1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "jump-threading" 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/IntrinsicInst.h" 17 #include "llvm/LLVMContext.h" 18 #include "llvm/Pass.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LazyValueInfo.h" 21 #include "llvm/Analysis/Loads.h" 22 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 23 #include "llvm/Transforms/Utils/Local.h" 24 #include "llvm/Transforms/Utils/SSAUpdater.h" 25 #include "llvm/Target/TargetData.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ValueHandle.h" 35 #include "llvm/Support/raw_ostream.h" 36 using namespace llvm; 37 38 STATISTIC(NumThreads, "Number of jumps threaded"); 39 STATISTIC(NumFolds, "Number of terminators folded"); 40 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 41 42 static cl::opt<unsigned> 43 Threshold("jump-threading-threshold", 44 cl::desc("Max block size to duplicate for jump threading"), 45 cl::init(6), cl::Hidden); 46 47 namespace { 48 // These are at global scope so static functions can use them too. 49 typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo; 50 typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy; 51 52 /// This pass performs 'jump threading', which looks at blocks that have 53 /// multiple predecessors and multiple successors. If one or more of the 54 /// predecessors of the block can be proven to always jump to one of the 55 /// successors, we forward the edge from the predecessor to the successor by 56 /// duplicating the contents of this block. 57 /// 58 /// An example of when this can occur is code like this: 59 /// 60 /// if () { ... 61 /// X = 4; 62 /// } 63 /// if (X < 3) { 64 /// 65 /// In this case, the unconditional branch at the end of the first if can be 66 /// revectored to the false side of the second if. 67 /// 68 class JumpThreading : public FunctionPass { 69 TargetData *TD; 70 LazyValueInfo *LVI; 71 #ifdef NDEBUG 72 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 73 #else 74 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 75 #endif 76 DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet; 77 78 // RAII helper for updating the recursion stack. 79 struct RecursionSetRemover { 80 DenseSet<std::pair<Value*, BasicBlock*> > &TheSet; 81 std::pair<Value*, BasicBlock*> ThePair; 82 83 RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S, 84 std::pair<Value*, BasicBlock*> P) 85 : TheSet(S), ThePair(P) { } 86 87 ~RecursionSetRemover() { 88 TheSet.erase(ThePair); 89 } 90 }; 91 public: 92 static char ID; // Pass identification 93 JumpThreading() : FunctionPass(ID) { 94 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 95 } 96 97 bool runOnFunction(Function &F); 98 99 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 100 AU.addRequired<LazyValueInfo>(); 101 AU.addPreserved<LazyValueInfo>(); 102 } 103 104 void FindLoopHeaders(Function &F); 105 bool ProcessBlock(BasicBlock *BB); 106 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 107 BasicBlock *SuccBB); 108 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 109 const SmallVectorImpl<BasicBlock *> &PredBBs); 110 111 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 112 PredValueInfo &Result); 113 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB); 114 115 116 bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 117 bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 118 119 bool ProcessBranchOnPHI(PHINode *PN); 120 bool ProcessBranchOnXOR(BinaryOperator *BO); 121 122 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 123 }; 124 } 125 126 char JumpThreading::ID = 0; 127 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 128 "Jump Threading", false, false) 129 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo) 130 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 131 "Jump Threading", false, false) 132 133 // Public interface to the Jump Threading pass 134 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); } 135 136 /// runOnFunction - Top level algorithm. 137 /// 138 bool JumpThreading::runOnFunction(Function &F) { 139 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 140 TD = getAnalysisIfAvailable<TargetData>(); 141 LVI = &getAnalysis<LazyValueInfo>(); 142 143 FindLoopHeaders(F); 144 145 bool Changed, EverChanged = false; 146 do { 147 Changed = false; 148 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 149 BasicBlock *BB = I; 150 // Thread all of the branches we can over this block. 151 while (ProcessBlock(BB)) 152 Changed = true; 153 154 ++I; 155 156 // If the block is trivially dead, zap it. This eliminates the successor 157 // edges which simplifies the CFG. 158 if (pred_begin(BB) == pred_end(BB) && 159 BB != &BB->getParent()->getEntryBlock()) { 160 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 161 << "' with terminator: " << *BB->getTerminator() << '\n'); 162 LoopHeaders.erase(BB); 163 LVI->eraseBlock(BB); 164 DeleteDeadBlock(BB); 165 Changed = true; 166 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 167 // Can't thread an unconditional jump, but if the block is "almost 168 // empty", we can replace uses of it with uses of the successor and make 169 // this dead. 170 if (BI->isUnconditional() && 171 BB != &BB->getParent()->getEntryBlock()) { 172 BasicBlock::iterator BBI = BB->getFirstNonPHI(); 173 // Ignore dbg intrinsics. 174 while (isa<DbgInfoIntrinsic>(BBI)) 175 ++BBI; 176 // If the terminator is the only non-phi instruction, try to nuke it. 177 if (BBI->isTerminator()) { 178 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 179 // block, we have to make sure it isn't in the LoopHeaders set. We 180 // reinsert afterward if needed. 181 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 182 BasicBlock *Succ = BI->getSuccessor(0); 183 184 // FIXME: It is always conservatively correct to drop the info 185 // for a block even if it doesn't get erased. This isn't totally 186 // awesome, but it allows us to use AssertingVH to prevent nasty 187 // dangling pointer issues within LazyValueInfo. 