1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LazyValueInfo.h" 25 #include "llvm/Analysis/Loads.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/Metadata.h" 30 #include "llvm/IR/ValueHandle.h" 31 #include "llvm/Pass.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetLibraryInfo.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Local.h" 38 #include "llvm/Transforms/Utils/SSAUpdater.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "jump-threading" 42 43 STATISTIC(NumThreads, "Number of jumps threaded"); 44 STATISTIC(NumFolds, "Number of terminators folded"); 45 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 46 47 static cl::opt<unsigned> 48 Threshold("jump-threading-threshold", 49 cl::desc("Max block size to duplicate for jump threading"), 50 cl::init(6), cl::Hidden); 51 52 namespace { 53 // These are at global scope so static functions can use them too. 54 typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo; 55 typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy; 56 57 // This is used to keep track of what kind of constant we're currently hoping 58 // to find. 59 enum ConstantPreference { 60 WantInteger, 61 WantBlockAddress 62 }; 63 64 /// This pass performs 'jump threading', which looks at blocks that have 65 /// multiple predecessors and multiple successors. If one or more of the 66 /// predecessors of the block can be proven to always jump to one of the 67 /// successors, we forward the edge from the predecessor to the successor by 68 /// duplicating the contents of this block. 69 /// 70 /// An example of when this can occur is code like this: 71 /// 72 /// if () { ... 73 /// X = 4; 74 /// } 75 /// if (X < 3) { 76 /// 77 /// In this case, the unconditional branch at the end of the first if can be 78 /// revectored to the false side of the second if. 79 /// 80 class JumpThreading : public FunctionPass { 81 const DataLayout *DL; 82 TargetLibraryInfo *TLI; 83 LazyValueInfo *LVI; 84 #ifdef NDEBUG 85 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 86 #else 87 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 88 #endif 89 DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet; 90 91 // RAII helper for updating the recursion stack. 92 struct RecursionSetRemover { 93 DenseSet<std::pair<Value*, BasicBlock*> > &TheSet; 94 std::pair<Value*, BasicBlock*> ThePair; 95 96 RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S, 97 std::pair<Value*, BasicBlock*> P) 98 : TheSet(S), ThePair(P) { } 99 100 ~RecursionSetRemover() { 101 TheSet.erase(ThePair); 102 } 103 }; 104 public: 105 static char ID; // Pass identification 106 JumpThreading() : FunctionPass(ID) { 107 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 108 } 109 110 bool runOnFunction(Function &F) override; 111 112 void getAnalysisUsage(AnalysisUsage &AU) const override { 113 AU.addRequired<LazyValueInfo>(); 114 AU.addPreserved<LazyValueInfo>(); 115 AU.addRequired<TargetLibraryInfo>(); 116 } 117 118 void FindLoopHeaders(Function &F); 119 bool ProcessBlock(BasicBlock *BB); 120 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 121 BasicBlock *SuccBB); 122 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 123 const SmallVectorImpl<BasicBlock *> &PredBBs); 124 125 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 126 PredValueInfo &Result, 127 ConstantPreference Preference, 128 Instruction *CxtI = nullptr); 129 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 130 ConstantPreference Preference, 131 Instruction *CxtI = nullptr); 132 133 bool ProcessBranchOnPHI(PHINode *PN); 134 bool ProcessBranchOnXOR(BinaryOperator *BO); 135 136 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 137 bool TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB); 138 }; 139 } 140 141 char JumpThreading::ID = 0; 142 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 143 "Jump Threading", false, false) 144 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo) 145 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 146 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 147 "Jump Threading", false, false) 148 149 // Public interface to the Jump Threading pass 150 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); } 151 152 /// runOnFunction - Top level algorithm. 153 /// 154 bool JumpThreading::runOnFunction(Function &F) { 155 if (skipOptnoneFunction(F)) 156 return false; 157 158 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 159 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 160 DL = DLP ? &DLP->getDataLayout() : nullptr; 161 TLI = &getAnalysis<TargetLibraryInfo>(); 162 LVI = &getAnalysis<LazyValueInfo>(); 163 164 // Remove unreachable blocks from function as they may result in infinite 165 // loop. We do threading if we found something profitable. Jump threading a 166 // branch can create other opportunities. If these opportunities form a cycle 167 // i.e. if any jump treading is undoing previous threading in the path, then 168 // we will loop forever. We take care of this issue by not jump threading for 169 // back edges. This works for normal cases but not for unreachable blocks as 170 // they may have cycle with no back edge. 171 removeUnreachableBlocks(F); 172 173 FindLoopHeaders(F); 174 175 bool Changed, EverChanged = false; 176 do { 177 Changed = false; 178 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 179 BasicBlock *BB = I; 180 // Thread all of the branches we can over this block. 181 while (ProcessBlock(BB)) 182 Changed = true; 183 184 ++I; 185 186 // If the block is trivially dead, zap it. This eliminates the successor 187 // edges which simplifies the CFG. 188 if (pred_begin(BB) == pred_end(BB) && 189 BB != &BB->getParent()->getEntryBlock()) { 190 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 191 << "' with terminator: " << *BB->getTerminator() << '\n'); 192 LoopHeaders.erase(BB); 193 LVI->eraseBlock(BB); 194 DeleteDeadBlock(BB); 195 Changed = true; 196 continue; 197 } 198 199 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 200 201 // Can't thread an unconditional jump, but if the block is "almost 202 // empty", we can replace uses of it with uses of the successor and make 203 // this dead. 204 if (BI && BI->isUnconditional() && 205 BB != &BB->getParent()->getEntryBlock() && 206 // If the terminator is the only non-phi instruction, try to nuke it. 207 BB->getFirstNonPHIOrDbg()->isTerminator()) { 208 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 209 // block, we have to make sure it isn't in the LoopHeaders set. We 210 // reinsert afterward if needed. 211 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 212 BasicBlock *Succ = BI->getSuccessor(0); 213 214 // FIXME: It is always conservatively correct to drop the info 215 // for a block even if it doesn't get erased. This isn't totally 216 // awesome, but it allows us to use AssertingVH to prevent nasty 217 // dangling pointer issues within LazyValueInfo. 218 LVI->eraseBlock(BB); 219 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { 220 Changed = true; 221 // If we deleted BB and BB was the header of a loop, then the 222 // successor is now the header of the loop. 223 BB = Succ; 224 } 225 226 if (ErasedFromLoopHeaders) 227 LoopHeaders.insert(BB); 228 } 229 } 230 EverChanged |= Changed; 231 } while (Changed); 232 233 LoopHeaders.clear(); 234 return EverChanged; 235 } 236 237 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 238 /// thread across it. Stop scanning the block when passing the threshold. 239 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB, 240 unsigned Threshold) { 241 /// Ignore PHI nodes, these will be flattened when duplication happens. 242 BasicBlock::const_iterator I = BB->getFirstNonPHI(); 243 244 // FIXME: THREADING will delete values that are just used to compute the 245 // branch, so they shouldn't count against the duplication cost. 246 247 // Sum up the cost of each instruction until we get to the terminator. Don't 248 // include the terminator because the copy won't include it. 249 unsigned Size = 0; 250 for (; !isa<TerminatorInst>(I); ++I) { 251 252 // Stop scanning the block if we've reached the threshold. 