1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "jump-threading" 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/IntrinsicInst.h" 17 #include "llvm/LLVMContext.h" 18 #include "llvm/Pass.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 21 #include "llvm/Transforms/Utils/Local.h" 22 #include "llvm/Transforms/Utils/SSAUpdater.h" 23 #include "llvm/Target/TargetData.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 using namespace llvm; 33 34 STATISTIC(NumThreads, "Number of jumps threaded"); 35 STATISTIC(NumFolds, "Number of terminators folded"); 36 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 37 38 static cl::opt<unsigned> 39 Threshold("jump-threading-threshold", 40 cl::desc("Max block size to duplicate for jump threading"), 41 cl::init(6), cl::Hidden); 42 43 namespace { 44 /// This pass performs 'jump threading', which looks at blocks that have 45 /// multiple predecessors and multiple successors. If one or more of the 46 /// predecessors of the block can be proven to always jump to one of the 47 /// successors, we forward the edge from the predecessor to the successor by 48 /// duplicating the contents of this block. 49 /// 50 /// An example of when this can occur is code like this: 51 /// 52 /// if () { ... 53 /// X = 4; 54 /// } 55 /// if (X < 3) { 56 /// 57 /// In this case, the unconditional branch at the end of the first if can be 58 /// revectored to the false side of the second if. 59 /// 60 class JumpThreading : public FunctionPass { 61 TargetData *TD; 62 #ifdef NDEBUG 63 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 64 #else 65 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 66 #endif 67 public: 68 static char ID; // Pass identification 69 JumpThreading() : FunctionPass(&ID) {} 70 71 bool runOnFunction(Function &F); 72 void FindLoopHeaders(Function &F); 73 74 bool ProcessBlock(BasicBlock *BB); 75 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 76 BasicBlock *SuccBB); 77 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 78 BasicBlock *PredBB); 79 80 typedef SmallVectorImpl<std::pair<ConstantInt*, 81 BasicBlock*> > PredValueInfo; 82 83 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 84 PredValueInfo &Result); 85 bool ProcessThreadableEdges(Instruction *CondInst, BasicBlock *BB); 86 87 88 bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 89 bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 90 91 bool ProcessJumpOnPHI(PHINode *PN); 92 93 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 94 }; 95 } 96 97 char JumpThreading::ID = 0; 98 static RegisterPass<JumpThreading> 99 X("jump-threading", "Jump Threading"); 100 101 // Public interface to the Jump Threading pass 102 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); } 103 104 /// runOnFunction - Top level algorithm. 105 /// 106 bool JumpThreading::runOnFunction(Function &F) { 107 DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n"); 108 TD = getAnalysisIfAvailable<TargetData>(); 109 110 FindLoopHeaders(F); 111 112 bool AnotherIteration = true, EverChanged = false; 113 while (AnotherIteration) { 114 AnotherIteration = false; 115 bool Changed = false; 116 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 117 BasicBlock *BB = I; 118 // Thread all of the branches we can over this block. 119 while (ProcessBlock(BB)) 120 Changed = true; 121 122 ++I; 123 124 // If the block is trivially dead, zap it. This eliminates the successor 125 // edges which simplifies the CFG. 126 if (pred_begin(BB) == pred_end(BB) && 127 BB != &BB->getParent()->getEntryBlock()) { 128 DEBUG(errs() << " JT: Deleting dead block '" << BB->getName() 129 << "' with terminator: " << *BB->getTerminator() << '\n'); 130 LoopHeaders.erase(BB); 131 DeleteDeadBlock(BB); 132 Changed = true; 133 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 134 // Can't thread an unconditional jump, but if the block is "almost 135 // empty", we can replace uses of it with uses of the successor and make 136 // this dead. 137 if (BI->isUnconditional() && 138 BB != &BB->getParent()->getEntryBlock()) { 139 BasicBlock::iterator BBI = BB->getFirstNonPHI(); 140 // Ignore dbg intrinsics. 141 while (isa<DbgInfoIntrinsic>(BBI)) 142 ++BBI; 143 // If the terminator is the only non-phi instruction, try to nuke it. 144 if (BBI->isTerminator()) { 145 bool Erased = LoopHeaders.erase(BB); 146 147 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) 148 Changed = true; 149 else if (Erased) 150 LoopHeaders.insert(BB); 151 } 152 } 153 } 154 } 155 AnotherIteration = Changed; 156 EverChanged |= Changed; 157 } 158 159 LoopHeaders.clear(); 160 return EverChanged; 161 } 162 163 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 164 /// thread across it. 165 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) { 166 /// Ignore PHI nodes, these will be flattened when duplication happens. 167 BasicBlock::const_iterator I = BB->getFirstNonPHI(); 168 169 // Sum up the cost of each instruction until we get to the terminator. Don't 170 // include the terminator because the copy won't include it. 171 unsigned Size = 0; 172 for (; !isa<TerminatorInst>(I); ++I) { 173 // Debugger intrinsics don't incur code size. 174 if (isa<DbgInfoIntrinsic>(I)) continue; 175 176 // If this is a pointer->pointer bitcast, it is free. 177 if (isa<BitCastInst>(I) && isa<PointerType>(I->getType())) 178 continue; 179 180 // All other instructions count for at least one unit. 181 ++Size; 182 183 // Calls are more expensive. If they are non-intrinsic calls, we model them 184 // as having cost of 4. If they are a non-vector intrinsic, we model them 185 // as having cost of 2 total, and if they are a vector intrinsic, we model 186 // them as having cost 1. 187 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 188 if (!isa<IntrinsicInst>(CI)) 189 Size += 3; 190 else if (!isa<VectorType>(CI->getType())) 191 Size += 1; 192 } 193 } 194 195 // Threading through a switch statement is particularly profitable. If this 196 // block ends in a switch, decrease its cost to make it more likely to happen. 