188 LVI->eraseBlock(BB); 189 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { 190 Changed = true; 191 // If we deleted BB and BB was the header of a loop, then the 192 // successor is now the header of the loop. 193 BB = Succ; 194 } 195 196 if (ErasedFromLoopHeaders) 197 LoopHeaders.insert(BB); 198 } 199 } 200 } 201 } 202 EverChanged |= Changed; 203 } while (Changed); 204 205 LoopHeaders.clear(); 206 return EverChanged; 207 } 208 209 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 210 /// thread across it. 211 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) { 212 /// Ignore PHI nodes, these will be flattened when duplication happens. 213 BasicBlock::const_iterator I = BB->getFirstNonPHI(); 214 215 // FIXME: THREADING will delete values that are just used to compute the 216 // branch, so they shouldn't count against the duplication cost. 217 218 219 // Sum up the cost of each instruction until we get to the terminator. Don't 220 // include the terminator because the copy won't include it. 221 unsigned Size = 0; 222 for (; !isa<TerminatorInst>(I); ++I) { 223 // Debugger intrinsics don't incur code size. 224 if (isa<DbgInfoIntrinsic>(I)) continue; 225 226 // If this is a pointer->pointer bitcast, it is free. 227 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 228 continue; 229 230 // All other instructions count for at least one unit. 231 ++Size; 232 233 // Calls are more expensive. If they are non-intrinsic calls, we model them 234 // as having cost of 4. If they are a non-vector intrinsic, we model them 235 // as having cost of 2 total, and if they are a vector intrinsic, we model 236 // them as having cost 1. 237 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 238 if (!isa<IntrinsicInst>(CI)) 239 Size += 3; 240 else if (!CI->getType()->isVectorTy()) 241 Size += 1; 242 } 243 } 244 245 // Threading through a switch statement is particularly profitable. If this 246 // block ends in a switch, decrease its cost to make it more likely to happen. 247 if (isa<SwitchInst>(I)) 248 Size = Size > 6 ? Size-6 : 0; 249 250 return Size; 251 } 252 253 /// FindLoopHeaders - We do not want jump threading to turn proper loop 254 /// structures into irreducible loops. Doing this breaks up the loop nesting 255 /// hierarchy and pessimizes later transformations. To prevent this from 256 /// happening, we first have to find the loop headers. Here we approximate this 257 /// by finding targets of backedges in the CFG. 258 /// 259 /// Note that there definitely are cases when we want to allow threading of 260 /// edges across a loop header. For example, threading a jump from outside the 261 /// loop (the preheader) to an exit block of the loop is definitely profitable. 262 /// It is also almost always profitable to thread backedges from within the loop 263 /// to exit blocks, and is often profitable to thread backedges to other blocks 264 /// within the loop (forming a nested loop). This simple analysis is not rich 265 /// enough to track all of these properties and keep it up-to-date as the CFG 266 /// mutates, so we don't allow any of these transformations. 267 /// 268 void JumpThreading::FindLoopHeaders(Function &F) { 269 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 270 FindFunctionBackedges(F, Edges); 271 272 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 273 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 274 } 275 276 /// getKnownConstant - Helper method to determine if we can thread over a 277 /// terminator with the given value as its condition, and if so what value to 278 /// use for that. 279 /// Returns null if Val is null or not an appropriate constant. 280 static Constant *getKnownConstant(Value *Val) { 281 if (!Val) 282 return 0; 283 284 // Undef is "known" enough. 285 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 286 return U; 287 288 return dyn_cast<ConstantInt>(Val); 289 } 290 291 // Helper method for ComputeValueKnownInPredecessors. If Value is a 292 // ConstantInt or undef, push it. Otherwise, do nothing. 293 static void PushKnownConstantOrUndef(PredValueInfo &Result, Constant *Value, 294 BasicBlock *BB) { 295 if (Constant *KC = getKnownConstant(Value)) 296 Result.push_back(std::make_pair(KC, BB)); 297 } 298 299 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 300 /// if we can infer that the value is a known ConstantInt in any of our 301 /// predecessors. If so, return the known list of value and pred BB in the 302 /// result vector. If a value is known to be undef, it is returned as null. 303 /// 304 /// This returns true if there were any known values. 305 /// 306 bool JumpThreading:: 307 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){ 308 // This method walks up use-def chains recursively. Because of this, we could 309 // get into an infinite loop going around loops in the use-def chain. To 310 // prevent this, keep track of what (value, block) pairs we've already visited 311 // and terminate the search if we loop back to them 312 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 313 return false; 314 315 // An RAII help to remove this pair from the recursion set once the recursion 316 // stack pops back out again. 317 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 318 319 // If V is a constant, then it is known in all predecessors. 320 if (Constant *KC = getKnownConstant(V)) { 321 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 322 Result.push_back(std::make_pair(KC, *PI)); 323 324 return true; 325 } 326 327 // If V is a non-instruction value, or an instruction in a different block, 328 // then it can't be derived from a PHI. 329 Instruction *I = dyn_cast<Instruction>(V); 330 if (I == 0 || I->getParent() != BB) { 331 332 // Okay, if this is a live-in value, see if it has a known value at the end 333 // of any of our predecessors. 334 // 335 // FIXME: This should be an edge property, not a block end property. 336 /// TODO: Per PR2563, we could infer value range information about a 337 /// predecessor based on its terminator. 338 // 339 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 340 // "I" is a non-local compare-with-a-constant instruction. This would be 341 // able to handle value inequalities better, for example if the compare is 342 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 343 // Perhaps getConstantOnEdge should be smart enough to do this? 344 345 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 346 BasicBlock *P = *PI; 347 // If the value is known by LazyValueInfo to be a constant in a 348 // predecessor, use that information to try to thread this block. 