253 if (Size > Threshold) 254 return Size; 255 256 // Debugger intrinsics don't incur code size. 257 if (isa<DbgInfoIntrinsic>(I)) continue; 258 259 // If this is a pointer->pointer bitcast, it is free. 260 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 261 continue; 262 263 // All other instructions count for at least one unit. 264 ++Size; 265 266 // Calls are more expensive. If they are non-intrinsic calls, we model them 267 // as having cost of 4. If they are a non-vector intrinsic, we model them 268 // as having cost of 2 total, and if they are a vector intrinsic, we model 269 // them as having cost 1. 270 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 271 if (CI->cannotDuplicate()) 272 // Blocks with NoDuplicate are modelled as having infinite cost, so they 273 // are never duplicated. 274 return ~0U; 275 else if (!isa<IntrinsicInst>(CI)) 276 Size += 3; 277 else if (!CI->getType()->isVectorTy()) 278 Size += 1; 279 } 280 } 281 282 // Threading through a switch statement is particularly profitable. If this 283 // block ends in a switch, decrease its cost to make it more likely to happen. 284 if (isa<SwitchInst>(I)) 285 Size = Size > 6 ? Size-6 : 0; 286 287 // The same holds for indirect branches, but slightly more so. 288 if (isa<IndirectBrInst>(I)) 289 Size = Size > 8 ? Size-8 : 0; 290 291 return Size; 292 } 293 294 /// FindLoopHeaders - We do not want jump threading to turn proper loop 295 /// structures into irreducible loops. Doing this breaks up the loop nesting 296 /// hierarchy and pessimizes later transformations. To prevent this from 297 /// happening, we first have to find the loop headers. Here we approximate this 298 /// by finding targets of backedges in the CFG. 299 /// 300 /// Note that there definitely are cases when we want to allow threading of 301 /// edges across a loop header. For example, threading a jump from outside the 302 /// loop (the preheader) to an exit block of the loop is definitely profitable. 303 /// It is also almost always profitable to thread backedges from within the loop 304 /// to exit blocks, and is often profitable to thread backedges to other blocks 305 /// within the loop (forming a nested loop). This simple analysis is not rich 306 /// enough to track all of these properties and keep it up-to-date as the CFG 307 /// mutates, so we don't allow any of these transformations. 308 /// 309 void JumpThreading::FindLoopHeaders(Function &F) { 310 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 311 FindFunctionBackedges(F, Edges); 312 313 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 314 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 315 } 316 317 /// getKnownConstant - Helper method to determine if we can thread over a 318 /// terminator with the given value as its condition, and if so what value to 319 /// use for that. What kind of value this is depends on whether we want an 320 /// integer or a block address, but an undef is always accepted. 321 /// Returns null if Val is null or not an appropriate constant. 322 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 323 if (!Val) 324 return nullptr; 325 326 // Undef is "known" enough. 327 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 328 return U; 329 330 if (Preference == WantBlockAddress) 331 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 332 333 return dyn_cast<ConstantInt>(Val); 334 } 335 336 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 337 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 338 /// in any of our predecessors. If so, return the known list of value and pred 339 /// BB in the result vector. 340 /// 341 /// This returns true if there were any known values. 342 /// 343 bool JumpThreading:: 344 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result, 345 ConstantPreference Preference, 346 Instruction *CxtI) { 347 // This method walks up use-def chains recursively. Because of this, we could 348 // get into an infinite loop going around loops in the use-def chain. To 349 // prevent this, keep track of what (value, block) pairs we've already visited 350 // and terminate the search if we loop back to them 351 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 352 return false; 353 354 // An RAII help to remove this pair from the recursion set once the recursion 355 // stack pops back out again. 356 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 357 358 // If V is a constant, then it is known in all predecessors. 359 if (Constant *KC = getKnownConstant(V, Preference)) { 360 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 361 Result.push_back(std::make_pair(KC, *PI)); 362 363 return true; 364 } 365 366 // If V is a non-instruction value, or an instruction in a different block, 367 // then it can't be derived from a PHI. 368 Instruction *I = dyn_cast<Instruction>(V); 369 if (!I || I->getParent() != BB) { 370 371 // Okay, if this is a live-in value, see if it has a known value at the end 372 // of any of our predecessors. 373 // 374 // FIXME: This should be an edge property, not a block end property. 375 /// TODO: Per PR2563, we could infer value range information about a 376 /// predecessor based on its terminator. 377 // 378 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 379 // "I" is a non-local compare-with-a-constant instruction. This would be 380 // able to handle value inequalities better, for example if the compare is 381 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 382 // Perhaps getConstantOnEdge should be smart enough to do this? 383 384 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 385 BasicBlock *P = *PI; 386 // If the value is known by LazyValueInfo to be a constant in a 387 // predecessor, use that information to try to thread this block. 388 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 389 if (Constant *KC = getKnownConstant(PredCst, Preference)) 390 Result.push_back(std::make_pair(KC, P)); 391 } 392 393 return !Result.empty(); 394 } 395 396 /// If I is a PHI node, then we know the incoming values for any constants. 397 if (PHINode *PN = dyn_cast<PHINode>(I)) { 398 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 399 Value *InVal = PN->getIncomingValue(i); 400 if (Constant *KC = getKnownConstant(InVal, Preference)) { 401 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 402 } else { 403 Constant *CI = LVI->getConstantOnEdge(InVal, 404 PN->getIncomingBlock(i), 405 BB, CxtI); 406 if (Constant *KC = getKnownConstant(CI, Preference)) 407 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 408 } 409 } 410 411 return !Result.empty(); 412 } 413 414 PredValueInfoTy LHSVals, RHSVals; 415 416 // Handle some boolean conditions. 417 if (I->getType()->getPrimitiveSizeInBits() == 1) { 418 assert(Preference == WantInteger && "One-bit non-integer type?"); 419 // X | true -> true 420 // X & false -> false 421 if (I->getOpcode() == Instruction::Or || 422 I->getOpcode() == Instruction::And) { 423 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 424 WantInteger, CxtI); 425 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 426 WantInteger, CxtI); 427 428 if (LHSVals.empty() && RHSVals.empty()) 429 return false; 430 431 ConstantInt *InterestingVal; 432 if (I->getOpcode() == Instruction::Or) 433 InterestingVal = ConstantInt::getTrue(I->getContext()); 434 else 435 InterestingVal = ConstantInt::getFalse(I->getContext()); 436 437 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 438 439 // Scan for the sentinel. If we find an undef, force it to the 440 // interesting value: x|undef -> true and x&undef -> false. 441 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 442 if (LHSVals[i].first == InterestingVal || 443 isa<UndefValue>(LHSVals[i].first)) { 444 Result.push_back(LHSVals[i]); 445 Result.back().first = InterestingVal; 446 LHSKnownBBs.insert(LHSVals[i].second); 447 } 448 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 449 if (RHSVals[i].first == InterestingVal || 450 isa<UndefValue>(RHSVals[i].first)) { 451 // If we already inferred a value for this block on the LHS, don't 452 // re-add it. 453 if (!LHSKnownBBs.count(RHSVals[i].second)) { 454 Result.push_back(RHSVals[i]); 455 Result.back().first = InterestingVal; 456 } 457 } 458 459 return !Result.empty(); 460 } 461 462 // Handle the NOT form of XOR. 463 if (I->getOpcode() == Instruction::Xor && 464 isa<ConstantInt>(I->getOperand(1)) && 465 cast<ConstantInt>(I->getOperand(1))->isOne()) { 466 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 467 WantInteger, CxtI); 468 if (Result.empty()) 469 return false; 470 471 // Invert the known values. 