197 if (isa<SwitchInst>(I)) 198 Size = Size > 6 ? Size-6 : 0; 199 200 return Size; 201 } 202 203 204 //===----------------------------------------------------------------------===// 205 206 /// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then 207 /// delete the From instruction. In addition to a basic RAUW, this does a 208 /// recursive simplification of the newly formed instructions. This catches 209 /// things where one simplification exposes other opportunities. This only 210 /// simplifies and deletes scalar operations, it does not change the CFG. 211 /// 212 static void ReplaceAndSimplifyAllUses(Instruction *From, Value *To, 213 const TargetData *TD) { 214 assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!"); 215 216 // FromHandle - This keeps a weakvh on the from value so that we can know if 217 // it gets deleted out from under us in a recursive simplification. 218 WeakVH FromHandle(From); 219 220 while (!From->use_empty()) { 221 // Update the instruction to use the new value. 222 Use &U = From->use_begin().getUse(); 223 Instruction *User = cast<Instruction>(U.getUser()); 224 U = To; 225 226 // See if we can simplify it. 227 if (Value *V = SimplifyInstruction(User, TD)) { 228 // Recursively simplify this. 229 ReplaceAndSimplifyAllUses(User, V, TD); 230 231 // If the recursive simplification ended up revisiting and deleting 'From' 232 // then we're done. 233 if (FromHandle == 0) 234 return; 235 } 236 } 237 From->eraseFromParent(); 238 } 239 240 241 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 242 /// method is called when we're about to delete Pred as a predecessor of BB. If 243 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 244 /// 245 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 246 /// nodes that collapse into identity values. For example, if we have: 247 /// x = phi(1, 0, 0, 0) 248 /// y = and x, z 249 /// 250 /// .. and delete the predecessor corresponding to the '1', this will attempt to 251 /// recursively fold the and to 0. 252 static void RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, 253 TargetData *TD) { 254 // This only adjusts blocks with PHI nodes. 255 if (!isa<PHINode>(BB->begin())) 256 return; 257 258 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 259 // them down. This will leave us with single entry phi nodes and other phis 260 // that can be removed. 261 BB->removePredecessor(Pred, true); 262 263 WeakVH PhiIt = &BB->front(); 264 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 265 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 266 267 Value *PNV = PN->hasConstantValue(); 268 if (PNV == 0) continue; 269 270 // If we're able to simplify the phi to a single value, substitute the new 271 // value into all of its uses. 272 assert(PNV != PN && "hasConstantValue broken"); 273 274 ReplaceAndSimplifyAllUses(PN, PNV, TD); 275 276 // If recursive simplification ended up deleting the next PHI node we would 277 // iterate to, then our iterator is invalid, restart scanning from the top 278 // of the block. 279 if (PhiIt == 0) PhiIt = &BB->front(); 280 } 281 } 282 283 //===----------------------------------------------------------------------===// 284 285 286 /// FindLoopHeaders - We do not want jump threading to turn proper loop 287 /// structures into irreducible loops. Doing this breaks up the loop nesting 288 /// hierarchy and pessimizes later transformations. To prevent this from 289 /// happening, we first have to find the loop headers. Here we approximate this 290 /// by finding targets of backedges in the CFG. 291 /// 292 /// Note that there definitely are cases when we want to allow threading of 293 /// edges across a loop header. For example, threading a jump from outside the 294 /// loop (the preheader) to an exit block of the loop is definitely profitable. 295 /// It is also almost always profitable to thread backedges from within the loop 296 /// to exit blocks, and is often profitable to thread backedges to other blocks 297 /// within the loop (forming a nested loop). This simple analysis is not rich 298 /// enough to track all of these properties and keep it up-to-date as the CFG 299 /// mutates, so we don't allow any of these transformations. 300 /// 301 void JumpThreading::FindLoopHeaders(Function &F) { 302 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 303 FindFunctionBackedges(F, Edges); 304 305 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 306 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 307 } 308 309 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 310 /// if we can infer that the value is a known ConstantInt in any of our 311 /// predecessors. If so, return the known list of value and pred BB in the 312 /// result vector. If a value is known to be undef, it is returned as null. 313 /// 314 /// The BB basic block is known to start with a PHI node. 315 /// 316 /// This returns true if there were any known values. 317 /// 318 /// 319 /// TODO: Per PR2563, we could infer value range information about a predecessor 320 /// based on its terminator. 321 bool JumpThreading:: 322 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){ 323 PHINode *TheFirstPHI = cast<PHINode>(BB->begin()); 324 325 // If V is a constantint, then it is known in all predecessors. 326 if (isa<ConstantInt>(V) || isa<UndefValue>(V)) { 327 ConstantInt *CI = dyn_cast<ConstantInt>(V); 328 Result.resize(TheFirstPHI->getNumIncomingValues()); 329 for (unsigned i = 0, e = Result.size(); i != e; ++i) 330 Result[i] = std::make_pair(CI, TheFirstPHI->getIncomingBlock(i)); 331 return true; 332 } 333 334 // If V is a non-instruction value, or an instruction in a different block, 335 // then it can't be derived from a PHI. 336 Instruction *I = dyn_cast<Instruction>(V); 337 if (I == 0 || I->getParent() != BB) 338 return false; 339 340 /// If I is a PHI node, then we know the incoming values for any constants. 341 if (PHINode *PN = dyn_cast<PHINode>(I)) { 342 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 343 Value *InVal = PN->getIncomingValue(i); 344 if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) { 345 ConstantInt *CI = dyn_cast<ConstantInt>(InVal); 346 Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i))); 347 } 348 } 349 return !Result.empty(); 350 } 351 352 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals; 353 354 // Handle some boolean conditions. 355 if (I->getType()->getPrimitiveSizeInBits() == 1) { 356 // X | true -> true 357 // X & false -> false 358 if (I->getOpcode() == Instruction::Or || 359 I->getOpcode() == Instruction::And) { 360 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals); 361 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals); 362 363 if (LHSVals.empty() && RHSVals.empty()) 364 return false; 365 366 ConstantInt *InterestingVal; 367 if (I->getOpcode() == Instruction::Or) 368 InterestingVal = ConstantInt::getTrue(I->getContext()); 369 else 370 InterestingVal = ConstantInt::getFalse(I->getContext()); 371 372 // Scan for the sentinel. 