1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "jump-threading" 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/IntrinsicInst.h" 17 #include "llvm/LLVMContext.h" 18 #include "llvm/Pass.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LazyValueInfo.h" 21 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 22 #include "llvm/Transforms/Utils/Local.h" 23 #include "llvm/Transforms/Utils/SSAUpdater.h" 24 #include "llvm/Target/TargetData.h" 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ValueHandle.h" 33 #include "llvm/Support/raw_ostream.h" 34 using namespace llvm; 35 36 STATISTIC(NumThreads, "Number of jumps threaded"); 37 STATISTIC(NumFolds, "Number of terminators folded"); 38 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 39 40 static cl::opt<unsigned> 41 Threshold("jump-threading-threshold", 42 cl::desc("Max block size to duplicate for jump threading"), 43 cl::init(6), cl::Hidden); 44 45 // Turn on use of LazyValueInfo. 46 static cl::opt<bool> 47 EnableLVI("enable-jump-threading-lvi", cl::ReallyHidden); 48 49 50 51 namespace { 52 /// This pass performs 'jump threading', which looks at blocks that have 53 /// multiple predecessors and multiple successors. If one or more of the 54 /// predecessors of the block can be proven to always jump to one of the 55 /// successors, we forward the edge from the predecessor to the successor by 56 /// duplicating the contents of this block. 57 /// 58 /// An example of when this can occur is code like this: 59 /// 60 /// if () { ... 61 /// X = 4; 62 /// } 63 /// if (X < 3) { 64 /// 65 /// In this case, the unconditional branch at the end of the first if can be 66 /// revectored to the false side of the second if. 67 /// 68 class JumpThreading : public FunctionPass { 69 TargetData *TD; 70 LazyValueInfo *LVI; 71 #ifdef NDEBUG 72 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 73 #else 74 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 75 #endif 76 public: 77 static char ID; // Pass identification 78 JumpThreading() : FunctionPass(&ID) {} 79 80 bool runOnFunction(Function &F); 81 82 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 83 if (EnableLVI) 84 AU.addRequired<LazyValueInfo>(); 85 } 86 87 void FindLoopHeaders(Function &F); 88 bool ProcessBlock(BasicBlock *BB); 89 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 90 BasicBlock *SuccBB); 91 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 92 BasicBlock *PredBB); 93 94 typedef SmallVectorImpl<std::pair<ConstantInt*, 95 BasicBlock*> > PredValueInfo; 96 97 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 98 PredValueInfo &Result); 99 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB); 100 101 102 bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 103 bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 104 105 bool ProcessJumpOnPHI(PHINode *PN); 106 107 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 108 }; 109 } 110 111 char JumpThreading::ID = 0; 112 static RegisterPass<JumpThreading> 113 X("jump-threading", "Jump Threading"); 114 115 // Public interface to the Jump Threading pass 116 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); } 117 118 /// runOnFunction - Top level algorithm. 119 /// 120 bool JumpThreading::runOnFunction(Function &F) { 121 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 122 TD = getAnalysisIfAvailable<TargetData>(); 123 LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0; 124 125 FindLoopHeaders(F); 126 127 bool Changed, EverChanged = false; 128 do { 129 Changed = false; 130 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 131 BasicBlock *BB = I; 132 // Thread all of the branches we can over this block. 133 while (ProcessBlock(BB)) 134 Changed = true; 135 136 ++I; 137 138 // If the block is trivially dead, zap it. This eliminates the successor 139 // edges which simplifies the CFG. 140 if (pred_begin(BB) == pred_end(BB) && 141 BB != &BB->getParent()->getEntryBlock()) { 142 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 143 << "' with terminator: " << *BB->getTerminator() << '\n'); 144 LoopHeaders.erase(BB); 145 DeleteDeadBlock(BB); 146 Changed = true; 147 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 148 // Can't thread an unconditional jump, but if the block is "almost 149 // empty", we can replace uses of it with uses of the successor and make 150 // this dead. 151 if (BI->isUnconditional() && 152 BB != &BB->getParent()->getEntryBlock()) { 153 BasicBlock::iterator BBI = BB->getFirstNonPHI(); 154 // Ignore dbg intrinsics. 155 while (isa<DbgInfoIntrinsic>(BBI)) 156 ++BBI; 157 // If the terminator is the only non-phi instruction, try to nuke it. 158 if (BBI->isTerminator()) { 159 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 160 // block, we have to make sure it isn't in the LoopHeaders set. We 161 // reinsert afterward if needed. 162 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 163 BasicBlock *Succ = BI->getSuccessor(0); 164 165 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { 166 Changed = true; 167 // If we deleted BB and BB was the header of a loop, then the 168 // successor is now the header of the loop. 169 BB = Succ; 170 } 171 172 if (ErasedFromLoopHeaders) 173 LoopHeaders.insert(BB); 174 } 175 } 176 } 177 } 178 EverChanged |= Changed; 179 } while (Changed); 180 181 LoopHeaders.clear(); 182 return EverChanged; 183 } 184 185 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 186 /// thread across it. 187 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) { 188 /// Ignore PHI nodes, these will be flattened when duplication happens. 189 BasicBlock::const_iterator I = BB->getFirstNonPHI(); 190 191 // FIXME: THREADING will delete values that are just used to compute the 192 // branch, so they shouldn't count against the duplication cost. 193 194 195 // Sum up the cost of each instruction until we get to the terminator. Don't 196 // include the terminator because the copy won't include it. 197 unsigned Size = 0; 198 for (; !isa<TerminatorInst>(I); ++I) { 199 // Debugger intrinsics don't incur code size. 200 if (isa<DbgInfoIntrinsic>(I)) continue; 201 202 // If this is a pointer->pointer bitcast, it is free. 203 if (isa<BitCastInst>(I) && isa<PointerType>(I->getType())) 204 continue; 205 206 // All other instructions count for at least one unit. 207 ++Size; 208 209 // Calls are more expensive. If they are non-intrinsic calls, we model them 210 // as having cost of 4. If they are a non-vector intrinsic, we model them 211 // as having cost of 2 total, and if they are a vector intrinsic, we model 212 // them as having cost 1. 