472 for (unsigned i = 0, e = Result.size(); i != e; ++i) 473 Result[i].first = ConstantExpr::getNot(Result[i].first); 474 475 return true; 476 } 477 478 // Try to simplify some other binary operator values. 479 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 480 assert(Preference != WantBlockAddress 481 && "A binary operator creating a block address?"); 482 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 483 PredValueInfoTy LHSVals; 484 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 485 WantInteger, CxtI); 486 487 // Try to use constant folding to simplify the binary operator. 488 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 489 Constant *V = LHSVals[i].first; 490 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 491 492 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 493 Result.push_back(std::make_pair(KC, LHSVals[i].second)); 494 } 495 } 496 497 return !Result.empty(); 498 } 499 500 // Handle compare with phi operand, where the PHI is defined in this block. 501 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 502 assert(Preference == WantInteger && "Compares only produce integers"); 503 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 504 if (PN && PN->getParent() == BB) { 505 // We can do this simplification if any comparisons fold to true or false. 506 // See if any do. 507 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 508 BasicBlock *PredBB = PN->getIncomingBlock(i); 509 Value *LHS = PN->getIncomingValue(i); 510 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 511 512 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL); 513 if (!Res) { 514 if (!isa<Constant>(RHS)) 515 continue; 516 517 LazyValueInfo::Tristate 518 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 519 cast<Constant>(RHS), PredBB, BB, 520 CxtI ? CxtI : Cmp); 521 if (ResT == LazyValueInfo::Unknown) 522 continue; 523 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 524 } 525 526 if (Constant *KC = getKnownConstant(Res, WantInteger)) 527 Result.push_back(std::make_pair(KC, PredBB)); 528 } 529 530 return !Result.empty(); 531 } 532 533 // If comparing a live-in value against a constant, see if we know the 534 // live-in value on any predecessors. 535 if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) { 536 if (!isa<Instruction>(Cmp->getOperand(0)) || 537 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) { 538 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 539 540 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){ 541 BasicBlock *P = *PI; 542 // If the value is known by LazyValueInfo to be a constant in a 543 // predecessor, use that information to try to thread this block. 544 LazyValueInfo::Tristate Res = 545 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 546 RHSCst, P, BB, CxtI ? CxtI : Cmp); 547 if (Res == LazyValueInfo::Unknown) 548 continue; 549 550 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 551 Result.push_back(std::make_pair(ResC, P)); 552 } 553 554 return !Result.empty(); 555 } 556 557 // Try to find a constant value for the LHS of a comparison, 558 // and evaluate it statically if we can. 559 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) { 560 PredValueInfoTy LHSVals; 561 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 562 WantInteger, CxtI); 563 564 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 565 Constant *V = LHSVals[i].first; 566 Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(), 567 V, CmpConst); 568 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 569 Result.push_back(std::make_pair(KC, LHSVals[i].second)); 570 } 571 572 return !Result.empty(); 573 } 574 } 575 } 576 577 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 578 // Handle select instructions where at least one operand is a known constant 579 // and we can figure out the condition value for any predecessor block. 580 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 581 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 582 PredValueInfoTy Conds; 583 if ((TrueVal || FalseVal) && 584 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 585 WantInteger, CxtI)) { 586 for (unsigned i = 0, e = Conds.size(); i != e; ++i) { 587 Constant *Cond = Conds[i].first; 588 589 // Figure out what value to use for the condition. 590 bool KnownCond; 591 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 592 // A known boolean. 593 KnownCond = CI->isOne(); 594 } else { 595 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 596 // Either operand will do, so be sure to pick the one that's a known 597 // constant. 598 // FIXME: Do this more cleverly if both values are known constants? 599 KnownCond = (TrueVal != nullptr); 600 } 601 602 // See if the select has a known constant value for this predecessor. 603 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 604 Result.push_back(std::make_pair(Val, Conds[i].second)); 605 } 606 607 return !Result.empty(); 608 } 609 } 610 611 // If all else fails, see if LVI can figure out a constant value for us. 612 Constant *CI = LVI->getConstant(V, BB, CxtI); 613 if (Constant *KC = getKnownConstant(CI, Preference)) { 614 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 615 Result.push_back(std::make_pair(KC, *PI)); 616 } 617 618 return !Result.empty(); 619 } 620 621 622 623 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 624 /// in an undefined jump, decide which block is best to revector to. 625 /// 626 /// Since we can pick an arbitrary destination, we pick the successor with the 627 /// fewest predecessors. This should reduce the in-degree of the others. 628 /// 629 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 630 TerminatorInst *BBTerm = BB->getTerminator(); 631 unsigned MinSucc = 0; 632 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 633 // Compute the successor with the minimum number of predecessors. 634 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 635 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 636 TestBB = BBTerm->getSuccessor(i); 637 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 638 if (NumPreds < MinNumPreds) { 639 MinSucc = i; 640 MinNumPreds = NumPreds; 641 } 642 } 643 644 return MinSucc; 645 } 646 647 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 648 if (!BB->hasAddressTaken()) return false; 649 650 // If the block has its address taken, it may be a tree of dead constants 651 // hanging off of it. These shouldn't keep the block alive. 652 BlockAddress *BA = BlockAddress::get(BB); 653 BA->removeDeadConstantUsers(); 654 return !BA->use_empty(); 655 } 656 657 /// ProcessBlock - If there are any predecessors whose control can be threaded 658 /// through to a successor, transform them now. 659 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 660 // If the block is trivially dead, just return and let the caller nuke it. 661 // This simplifies other transformations. 662 if (pred_begin(BB) == pred_end(BB) && 663 BB != &BB->getParent()->getEntryBlock()) 664 return false; 665 666 // If this block has a single predecessor, and if that pred has a single 667 // successor, merge the blocks. This encourages recursive jump threading 668 // because now the condition in this block can be threaded through 669 // predecessors of our predecessor block. 