later enables 2779 /// jump-threading over bb in this pass. 2780 /// 2781 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2782 /// select if the associated PHI has at least one constant. If the unfolded 2783 /// select is not jump-threaded, it will be folded again in the later 2784 /// optimizations. 2785 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2786 // This transform can introduce a UB (a conditional branch that depends on a 2787 // poison value) that was not present in the original program. See 2788 // @TryToUnfoldSelectInCurrBB test in test/Transforms/JumpThreading/select.ll. 2789 // Disable this transform under MemorySanitizer. 2790 // FIXME: either delete it or replace with a valid transform. This issue is 2791 // not limited to MemorySanitizer (but has only been observed as an MSan false 2792 // positive in practice so far). 2793 if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 2794 return false; 2795 2796 // If threading this would thread across a loop header, don't thread the edge. 2797 // See the comments above FindLoopHeaders for justifications and caveats. 2798 if (LoopHeaders.count(BB)) 2799 return false; 2800 2801 for (BasicBlock::iterator BI = BB->begin(); 2802 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2803 // Look for a Phi having at least one constant incoming value. 2804 if (llvm::all_of(PN->incoming_values(), 2805 [](Value *V) { return !isa<ConstantInt>(V); })) 2806 continue; 2807 2808 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { 2809 // Check if SI is in BB and use V as condition. 2810 if (SI->getParent() != BB) 2811 return false; 2812 Value *Cond = SI->getCondition(); 2813 return (Cond && Cond == V && Cond->getType()->isIntegerTy(1)); 2814 }; 2815 2816 SelectInst *SI = nullptr; 2817 for (Use &U : PN->uses()) { 2818 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2819 // Look for a ICmp in BB that compares PN with a constant and is the 2820 // condition of a Select. 2821 if (Cmp->getParent() == BB && Cmp->hasOneUse() && 2822 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo()))) 2823 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back())) 2824 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { 2825 SI = SelectI; 2826 break; 2827 } 2828 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) { 2829 // Look for a Select in BB that uses PN as condition. 2830 if (isUnfoldCandidate(SelectI, U.get())) { 2831 SI = SelectI; 2832 break; 2833 } 2834 } 2835 } 2836 2837 if (!SI) 2838 continue; 2839 // Expand the select. 2840 Instruction *Term = 2841 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false); 2842 BasicBlock *SplitBB = SI->getParent(); 2843 BasicBlock *NewBB = Term->getParent(); 2844 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 2845 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2846 NewPN->addIncoming(SI->getFalseValue(), BB); 2847 SI->replaceAllUsesWith(NewPN); 2848 SI->eraseFromParent(); 2849 // NewBB and SplitBB are newly created blocks which require insertion. 2850 std::vector<DominatorTree::UpdateType> Updates; 2851 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3); 2852 Updates.push_back({DominatorTree::Insert, BB, SplitBB}); 2853 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 2854 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB}); 2855 // BB's successors were moved to SplitBB, update DTU accordingly. 2856 for (auto *Succ : successors(SplitBB)) { 2857 Updates.push_back({DominatorTree::Delete, BB, Succ}); 2858 Updates.push_back({DominatorTree::Insert, SplitBB, Succ}); 2859 } 2860 DTU->applyUpdatesPermissive(Updates); 2861 return true; 2862 } 2863 return false; 2864 } 2865 2866 /// Try to propagate a guard from the current BB into one of its predecessors 2867 /// in case if another branch of execution implies that the condition of this 2868 /// guard is always true. Currently we only process the simplest case that 2869 /// looks like: 2870 /// 2871 /// Start: 2872 /// %cond = ... 2873 /// br i1 %cond, label %T1, label %F1 2874 /// T1: 2875 /// br label %Merge 2876 /// F1: 2877 /// br label %Merge 2878 /// Merge: 2879 /// %condGuard = ... 