213 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 214 if (!isa<IntrinsicInst>(CI)) 215 Size += 3; 216 else if (!isa<VectorType>(CI->getType())) 217 Size += 1; 218 } 219 } 220 221 // Threading through a switch statement is particularly profitable. If this 222 // block ends in a switch, decrease its cost to make it more likely to happen. 223 if (isa<SwitchInst>(I)) 224 Size = Size > 6 ? Size-6 : 0; 225 226 return Size; 227 } 228 229 /// FindLoopHeaders - We do not want jump threading to turn proper loop 230 /// structures into irreducible loops. Doing this breaks up the loop nesting 231 /// hierarchy and pessimizes later transformations. To prevent this from 232 /// happening, we first have to find the loop headers. Here we approximate this 233 /// by finding targets of backedges in the CFG. 234 /// 235 /// Note that there definitely are cases when we want to allow threading of 236 /// edges across a loop header. For example, threading a jump from outside the 237 /// loop (the preheader) to an exit block of the loop is definitely profitable. 238 /// It is also almost always profitable to thread backedges from within the loop 239 /// to exit blocks, and is often profitable to thread backedges to other blocks 240 /// within the loop (forming a nested loop). This simple analysis is not rich 241 /// enough to track all of these properties and keep it up-to-date as the CFG 242 /// mutates, so we don't allow any of these transformations. 243 /// 244 void JumpThreading::FindLoopHeaders(Function &F) { 245 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 246 FindFunctionBackedges(F, Edges); 247 248 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 249 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 250 } 251 252 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 253 /// if we can infer that the value is a known ConstantInt in any of our 254 /// predecessors. If so, return the known list of value and pred BB in the 255 /// result vector. If a value is known to be undef, it is returned as null. 256 /// 257 /// This returns true if there were any known values. 258 /// 259 bool JumpThreading:: 260 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){ 261 // If V is a constantint, then it is known in all predecessors. 262 if (isa<ConstantInt>(V) || isa<UndefValue>(V)) { 263 ConstantInt *CI = dyn_cast<ConstantInt>(V); 264 265 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 266 Result.push_back(std::make_pair(CI, *PI)); 267 return true; 268 } 269 270 // If V is a non-instruction value, or an instruction in a different block, 271 // then it can't be derived from a PHI. 272 Instruction *I = dyn_cast<Instruction>(V); 273 if (I == 0 || I->getParent() != BB) { 274 275 // Okay, if this is a live-in value, see if it has a known value at the end 276 // of any of our predecessors. 277 // 278 // FIXME: This should be an edge property, not a block end property. 279 /// TODO: Per PR2563, we could infer value range information about a 280 /// predecessor based on its terminator. 281 // 282 if (LVI) { 283 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 284 // "I" is a non-local compare-with-a-constant instruction. This would be 285 // able to handle value inequalities better, for example if the compare is 286 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 287 // Perhaps getConstantOnEdge should be smart enough to do this? 288 289 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 290 // If the value is known by LazyValueInfo to be a constant in a 291 // predecessor, use that information to try to thread this block. 292 Constant *PredCst = LVI->getConstantOnEdge(V, *PI, BB); 293 if (PredCst == 0 || 294 (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst))) 295 continue; 296 297 Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), *PI)); 298 } 299 300 return !Result.empty(); 301 } 302 303 return false; 304 } 305 306 /// If I is a PHI node, then we know the incoming values for any constants. 307 if (PHINode *PN = dyn_cast<PHINode>(I)) { 308 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 309 Value *InVal = PN->getIncomingValue(i); 310 if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) { 311 ConstantInt *CI = dyn_cast<ConstantInt>(InVal); 312 Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i))); 313 } 314 } 315 return !Result.empty(); 316 } 317 318 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals; 319 320 // Handle some boolean conditions. 321 if (I->getType()->getPrimitiveSizeInBits() == 1) { 322 // X | true -> true 323 // X & false -> false 324 if (I->getOpcode() == Instruction::Or || 325 I->getOpcode() == Instruction::And) { 326 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals); 327 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals); 328 329 if (LHSVals.empty() && RHSVals.empty()) 330 return false; 331 332 ConstantInt *InterestingVal; 333 if (I->getOpcode() == Instruction::Or) 334 InterestingVal = ConstantInt::getTrue(I->getContext()); 335 else 336 InterestingVal = ConstantInt::getFalse(I->getContext()); 337 338 // Scan for the sentinel. 339 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 340 if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) 341 Result.push_back(LHSVals[i]); 342 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 343 if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) 344 Result.push_back(RHSVals[i]); 345 return !Result.empty(); 346 } 347 348 // Handle the NOT form of XOR. 349 if (I->getOpcode() == Instruction::Xor && 350 isa<ConstantInt>(I->getOperand(1)) && 351 cast<ConstantInt>(I->getOperand(1))->isOne()) { 352 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result); 353 if (Result.empty()) 354 return false; 355 356 // Invert the known values. 357 for (unsigned i = 0, e = Result.size(); i != e; ++i) 358 if (Result[i].first) 359 Result[i].first = 360 cast<ConstantInt>(ConstantExpr::getNot(Result[i].first)); 361 return true; 362 } 363 } 364 365 // Handle compare with phi operand, where the PHI is defined in this block. 366 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 367 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 368 if (PN && PN->getParent() == BB) { 369 // We can do this simplification if any comparisons fold to true or false. 