670 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 671 if (SinglePred->getTerminator()->getNumSuccessors() == 1 && 672 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 673 // If SinglePred was a loop header, BB becomes one. 674 if (LoopHeaders.erase(SinglePred)) 675 LoopHeaders.insert(BB); 676 677 LVI->eraseBlock(SinglePred); 678 MergeBasicBlockIntoOnlyPred(BB); 679 680 return true; 681 } 682 } 683 684 // What kind of constant we're looking for. 685 ConstantPreference Preference = WantInteger; 686 687 // Look to see if the terminator is a conditional branch, switch or indirect 688 // branch, if not we can't thread it. 689 Value *Condition; 690 Instruction *Terminator = BB->getTerminator(); 691 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 692 // Can't thread an unconditional jump. 693 if (BI->isUnconditional()) return false; 694 Condition = BI->getCondition(); 695 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 696 Condition = SI->getCondition(); 697 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 698 // Can't thread indirect branch with no successors. 699 if (IB->getNumSuccessors() == 0) return false; 700 Condition = IB->getAddress()->stripPointerCasts(); 701 Preference = WantBlockAddress; 702 } else { 703 return false; // Must be an invoke. 704 } 705 706 // Run constant folding to see if we can reduce the condition to a simple 707 // constant. 708 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 709 Value *SimpleVal = ConstantFoldInstruction(I, DL, TLI); 710 if (SimpleVal) { 711 I->replaceAllUsesWith(SimpleVal); 712 I->eraseFromParent(); 713 Condition = SimpleVal; 714 } 715 } 716 717 // If the terminator is branching on an undef, we can pick any of the 718 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 719 if (isa<UndefValue>(Condition)) { 720 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 721 722 // Fold the branch/switch. 723 TerminatorInst *BBTerm = BB->getTerminator(); 724 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 725 if (i == BestSucc) continue; 726 BBTerm->getSuccessor(i)->removePredecessor(BB, true); 727 } 728 729 DEBUG(dbgs() << " In block '" << BB->getName() 730 << "' folding undef terminator: " << *BBTerm << '\n'); 731 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 732 BBTerm->eraseFromParent(); 733 return true; 734 } 735 736 // If the terminator of this block is branching on a constant, simplify the 737 // terminator to an unconditional branch. This can occur due to threading in 738 // other blocks. 739 if (getKnownConstant(Condition, Preference)) { 740 DEBUG(dbgs() << " In block '" << BB->getName() 741 << "' folding terminator: " << *BB->getTerminator() << '\n'); 742 ++NumFolds; 743 ConstantFoldTerminator(BB, true); 744 return true; 745 } 746 747 Instruction *CondInst = dyn_cast<Instruction>(Condition); 748 749 // All the rest of our checks depend on the condition being an instruction. 750 if (!CondInst) { 751 // FIXME: Unify this with code below. 752 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 753 return true; 754 return false; 755 } 756 757 758 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 759 // For a comparison where the LHS is outside this block, it's possible 760 // that we've branched on it before. Used LVI to see if we can simplify 761 // the branch based on that. 762 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 763 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 764 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 765 if (CondBr && CondConst && CondBr->isConditional() && PI != PE && 766 (!isa<Instruction>(CondCmp->getOperand(0)) || 767 cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) { 768 // For predecessor edge, determine if the comparison is true or false 769 // on that edge. If they're all true or all false, we can simplify the 770 // branch. 771 // FIXME: We could handle mixed true/false by duplicating code. 772 LazyValueInfo::Tristate Baseline = 773 LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0), 774 CondConst, *PI, BB, CondCmp); 775 if (Baseline != LazyValueInfo::Unknown) { 776 // Check that all remaining incoming values match the first one. 777 while (++PI != PE) { 778 LazyValueInfo::Tristate Ret = 779 LVI->getPredicateOnEdge(CondCmp->getPredicate(), 780 CondCmp->getOperand(0), CondConst, *PI, BB, 781 CondCmp); 782 if (Ret != Baseline) break; 783 } 784 785 // If we terminated early, then one of the values didn't match. 786 if (PI == PE) { 787 unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0; 788 unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1; 789 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 790 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 791 CondBr->eraseFromParent(); 792 return true; 793 } 794 } 795 796 } else if (CondBr && CondConst && CondBr->isConditional()) { 797 // There might be an invairant in the same block with the conditional 798 // that can determine the predicate. 799 800 LazyValueInfo::Tristate Ret = 801 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 802 CondConst, CondCmp); 803 if (Ret != LazyValueInfo::Unknown) { 804 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 805 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 806 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 807 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 808 CondBr->eraseFromParent(); 809 return true; 810 } 811 } 812 813 if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB)) 814 return true; 815 } 816 817 // Check for some cases that are worth simplifying. Right now we want to look 818 // for loads that are used by a switch or by the condition for the branch. If 819 // we see one, check to see if it's partially redundant. If so, insert a PHI 820 // which can then be used to thread the values. 821 // 822 Value *SimplifyValue = CondInst; 823 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 824 if (isa<Constant>(CondCmp->getOperand(1))) 825 SimplifyValue = CondCmp->getOperand(0); 826 827 // TODO: There are other places where load PRE would be profitable, such as 828 // more complex comparisons. 829 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 830 if (SimplifyPartiallyRedundantLoad(LI)) 831 return true; 832 833 834 // Handle a variety of cases where we are branching on something derived from 835 // a PHI node in the current block. If we can prove that any predecessors 836 // compute a predictable value based on a PHI node, thread those predecessors. 837 // 838 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 839 return true; 840 841 // If this is an otherwise-unfoldable branch on a phi node in the current 842 // block, see if we can simplify. 843 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 844 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 845 return ProcessBranchOnPHI(PN); 846 847 848 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 849 if (CondInst->getOpcode() == Instruction::Xor && 850 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 851 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 852 853 854 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 855 // "(X == 4)", thread through this block. 856 857 return false; 858 } 859 860 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 861 /// load instruction, eliminate it by replacing it with a PHI node. This is an 862 /// important optimization that encourages jump threading, and needs to be run 863 /// interlaced with other jump threading tasks. 864 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 865 // Don't hack volatile/atomic loads. 866 if (!LI->isSimple()) return false; 867 868 // If the load is defined in a block with exactly one predecessor, it can't be 869 // partially redundant. 870 BasicBlock *LoadBB = LI->getParent(); 871 if (LoadBB->getSinglePredecessor()) 872 return false; 873 874 // If the load is defined in a landing pad, it can't be partially redundant, 875 // because the edges between the invoke and the landing pad cannot have other 876 // instructions between them. 877 if (LoadBB->isLandingPad()) 878 return false; 879 880 Value *LoadedPtr = LI->getOperand(0); 881 882 // If the loaded operand is defined in the LoadBB, it can't be available. 883 // TODO: Could do simple PHI translation, that would be fun :) 884 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 885 if (PtrOp->getParent() == LoadBB) 886 return false; 887 888 // Scan a few instructions up from the load, to see if it is obviously live at 889 // the entry to its block. 