349 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB); 350 if (Constant *KC = getKnownConstant(PredCst)) 351 Result.push_back(std::make_pair(KC, P)); 352 } 353 354 return !Result.empty(); 355 } 356 357 /// If I is a PHI node, then we know the incoming values for any constants. 358 if (PHINode *PN = dyn_cast<PHINode>(I)) { 359 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 360 Value *InVal = PN->getIncomingValue(i); 361 if (Constant *KC = getKnownConstant(InVal)) { 362 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 363 } else { 364 Constant *CI = LVI->getConstantOnEdge(InVal, 365 PN->getIncomingBlock(i), BB); 366 // LVI returns null is no value could be determined. 367 if (!CI) continue; 368 PushKnownConstantOrUndef(Result, CI, PN->getIncomingBlock(i)); 369 } 370 } 371 372 return !Result.empty(); 373 } 374 375 PredValueInfoTy LHSVals, RHSVals; 376 377 // Handle some boolean conditions. 378 if (I->getType()->getPrimitiveSizeInBits() == 1) { 379 // X | true -> true 380 // X & false -> false 381 if (I->getOpcode() == Instruction::Or || 382 I->getOpcode() == Instruction::And) { 383 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals); 384 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals); 385 386 if (LHSVals.empty() && RHSVals.empty()) 387 return false; 388 389 ConstantInt *InterestingVal; 390 if (I->getOpcode() == Instruction::Or) 391 InterestingVal = ConstantInt::getTrue(I->getContext()); 392 else 393 InterestingVal = ConstantInt::getFalse(I->getContext()); 394 395 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 396 397 // Scan for the sentinel. If we find an undef, force it to the 398 // interesting value: x|undef -> true and x&undef -> false. 399 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 400 if (LHSVals[i].first == InterestingVal || 401 isa<UndefValue>(LHSVals[i].first)) { 402 Result.push_back(LHSVals[i]); 403 Result.back().first = InterestingVal; 404 LHSKnownBBs.insert(LHSVals[i].second); 405 } 406 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 407 if (RHSVals[i].first == InterestingVal || 408 isa<UndefValue>(RHSVals[i].first)) { 409 // If we already inferred a value for this block on the LHS, don't 410 // re-add it. 411 if (!LHSKnownBBs.count(RHSVals[i].second)) { 412 Result.push_back(RHSVals[i]); 413 Result.back().first = InterestingVal; 414 } 415 } 416 417 return !Result.empty(); 418 } 419 420 // Handle the NOT form of XOR. 421 if (I->getOpcode() == Instruction::Xor && 422 isa<ConstantInt>(I->getOperand(1)) && 423 cast<ConstantInt>(I->getOperand(1))->isOne()) { 424 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result); 425 if (Result.empty()) 426 return false; 427 428 // Invert the known values. 429 for (unsigned i = 0, e = Result.size(); i != e; ++i) 430 Result[i].first = ConstantExpr::getNot(Result[i].first); 431 432 return true; 433 } 434 435 // Try to simplify some other binary operator values. 436 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 437 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 438 PredValueInfoTy LHSVals; 439 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals); 440 441 // Try to use constant folding to simplify the binary operator. 442 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 443 Constant *V = LHSVals[i].first; 444 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 445 446 PushKnownConstantOrUndef(Result, Folded, LHSVals[i].second); 447 } 448 } 449 450 return !Result.empty(); 451 } 452 453 // Handle compare with phi operand, where the PHI is defined in this block. 454 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 455 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 456 if (PN && PN->getParent() == BB) { 457 // We can do this simplification if any comparisons fold to true or false. 458 // See if any do. 459 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 460 BasicBlock *PredBB = PN->getIncomingBlock(i); 461 Value *LHS = PN->getIncomingValue(i); 462 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 463 464 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD); 465 if (Res == 0) { 466 if (!isa<Constant>(RHS)) 467 continue; 468 469 LazyValueInfo::Tristate 470 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 471 cast<Constant>(RHS), PredBB, BB); 472 if (ResT == LazyValueInfo::Unknown) 473 continue; 474 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 475 } 476 477 if (Constant *ConstRes = dyn_cast<Constant>(Res)) 478 PushKnownConstantOrUndef(Result, ConstRes, PredBB); 479 } 480 481 return !Result.empty(); 482 } 483 484 485 // If comparing a live-in value against a constant, see if we know the 486 // live-in value on any predecessors. 487 if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) { 488 if (!isa<Instruction>(Cmp->getOperand(0)) || 489 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) { 490 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 491 492 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){ 493 BasicBlock *P = *PI; 494 // If the value is known by LazyValueInfo to be a constant in a 495 // predecessor, use that information to try to thread this block. 496 LazyValueInfo::Tristate Res = 497 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 498 RHSCst, P, BB); 499 if (Res == LazyValueInfo::Unknown) 500 continue; 501 502 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 503 Result.push_back(std::make_pair(ResC, P)); 504 } 505 506 return !Result.empty(); 507 } 508 509 // Try to find a constant value for the LHS of a comparison, 510 // and evaluate it statically if we can. 511 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) { 512 PredValueInfoTy LHSVals; 513 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals); 514 515 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 516 Constant *V = LHSVals[i].first; 517 Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(), 518 V, CmpConst); 519 PushKnownConstantOrUndef(Result, Folded, LHSVals[i].second); 520 } 521 522 return !Result.empty(); 523 } 524 } 525 } 526 527 // If all else fails, see if LVI can figure out a constant value for us. 528 Constant *CI = LVI->getConstant(V, BB); 529 if (Constant *KC = getKnownConstant(CI)) { 530 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 531 Result.push_back(std::make_pair(KC, *PI)); 532 } 533 534 return !Result.empty(); 535 } 536 537 538 539 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 540 /// in an undefined jump, decide which block is best to revector to. 541 /// 542 /// Since we can pick an arbitrary destination, we pick the successor with the 543 /// fewest predecessors. This should reduce the in-degree of the others. 