370 // See if any do. 371 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 372 BasicBlock *PredBB = PN->getIncomingBlock(i); 373 Value *LHS = PN->getIncomingValue(i); 374 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 375 376 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD); 377 if (Res == 0) { 378 if (!LVI || !isa<Constant>(RHS)) 379 continue; 380 381 LazyValueInfo::Tristate 382 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 383 cast<Constant>(RHS), PredBB, BB); 384 if (ResT == LazyValueInfo::Unknown) 385 continue; 386 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 387 } 388 389 if (isa<UndefValue>(Res)) 390 Result.push_back(std::make_pair((ConstantInt*)0, PredBB)); 391 else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res)) 392 Result.push_back(std::make_pair(CI, PredBB)); 393 } 394 395 return !Result.empty(); 396 } 397 398 399 // If comparing a live-in value against a constant, see if we know the 400 // live-in value on any predecessors. 401 if (LVI && isa<Constant>(Cmp->getOperand(1)) && 402 Cmp->getType()->isInteger() && // Not vector compare. 403 (!isa<Instruction>(Cmp->getOperand(0)) || 404 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB)) { 405 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 406 407 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 408 // If the value is known by LazyValueInfo to be a constant in a 409 // predecessor, use that information to try to thread this block. 410 LazyValueInfo::Tristate 411 Res = LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 412 RHSCst, *PI, BB); 413 if (Res == LazyValueInfo::Unknown) 414 continue; 415 416 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 417 Result.push_back(std::make_pair(cast<ConstantInt>(ResC), *PI)); 418 } 419 420 return !Result.empty(); 421 } 422 } 423 return false; 424 } 425 426 427 428 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 429 /// in an undefined jump, decide which block is best to revector to. 430 /// 431 /// Since we can pick an arbitrary destination, we pick the successor with the 432 /// fewest predecessors. This should reduce the in-degree of the others. 433 /// 434 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 435 TerminatorInst *BBTerm = BB->getTerminator(); 436 unsigned MinSucc = 0; 437 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 438 // Compute the successor with the minimum number of predecessors. 439 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 440 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 441 TestBB = BBTerm->getSuccessor(i); 442 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 443 if (NumPreds < MinNumPreds) 444 MinSucc = i; 445 } 446 447 return MinSucc; 448 } 449 450 /// ProcessBlock - If there are any predecessors whose control can be threaded 451 /// through to a successor, transform them now. 452 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 453 // If this block has a single predecessor, and if that pred has a single 454 // successor, merge the blocks. This encourages recursive jump threading 455 // because now the condition in this block can be threaded through 456 // predecessors of our predecessor block. 457 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 458 if (SinglePred->getTerminator()->getNumSuccessors() == 1 && 459 SinglePred != BB) { 460 // If SinglePred was a loop header, BB becomes one. 461 if (LoopHeaders.erase(SinglePred)) 462 LoopHeaders.insert(BB); 463 464 // Remember if SinglePred was the entry block of the function. If so, we 465 // will need to move BB back to the entry position. 466 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 467 MergeBasicBlockIntoOnlyPred(BB); 468 469 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 470 BB->moveBefore(&BB->getParent()->getEntryBlock()); 471 return true; 472 } 473 } 474 475 // Look to see if the terminator is a branch of switch, if not we can't thread 476 // it. 477 Value *Condition; 478 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 479 // Can't thread an unconditional jump. 480 if (BI->isUnconditional()) return false; 481 Condition = BI->getCondition(); 482 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 483 Condition = SI->getCondition(); 484 else 485 return false; // Must be an invoke. 486 487 // If the terminator of this block is branching on a constant, simplify the 488 // terminator to an unconditional branch. This can occur due to threading in 489 // other blocks. 490 if (isa<ConstantInt>(Condition)) { 491 DEBUG(dbgs() << " In block '" << BB->getName() 492 << "' folding terminator: " << *BB->getTerminator() << '\n'); 493 ++NumFolds; 494 ConstantFoldTerminator(BB); 495 return true; 496 } 497 498 // If the terminator is branching on an undef, we can pick any of the 499 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 500 if (isa<UndefValue>(Condition)) { 501 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 502 503 // Fold the branch/switch. 504 TerminatorInst *BBTerm = BB->getTerminator(); 505 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 506 if (i == BestSucc) continue; 507 RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD); 508 } 509 510 DEBUG(dbgs() << " In block '" << BB->getName() 511 << "' folding undef terminator: " << *BBTerm << '\n'); 512 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 513 BBTerm->eraseFromParent(); 514 return true; 515 } 516 517 Instruction *CondInst = dyn_cast<Instruction>(Condition); 518 519 // If the condition is an instruction defined in another block, see if a 520 // predecessor has the same condition: 521 // br COND, BBX, BBY 522 // BBX: 523 // br COND, BBZ, BBW 524 if (!LVI && 525 !Condition->hasOneUse() && // Multiple uses. 526 (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition. 527 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 528 if (isa<BranchInst>(BB->getTerminator())) { 529 for (; PI != E; ++PI) 530 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 531 if (PBI->isConditional() && PBI->getCondition() == Condition && 532 ProcessBranchOnDuplicateCond(*PI, BB)) 533 return true; 534 } else { 535 assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator"); 536 for (; PI != E; ++PI) 537 if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator())) 538 if (PSI->getCondition() == Condition && 539 ProcessSwitchOnDuplicateCond(*PI, BB)) 540 return true; 541 } 542 } 543 544 // All the rest of our checks depend on the condition being an instruction. 545 if (CondInst == 0) { 546 // FIXME: Unify this with code below. 547 if (LVI && ProcessThreadableEdges(Condition, BB)) 548 return true; 549 return false; 550 } 551 552 553 // See if this is a phi node in the current block. 