890 BasicBlock::iterator BBIt = LI; 891 892 if (Value *AvailableVal = 893 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) { 894 // If the value if the load is locally available within the block, just use 895 // it. This frequently occurs for reg2mem'd allocas. 896 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 897 898 // If the returned value is the load itself, replace with an undef. This can 899 // only happen in dead loops. 900 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 901 LI->replaceAllUsesWith(AvailableVal); 902 LI->eraseFromParent(); 903 return true; 904 } 905 906 // Otherwise, if we scanned the whole block and got to the top of the block, 907 // we know the block is locally transparent to the load. If not, something 908 // might clobber its value. 909 if (BBIt != LoadBB->begin()) 910 return false; 911 912 // If all of the loads and stores that feed the value have the same AA tags, 913 // then we can propagate them onto any newly inserted loads. 914 AAMDNodes AATags; 915 LI->getAAMetadata(AATags); 916 917 SmallPtrSet<BasicBlock*, 8> PredsScanned; 918 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 919 AvailablePredsTy AvailablePreds; 920 BasicBlock *OneUnavailablePred = nullptr; 921 922 // If we got here, the loaded value is transparent through to the start of the 923 // block. Check to see if it is available in any of the predecessor blocks. 924 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 925 PI != PE; ++PI) { 926 BasicBlock *PredBB = *PI; 927 928 // If we already scanned this predecessor, skip it. 929 if (!PredsScanned.insert(PredBB)) 930 continue; 931 932 // Scan the predecessor to see if the value is available in the pred. 933 BBIt = PredBB->end(); 934 AAMDNodes ThisAATags; 935 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6, 936 nullptr, &ThisAATags); 937 if (!PredAvailable) { 938 OneUnavailablePred = PredBB; 939 continue; 940 } 941 942 // If AA tags disagree or are not present, forget about them. 943 if (AATags != ThisAATags) AATags = AAMDNodes(); 944 945 // If so, this load is partially redundant. Remember this info so that we 946 // can create a PHI node. 947 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 948 } 949 950 // If the loaded value isn't available in any predecessor, it isn't partially 951 // redundant. 952 if (AvailablePreds.empty()) return false; 953 954 // Okay, the loaded value is available in at least one (and maybe all!) 955 // predecessors. If the value is unavailable in more than one unique 956 // predecessor, we want to insert a merge block for those common predecessors. 957 // This ensures that we only have to insert one reload, thus not increasing 958 // code size. 959 BasicBlock *UnavailablePred = nullptr; 960 961 // If there is exactly one predecessor where the value is unavailable, the 962 // already computed 'OneUnavailablePred' block is it. If it ends in an 963 // unconditional branch, we know that it isn't a critical edge. 964 if (PredsScanned.size() == AvailablePreds.size()+1 && 965 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 966 UnavailablePred = OneUnavailablePred; 967 } else if (PredsScanned.size() != AvailablePreds.size()) { 968 // Otherwise, we had multiple unavailable predecessors or we had a critical 969 // edge from the one. 970 SmallVector<BasicBlock*, 8> PredsToSplit; 971 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 972 973 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 974 AvailablePredSet.insert(AvailablePreds[i].first); 975 976 // Add all the unavailable predecessors to the PredsToSplit list. 977 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 978 PI != PE; ++PI) { 979 BasicBlock *P = *PI; 980 // If the predecessor is an indirect goto, we can't split the edge. 981 if (isa<IndirectBrInst>(P->getTerminator())) 982 return false; 983 984 if (!AvailablePredSet.count(P)) 985 PredsToSplit.push_back(P); 986 } 987 988 // Split them out to their own block. 989 UnavailablePred = 990 SplitBlockPredecessors(LoadBB, PredsToSplit, "thread-pre-split", this); 991 } 992 993 // If the value isn't available in all predecessors, then there will be 994 // exactly one where it isn't available. Insert a load on that edge and add 995 // it to the AvailablePreds list. 996 if (UnavailablePred) { 997 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 998 "Can't handle critical edge here!"); 999 LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, 1000 LI->getAlignment(), 1001 UnavailablePred->getTerminator()); 1002 NewVal->setDebugLoc(LI->getDebugLoc()); 1003 if (AATags) 1004 NewVal->setAAMetadata(AATags); 1005 1006 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1007 } 1008 1009 // Now we know that each predecessor of this block has a value in 1010 // AvailablePreds, sort them for efficient access as we're walking the preds. 1011 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1012 1013 // Create a PHI node at the start of the block for the PRE'd load value. 1014 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1015 PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "", 1016 LoadBB->begin()); 1017 PN->takeName(LI); 1018 PN->setDebugLoc(LI->getDebugLoc()); 1019 1020 // Insert new entries into the PHI for each predecessor. A single block may 1021 // have multiple entries here. 1022 for (pred_iterator PI = PB; PI != PE; ++PI) { 1023 BasicBlock *P = *PI; 1024 AvailablePredsTy::iterator I = 1025 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1026 std::make_pair(P, (Value*)nullptr)); 1027 1028 assert(I != AvailablePreds.end() && I->first == P && 1029 "Didn't find entry for predecessor!"); 1030 1031 PN->addIncoming(I->second, I->first); 1032 } 1033 1034 //cerr << "PRE: " << *LI << *PN << "\n"; 1035 1036 LI->replaceAllUsesWith(PN); 1037 LI->eraseFromParent(); 1038 1039 return true; 1040 } 1041 1042 /// FindMostPopularDest - The specified list contains multiple possible 1043 /// threadable destinations. Pick the one that occurs the most frequently in 1044 /// the list. 1045 static BasicBlock * 1046 FindMostPopularDest(BasicBlock *BB, 1047 const SmallVectorImpl<std::pair<BasicBlock*, 1048 BasicBlock*> > &PredToDestList) { 1049 assert(!PredToDestList.empty()); 1050 1051 // Determine popularity. If there are multiple possible destinations, we 1052 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1053 // blocks with known and real destinations to threading undef. We'll handle 1054 // them later if interesting. 1055 DenseMap<BasicBlock*, unsigned> DestPopularity; 1056 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1057 if (PredToDestList[i].second) 1058 DestPopularity[PredToDestList[i].second]++; 1059 1060 // Find the most popular dest. 1061 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1062 BasicBlock *MostPopularDest = DPI->first; 1063 unsigned Popularity = DPI->second; 1064 SmallVector<BasicBlock*, 4> SamePopularity; 1065 1066 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1067 // If the popularity of this entry isn't higher than the popularity we've 1068 // seen so far, ignore it. 1069 if (DPI->second < Popularity) 1070 ; // ignore. 1071 else if (DPI->second == Popularity) { 1072 // If it is the same as what we've seen so far, keep track of it. 1073 SamePopularity.push_back(DPI->first); 1074 } else { 1075 // If it is more popular, remember it. 1076 SamePopularity.clear(); 1077 MostPopularDest = DPI->first; 1078 Popularity = DPI->second; 1079 } 1080 } 1081 1082 // Okay, now we know the most popular destination. If there is more than one 1083 // destination, we need to determine one. This is arbitrary, but we need 1084 // to make a deterministic decision. Pick the first one that appears in the 1085 // successor list. 1086 if (!SamePopularity.empty()) { 1087 SamePopularity.push_back(MostPopularDest); 1088 TerminatorInst *TI = BB->getTerminator(); 1089 for (unsigned i = 0; ; ++i) { 1090 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1091 1092 if (std::find(SamePopularity.begin(), SamePopularity.end(), 1093 TI->getSuccessor(i)) == SamePopularity.end()) 1094 continue; 1095 1096 MostPopularDest = TI->getSuccessor(i); 1097 break; 1098 } 1099 } 1100 1101 // Okay, we have finally picked the most popular destination. 