373 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 374 if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) 375 Result.push_back(LHSVals[i]); 376 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 377 if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) 378 Result.push_back(RHSVals[i]); 379 return !Result.empty(); 380 } 381 382 // TODO: Should handle the NOT form of XOR. 383 384 } 385 386 // Handle compare with phi operand, where the PHI is defined in this block. 387 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 388 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 389 if (PN && PN->getParent() == BB) { 390 // We can do this simplification if any comparisons fold to true or false. 391 // See if any do. 392 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 393 BasicBlock *PredBB = PN->getIncomingBlock(i); 394 Value *LHS = PN->getIncomingValue(i); 395 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 396 397 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS); 398 if (Res == 0) continue; 399 400 if (isa<UndefValue>(Res)) 401 Result.push_back(std::make_pair((ConstantInt*)0, PredBB)); 402 else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res)) 403 Result.push_back(std::make_pair(CI, PredBB)); 404 } 405 406 return !Result.empty(); 407 } 408 409 // TODO: We could also recurse to see if we can determine constants another 410 // way. 411 } 412 return false; 413 } 414 415 416 417 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 418 /// in an undefined jump, decide which block is best to revector to. 419 /// 420 /// Since we can pick an arbitrary destination, we pick the successor with the 421 /// fewest predecessors. This should reduce the in-degree of the others. 422 /// 423 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 424 TerminatorInst *BBTerm = BB->getTerminator(); 425 unsigned MinSucc = 0; 426 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 427 // Compute the successor with the minimum number of predecessors. 428 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 429 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 430 TestBB = BBTerm->getSuccessor(i); 431 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 432 if (NumPreds < MinNumPreds) 433 MinSucc = i; 434 } 435 436 return MinSucc; 437 } 438 439 /// ProcessBlock - If there are any predecessors whose control can be threaded 440 /// through to a successor, transform them now. 441 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 442 // If this block has a single predecessor, and if that pred has a single 443 // successor, merge the blocks. This encourages recursive jump threading 444 // because now the condition in this block can be threaded through 445 // predecessors of our predecessor block. 446 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 447 if (SinglePred->getTerminator()->getNumSuccessors() == 1 && 448 SinglePred != BB) { 449 // If SinglePred was a loop header, BB becomes one. 450 if (LoopHeaders.erase(SinglePred)) 451 LoopHeaders.insert(BB); 452 453 // Remember if SinglePred was the entry block of the function. If so, we 454 // will need to move BB back to the entry position. 455 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 456 MergeBasicBlockIntoOnlyPred(BB); 457 458 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 459 BB->moveBefore(&BB->getParent()->getEntryBlock()); 460 return true; 461 } 462 } 463 464 // Look to see if the terminator is a branch of switch, if not we can't thread 465 // it. 466 Value *Condition; 467 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 468 // Can't thread an unconditional jump. 469 if (BI->isUnconditional()) return false; 470 Condition = BI->getCondition(); 471 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 472 Condition = SI->getCondition(); 473 else 474 return false; // Must be an invoke. 475 476 // If the terminator of this block is branching on a constant, simplify the 477 // terminator to an unconditional branch. This can occur due to threading in 478 // other blocks. 479 if (isa<ConstantInt>(Condition)) { 480 DEBUG(errs() << " In block '" << BB->getName() 481 << "' folding terminator: " << *BB->getTerminator() << '\n'); 482 ++NumFolds; 483 ConstantFoldTerminator(BB); 484 return true; 485 } 486 487 // If the terminator is branching on an undef, we can pick any of the 488 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 489 if (isa<UndefValue>(Condition)) { 490 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 491 492 // Fold the branch/switch. 493 TerminatorInst *BBTerm = BB->getTerminator(); 494 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 495 if (i == BestSucc) continue; 496 RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD); 497 } 498 499 DEBUG(errs() << " In block '" << BB->getName() 500 << "' folding undef terminator: " << *BBTerm << '\n'); 501 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 502 BBTerm->eraseFromParent(); 503 return true; 504 } 505 506 Instruction *CondInst = dyn_cast<Instruction>(Condition); 507 508 // If the condition is an instruction defined in another block, see if a 509 // predecessor has the same condition: 510 // br COND, BBX, BBY 511 // BBX: 512 // br COND, BBZ, BBW 513 if (!Condition->hasOneUse() && // Multiple uses. 514 (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition. 515 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 516 if (isa<BranchInst>(BB->getTerminator())) { 517 for (; PI != E; ++PI) 518 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 519 if (PBI->isConditional() && PBI->getCondition() == Condition && 520 ProcessBranchOnDuplicateCond(*PI, BB)) 521 return true; 522 } else { 523 assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator"); 524 for (; PI != E; ++PI) 525 if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator())) 526 if (PSI->getCondition() == Condition && 527 ProcessSwitchOnDuplicateCond(*PI, BB)) 528 return true; 529 } 530 } 531 532 // All the rest of our checks depend on the condition being an instruction. 533 if (CondInst == 0) 534 return false; 535 536 // See if this is a phi node in the current block. 