544 /// 545 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 546 TerminatorInst *BBTerm = BB->getTerminator(); 547 unsigned MinSucc = 0; 548 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 549 // Compute the successor with the minimum number of predecessors. 550 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 551 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 552 TestBB = BBTerm->getSuccessor(i); 553 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 554 if (NumPreds < MinNumPreds) 555 MinSucc = i; 556 } 557 558 return MinSucc; 559 } 560 561 /// ProcessBlock - If there are any predecessors whose control can be threaded 562 /// through to a successor, transform them now. 563 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 564 // If the block is trivially dead, just return and let the caller nuke it. 565 // This simplifies other transformations. 566 if (pred_begin(BB) == pred_end(BB) && 567 BB != &BB->getParent()->getEntryBlock()) 568 return false; 569 570 // If this block has a single predecessor, and if that pred has a single 571 // successor, merge the blocks. This encourages recursive jump threading 572 // because now the condition in this block can be threaded through 573 // predecessors of our predecessor block. 574 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 575 if (SinglePred->getTerminator()->getNumSuccessors() == 1 && 576 SinglePred != BB) { 577 // If SinglePred was a loop header, BB becomes one. 578 if (LoopHeaders.erase(SinglePred)) 579 LoopHeaders.insert(BB); 580 581 // Remember if SinglePred was the entry block of the function. If so, we 582 // will need to move BB back to the entry position. 583 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 584 LVI->eraseBlock(SinglePred); 585 MergeBasicBlockIntoOnlyPred(BB); 586 587 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 588 BB->moveBefore(&BB->getParent()->getEntryBlock()); 589 return true; 590 } 591 } 592 593 // Look to see if the terminator is a branch of switch, if not we can't thread 594 // it. 595 Value *Condition; 596 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 597 // Can't thread an unconditional jump. 598 if (BI->isUnconditional()) return false; 599 Condition = BI->getCondition(); 600 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 601 Condition = SI->getCondition(); 602 else 603 return false; // Must be an invoke. 604 605 // If the terminator is branching on an undef, we can pick any of the 606 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 607 if (isa<UndefValue>(Condition)) { 608 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 609 610 // Fold the branch/switch. 611 TerminatorInst *BBTerm = BB->getTerminator(); 612 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 613 if (i == BestSucc) continue; 614 BBTerm->getSuccessor(i)->removePredecessor(BB, true); 615 } 616 617 DEBUG(dbgs() << " In block '" << BB->getName() 618 << "' folding undef terminator: " << *BBTerm << '\n'); 619 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 620 BBTerm->eraseFromParent(); 621 return true; 622 } 623 624 // If the terminator of this block is branching on a constant, simplify the 625 // terminator to an unconditional branch. This can occur due to threading in 626 // other blocks. 627 if (getKnownConstant(Condition)) { 628 DEBUG(dbgs() << " In block '" << BB->getName() 629 << "' folding terminator: " << *BB->getTerminator() << '\n'); 630 ++NumFolds; 631 ConstantFoldTerminator(BB); 632 return true; 633 } 634 635 Instruction *CondInst = dyn_cast<Instruction>(Condition); 636 637 // All the rest of our checks depend on the condition being an instruction. 638 if (CondInst == 0) { 639 // FIXME: Unify this with code below. 640 if (ProcessThreadableEdges(Condition, BB)) 641 return true; 642 return false; 643 } 644 645 646 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 647 // For a comparison where the LHS is outside this block, it's possible 648 // that we've branched on it before. Used LVI to see if we can simplify 649 // the branch based on that. 650 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 651 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 652 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 653 if (CondBr && CondConst && CondBr->isConditional() && PI != PE && 654 (!isa<Instruction>(CondCmp->getOperand(0)) || 655 cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) { 656 // For predecessor edge, determine if the comparison is true or false 657 // on that edge. If they're all true or all false, we can simplify the 658 // branch. 659 // FIXME: We could handle mixed true/false by duplicating code. 660 LazyValueInfo::Tristate Baseline = 661 LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0), 662 CondConst, *PI, BB); 663 if (Baseline != LazyValueInfo::Unknown) { 664 // Check that all remaining incoming values match the first one. 665 while (++PI != PE) { 666 LazyValueInfo::Tristate Ret = 667 LVI->getPredicateOnEdge(CondCmp->getPredicate(), 668 CondCmp->getOperand(0), CondConst, *PI, BB); 669 if (Ret != Baseline) break; 670 } 671 672 // If we terminated early, then one of the values didn't match. 673 if (PI == PE) { 674 unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0; 675 unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1; 676 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 677 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 678 CondBr->eraseFromParent(); 679 return true; 680 } 681 } 682 } 683 } 684 685 // Check for some cases that are worth simplifying. Right now we want to look 686 // for loads that are used by a switch or by the condition for the branch. If 687 // we see one, check to see if it's partially redundant. If so, insert a PHI 688 // which can then be used to thread the values. 