1102 return MostPopularDest; 1103 } 1104 1105 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1106 ConstantPreference Preference, 1107 Instruction *CxtI) { 1108 // If threading this would thread across a loop header, don't even try to 1109 // thread the edge. 1110 if (LoopHeaders.count(BB)) 1111 return false; 1112 1113 PredValueInfoTy PredValues; 1114 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1115 return false; 1116 1117 assert(!PredValues.empty() && 1118 "ComputeValueKnownInPredecessors returned true with no values"); 1119 1120 DEBUG(dbgs() << "IN BB: " << *BB; 1121 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1122 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1123 << *PredValues[i].first 1124 << " for pred '" << PredValues[i].second->getName() << "'.\n"; 1125 }); 1126 1127 // Decide what we want to thread through. Convert our list of known values to 1128 // a list of known destinations for each pred. This also discards duplicate 1129 // predecessors and keeps track of the undefined inputs (which are represented 1130 // as a null dest in the PredToDestList). 1131 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1132 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1133 1134 BasicBlock *OnlyDest = nullptr; 1135 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1136 1137 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1138 BasicBlock *Pred = PredValues[i].second; 1139 if (!SeenPreds.insert(Pred)) 1140 continue; // Duplicate predecessor entry. 1141 1142 // If the predecessor ends with an indirect goto, we can't change its 1143 // destination. 1144 if (isa<IndirectBrInst>(Pred->getTerminator())) 1145 continue; 1146 1147 Constant *Val = PredValues[i].first; 1148 1149 BasicBlock *DestBB; 1150 if (isa<UndefValue>(Val)) 1151 DestBB = nullptr; 1152 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1153 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1154 else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1155 DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor(); 1156 } else { 1157 assert(isa<IndirectBrInst>(BB->getTerminator()) 1158 && "Unexpected terminator"); 1159 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1160 } 1161 1162 // If we have exactly one destination, remember it for efficiency below. 1163 if (PredToDestList.empty()) 1164 OnlyDest = DestBB; 1165 else if (OnlyDest != DestBB) 1166 OnlyDest = MultipleDestSentinel; 1167 1168 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1169 } 1170 1171 // If all edges were unthreadable, we fail. 1172 if (PredToDestList.empty()) 1173 return false; 1174 1175 // Determine which is the most common successor. If we have many inputs and 1176 // this block is a switch, we want to start by threading the batch that goes 1177 // to the most popular destination first. If we only know about one 1178 // threadable destination (the common case) we can avoid this. 1179 BasicBlock *MostPopularDest = OnlyDest; 1180 1181 if (MostPopularDest == MultipleDestSentinel) 1182 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1183 1184 // Now that we know what the most popular destination is, factor all 1185 // predecessors that will jump to it into a single predecessor. 1186 SmallVector<BasicBlock*, 16> PredsToFactor; 1187 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1188 if (PredToDestList[i].second == MostPopularDest) { 1189 BasicBlock *Pred = PredToDestList[i].first; 1190 1191 // This predecessor may be a switch or something else that has multiple 1192 // edges to the block. Factor each of these edges by listing them 1193 // according to # occurrences in PredsToFactor. 1194 TerminatorInst *PredTI = Pred->getTerminator(); 1195 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 1196 if (PredTI->getSuccessor(i) == BB) 1197 PredsToFactor.push_back(Pred); 1198 } 1199 1200 // If the threadable edges are branching on an undefined value, we get to pick 1201 // the destination that these predecessors should get to. 1202 if (!MostPopularDest) 1203 MostPopularDest = BB->getTerminator()-> 1204 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1205 1206 // Ok, try to thread it! 1207 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1208 } 1209 1210 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1211 /// a PHI node in the current block. See if there are any simplifications we 1212 /// can do based on inputs to the phi node. 1213 /// 1214 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) { 1215 BasicBlock *BB = PN->getParent(); 1216 1217 // TODO: We could make use of this to do it once for blocks with common PHI 1218 // values. 1219 SmallVector<BasicBlock*, 1> PredBBs; 1220 PredBBs.resize(1); 1221 1222 // If any of the predecessor blocks end in an unconditional branch, we can 1223 // *duplicate* the conditional branch into that block in order to further 1224 // encourage jump threading and to eliminate cases where we have branch on a 1225 // phi of an icmp (branch on icmp is much better). 1226 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1227 BasicBlock *PredBB = PN->getIncomingBlock(i); 1228 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1229 if (PredBr->isUnconditional()) { 1230 PredBBs[0] = PredBB; 1231 // Try to duplicate BB into PredBB. 1232 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1233 return true; 1234 } 1235 } 1236 1237 return false; 1238 } 1239 1240 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1241 /// a xor instruction in the current block. See if there are any 1242 /// simplifications we can do based on inputs to the xor. 1243 /// 1244 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) { 1245 BasicBlock *BB = BO->getParent(); 1246 1247 // If either the LHS or RHS of the xor is a constant, don't do this 1248 // optimization. 1249 if (isa<ConstantInt>(BO->getOperand(0)) || 1250 isa<ConstantInt>(BO->getOperand(1))) 1251 return false; 1252 1253 // If the first instruction in BB isn't a phi, we won't be able to infer 1254 // anything special about any particular predecessor. 1255 if (!isa<PHINode>(BB->front())) 1256 return false; 1257 1258 // If we have a xor as the branch input to this block, and we know that the 1259 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1260 // the condition into the predecessor and fix that value to true, saving some 1261 // logical ops on that path and encouraging other paths to simplify. 1262 // 1263 // This copies something like this: 1264 // 1265 // BB: 1266 // %X = phi i1 [1], [%X'] 1267 // %Y = icmp eq i32 %A, %B 1268 // %Z = xor i1 %X, %Y 1269 // br i1 %Z, ... 1270 // 1271 // Into: 1272 // BB': 1273 // %Y = icmp ne i32 %A, %B 1274 // br i1 %Z, ... 1275 1276 PredValueInfoTy XorOpValues; 1277 bool isLHS = true; 1278 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1279 WantInteger, BO)) { 1280 assert(XorOpValues.empty()); 1281 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1282 WantInteger, BO)) 1283 return false; 1284 isLHS = false; 1285 } 1286 1287 assert(!XorOpValues.empty() && 1288 "ComputeValueKnownInPredecessors returned true with no values"); 1289 1290 // Scan the information to see which is most popular: true or false. The 1291 // predecessors can be of the set true, false, or undef. 1292 unsigned NumTrue = 0, NumFalse = 0; 1293 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1294 if (isa<UndefValue>(XorOpValues[i].first)) 1295 // Ignore undefs for the count. 1296 continue; 1297 if (cast<ConstantInt>(XorOpValues[i].first)->isZero()) 1298 ++NumFalse; 1299 else 1300 ++NumTrue; 1301 } 1302 1303 // Determine which value to split on, true, false, or undef if neither. 1304 ConstantInt *SplitVal = nullptr; 1305 if (NumTrue > NumFalse) 1306 SplitVal = ConstantInt::getTrue(BB->getContext()); 1307 else if (NumTrue != 0 || NumFalse != 0) 1308 SplitVal = ConstantInt::getFalse(BB->getContext()); 1309 1310 // Collect all of the blocks that this can be folded into so that we can 1311 // factor this once and clone it once. 1312 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1313 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1314 if (XorOpValues[i].first != SplitVal && 1315 !isa<UndefValue>(XorOpValues[i].first)) 1316 continue; 1317 1318 BlocksToFoldInto.push_back(XorOpValues[i].second); 1319 } 1320 1321 // If we inferred a value for all of the predecessors, then duplication won't 1322 // help us. However, we can just replace the LHS or RHS with the constant. 