537 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 538 if (PN->getParent() == BB) 539 return ProcessJumpOnPHI(PN); 540 541 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 542 if (!isa<PHINode>(CondCmp->getOperand(0)) || 543 cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB) { 544 // If we have a comparison, loop over the predecessors to see if there is 545 // a condition with a lexically identical value. 546 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 547 for (; PI != E; ++PI) 548 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 549 if (PBI->isConditional() && *PI != BB) { 550 if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) { 551 if (CI->getOperand(0) == CondCmp->getOperand(0) && 552 CI->getOperand(1) == CondCmp->getOperand(1) && 553 CI->getPredicate() == CondCmp->getPredicate()) { 554 // TODO: Could handle things like (x != 4) --> (x == 17) 555 if (ProcessBranchOnDuplicateCond(*PI, BB)) 556 return true; 557 } 558 } 559 } 560 } 561 } 562 563 // Check for some cases that are worth simplifying. Right now we want to look 564 // for loads that are used by a switch or by the condition for the branch. If 565 // we see one, check to see if it's partially redundant. If so, insert a PHI 566 // which can then be used to thread the values. 567 // 568 // This is particularly important because reg2mem inserts loads and stores all 569 // over the place, and this blocks jump threading if we don't zap them. 570 Value *SimplifyValue = CondInst; 571 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 572 if (isa<Constant>(CondCmp->getOperand(1))) 573 SimplifyValue = CondCmp->getOperand(0); 574 575 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 576 if (SimplifyPartiallyRedundantLoad(LI)) 577 return true; 578 579 580 // Handle a variety of cases where we are branching on something derived from 581 // a PHI node in the current block. If we can prove that any predecessors 582 // compute a predictable value based on a PHI node, thread those predecessors. 583 // 584 // We only bother doing this if the current block has a PHI node and if the 585 // conditional instruction lives in the current block. If either condition 586 // fails, this won't be a computable value anyway. 587 if (CondInst->getParent() == BB && isa<PHINode>(BB->front())) 588 if (ProcessThreadableEdges(CondInst, BB)) 589 return true; 590 591 592 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 593 // "(X == 4)" thread through this block. 594 595 return false; 596 } 597 598 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that 599 /// block that jump on exactly the same condition. This means that we almost 600 /// always know the direction of the edge in the DESTBB: 601 /// PREDBB: 602 /// br COND, DESTBB, BBY 603 /// DESTBB: 604 /// br COND, BBZ, BBW 605 /// 606 /// If DESTBB has multiple predecessors, we can't just constant fold the branch 607 /// in DESTBB, we have to thread over it. 608 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB, 609 BasicBlock *BB) { 610 BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator()); 611 612 // If both successors of PredBB go to DESTBB, we don't know anything. We can 613 // fold the branch to an unconditional one, which allows other recursive 614 // simplifications. 615 bool BranchDir; 616 if (PredBI->getSuccessor(1) != BB) 617 BranchDir = true; 618 else if (PredBI->getSuccessor(0) != BB) 619 BranchDir = false; 620 else { 621 DEBUG(errs() << " In block '" << PredBB->getName() 622 << "' folding terminator: " << *PredBB->getTerminator() << '\n'); 623 ++NumFolds; 624 ConstantFoldTerminator(PredBB); 625 return true; 626 } 627 628 BranchInst *DestBI = cast<BranchInst>(BB->getTerminator()); 629 630 // If the dest block has one predecessor, just fix the branch condition to a 631 // constant and fold it. 632 if (BB->getSinglePredecessor()) { 633 DEBUG(errs() << " In block '" << BB->getName() 634 << "' folding condition to '" << BranchDir << "': " 635 << *BB->getTerminator() << '\n'); 636 ++NumFolds; 637 Value *OldCond = DestBI->getCondition(); 638 DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 639 BranchDir)); 640 ConstantFoldTerminator(BB); 641 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 642 return true; 643 } 644 645 646 // Next, figure out which successor we are threading to. 647 BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir); 648 649 SmallVector<BasicBlock*, 2> Preds; 650 Preds.push_back(PredBB); 651 652 // Ok, try to thread it! 653 return ThreadEdge(BB, Preds, SuccBB); 654 } 655 656 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that 657 /// block that switch on exactly the same condition. This means that we almost 658 /// always know the direction of the edge in the DESTBB: 659 /// PREDBB: 660 /// switch COND [... DESTBB, BBY ... ] 661 /// DESTBB: 662 /// switch COND [... BBZ, BBW ] 663 /// 664 /// Optimizing switches like this is very important, because simplifycfg builds 665 /// switches out of repeated 'if' conditions. 666 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, 667 BasicBlock *DestBB) { 668 // Can't thread edge to self. 669 if (PredBB == DestBB) 670 return false; 671 672 SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator()); 673 SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator()); 674 675 // There are a variety of optimizations that we can potentially do on these 676 // blocks: we order them from most to least preferable. 677 678 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB 679 // directly to their destination. This does not introduce *any* code size 680 // growth. Skip debug info first. 681 BasicBlock::iterator BBI = DestBB->begin(); 682 while (isa<DbgInfoIntrinsic>(BBI)) 683 BBI++; 684 685 // FIXME: Thread if it just contains a PHI. 686 if (isa<SwitchInst>(BBI)) { 687 bool MadeChange = false; 688 // Ignore the default edge for now. 689 for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) { 690 ConstantInt *DestVal = DestSI->getCaseValue(i); 691 BasicBlock *DestSucc = DestSI->getSuccessor(i); 692 693 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if 694 // PredSI has an explicit case for it. If so, forward. If it is covered 695 // by the default case, we can't update PredSI. 696 unsigned PredCase = PredSI->findCaseValue(DestVal); 697 if (PredCase == 0) continue; 698 699 // If PredSI doesn't go to DestBB on this value, then it won't reach the 700 // case on this condition. 701 if (PredSI->getSuccessor(PredCase) != DestBB && 702 DestSI->getSuccessor(i) != DestBB) 703 continue; 704 705 // Otherwise, we're safe to make the change. Make sure that the edge from 706 // DestSI to DestSucc is not critical and has no PHI nodes. 