689 // 690 Value *SimplifyValue = CondInst; 691 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 692 if (isa<Constant>(CondCmp->getOperand(1))) 693 SimplifyValue = CondCmp->getOperand(0); 694 695 // TODO: There are other places where load PRE would be profitable, such as 696 // more complex comparisons. 697 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 698 if (SimplifyPartiallyRedundantLoad(LI)) 699 return true; 700 701 702 // Handle a variety of cases where we are branching on something derived from 703 // a PHI node in the current block. If we can prove that any predecessors 704 // compute a predictable value based on a PHI node, thread those predecessors. 705 // 706 if (ProcessThreadableEdges(CondInst, BB)) 707 return true; 708 709 // If this is an otherwise-unfoldable branch on a phi node in the current 710 // block, see if we can simplify. 711 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 712 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 713 return ProcessBranchOnPHI(PN); 714 715 716 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 717 if (CondInst->getOpcode() == Instruction::Xor && 718 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 719 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 720 721 722 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 723 // "(X == 4)", thread through this block. 724 725 return false; 726 } 727 728 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that 729 /// block that jump on exactly the same condition. This means that we almost 730 /// always know the direction of the edge in the DESTBB: 731 /// PREDBB: 732 /// br COND, DESTBB, BBY 733 /// DESTBB: 734 /// br COND, BBZ, BBW 735 /// 736 /// If DESTBB has multiple predecessors, we can't just constant fold the branch 737 /// in DESTBB, we have to thread over it. 738 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB, 739 BasicBlock *BB) { 740 BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator()); 741 742 // If both successors of PredBB go to DESTBB, we don't know anything. We can 743 // fold the branch to an unconditional one, which allows other recursive 744 // simplifications. 745 bool BranchDir; 746 if (PredBI->getSuccessor(1) != BB) 747 BranchDir = true; 748 else if (PredBI->getSuccessor(0) != BB) 749 BranchDir = false; 750 else { 751 DEBUG(dbgs() << " In block '" << PredBB->getName() 752 << "' folding terminator: " << *PredBB->getTerminator() << '\n'); 753 ++NumFolds; 754 ConstantFoldTerminator(PredBB); 755 return true; 756 } 757 758 BranchInst *DestBI = cast<BranchInst>(BB->getTerminator()); 759 760 // If the dest block has one predecessor, just fix the branch condition to a 761 // constant and fold it. 762 if (BB->getSinglePredecessor()) { 763 DEBUG(dbgs() << " In block '" << BB->getName() 764 << "' folding condition to '" << BranchDir << "': " 765 << *BB->getTerminator() << '\n'); 766 ++NumFolds; 767 Value *OldCond = DestBI->getCondition(); 768 DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 769 BranchDir)); 770 // Delete dead instructions before we fold the branch. Folding the branch 771 // can eliminate edges from the CFG which can end up deleting OldCond. 772 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 773 ConstantFoldTerminator(BB); 774 return true; 775 } 776 777 778 // Next, figure out which successor we are threading to. 779 BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir); 780 781 SmallVector<BasicBlock*, 2> Preds; 782 Preds.push_back(PredBB); 783 784 // Ok, try to thread it! 785 return ThreadEdge(BB, Preds, SuccBB); 786 } 787 788 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that 789 /// block that switch on exactly the same condition. This means that we almost 790 /// always know the direction of the edge in the DESTBB: 791 /// PREDBB: 792 /// switch COND [... DESTBB, BBY ... ] 793 /// DESTBB: 794 /// switch COND [... BBZ, BBW ] 795 /// 796 /// Optimizing switches like this is very important, because simplifycfg builds 797 /// switches out of repeated 'if' conditions. 798 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, 799 BasicBlock *DestBB) { 800 // Can't thread edge to self. 801 if (PredBB == DestBB) 802 return false; 803 804 SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator()); 805 SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator()); 806 807 // There are a variety of optimizations that we can potentially do on these 808 // blocks: we order them from most to least preferable. 809 810 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB 811 // directly to their destination. This does not introduce *any* code size 812 // growth. Skip debug info first. 813 BasicBlock::iterator BBI = DestBB->begin(); 814 while (isa<DbgInfoIntrinsic>(BBI)) 815 BBI++; 816 817 // FIXME: Thread if it just contains a PHI. 818 if (isa<SwitchInst>(BBI)) { 819 bool MadeChange = false; 820 // Ignore the default edge for now. 821 for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) { 822 ConstantInt *DestVal = DestSI->getCaseValue(i); 823 BasicBlock *DestSucc = DestSI->getSuccessor(i); 824 825 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if 826 // PredSI has an explicit case for it. If so, forward. If it is covered 827 // by the default case, we can't update PredSI. 828 unsigned PredCase = PredSI->findCaseValue(DestVal); 829 if (PredCase == 0) continue; 830 831 // If PredSI doesn't go to DestBB on this value, then it won't reach the 832 // case on this condition. 833 if (PredSI->getSuccessor(PredCase) != DestBB && 834 DestSI->getSuccessor(i) != DestBB) 835 continue; 836 837 // Do not forward this if it already goes to this destination, this would 838 // be an infinite loop. 839 if (PredSI->getSuccessor(PredCase) == DestSucc) 840 continue; 841 842 // Otherwise, we're safe to make the change. Make sure that the edge from 843 // DestSI to DestSucc is not critical and has no PHI nodes. 