1323 if (BlocksToFoldInto.size() == 1324 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1325 if (!SplitVal) { 1326 // If all preds provide undef, just nuke the xor, because it is undef too. 1327 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1328 BO->eraseFromParent(); 1329 } else if (SplitVal->isZero()) { 1330 // If all preds provide 0, replace the xor with the other input. 1331 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1332 BO->eraseFromParent(); 1333 } else { 1334 // If all preds provide 1, set the computed value to 1. 1335 BO->setOperand(!isLHS, SplitVal); 1336 } 1337 1338 return true; 1339 } 1340 1341 // Try to duplicate BB into PredBB. 1342 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1343 } 1344 1345 1346 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1347 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1348 /// NewPred using the entries from OldPred (suitably mapped). 1349 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1350 BasicBlock *OldPred, 1351 BasicBlock *NewPred, 1352 DenseMap<Instruction*, Value*> &ValueMap) { 1353 for (BasicBlock::iterator PNI = PHIBB->begin(); 1354 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1355 // Ok, we have a PHI node. Figure out what the incoming value was for the 1356 // DestBlock. 1357 Value *IV = PN->getIncomingValueForBlock(OldPred); 1358 1359 // Remap the value if necessary. 1360 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1361 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1362 if (I != ValueMap.end()) 1363 IV = I->second; 1364 } 1365 1366 PN->addIncoming(IV, NewPred); 1367 } 1368 } 1369 1370 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1371 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1372 /// across BB. Transform the IR to reflect this change. 1373 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1374 const SmallVectorImpl<BasicBlock*> &PredBBs, 1375 BasicBlock *SuccBB) { 1376 // If threading to the same block as we come from, we would infinite loop. 1377 if (SuccBB == BB) { 1378 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1379 << "' - would thread to self!\n"); 1380 return false; 1381 } 1382 1383 // If threading this would thread across a loop header, don't thread the edge. 1384 // See the comments above FindLoopHeaders for justifications and caveats. 1385 if (LoopHeaders.count(BB)) { 1386 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1387 << "' to dest BB '" << SuccBB->getName() 1388 << "' - it might create an irreducible loop!\n"); 1389 return false; 1390 } 1391 1392 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, Threshold); 1393 if (JumpThreadCost > Threshold) { 1394 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1395 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1396 return false; 1397 } 1398 1399 // And finally, do it! Start by factoring the predecessors is needed. 1400 BasicBlock *PredBB; 1401 if (PredBBs.size() == 1) 1402 PredBB = PredBBs[0]; 1403 else { 1404 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1405 << " common predecessors.\n"); 1406 PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this); 1407 } 1408 1409 // And finally, do it! 1410 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1411 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1412 << ", across block:\n " 1413 << *BB << "\n"); 1414 1415 LVI->threadEdge(PredBB, BB, SuccBB); 1416 1417 // We are going to have to map operands from the original BB block to the new 1418 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1419 // account for entry from PredBB. 1420 DenseMap<Instruction*, Value*> ValueMapping; 1421 1422 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1423 BB->getName()+".thread", 1424 BB->getParent(), BB); 1425 NewBB->moveAfter(PredBB); 1426 1427 BasicBlock::iterator BI = BB->begin(); 1428 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1429 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1430 1431 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1432 // mapping and using it to remap operands in the cloned instructions. 1433 for (; !isa<TerminatorInst>(BI); ++BI) { 1434 Instruction *New = BI->clone(); 1435 New->setName(BI->getName()); 1436 NewBB->getInstList().push_back(New); 1437 ValueMapping[BI] = New; 1438 1439 // Remap operands to patch up intra-block references. 1440 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1441 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1442 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1443 if (I != ValueMapping.end()) 1444 New->setOperand(i, I->second); 1445 } 1446 } 1447 1448 // We didn't copy the terminator from BB over to NewBB, because there is now 1449 // an unconditional jump to SuccBB. Insert the unconditional jump. 1450 BranchInst *NewBI =BranchInst::Create(SuccBB, NewBB); 1451 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1452 1453 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1454 // PHI nodes for NewBB now. 1455 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1456 1457 // If there were values defined in BB that are used outside the block, then we 1458 // now have to update all uses of the value to use either the original value, 1459 // the cloned value, or some PHI derived value. This can require arbitrary 1460 // PHI insertion, of which we are prepared to do, clean these up now. 1461 SSAUpdater SSAUpdate; 1462 SmallVector<Use*, 16> UsesToRename; 1463 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1464 // Scan all uses of this instruction to see if it is used outside of its 1465 // block, and if so, record them in UsesToRename. 1466 for (Use &U : I->uses()) { 1467 Instruction *User = cast<Instruction>(U.getUser()); 1468 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1469 if (UserPN->getIncomingBlock(U) == BB) 1470 continue; 1471 } else if (User->getParent() == BB) 1472 continue; 1473 1474 UsesToRename.push_back(&U); 1475 } 1476 1477 // If there are no uses outside the block, we're done with this instruction. 1478 if (UsesToRename.empty()) 1479 continue; 1480 1481 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1482 1483 // We found a use of I outside of BB. Rename all uses of I that are outside 1484 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1485 // with the two values we know. 1486 SSAUpdate.Initialize(I->getType(), I->getName()); 1487 SSAUpdate.AddAvailableValue(BB, I); 1488 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); 1489 1490 while (!UsesToRename.empty()) 1491 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1492 DEBUG(dbgs() << "\n"); 1493 } 1494 1495 1496 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1497 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1498 // us to simplify any PHI nodes in BB. 1499 TerminatorInst *PredTerm = PredBB->getTerminator(); 1500 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1501 if (PredTerm->getSuccessor(i) == BB) { 1502 BB->removePredecessor(PredBB, true); 1503 PredTerm->setSuccessor(i, NewBB); 1504 } 1505 1506 // At this point, the IR is fully up to date and consistent. Do a quick scan 1507 // over the new instructions and zap any that are constants or dead. This 1508 // frequently happens because of phi translation. 1509 SimplifyInstructionsInBlock(NewBB, DL, TLI); 1510 1511 // Threaded an edge! 1512 ++NumThreads; 1513 return true; 1514 } 1515 1516 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1517 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1518 /// If we can duplicate the contents of BB up into PredBB do so now, this 1519 /// improves the odds that the branch will be on an analyzable instruction like 1520 /// a compare. 