707 DEBUG(errs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI); 708 DEBUG(errs() << "THROUGH: " << *DestSI); 709 710 // If the destination has PHI nodes, just split the edge for updating 711 // simplicity. 712 if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){ 713 SplitCriticalEdge(DestSI, i, this); 714 DestSucc = DestSI->getSuccessor(i); 715 } 716 FoldSingleEntryPHINodes(DestSucc); 717 PredSI->setSuccessor(PredCase, DestSucc); 718 MadeChange = true; 719 } 720 721 if (MadeChange) 722 return true; 723 } 724 725 return false; 726 } 727 728 729 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 730 /// load instruction, eliminate it by replacing it with a PHI node. This is an 731 /// important optimization that encourages jump threading, and needs to be run 732 /// interlaced with other jump threading tasks. 733 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 734 // Don't hack volatile loads. 735 if (LI->isVolatile()) return false; 736 737 // If the load is defined in a block with exactly one predecessor, it can't be 738 // partially redundant. 739 BasicBlock *LoadBB = LI->getParent(); 740 if (LoadBB->getSinglePredecessor()) 741 return false; 742 743 Value *LoadedPtr = LI->getOperand(0); 744 745 // If the loaded operand is defined in the LoadBB, it can't be available. 746 // FIXME: Could do PHI translation, that would be fun :) 747 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 748 if (PtrOp->getParent() == LoadBB) 749 return false; 750 751 // Scan a few instructions up from the load, to see if it is obviously live at 752 // the entry to its block. 753 BasicBlock::iterator BBIt = LI; 754 755 if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB, 756 BBIt, 6)) { 757 // If the value if the load is locally available within the block, just use 758 // it. This frequently occurs for reg2mem'd allocas. 759 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 760 761 // If the returned value is the load itself, replace with an undef. This can 762 // only happen in dead loops. 763 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 764 LI->replaceAllUsesWith(AvailableVal); 765 LI->eraseFromParent(); 766 return true; 767 } 768 769 // Otherwise, if we scanned the whole block and got to the top of the block, 770 // we know the block is locally transparent to the load. If not, something 771 // might clobber its value. 772 if (BBIt != LoadBB->begin()) 773 return false; 774 775 776 SmallPtrSet<BasicBlock*, 8> PredsScanned; 777 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 778 AvailablePredsTy AvailablePreds; 779 BasicBlock *OneUnavailablePred = 0; 780 781 // If we got here, the loaded value is transparent through to the start of the 782 // block. Check to see if it is available in any of the predecessor blocks. 783 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 784 PI != PE; ++PI) { 785 BasicBlock *PredBB = *PI; 786 787 // If we already scanned this predecessor, skip it. 788 if (!PredsScanned.insert(PredBB)) 789 continue; 790 791 // Scan the predecessor to see if the value is available in the pred. 792 BBIt = PredBB->end(); 793 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6); 794 if (!PredAvailable) { 795 OneUnavailablePred = PredBB; 796 continue; 797 } 798 799 // If so, this load is partially redundant. Remember this info so that we 800 // can create a PHI node. 801 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 802 } 803 804 // If the loaded value isn't available in any predecessor, it isn't partially 805 // redundant. 806 if (AvailablePreds.empty()) return false; 807 808 // Okay, the loaded value is available in at least one (and maybe all!) 809 // predecessors. If the value is unavailable in more than one unique 810 // predecessor, we want to insert a merge block for those common predecessors. 811 // This ensures that we only have to insert one reload, thus not increasing 812 // code size. 813 BasicBlock *UnavailablePred = 0; 814 815 // If there is exactly one predecessor where the value is unavailable, the 816 // already computed 'OneUnavailablePred' block is it. If it ends in an 817 // unconditional branch, we know that it isn't a critical edge. 818 if (PredsScanned.size() == AvailablePreds.size()+1 && 819 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 820 UnavailablePred = OneUnavailablePred; 821 } else if (PredsScanned.size() != AvailablePreds.size()) { 822 // Otherwise, we had multiple unavailable predecessors or we had a critical 823 // edge from the one. 824 SmallVector<BasicBlock*, 8> PredsToSplit; 825 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 826 827 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 828 AvailablePredSet.insert(AvailablePreds[i].first); 829 830 // Add all the unavailable predecessors to the PredsToSplit list. 831 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 832 PI != PE; ++PI) 833 if (!AvailablePredSet.count(*PI)) 834 PredsToSplit.push_back(*PI); 835 836 // Split them out to their own block. 837 UnavailablePred = 838 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(), 839 "thread-split", this); 840 } 841 842 // If the value isn't available in all predecessors, then there will be 843 // exactly one where it isn't available. Insert a load on that edge and add 844 // it to the AvailablePreds list. 845 if (UnavailablePred) { 846 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 847 "Can't handle critical edge here!"); 848 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", 849 UnavailablePred->getTerminator()); 850 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 851 } 852 853 // Now we know that each predecessor of this block has a value in 854 // AvailablePreds, sort them for efficient access as we're walking the preds. 855 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 856 857 // Create a PHI node at the start of the block for the PRE'd load value. 