554 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 555 if (PN->getParent() == BB) 556 return ProcessJumpOnPHI(PN); 557 558 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 559 if (!LVI && 560 (!isa<PHINode>(CondCmp->getOperand(0)) || 561 cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) { 562 // If we have a comparison, loop over the predecessors to see if there is 563 // a condition with a lexically identical value. 564 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 565 for (; PI != E; ++PI) 566 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 567 if (PBI->isConditional() && *PI != BB) { 568 if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) { 569 if (CI->getOperand(0) == CondCmp->getOperand(0) && 570 CI->getOperand(1) == CondCmp->getOperand(1) && 571 CI->getPredicate() == CondCmp->getPredicate()) { 572 // TODO: Could handle things like (x != 4) --> (x == 17) 573 if (ProcessBranchOnDuplicateCond(*PI, BB)) 574 return true; 575 } 576 } 577 } 578 } 579 } 580 581 // Check for some cases that are worth simplifying. Right now we want to look 582 // for loads that are used by a switch or by the condition for the branch. If 583 // we see one, check to see if it's partially redundant. If so, insert a PHI 584 // which can then be used to thread the values. 585 // 586 // This is particularly important because reg2mem inserts loads and stores all 587 // over the place, and this blocks jump threading if we don't zap them. 588 Value *SimplifyValue = CondInst; 589 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 590 if (isa<Constant>(CondCmp->getOperand(1))) 591 SimplifyValue = CondCmp->getOperand(0); 592 593 // TODO: There are other places where load PRE would be profitable, such as 594 // more complex comparisons. 595 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 596 if (SimplifyPartiallyRedundantLoad(LI)) 597 return true; 598 599 600 // Handle a variety of cases where we are branching on something derived from 601 // a PHI node in the current block. If we can prove that any predecessors 602 // compute a predictable value based on a PHI node, thread those predecessors. 603 // 604 if (ProcessThreadableEdges(CondInst, BB)) 605 return true; 606 607 608 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 609 // "(X == 4)" thread through this block. 610 611 return false; 612 } 613 614 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that 615 /// block that jump on exactly the same condition. This means that we almost 616 /// always know the direction of the edge in the DESTBB: 617 /// PREDBB: 618 /// br COND, DESTBB, BBY 619 /// DESTBB: 620 /// br COND, BBZ, BBW 621 /// 622 /// If DESTBB has multiple predecessors, we can't just constant fold the branch 623 /// in DESTBB, we have to thread over it. 624 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB, 625 BasicBlock *BB) { 626 BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator()); 627 628 // If both successors of PredBB go to DESTBB, we don't know anything. We can 629 // fold the branch to an unconditional one, which allows other recursive 630 // simplifications. 631 bool BranchDir; 632 if (PredBI->getSuccessor(1) != BB) 633 BranchDir = true; 634 else if (PredBI->getSuccessor(0) != BB) 635 BranchDir = false; 636 else { 637 DEBUG(dbgs() << " In block '" << PredBB->getName() 638 << "' folding terminator: " << *PredBB->getTerminator() << '\n'); 639 ++NumFolds; 640 ConstantFoldTerminator(PredBB); 641 return true; 642 } 643 644 BranchInst *DestBI = cast<BranchInst>(BB->getTerminator()); 645 646 // If the dest block has one predecessor, just fix the branch condition to a 647 // constant and fold it. 648 if (BB->getSinglePredecessor()) { 649 DEBUG(dbgs() << " In block '" << BB->getName() 650 << "' folding condition to '" << BranchDir << "': " 651 << *BB->getTerminator() << '\n'); 652 ++NumFolds; 653 Value *OldCond = DestBI->getCondition(); 654 DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 655 BranchDir)); 656 ConstantFoldTerminator(BB); 657 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 658 return true; 659 } 660 661 662 // Next, figure out which successor we are threading to. 663 BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir); 664 665 SmallVector<BasicBlock*, 2> Preds; 666 Preds.push_back(PredBB); 667 668 // Ok, try to thread it! 669 return ThreadEdge(BB, Preds, SuccBB); 670 } 671 672 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that 673 /// block that switch on exactly the same condition. This means that we almost 674 /// always know the direction of the edge in the DESTBB: 675 /// PREDBB: 676 /// switch COND [... DESTBB, BBY ... ] 677 /// DESTBB: 678 /// switch COND [... BBZ, BBW ] 679 /// 680 /// Optimizing switches like this is very important, because simplifycfg builds 681 /// switches out of repeated 'if' conditions. 682 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, 683 BasicBlock *DestBB) { 684 // Can't thread edge to self. 685 if (PredBB == DestBB) 686 return false; 687 688 SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator()); 689 SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator()); 690 691 // There are a variety of optimizations that we can potentially do on these 692 // blocks: we order them from most to least preferable. 693 694 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB 695 // directly to their destination. This does not introduce *any* code size 696 // growth. Skip debug info first. 697 BasicBlock::iterator BBI = DestBB->begin(); 698 while (isa<DbgInfoIntrinsic>(BBI)) 699 BBI++; 700 701 // FIXME: Thread if it just contains a PHI. 702 if (isa<SwitchInst>(BBI)) { 703 bool MadeChange = false; 704 // Ignore the default edge for now. 705 for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) { 706 ConstantInt *DestVal = DestSI->getCaseValue(i); 707 BasicBlock *DestSucc = DestSI->getSuccessor(i); 708 709 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if 710 // PredSI has an explicit case for it. If so, forward. If it is covered 711 // by the default case, we can't update PredSI. 712 unsigned PredCase = PredSI->findCaseValue(DestVal); 713 if (PredCase == 0) continue; 714 715 // If PredSI doesn't go to DestBB on this value, then it won't reach the 716 // case on this condition. 