1521 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1522 const SmallVectorImpl<BasicBlock *> &PredBBs) { 1523 assert(!PredBBs.empty() && "Can't handle an empty set"); 1524 1525 // If BB is a loop header, then duplicating this block outside the loop would 1526 // cause us to transform this into an irreducible loop, don't do this. 1527 // See the comments above FindLoopHeaders for justifications and caveats. 1528 if (LoopHeaders.count(BB)) { 1529 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1530 << "' into predecessor block '" << PredBBs[0]->getName() 1531 << "' - it might create an irreducible loop!\n"); 1532 return false; 1533 } 1534 1535 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, Threshold); 1536 if (DuplicationCost > Threshold) { 1537 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1538 << "' - Cost is too high: " << DuplicationCost << "\n"); 1539 return false; 1540 } 1541 1542 // And finally, do it! Start by factoring the predecessors is needed. 1543 BasicBlock *PredBB; 1544 if (PredBBs.size() == 1) 1545 PredBB = PredBBs[0]; 1546 else { 1547 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1548 << " common predecessors.\n"); 1549 PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this); 1550 } 1551 1552 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1553 // of PredBB. 1554 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1555 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1556 << DuplicationCost << " block is:" << *BB << "\n"); 1557 1558 // Unless PredBB ends with an unconditional branch, split the edge so that we 1559 // can just clone the bits from BB into the end of the new PredBB. 1560 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 1561 1562 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 1563 PredBB = SplitEdge(PredBB, BB, this); 1564 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1565 } 1566 1567 // We are going to have to map operands from the original BB block into the 1568 // PredBB block. Evaluate PHI nodes in BB. 1569 DenseMap<Instruction*, Value*> ValueMapping; 1570 1571 BasicBlock::iterator BI = BB->begin(); 1572 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1573 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1574 1575 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1576 // mapping and using it to remap operands in the cloned instructions. 1577 for (; BI != BB->end(); ++BI) { 1578 Instruction *New = BI->clone(); 1579 1580 // Remap operands to patch up intra-block references. 1581 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1582 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1583 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1584 if (I != ValueMapping.end()) 1585 New->setOperand(i, I->second); 1586 } 1587 1588 // If this instruction can be simplified after the operands are updated, 1589 // just use the simplified value instead. This frequently happens due to 1590 // phi translation. 1591 if (Value *IV = SimplifyInstruction(New, DL)) { 1592 delete New; 1593 ValueMapping[BI] = IV; 1594 } else { 1595 // Otherwise, insert the new instruction into the block. 1596 New->setName(BI->getName()); 1597 PredBB->getInstList().insert(OldPredBranch, New); 1598 ValueMapping[BI] = New; 1599 } 1600 } 1601 1602 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1603 // add entries to the PHI nodes for branch from PredBB now. 1604 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1605 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1606 ValueMapping); 1607 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1608 ValueMapping); 1609 1610 // If there were values defined in BB that are used outside the block, then we 1611 // now have to update all uses of the value to use either the original value, 1612 // the cloned value, or some PHI derived value. This can require arbitrary 1613 // PHI insertion, of which we are prepared to do, clean these up now. 1614 SSAUpdater SSAUpdate; 1615 SmallVector<Use*, 16> UsesToRename; 1616 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1617 // Scan all uses of this instruction to see if it is used outside of its 1618 // block, and if so, record them in UsesToRename. 1619 for (Use &U : I->uses()) { 1620 Instruction *User = cast<Instruction>(U.getUser()); 1621 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1622 if (UserPN->getIncomingBlock(U) == BB) 1623 continue; 1624 } else if (User->getParent() == BB) 1625 continue; 1626 1627 UsesToRename.push_back(&U); 1628 } 1629 1630 // If there are no uses outside the block, we're done with this instruction. 1631 if (UsesToRename.empty()) 1632 continue; 1633 1634 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1635 1636 // We found a use of I outside of BB. Rename all uses of I that are outside 1637 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1638 // with the two values we know. 1639 SSAUpdate.Initialize(I->getType(), I->getName()); 1640 SSAUpdate.AddAvailableValue(BB, I); 1641 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); 1642 1643 while (!UsesToRename.empty()) 1644 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1645 DEBUG(dbgs() << "\n"); 1646 } 1647 1648 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1649 // that we nuked. 1650 BB->removePredecessor(PredBB, true); 1651 1652 // Remove the unconditional branch at the end of the PredBB block. 1653 OldPredBranch->eraseFromParent(); 1654 1655 ++NumDupes; 1656 return true; 1657 } 1658 1659 /// TryToUnfoldSelect - Look for blocks of the form 1660 /// bb1: 1661 /// %a = select 1662 /// br bb 1663 /// 1664 /// bb2: 1665 /// %p = phi [%a, %bb] ... 1666 /// %c = icmp %p 1667 /// br i1 %c 1668 /// 1669 /// And expand the select into a branch structure if one of its arms allows %c 1670 /// to be folded. This later enables threading from bb1 over bb2. 1671 bool JumpThreading::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 1672 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1673 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 1674 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 1675 1676 if (!CondBr || !CondBr->isConditional() || !CondLHS || 1677 CondLHS->getParent() != BB) 1678 return false; 1679 1680 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 1681 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 1682 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 1683 1684 // Look if one of the incoming values is a select in the corresponding 1685 // predecessor. 1686 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 1687 continue; 1688 1689 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 1690 if (!PredTerm || !PredTerm->isUnconditional()) 1691 continue; 1692 1693 // Now check if one of the select values would allow us to constant fold the 1694 // terminator in BB. We don't do the transform if both sides fold, those 1695 // cases will be threaded in any case. 1696 LazyValueInfo::Tristate LHSFolds = 1697 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 1698 CondRHS, Pred, BB, CondCmp); 1699 LazyValueInfo::Tristate RHSFolds = 1700 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 1701 CondRHS, Pred, BB, CondCmp); 1702 if ((LHSFolds != LazyValueInfo::Unknown || 1703 RHSFolds != LazyValueInfo::Unknown) && 1704 LHSFolds != RHSFolds) { 1705 // Expand the select. 1706 // 1707 // Pred -- 1708 // | v 1709 // | NewBB 1710 // | | 1711 // |----- 1712 // v 1713 // BB 1714 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 1715 BB->getParent(), BB); 1716 // Move the unconditional branch to NewBB. 1717 PredTerm->removeFromParent(); 1718 NewBB->getInstList().insert(NewBB->end(), PredTerm); 1719 // Create a conditional branch and update PHI nodes. 1720 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 1721 CondLHS->setIncomingValue(I, SI->getFalseValue()); 1722 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 1723 // The select is now dead. 1724 SI->eraseFromParent(); 1725 1726 // Update any other PHI nodes in BB. 1727 for (BasicBlock::iterator BI = BB->begin(); 1728 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 1729 if (Phi != CondLHS) 1730 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 1731 return true; 1732 } 1733 } 1734 return false; 1735 } 1736