844 DEBUG(dbgs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI); 845 DEBUG(dbgs() << "THROUGH: " << *DestSI); 846 847 // If the destination has PHI nodes, just split the edge for updating 848 // simplicity. 849 if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){ 850 SplitCriticalEdge(DestSI, i, this); 851 DestSucc = DestSI->getSuccessor(i); 852 } 853 FoldSingleEntryPHINodes(DestSucc); 854 PredSI->setSuccessor(PredCase, DestSucc); 855 MadeChange = true; 856 } 857 858 if (MadeChange) 859 return true; 860 } 861 862 return false; 863 } 864 865 866 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 867 /// load instruction, eliminate it by replacing it with a PHI node. This is an 868 /// important optimization that encourages jump threading, and needs to be run 869 /// interlaced with other jump threading tasks. 870 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 871 // Don't hack volatile loads. 872 if (LI->isVolatile()) return false; 873 874 // If the load is defined in a block with exactly one predecessor, it can't be 875 // partially redundant. 876 BasicBlock *LoadBB = LI->getParent(); 877 if (LoadBB->getSinglePredecessor()) 878 return false; 879 880 Value *LoadedPtr = LI->getOperand(0); 881 882 // If the loaded operand is defined in the LoadBB, it can't be available. 883 // TODO: Could do simple PHI translation, that would be fun :) 884 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 885 if (PtrOp->getParent() == LoadBB) 886 return false; 887 888 // Scan a few instructions up from the load, to see if it is obviously live at 889 // the entry to its block. 890 BasicBlock::iterator BBIt = LI; 891 892 if (Value *AvailableVal = 893 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) { 894 // If the value if the load is locally available within the block, just use 895 // it. This frequently occurs for reg2mem'd allocas. 896 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 897 898 // If the returned value is the load itself, replace with an undef. This can 899 // only happen in dead loops. 900 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 901 LI->replaceAllUsesWith(AvailableVal); 902 LI->eraseFromParent(); 903 return true; 904 } 905 906 // Otherwise, if we scanned the whole block and got to the top of the block, 907 // we know the block is locally transparent to the load. If not, something 908 // might clobber its value. 909 if (BBIt != LoadBB->begin()) 910 return false; 911 912 913 SmallPtrSet<BasicBlock*, 8> PredsScanned; 914 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 915 AvailablePredsTy AvailablePreds; 916 BasicBlock *OneUnavailablePred = 0; 917 918 // If we got here, the loaded value is transparent through to the start of the 919 // block. Check to see if it is available in any of the predecessor blocks. 920 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 921 PI != PE; ++PI) { 922 BasicBlock *PredBB = *PI; 923 924 // If we already scanned this predecessor, skip it. 925 if (!PredsScanned.insert(PredBB)) 926 continue; 927 928 // Scan the predecessor to see if the value is available in the pred. 929 BBIt = PredBB->end(); 930 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6); 931 if (!PredAvailable) { 932 OneUnavailablePred = PredBB; 933 continue; 934 } 935 936 // If so, this load is partially redundant. Remember this info so that we 937 // can create a PHI node. 938 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 939 } 940 941 // If the loaded value isn't available in any predecessor, it isn't partially 942 // redundant. 943 if (AvailablePreds.empty()) return false; 944 945 // Okay, the loaded value is available in at least one (and maybe all!) 946 // predecessors. If the value is unavailable in more than one unique 947 // predecessor, we want to insert a merge block for those common predecessors. 948 // This ensures that we only have to insert one reload, thus not increasing 949 // code size. 950 BasicBlock *UnavailablePred = 0; 951 952 // If there is exactly one predecessor where the value is unavailable, the 953 // already computed 'OneUnavailablePred' block is it. If it ends in an 954 // unconditional branch, we know that it isn't a critical edge. 955 if (PredsScanned.size() == AvailablePreds.size()+1 && 956 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 957 UnavailablePred = OneUnavailablePred; 958 } else if (PredsScanned.size() != AvailablePreds.size()) { 959 // Otherwise, we had multiple unavailable predecessors or we had a critical 960 // edge from the one. 961 SmallVector<BasicBlock*, 8> PredsToSplit; 962 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 963 964 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 965 AvailablePredSet.insert(AvailablePreds[i].first); 966 967 // Add all the unavailable predecessors to the PredsToSplit list. 968 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 969 PI != PE; ++PI) { 970 BasicBlock *P = *PI; 971 // If the predecessor is an indirect goto, we can't split the edge. 972 if (isa<IndirectBrInst>(P->getTerminator())) 973 return false; 974 975 if (!AvailablePredSet.count(P)) 976 PredsToSplit.push_back(P); 977 } 978 979 // Split them out to their own block. 980 UnavailablePred = 981 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(), 982 "thread-pre-split", this); 983 } 984 985 // If the value isn't available in all predecessors, then there will be 986 // exactly one where it isn't available. Insert a load on that edge and add 987 // it to the AvailablePreds list. 988 if (UnavailablePred) { 989 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 990 "Can't handle critical edge here!"); 991 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, 992 LI->getAlignment(), 993 UnavailablePred->getTerminator()); 994 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 995 } 996 997 // Now we know that each predecessor of this block has a value in 998 // AvailablePreds, sort them for efficient access as we're walking the preds. 999 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1000 1001 // Create a PHI node at the start of the block for the PRE'd load value. 