717 if (PredSI->getSuccessor(PredCase) != DestBB && 718 DestSI->getSuccessor(i) != DestBB) 719 continue; 720 721 // Do not forward this if it already goes to this destination, this would 722 // be an infinite loop. 723 if (PredSI->getSuccessor(PredCase) == DestSucc) 724 continue; 725 726 // Otherwise, we're safe to make the change. Make sure that the edge from 727 // DestSI to DestSucc is not critical and has no PHI nodes. 728 DEBUG(dbgs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI); 729 DEBUG(dbgs() << "THROUGH: " << *DestSI); 730 731 // If the destination has PHI nodes, just split the edge for updating 732 // simplicity. 733 if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){ 734 SplitCriticalEdge(DestSI, i, this); 735 DestSucc = DestSI->getSuccessor(i); 736 } 737 FoldSingleEntryPHINodes(DestSucc); 738 PredSI->setSuccessor(PredCase, DestSucc); 739 MadeChange = true; 740 } 741 742 if (MadeChange) 743 return true; 744 } 745 746 return false; 747 } 748 749 750 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 751 /// load instruction, eliminate it by replacing it with a PHI node. This is an 752 /// important optimization that encourages jump threading, and needs to be run 753 /// interlaced with other jump threading tasks. 754 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 755 // Don't hack volatile loads. 756 if (LI->isVolatile()) return false; 757 758 // If the load is defined in a block with exactly one predecessor, it can't be 759 // partially redundant. 760 BasicBlock *LoadBB = LI->getParent(); 761 if (LoadBB->getSinglePredecessor()) 762 return false; 763 764 Value *LoadedPtr = LI->getOperand(0); 765 766 // If the loaded operand is defined in the LoadBB, it can't be available. 767 // TODO: Could do simple PHI translation, that would be fun :) 768 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 769 if (PtrOp->getParent() == LoadBB) 770 return false; 771 772 // Scan a few instructions up from the load, to see if it is obviously live at 773 // the entry to its block. 774 BasicBlock::iterator BBIt = LI; 775 776 if (Value *AvailableVal = 777 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) { 778 // If the value if the load is locally available within the block, just use 779 // it. This frequently occurs for reg2mem'd allocas. 780 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 781 782 // If the returned value is the load itself, replace with an undef. This can 783 // only happen in dead loops. 784 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 785 LI->replaceAllUsesWith(AvailableVal); 786 LI->eraseFromParent(); 787 return true; 788 } 789 790 // Otherwise, if we scanned the whole block and got to the top of the block, 791 // we know the block is locally transparent to the load. If not, something 792 // might clobber its value. 793 if (BBIt != LoadBB->begin()) 794 return false; 795 796 797 SmallPtrSet<BasicBlock*, 8> PredsScanned; 798 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 799 AvailablePredsTy AvailablePreds; 800 BasicBlock *OneUnavailablePred = 0; 801 802 // If we got here, the loaded value is transparent through to the start of the 803 // block. Check to see if it is available in any of the predecessor blocks. 804 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 805 PI != PE; ++PI) { 806 BasicBlock *PredBB = *PI; 807 808 // If we already scanned this predecessor, skip it. 809 if (!PredsScanned.insert(PredBB)) 810 continue; 811 812 // Scan the predecessor to see if the value is available in the pred. 813 BBIt = PredBB->end(); 814 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6); 815 if (!PredAvailable) { 816 OneUnavailablePred = PredBB; 817 continue; 818 } 819 820 // If so, this load is partially redundant. Remember this info so that we 821 // can create a PHI node. 822 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 823 } 824 825 // If the loaded value isn't available in any predecessor, it isn't partially 826 // redundant. 827 if (AvailablePreds.empty()) return false; 828 829 // Okay, the loaded value is available in at least one (and maybe all!) 830 // predecessors. If the value is unavailable in more than one unique 831 // predecessor, we want to insert a merge block for those common predecessors. 832 // This ensures that we only have to insert one reload, thus not increasing 833 // code size. 834 BasicBlock *UnavailablePred = 0; 835 836 // If there is exactly one predecessor where the value is unavailable, the 837 // already computed 'OneUnavailablePred' block is it. If it ends in an 838 // unconditional branch, we know that it isn't a critical edge. 839 if (PredsScanned.size() == AvailablePreds.size()+1 && 840 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 841 UnavailablePred = OneUnavailablePred; 842 } else if (PredsScanned.size() != AvailablePreds.size()) { 843 // Otherwise, we had multiple unavailable predecessors or we had a critical 844 // edge from the one. 845 SmallVector<BasicBlock*, 8> PredsToSplit; 846 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 847 848 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 849 AvailablePredSet.insert(AvailablePreds[i].first); 850 851 // Add all the unavailable predecessors to the PredsToSplit list. 852 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 853 PI != PE; ++PI) 854 if (!AvailablePredSet.count(*PI)) 855 PredsToSplit.push_back(*PI); 856 857 // Split them out to their own block. 858 UnavailablePred = 859 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(), 860 "thread-pre-split", this); 861 } 862 863 // If the value isn't available in all predecessors, then there will be 864 // exactly one where it isn't available. Insert a load on that edge and add 865 // it to the AvailablePreds list. 866 if (UnavailablePred) { 867 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 868 "Can't handle critical edge here!"); 869 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, 870 LI->getAlignment(), 871 UnavailablePred->getTerminator()); 872 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 873 } 874 875 // Now we know that each predecessor of this block has a value in 876 // AvailablePreds, sort them for efficient access as we're walking the preds. 877 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 878 879 // Create a PHI node at the start of the block for the PRE'd load value. 