2880 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 2881 /// 2882 /// And cond either implies condGuard or !condGuard. In this case all the 2883 /// instructions before the guard can be duplicated in both branches, and the 2884 /// guard is then threaded to one of them. 2885 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) { 2886 using namespace PatternMatch; 2887 2888 // We only want to deal with two predecessors. 2889 BasicBlock *Pred1, *Pred2; 2890 auto PI = pred_begin(BB), PE = pred_end(BB); 2891 if (PI == PE) 2892 return false; 2893 Pred1 = *PI++; 2894 if (PI == PE) 2895 return false; 2896 Pred2 = *PI++; 2897 if (PI != PE) 2898 return false; 2899 if (Pred1 == Pred2) 2900 return false; 2901 2902 // Try to thread one of the guards of the block. 2903 // TODO: Look up deeper than to immediate predecessor? 2904 auto *Parent = Pred1->getSinglePredecessor(); 2905 if (!Parent || Parent != Pred2->getSinglePredecessor()) 2906 return false; 2907 2908 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 2909 for (auto &I : *BB) 2910 if (isGuard(&I) && ThreadGuard(BB, cast<IntrinsicInst>(&I), BI)) 2911 return true; 2912 2913 return false; 2914 } 2915 2916 /// Try to propagate the guard from BB which is the lower block of a diamond 2917 /// to one of its branches, in case if diamond's condition implies guard's 2918 /// condition. 2919 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard, 2920 BranchInst *BI) { 2921 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 2922 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 2923 Value *GuardCond = Guard->getArgOperand(0); 2924 Value *BranchCond = BI->getCondition(); 2925 BasicBlock *TrueDest = BI->getSuccessor(0); 2926 BasicBlock *FalseDest = BI->getSuccessor(1); 2927 2928 auto &DL = BB->getModule()->getDataLayout(); 2929 bool TrueDestIsSafe = false; 2930 bool FalseDestIsSafe = false; 2931 2932 // True dest is safe if BranchCond => GuardCond. 2933 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 2934 if (Impl && *Impl) 2935 TrueDestIsSafe = true; 2936 else { 2937 // False dest is safe if !BranchCond => GuardCond. 2938 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); 2939 if (Impl && *Impl) 2940 FalseDestIsSafe = true; 2941 } 2942 2943 if (!TrueDestIsSafe && !FalseDestIsSafe) 2944 return false; 2945 2946 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 2947 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 2948 2949 ValueToValueMapTy UnguardedMapping, GuardedMapping; 2950 Instruction *AfterGuard = Guard->getNextNode(); 2951 unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold); 2952 if (Cost > BBDupThreshold) 2953 return false; 2954 // Duplicate all instructions before the guard and the guard itself to the 2955 // branch where implication is not proved. 2956 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween( 2957 BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU); 2958 assert(GuardedBlock && "Could not create the guarded block?"); 2959 // Duplicate all instructions before the guard in the unguarded branch. 2960 // Since we have successfully duplicated the guarded block and this block 2961 // has fewer instructions, we expect it to succeed. 2962 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween( 2963 BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU); 2964 assert(UnguardedBlock && "Could not create the unguarded block?"); 2965 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 2966 << GuardedBlock->getName() << "\n"); 2967 // Some instructions before the guard may still have uses. For them, we need 2968 // to create Phi nodes merging their copies in both guarded and unguarded 2969 // branches. Those instructions that have no uses can be just removed. 2970 SmallVector<Instruction *, 4> ToRemove; 2971 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 2972 if (!isa<PHINode>(&*BI)) 2973 ToRemove.push_back(&*BI); 2974 2975 Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); 2976 assert(InsertionPoint && "Empty block?"); 2977 // Substitute with Phis & remove. 2978 for (auto *Inst : reverse(ToRemove)) { 2979 if (!Inst->use_empty()) { 2980 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 2981 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 2982 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 2983 NewPN->insertBefore(InsertionPoint); 2984 Inst->replaceAllUsesWith(NewPN); 2985 } 2986 Inst->eraseFromParent(); 2987 } 2988 return true; 2989 } 2990