858 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin()); 859 PN->takeName(LI); 860 861 // Insert new entries into the PHI for each predecessor. A single block may 862 // have multiple entries here. 863 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E; 864 ++PI) { 865 AvailablePredsTy::iterator I = 866 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 867 std::make_pair(*PI, (Value*)0)); 868 869 assert(I != AvailablePreds.end() && I->first == *PI && 870 "Didn't find entry for predecessor!"); 871 872 PN->addIncoming(I->second, I->first); 873 } 874 875 //cerr << "PRE: " << *LI << *PN << "\n"; 876 877 LI->replaceAllUsesWith(PN); 878 LI->eraseFromParent(); 879 880 return true; 881 } 882 883 /// FindMostPopularDest - The specified list contains multiple possible 884 /// threadable destinations. Pick the one that occurs the most frequently in 885 /// the list. 886 static BasicBlock * 887 FindMostPopularDest(BasicBlock *BB, 888 const SmallVectorImpl<std::pair<BasicBlock*, 889 BasicBlock*> > &PredToDestList) { 890 assert(!PredToDestList.empty()); 891 892 // Determine popularity. If there are multiple possible destinations, we 893 // explicitly choose to ignore 'undef' destinations. We prefer to thread 894 // blocks with known and real destinations to threading undef. We'll handle 895 // them later if interesting. 896 DenseMap<BasicBlock*, unsigned> DestPopularity; 897 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 898 if (PredToDestList[i].second) 899 DestPopularity[PredToDestList[i].second]++; 900 901 // Find the most popular dest. 902 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 903 BasicBlock *MostPopularDest = DPI->first; 904 unsigned Popularity = DPI->second; 905 SmallVector<BasicBlock*, 4> SamePopularity; 906 907 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 908 // If the popularity of this entry isn't higher than the popularity we've 909 // seen so far, ignore it. 910 if (DPI->second < Popularity) 911 ; // ignore. 912 else if (DPI->second == Popularity) { 913 // If it is the same as what we've seen so far, keep track of it. 914 SamePopularity.push_back(DPI->first); 915 } else { 916 // If it is more popular, remember it. 917 SamePopularity.clear(); 918 MostPopularDest = DPI->first; 919 Popularity = DPI->second; 920 } 921 } 922 923 // Okay, now we know the most popular destination. If there is more than 924 // destination, we need to determine one. This is arbitrary, but we need 925 // to make a deterministic decision. Pick the first one that appears in the 926 // successor list. 927 if (!SamePopularity.empty()) { 928 SamePopularity.push_back(MostPopularDest); 929 TerminatorInst *TI = BB->getTerminator(); 930 for (unsigned i = 0; ; ++i) { 931 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 932 933 if (std::find(SamePopularity.begin(), SamePopularity.end(), 934 TI->getSuccessor(i)) == SamePopularity.end()) 935 continue; 936 937 MostPopularDest = TI->getSuccessor(i); 938 break; 939 } 940 } 941 942 // Okay, we have finally picked the most popular destination. 943 return MostPopularDest; 944 } 945 946 bool JumpThreading::ProcessThreadableEdges(Instruction *CondInst, 947 BasicBlock *BB) { 948 // If threading this would thread across a loop header, don't even try to 949 // thread the edge. 950 if (LoopHeaders.count(BB)) 951 return false; 952 953 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues; 954 if (!ComputeValueKnownInPredecessors(CondInst, BB, PredValues)) 955 return false; 956 assert(!PredValues.empty() && 957 "ComputeValueKnownInPredecessors returned true with no values"); 958 959 DEBUG(errs() << "IN BB: " << *BB; 960 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 961 errs() << " BB '" << BB->getName() << "': FOUND condition = "; 962 if (PredValues[i].first) 963 errs() << *PredValues[i].first; 964 else 965 errs() << "UNDEF"; 966 errs() << " for pred '" << PredValues[i].second->getName() 967 << "'.\n"; 968 }); 969 970 // Decide what we want to thread through. Convert our list of known values to 971 // a list of known destinations for each pred. This also discards duplicate 972 // predecessors and keeps track of the undefined inputs (which are represented 973 // as a null dest in the PredToDestList). 974 SmallPtrSet<BasicBlock*, 16> SeenPreds; 975 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 976 977 BasicBlock *OnlyDest = 0; 978 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 979 980 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 981 BasicBlock *Pred = PredValues[i].second; 982 if (!SeenPreds.insert(Pred)) 983 continue; // Duplicate predecessor entry. 984 985 // If the predecessor ends with an indirect goto, we can't change its 986 // destination. 987 if (isa<IndirectBrInst>(Pred->getTerminator())) 988 continue; 989 990 ConstantInt *Val = PredValues[i].first; 991 992 BasicBlock *DestBB; 993 if (Val == 0) // Undef. 994 DestBB = 0; 995 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 996 DestBB = BI->getSuccessor(Val->isZero()); 997 else { 998 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator()); 999 DestBB = SI->getSuccessor(SI->findCaseValue(Val)); 1000 } 1001 1002 // If we have exactly one destination, remember it for efficiency below. 1003 if (i == 0) 1004 OnlyDest = DestBB; 1005 else if (OnlyDest != DestBB) 1006 OnlyDest = MultipleDestSentinel; 1007 1008 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1009 } 1010 1011 // If all edges were unthreadable, we fail. 1012 if (PredToDestList.empty()) 1013 return false; 1014 1015 // Determine which is the most common successor. If we have many inputs and 1016 // this block is a switch, we want to start by threading the batch that goes 1017 // to the most popular destination first. If we only know about one 1018 // threadable destination (the common case) we can avoid this. 1019 BasicBlock *MostPopularDest = OnlyDest; 1020 1021 if (MostPopularDest == MultipleDestSentinel) 1022 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1023 1024 // Now that we know what the most popular destination is, factor all 1025 // predecessors that will jump to it into a single predecessor. 1026 SmallVector<BasicBlock*, 16> PredsToFactor; 1027 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1028 if (PredToDestList[i].second == MostPopularDest) { 1029 BasicBlock *Pred = PredToDestList[i].first; 1030 1031 // This predecessor may be a switch or something else that has multiple 1032 // edges to the block. Factor each of these edges by listing them 1033 // according to # occurrences in PredsToFactor. 