880 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin()); 881 PN->takeName(LI); 882 883 // Insert new entries into the PHI for each predecessor. A single block may 884 // have multiple entries here. 885 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E; 886 ++PI) { 887 AvailablePredsTy::iterator I = 888 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 889 std::make_pair(*PI, (Value*)0)); 890 891 assert(I != AvailablePreds.end() && I->first == *PI && 892 "Didn't find entry for predecessor!"); 893 894 PN->addIncoming(I->second, I->first); 895 } 896 897 //cerr << "PRE: " << *LI << *PN << "\n"; 898 899 LI->replaceAllUsesWith(PN); 900 LI->eraseFromParent(); 901 902 return true; 903 } 904 905 /// FindMostPopularDest - The specified list contains multiple possible 906 /// threadable destinations. Pick the one that occurs the most frequently in 907 /// the list. 908 static BasicBlock * 909 FindMostPopularDest(BasicBlock *BB, 910 const SmallVectorImpl<std::pair<BasicBlock*, 911 BasicBlock*> > &PredToDestList) { 912 assert(!PredToDestList.empty()); 913 914 // Determine popularity. If there are multiple possible destinations, we 915 // explicitly choose to ignore 'undef' destinations. We prefer to thread 916 // blocks with known and real destinations to threading undef. We'll handle 917 // them later if interesting. 918 DenseMap<BasicBlock*, unsigned> DestPopularity; 919 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 920 if (PredToDestList[i].second) 921 DestPopularity[PredToDestList[i].second]++; 922 923 // Find the most popular dest. 924 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 925 BasicBlock *MostPopularDest = DPI->first; 926 unsigned Popularity = DPI->second; 927 SmallVector<BasicBlock*, 4> SamePopularity; 928 929 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 930 // If the popularity of this entry isn't higher than the popularity we've 931 // seen so far, ignore it. 932 if (DPI->second < Popularity) 933 ; // ignore. 934 else if (DPI->second == Popularity) { 935 // If it is the same as what we've seen so far, keep track of it. 936 SamePopularity.push_back(DPI->first); 937 } else { 938 // If it is more popular, remember it. 939 SamePopularity.clear(); 940 MostPopularDest = DPI->first; 941 Popularity = DPI->second; 942 } 943 } 944 945 // Okay, now we know the most popular destination. If there is more than 946 // destination, we need to determine one. This is arbitrary, but we need 947 // to make a deterministic decision. Pick the first one that appears in the 948 // successor list. 949 if (!SamePopularity.empty()) { 950 SamePopularity.push_back(MostPopularDest); 951 TerminatorInst *TI = BB->getTerminator(); 952 for (unsigned i = 0; ; ++i) { 953 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 954 955 if (std::find(SamePopularity.begin(), SamePopularity.end(), 956 TI->getSuccessor(i)) == SamePopularity.end()) 957 continue; 958 959 MostPopularDest = TI->getSuccessor(i); 960 break; 961 } 962 } 963 964 // Okay, we have finally picked the most popular destination. 965 return MostPopularDest; 966 } 967 968 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) { 969 // If threading this would thread across a loop header, don't even try to 970 // thread the edge. 971 if (LoopHeaders.count(BB)) 972 return false; 973 974 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues; 975 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues)) 976 return false; 977 assert(!PredValues.empty() && 978 "ComputeValueKnownInPredecessors returned true with no values"); 979 980 DEBUG(dbgs() << "IN BB: " << *BB; 981 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 982 dbgs() << " BB '" << BB->getName() << "': FOUND condition = "; 983 if (PredValues[i].first) 984 dbgs() << *PredValues[i].first; 985 else 986 dbgs() << "UNDEF"; 987 dbgs() << " for pred '" << PredValues[i].second->getName() 988 << "'.\n"; 989 }); 990 991 // Decide what we want to thread through. Convert our list of known values to 992 // a list of known destinations for each pred. This also discards duplicate 993 // predecessors and keeps track of the undefined inputs (which are represented 994 // as a null dest in the PredToDestList). 995 SmallPtrSet<BasicBlock*, 16> SeenPreds; 996 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 997 998 BasicBlock *OnlyDest = 0; 999 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1000 1001 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1002 BasicBlock *Pred = PredValues[i].second; 1003 if (!SeenPreds.insert(Pred)) 1004 continue; // Duplicate predecessor entry. 1005 1006 // If the predecessor ends with an indirect goto, we can't change its 1007 // destination. 1008 if (isa<IndirectBrInst>(Pred->getTerminator())) 1009 continue; 1010 1011 ConstantInt *Val = PredValues[i].first; 1012 1013 BasicBlock *DestBB; 1014 if (Val == 0) // Undef. 1015 DestBB = 0; 1016 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1017 DestBB = BI->getSuccessor(Val->isZero()); 1018 else { 1019 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator()); 1020 DestBB = SI->getSuccessor(SI->findCaseValue(Val)); 1021 } 1022 1023 // If we have exactly one destination, remember it for efficiency below. 1024 if (i == 0) 1025 OnlyDest = DestBB; 1026 else if (OnlyDest != DestBB) 1027 OnlyDest = MultipleDestSentinel; 1028 1029 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1030 } 1031 1032 // If all edges were unthreadable, we fail. 1033 if (PredToDestList.empty()) 1034 return false; 1035 1036 // Determine which is the most common successor. If we have many inputs and 1037 // this block is a switch, we want to start by threading the batch that goes 1038 // to the most popular destination first. If we only know about one 1039 // threadable destination (the common case) we can avoid this. 1040 BasicBlock *MostPopularDest = OnlyDest; 1041 1042 if (MostPopularDest == MultipleDestSentinel) 1043 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1044 1045 // Now that we know what the most popular destination is, factor all 1046 // predecessors that will jump to it into a single predecessor. 1047 SmallVector<BasicBlock*, 16> PredsToFactor; 1048 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1049 if (PredToDestList[i].second == MostPopularDest) { 1050 BasicBlock *Pred = PredToDestList[i].first; 1051 1052 // This predecessor may be a switch or something else that has multiple 1053 // edges to the block. Factor each of these edges by listing them 1054 // according to # occurrences in PredsToFactor. 