1002 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin()); 1003 PN->takeName(LI); 1004 1005 // Insert new entries into the PHI for each predecessor. A single block may 1006 // have multiple entries here. 1007 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E; 1008 ++PI) { 1009 BasicBlock *P = *PI; 1010 AvailablePredsTy::iterator I = 1011 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1012 std::make_pair(P, (Value*)0)); 1013 1014 assert(I != AvailablePreds.end() && I->first == P && 1015 "Didn't find entry for predecessor!"); 1016 1017 PN->addIncoming(I->second, I->first); 1018 } 1019 1020 //cerr << "PRE: " << *LI << *PN << "\n"; 1021 1022 LI->replaceAllUsesWith(PN); 1023 LI->eraseFromParent(); 1024 1025 return true; 1026 } 1027 1028 /// FindMostPopularDest - The specified list contains multiple possible 1029 /// threadable destinations. Pick the one that occurs the most frequently in 1030 /// the list. 1031 static BasicBlock * 1032 FindMostPopularDest(BasicBlock *BB, 1033 const SmallVectorImpl<std::pair<BasicBlock*, 1034 BasicBlock*> > &PredToDestList) { 1035 assert(!PredToDestList.empty()); 1036 1037 // Determine popularity. If there are multiple possible destinations, we 1038 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1039 // blocks with known and real destinations to threading undef. We'll handle 1040 // them later if interesting. 1041 DenseMap<BasicBlock*, unsigned> DestPopularity; 1042 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1043 if (PredToDestList[i].second) 1044 DestPopularity[PredToDestList[i].second]++; 1045 1046 // Find the most popular dest. 1047 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1048 BasicBlock *MostPopularDest = DPI->first; 1049 unsigned Popularity = DPI->second; 1050 SmallVector<BasicBlock*, 4> SamePopularity; 1051 1052 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1053 // If the popularity of this entry isn't higher than the popularity we've 1054 // seen so far, ignore it. 1055 if (DPI->second < Popularity) 1056 ; // ignore. 1057 else if (DPI->second == Popularity) { 1058 // If it is the same as what we've seen so far, keep track of it. 1059 SamePopularity.push_back(DPI->first); 1060 } else { 1061 // If it is more popular, remember it. 1062 SamePopularity.clear(); 1063 MostPopularDest = DPI->first; 1064 Popularity = DPI->second; 1065 } 1066 } 1067 1068 // Okay, now we know the most popular destination. If there is more than 1069 // destination, we need to determine one. This is arbitrary, but we need 1070 // to make a deterministic decision. Pick the first one that appears in the 1071 // successor list. 1072 if (!SamePopularity.empty()) { 1073 SamePopularity.push_back(MostPopularDest); 1074 TerminatorInst *TI = BB->getTerminator(); 1075 for (unsigned i = 0; ; ++i) { 1076 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1077 1078 if (std::find(SamePopularity.begin(), SamePopularity.end(), 1079 TI->getSuccessor(i)) == SamePopularity.end()) 1080 continue; 1081 1082 MostPopularDest = TI->getSuccessor(i); 1083 break; 1084 } 1085 } 1086 1087 // Okay, we have finally picked the most popular destination. 1088 return MostPopularDest; 1089 } 1090 1091 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) { 1092 // If threading this would thread across a loop header, don't even try to 1093 // thread the edge. 1094 if (LoopHeaders.count(BB)) 1095 return false; 1096 1097 PredValueInfoTy PredValues; 1098 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues)) 1099 return false; 1100 1101 assert(!PredValues.empty() && 1102 "ComputeValueKnownInPredecessors returned true with no values"); 1103 1104 DEBUG(dbgs() << "IN BB: " << *BB; 1105 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1106 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1107 << *PredValues[i].first 1108 << " for pred '" << PredValues[i].second->getName() << "'.\n"; 1109 }); 1110 1111 // Decide what we want to thread through. Convert our list of known values to 1112 // a list of known destinations for each pred. This also discards duplicate 1113 // predecessors and keeps track of the undefined inputs (which are represented 1114 // as a null dest in the PredToDestList). 1115 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1116 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1117 1118 BasicBlock *OnlyDest = 0; 1119 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1120 1121 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1122 BasicBlock *Pred = PredValues[i].second; 1123 if (!SeenPreds.insert(Pred)) 1124 continue; // Duplicate predecessor entry. 1125 1126 // If the predecessor ends with an indirect goto, we can't change its 1127 // destination. 1128 if (isa<IndirectBrInst>(Pred->getTerminator())) 1129 continue; 1130 1131 Constant *Val = PredValues[i].first; 1132 1133 BasicBlock *DestBB; 1134 if (isa<UndefValue>(Val)) 1135 DestBB = 0; 1136 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1137 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1138 else { 1139 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator()); 1140 DestBB = SI->getSuccessor(SI->findCaseValue(cast<ConstantInt>(Val))); 1141 } 1142 1143 // If we have exactly one destination, remember it for efficiency below. 1144 if (i == 0) 1145 OnlyDest = DestBB; 1146 else if (OnlyDest != DestBB) 1147 OnlyDest = MultipleDestSentinel; 1148 1149 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1150 } 1151 1152 // If all edges were unthreadable, we fail. 1153 if (PredToDestList.empty()) 1154 return false; 1155 1156 // Determine which is the most common successor. If we have many inputs and 1157 // this block is a switch, we want to start by threading the batch that goes 1158 // to the most popular destination first. If we only know about one 1159 // threadable destination (the common case) we can avoid this. 1160 BasicBlock *MostPopularDest = OnlyDest; 1161 1162 if (MostPopularDest == MultipleDestSentinel) 1163 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1164 1165 // Now that we know what the most popular destination is, factor all 1166 // predecessors that will jump to it into a single predecessor. 