1034 TerminatorInst *PredTI = Pred->getTerminator(); 1035 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 1036 if (PredTI->getSuccessor(i) == BB) 1037 PredsToFactor.push_back(Pred); 1038 } 1039 1040 // If the threadable edges are branching on an undefined value, we get to pick 1041 // the destination that these predecessors should get to. 1042 if (MostPopularDest == 0) 1043 MostPopularDest = BB->getTerminator()-> 1044 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1045 1046 // Ok, try to thread it! 1047 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1048 } 1049 1050 /// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in 1051 /// the current block. See if there are any simplifications we can do based on 1052 /// inputs to the phi node. 1053 /// 1054 bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) { 1055 BasicBlock *BB = PN->getParent(); 1056 1057 // If any of the predecessor blocks end in an unconditional branch, we can 1058 // *duplicate* the jump into that block in order to further encourage jump 1059 // threading and to eliminate cases where we have branch on a phi of an icmp 1060 // (branch on icmp is much better). 1061 1062 // We don't want to do this tranformation for switches, because we don't 1063 // really want to duplicate a switch. 1064 if (isa<SwitchInst>(BB->getTerminator())) 1065 return false; 1066 1067 // Look for unconditional branch predecessors. 1068 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1069 BasicBlock *PredBB = PN->getIncomingBlock(i); 1070 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1071 if (PredBr->isUnconditional() && 1072 // Try to duplicate BB into PredBB. 1073 DuplicateCondBranchOnPHIIntoPred(BB, PredBB)) 1074 return true; 1075 } 1076 1077 return false; 1078 } 1079 1080 1081 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1082 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1083 /// NewPred using the entries from OldPred (suitably mapped). 1084 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1085 BasicBlock *OldPred, 1086 BasicBlock *NewPred, 1087 DenseMap<Instruction*, Value*> &ValueMap) { 1088 for (BasicBlock::iterator PNI = PHIBB->begin(); 1089 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1090 // Ok, we have a PHI node. Figure out what the incoming value was for the 1091 // DestBlock. 1092 Value *IV = PN->getIncomingValueForBlock(OldPred); 1093 1094 // Remap the value if necessary. 1095 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1096 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1097 if (I != ValueMap.end()) 1098 IV = I->second; 1099 } 1100 1101 PN->addIncoming(IV, NewPred); 1102 } 1103 } 1104 1105 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1106 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1107 /// across BB. Transform the IR to reflect this change. 1108 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1109 const SmallVectorImpl<BasicBlock*> &PredBBs, 1110 BasicBlock *SuccBB) { 1111 // If threading to the same block as we come from, we would infinite loop. 1112 if (SuccBB == BB) { 1113 DEBUG(errs() << " Not threading across BB '" << BB->getName() 1114 << "' - would thread to self!\n"); 1115 return false; 1116 } 1117 1118 // If threading this would thread across a loop header, don't thread the edge. 1119 // See the comments above FindLoopHeaders for justifications and caveats. 1120 if (LoopHeaders.count(BB)) { 1121 DEBUG(errs() << " Not threading across loop header BB '" << BB->getName() 1122 << "' to dest BB '" << SuccBB->getName() 1123 << "' - it might create an irreducible loop!\n"); 1124 return false; 1125 } 1126 1127 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB); 1128 if (JumpThreadCost > Threshold) { 1129 DEBUG(errs() << " Not threading BB '" << BB->getName() 1130 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1131 return false; 1132 } 1133 1134 // And finally, do it! Start by factoring the predecessors is needed. 1135 BasicBlock *PredBB; 1136 if (PredBBs.size() == 1) 1137 PredBB = PredBBs[0]; 1138 else { 1139 DEBUG(errs() << " Factoring out " << PredBBs.size() 1140 << " common predecessors.\n"); 1141 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), 1142 ".thr_comm", this); 1143 } 1144 1145 // And finally, do it! 1146 DEBUG(errs() << " Threading edge from '" << PredBB->getName() << "' to '" 1147 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1148 << ", across block:\n " 1149 << *BB << "\n"); 1150 1151 // We are going to have to map operands from the original BB block to the new 1152 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1153 // account for entry from PredBB. 1154 DenseMap<Instruction*, Value*> ValueMapping; 1155 1156 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1157 BB->getName()+".thread", 1158 BB->getParent(), BB); 1159 NewBB->moveAfter(PredBB); 1160 1161 BasicBlock::iterator BI = BB->begin(); 1162 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1163 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1164 1165 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1166 // mapping and using it to remap operands in the cloned instructions. 1167 for (; !isa<TerminatorInst>(BI); ++BI) { 1168 Instruction *New = BI->clone(); 1169 New->setName(BI->getName()); 1170 NewBB->getInstList().push_back(New); 1171 ValueMapping[BI] = New; 1172 1173 // Remap operands to patch up intra-block references. 1174 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1175 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1176 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1177 if (I != ValueMapping.end()) 1178 New->setOperand(i, I->second); 1179 } 1180 } 1181 1182 // We didn't copy the terminator from BB over to NewBB, because there is now 1183 // an unconditional jump to SuccBB. Insert the unconditional jump. 1184 BranchInst::Create(SuccBB, NewBB); 1185 1186 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1187 // PHI nodes for NewBB now. 1188 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1189 1190 // If there were values defined in BB that are used outside the block, then we 1191 // now have to update all uses of the value to use either the original value, 1192 // the cloned value, or some PHI derived value. This can require arbitrary 1193 // PHI insertion, of which we are prepared to do, clean these up now. 1194 SSAUpdater SSAUpdate; 1195 SmallVector<Use*, 16> UsesToRename; 1196 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1197 // Scan all uses of this instruction to see if it is used outside of its 1198 // block, and if so, record them in UsesToRename. 1199 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1200 ++UI) { 1201 Instruction *User = cast<Instruction>(*UI); 1202 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1203 if (UserPN->getIncomingBlock(UI) == BB) 1204 continue; 1205 } else if (User->getParent() == BB) 1206 continue; 1207 1208 UsesToRename.push_back(&UI.getUse()); 1209 } 1210 1211 // If there are no uses outside the block, we're done with this instruction. 