1055 TerminatorInst *PredTI = Pred->getTerminator(); 1056 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 1057 if (PredTI->getSuccessor(i) == BB) 1058 PredsToFactor.push_back(Pred); 1059 } 1060 1061 // If the threadable edges are branching on an undefined value, we get to pick 1062 // the destination that these predecessors should get to. 1063 if (MostPopularDest == 0) 1064 MostPopularDest = BB->getTerminator()-> 1065 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1066 1067 // Ok, try to thread it! 1068 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1069 } 1070 1071 /// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in 1072 /// the current block. See if there are any simplifications we can do based on 1073 /// inputs to the phi node. 1074 /// 1075 bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) { 1076 BasicBlock *BB = PN->getParent(); 1077 1078 // If any of the predecessor blocks end in an unconditional branch, we can 1079 // *duplicate* the jump into that block in order to further encourage jump 1080 // threading and to eliminate cases where we have branch on a phi of an icmp 1081 // (branch on icmp is much better). 1082 1083 // We don't want to do this tranformation for switches, because we don't 1084 // really want to duplicate a switch. 1085 if (isa<SwitchInst>(BB->getTerminator())) 1086 return false; 1087 1088 // Look for unconditional branch predecessors. 1089 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1090 BasicBlock *PredBB = PN->getIncomingBlock(i); 1091 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1092 if (PredBr->isUnconditional() && 1093 // Try to duplicate BB into PredBB. 1094 DuplicateCondBranchOnPHIIntoPred(BB, PredBB)) 1095 return true; 1096 } 1097 1098 return false; 1099 } 1100 1101 1102 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1103 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1104 /// NewPred using the entries from OldPred (suitably mapped). 1105 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1106 BasicBlock *OldPred, 1107 BasicBlock *NewPred, 1108 DenseMap<Instruction*, Value*> &ValueMap) { 1109 for (BasicBlock::iterator PNI = PHIBB->begin(); 1110 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1111 // Ok, we have a PHI node. Figure out what the incoming value was for the 1112 // DestBlock. 1113 Value *IV = PN->getIncomingValueForBlock(OldPred); 1114 1115 // Remap the value if necessary. 1116 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1117 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1118 if (I != ValueMap.end()) 1119 IV = I->second; 1120 } 1121 1122 PN->addIncoming(IV, NewPred); 1123 } 1124 } 1125 1126 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1127 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1128 /// across BB. Transform the IR to reflect this change. 1129 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1130 const SmallVectorImpl<BasicBlock*> &PredBBs, 1131 BasicBlock *SuccBB) { 1132 // If threading to the same block as we come from, we would infinite loop. 1133 if (SuccBB == BB) { 1134 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1135 << "' - would thread to self!\n"); 1136 return false; 1137 } 1138 1139 // If threading this would thread across a loop header, don't thread the edge. 1140 // See the comments above FindLoopHeaders for justifications and caveats. 1141 if (LoopHeaders.count(BB)) { 1142 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1143 << "' to dest BB '" << SuccBB->getName() 1144 << "' - it might create an irreducible loop!\n"); 1145 return false; 1146 } 1147 1148 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB); 1149 if (JumpThreadCost > Threshold) { 1150 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1151 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1152 return false; 1153 } 1154 1155 // And finally, do it! Start by factoring the predecessors is needed. 1156 BasicBlock *PredBB; 1157 if (PredBBs.size() == 1) 1158 PredBB = PredBBs[0]; 1159 else { 1160 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1161 << " common predecessors.\n"); 1162 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), 1163 ".thr_comm", this); 1164 } 1165 1166 // And finally, do it! 1167 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1168 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1169 << ", across block:\n " 1170 << *BB << "\n"); 1171 1172 // We are going to have to map operands from the original BB block to the new 1173 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1174 // account for entry from PredBB. 1175 DenseMap<Instruction*, Value*> ValueMapping; 1176 1177 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1178 BB->getName()+".thread", 1179 BB->getParent(), BB); 1180 NewBB->moveAfter(PredBB); 1181 1182 BasicBlock::iterator BI = BB->begin(); 1183 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1184 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1185 1186 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1187 // mapping and using it to remap operands in the cloned instructions. 1188 for (; !isa<TerminatorInst>(BI); ++BI) { 1189 Instruction *New = BI->clone(); 1190 New->setName(BI->getName()); 1191 NewBB->getInstList().push_back(New); 1192 ValueMapping[BI] = New; 1193 1194 // Remap operands to patch up intra-block references. 1195 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1196 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1197 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1198 if (I != ValueMapping.end()) 1199 New->setOperand(i, I->second); 1200 } 1201 } 1202 1203 // We didn't copy the terminator from BB over to NewBB, because there is now 1204 // an unconditional jump to SuccBB. Insert the unconditional jump. 1205 BranchInst::Create(SuccBB, NewBB); 1206 1207 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1208 // PHI nodes for NewBB now. 1209 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1210 1211 // If there were values defined in BB that are used outside the block, then we 1212 // now have to update all uses of the value to use either the original value, 1213 // the cloned value, or some PHI derived value. This can require arbitrary 1214 // PHI insertion, of which we are prepared to do, clean these up now. 1215 SSAUpdater SSAUpdate; 1216 SmallVector<Use*, 16> UsesToRename; 1217 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1218 // Scan all uses of this instruction to see if it is used outside of its 1219 // block, and if so, record them in UsesToRename. 1220 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1221 ++UI) { 1222 Instruction *User = cast<Instruction>(*UI); 1223 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1224 if (UserPN->getIncomingBlock(UI) == BB) 1225 continue; 1226 } else if (User->getParent() == BB) 1227 continue; 1228 1229 UsesToRename.push_back(&UI.getUse()); 1230 } 1231 1232 // If there are no uses outside the block, we're done with this instruction. 