1212 if (UsesToRename.empty()) 1213 continue; 1214 1215 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1216 1217 // We found a use of I outside of BB. Rename all uses of I that are outside 1218 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1219 // with the two values we know. 1220 SSAUpdate.Initialize(I); 1221 SSAUpdate.AddAvailableValue(BB, I); 1222 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); 1223 1224 while (!UsesToRename.empty()) 1225 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1226 DEBUG(errs() << "\n"); 1227 } 1228 1229 1230 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1231 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1232 // us to simplify any PHI nodes in BB. 1233 TerminatorInst *PredTerm = PredBB->getTerminator(); 1234 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1235 if (PredTerm->getSuccessor(i) == BB) { 1236 RemovePredecessorAndSimplify(BB, PredBB, TD); 1237 PredTerm->setSuccessor(i, NewBB); 1238 } 1239 1240 // At this point, the IR is fully up to date and consistent. Do a quick scan 1241 // over the new instructions and zap any that are constants or dead. This 1242 // frequently happens because of phi translation. 1243 BI = NewBB->begin(); 1244 for (BasicBlock::iterator E = NewBB->end(); BI != E; ) { 1245 Instruction *Inst = BI++; 1246 1247 if (Value *V = SimplifyInstruction(Inst, TD)) { 1248 WeakVH BIHandle(BI); 1249 ReplaceAndSimplifyAllUses(Inst, V, TD); 1250 if (BIHandle == 0) 1251 BI = NewBB->begin(); 1252 continue; 1253 } 1254 1255 RecursivelyDeleteTriviallyDeadInstructions(Inst); 1256 } 1257 1258 // Threaded an edge! 1259 ++NumThreads; 1260 return true; 1261 } 1262 1263 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1264 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1265 /// If we can duplicate the contents of BB up into PredBB do so now, this 1266 /// improves the odds that the branch will be on an analyzable instruction like 1267 /// a compare. 1268 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1269 BasicBlock *PredBB) { 1270 // If BB is a loop header, then duplicating this block outside the loop would 1271 // cause us to transform this into an irreducible loop, don't do this. 1272 // See the comments above FindLoopHeaders for justifications and caveats. 1273 if (LoopHeaders.count(BB)) { 1274 DEBUG(errs() << " Not duplicating loop header '" << BB->getName() 1275 << "' into predecessor block '" << PredBB->getName() 1276 << "' - it might create an irreducible loop!\n"); 1277 return false; 1278 } 1279 1280 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB); 1281 if (DuplicationCost > Threshold) { 1282 DEBUG(errs() << " Not duplicating BB '" << BB->getName() 1283 << "' - Cost is too high: " << DuplicationCost << "\n"); 1284 return false; 1285 } 1286 1287 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1288 // of PredBB. 1289 DEBUG(errs() << " Duplicating block '" << BB->getName() << "' into end of '" 1290 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1291 << DuplicationCost << " block is:" << *BB << "\n"); 1292 1293 // We are going to have to map operands from the original BB block into the 1294 // PredBB block. Evaluate PHI nodes in BB. 1295 DenseMap<Instruction*, Value*> ValueMapping; 1296 1297 BasicBlock::iterator BI = BB->begin(); 1298 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1299 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1300 1301 BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1302 1303 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1304 // mapping and using it to remap operands in the cloned instructions. 1305 for (; BI != BB->end(); ++BI) { 1306 Instruction *New = BI->clone(); 1307 New->setName(BI->getName()); 1308 PredBB->getInstList().insert(OldPredBranch, New); 1309 ValueMapping[BI] = New; 1310 1311 // Remap operands to patch up intra-block references. 1312 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1313 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1314 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1315 if (I != ValueMapping.end()) 1316 New->setOperand(i, I->second); 1317 } 1318 } 1319 1320 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1321 // add entries to the PHI nodes for branch from PredBB now. 1322 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1323 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1324 ValueMapping); 1325 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1326 ValueMapping); 1327 1328 // If there were values defined in BB that are used outside the block, then we 1329 // now have to update all uses of the value to use either the original value, 1330 // the cloned value, or some PHI derived value. This can require arbitrary 1331 // PHI insertion, of which we are prepared to do, clean these up now. 1332 SSAUpdater SSAUpdate; 1333 SmallVector<Use*, 16> UsesToRename; 1334 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1335 // Scan all uses of this instruction to see if it is used outside of its 1336 // block, and if so, record them in UsesToRename. 1337 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1338 ++UI) { 1339 Instruction *User = cast<Instruction>(*UI); 1340 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1341 if (UserPN->getIncomingBlock(UI) == BB) 1342 continue; 1343 } else if (User->getParent() == BB) 1344 continue; 1345 1346 UsesToRename.push_back(&UI.getUse()); 1347 } 1348 1349 // If there are no uses outside the block, we're done with this instruction. 1350 if (UsesToRename.empty()) 1351 continue; 1352 1353 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1354 1355 // We found a use of I outside of BB. Rename all uses of I that are outside 1356 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1357 // with the two values we know. 1358 SSAUpdate.Initialize(I); 1359 SSAUpdate.AddAvailableValue(BB, I); 1360 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); 1361 1362 while (!UsesToRename.empty()) 1363 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1364 DEBUG(errs() << "\n"); 1365 } 1366 1367 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1368 // that we nuked. 1369 RemovePredecessorAndSimplify(BB, PredBB, TD); 1370 1371 // Remove the unconditional branch at the end of the PredBB block. 1372 OldPredBranch->eraseFromParent(); 1373 1374 ++NumDupes; 1375 return true; 1376 } 1377 1378 1379