1233 if (UsesToRename.empty()) 1234 continue; 1235 1236 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1237 1238 // We found a use of I outside of BB. Rename all uses of I that are outside 1239 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1240 // with the two values we know. 1241 SSAUpdate.Initialize(I); 1242 SSAUpdate.AddAvailableValue(BB, I); 1243 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); 1244 1245 while (!UsesToRename.empty()) 1246 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1247 DEBUG(dbgs() << "\n"); 1248 } 1249 1250 1251 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1252 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1253 // us to simplify any PHI nodes in BB. 1254 TerminatorInst *PredTerm = PredBB->getTerminator(); 1255 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1256 if (PredTerm->getSuccessor(i) == BB) { 1257 RemovePredecessorAndSimplify(BB, PredBB, TD); 1258 PredTerm->setSuccessor(i, NewBB); 1259 } 1260 1261 // At this point, the IR is fully up to date and consistent. Do a quick scan 1262 // over the new instructions and zap any that are constants or dead. This 1263 // frequently happens because of phi translation. 1264 BI = NewBB->begin(); 1265 for (BasicBlock::iterator E = NewBB->end(); BI != E; ) { 1266 Instruction *Inst = BI++; 1267 1268 if (Value *V = SimplifyInstruction(Inst, TD)) { 1269 WeakVH BIHandle(BI); 1270 ReplaceAndSimplifyAllUses(Inst, V, TD); 1271 if (BIHandle == 0) 1272 BI = NewBB->begin(); 1273 continue; 1274 } 1275 1276 RecursivelyDeleteTriviallyDeadInstructions(Inst); 1277 } 1278 1279 // Threaded an edge! 1280 ++NumThreads; 1281 return true; 1282 } 1283 1284 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1285 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1286 /// If we can duplicate the contents of BB up into PredBB do so now, this 1287 /// improves the odds that the branch will be on an analyzable instruction like 1288 /// a compare. 1289 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1290 BasicBlock *PredBB) { 1291 // If BB is a loop header, then duplicating this block outside the loop would 1292 // cause us to transform this into an irreducible loop, don't do this. 1293 // See the comments above FindLoopHeaders for justifications and caveats. 1294 if (LoopHeaders.count(BB)) { 1295 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1296 << "' into predecessor block '" << PredBB->getName() 1297 << "' - it might create an irreducible loop!\n"); 1298 return false; 1299 } 1300 1301 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB); 1302 if (DuplicationCost > Threshold) { 1303 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1304 << "' - Cost is too high: " << DuplicationCost << "\n"); 1305 return false; 1306 } 1307 1308 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1309 // of PredBB. 1310 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1311 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1312 << DuplicationCost << " block is:" << *BB << "\n"); 1313 1314 // We are going to have to map operands from the original BB block into the 1315 // PredBB block. Evaluate PHI nodes in BB. 1316 DenseMap<Instruction*, Value*> ValueMapping; 1317 1318 BasicBlock::iterator BI = BB->begin(); 1319 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1320 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1321 1322 BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1323 1324 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1325 // mapping and using it to remap operands in the cloned instructions. 1326 for (; BI != BB->end(); ++BI) { 1327 Instruction *New = BI->clone(); 1328 New->setName(BI->getName()); 1329 PredBB->getInstList().insert(OldPredBranch, New); 1330 ValueMapping[BI] = New; 1331 1332 // Remap operands to patch up intra-block references. 1333 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1334 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1335 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1336 if (I != ValueMapping.end()) 1337 New->setOperand(i, I->second); 1338 } 1339 } 1340 1341 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1342 // add entries to the PHI nodes for branch from PredBB now. 1343 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1344 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1345 ValueMapping); 1346 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1347 ValueMapping); 1348 1349 // If there were values defined in BB that are used outside the block, then we 1350 // now have to update all uses of the value to use either the original value, 1351 // the cloned value, or some PHI derived value. This can require arbitrary 1352 // PHI insertion, of which we are prepared to do, clean these up now. 1353 SSAUpdater SSAUpdate; 1354 SmallVector<Use*, 16> UsesToRename; 1355 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1356 // Scan all uses of this instruction to see if it is used outside of its 1357 // block, and if so, record them in UsesToRename. 1358 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1359 ++UI) { 1360 Instruction *User = cast<Instruction>(*UI); 1361 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1362 if (UserPN->getIncomingBlock(UI) == BB) 1363 continue; 1364 } else if (User->getParent() == BB) 1365 continue; 1366 1367 UsesToRename.push_back(&UI.getUse()); 1368 } 1369 1370 // If there are no uses outside the block, we're done with this instruction. 1371 if (UsesToRename.empty()) 1372 continue; 1373 1374 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1375 1376 // We found a use of I outside of BB. Rename all uses of I that are outside 1377 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1378 // with the two values we know. 1379 SSAUpdate.Initialize(I); 1380 SSAUpdate.AddAvailableValue(BB, I); 1381 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); 1382 1383 while (!UsesToRename.empty()) 1384 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1385 DEBUG(dbgs() << "\n"); 1386 } 1387 1388 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1389 // that we nuked. 1390 RemovePredecessorAndSimplify(BB, PredBB, TD); 1391 1392 // Remove the unconditional branch at the end of the PredBB block. 1393 OldPredBranch->eraseFromParent(); 1394 1395 ++NumDupes; 1396 return true; 1397 } 1398 1399 1400