1167 SmallVector<BasicBlock*, 16> PredsToFactor; 1168 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1169 if (PredToDestList[i].second == MostPopularDest) { 1170 BasicBlock *Pred = PredToDestList[i].first; 1171 1172 // This predecessor may be a switch or something else that has multiple 1173 // edges to the block. Factor each of these edges by listing them 1174 // according to # occurrences in PredsToFactor. 1175 TerminatorInst *PredTI = Pred->getTerminator(); 1176 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 1177 if (PredTI->getSuccessor(i) == BB) 1178 PredsToFactor.push_back(Pred); 1179 } 1180 1181 // If the threadable edges are branching on an undefined value, we get to pick 1182 // the destination that these predecessors should get to. 1183 if (MostPopularDest == 0) 1184 MostPopularDest = BB->getTerminator()-> 1185 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1186 1187 // Ok, try to thread it! 1188 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1189 } 1190 1191 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1192 /// a PHI node in the current block. See if there are any simplifications we 1193 /// can do based on inputs to the phi node. 1194 /// 1195 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) { 1196 BasicBlock *BB = PN->getParent(); 1197 1198 // TODO: We could make use of this to do it once for blocks with common PHI 1199 // values. 1200 SmallVector<BasicBlock*, 1> PredBBs; 1201 PredBBs.resize(1); 1202 1203 // If any of the predecessor blocks end in an unconditional branch, we can 1204 // *duplicate* the conditional branch into that block in order to further 1205 // encourage jump threading and to eliminate cases where we have branch on a 1206 // phi of an icmp (branch on icmp is much better). 1207 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1208 BasicBlock *PredBB = PN->getIncomingBlock(i); 1209 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1210 if (PredBr->isUnconditional()) { 1211 PredBBs[0] = PredBB; 1212 // Try to duplicate BB into PredBB. 1213 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1214 return true; 1215 } 1216 } 1217 1218 return false; 1219 } 1220 1221 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1222 /// a xor instruction in the current block. See if there are any 1223 /// simplifications we can do based on inputs to the xor. 1224 /// 1225 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) { 1226 BasicBlock *BB = BO->getParent(); 1227 1228 // If either the LHS or RHS of the xor is a constant, don't do this 1229 // optimization. 1230 if (isa<ConstantInt>(BO->getOperand(0)) || 1231 isa<ConstantInt>(BO->getOperand(1))) 1232 return false; 1233 1234 // If the first instruction in BB isn't a phi, we won't be able to infer 1235 // anything special about any particular predecessor. 1236 if (!isa<PHINode>(BB->front())) 1237 return false; 1238 1239 // If we have a xor as the branch input to this block, and we know that the 1240 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1241 // the condition into the predecessor and fix that value to true, saving some 1242 // logical ops on that path and encouraging other paths to simplify. 1243 // 1244 // This copies something like this: 1245 // 1246 // BB: 1247 // %X = phi i1 [1], [%X'] 1248 // %Y = icmp eq i32 %A, %B 1249 // %Z = xor i1 %X, %Y 1250 // br i1 %Z, ... 1251 // 1252 // Into: 1253 // BB': 1254 // %Y = icmp ne i32 %A, %B 1255 // br i1 %Z, ... 1256 1257 PredValueInfoTy XorOpValues; 1258 bool isLHS = true; 1259 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues)) { 1260 assert(XorOpValues.empty()); 1261 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues)) 1262 return false; 1263 isLHS = false; 1264 } 1265 1266 assert(!XorOpValues.empty() && 1267 "ComputeValueKnownInPredecessors returned true with no values"); 1268 1269 // Scan the information to see which is most popular: true or false. The 1270 // predecessors can be of the set true, false, or undef. 1271 unsigned NumTrue = 0, NumFalse = 0; 1272 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1273 if (isa<UndefValue>(XorOpValues[i].first)) 1274 // Ignore undefs for the count. 1275 continue; 1276 if (cast<ConstantInt>(XorOpValues[i].first)->isZero()) 1277 ++NumFalse; 1278 else 1279 ++NumTrue; 1280 } 1281 1282 // Determine which value to split on, true, false, or undef if neither. 1283 ConstantInt *SplitVal = 0; 1284 if (NumTrue > NumFalse) 1285 SplitVal = ConstantInt::getTrue(BB->getContext()); 1286 else if (NumTrue != 0 || NumFalse != 0) 1287 SplitVal = ConstantInt::getFalse(BB->getContext()); 1288 1289 // Collect all of the blocks that this can be folded into so that we can 1290 // factor this once and clone it once. 1291 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1292 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1293 if (XorOpValues[i].first != SplitVal && 1294 !isa<UndefValue>(XorOpValues[i].first)) 1295 continue; 1296 1297 BlocksToFoldInto.push_back(XorOpValues[i].second); 1298 } 1299 1300 // If we inferred a value for all of the predecessors, then duplication won't 1301 // help us. However, we can just replace the LHS or RHS with the constant. 1302 if (BlocksToFoldInto.size() == 1303 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1304 if (SplitVal == 0) { 1305 // If all preds provide undef, just nuke the xor, because it is undef too. 1306 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1307 BO->eraseFromParent(); 1308 } else if (SplitVal->isZero()) { 1309 // If all preds provide 0, replace the xor with the other input. 1310 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1311 BO->eraseFromParent(); 1312 } else { 1313 // If all preds provide 1, set the computed value to 1. 1314 BO->setOperand(!isLHS, SplitVal); 1315 } 1316 1317 return true; 1318 } 1319 1320 // Try to duplicate BB into PredBB. 1321 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1322 } 1323 1324 1325 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1326 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1327 /// NewPred using the entries from OldPred (suitably mapped). 1328 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1329 BasicBlock *OldPred, 1330 BasicBlock *NewPred, 1331 DenseMap<Instruction*, Value*> &ValueMap) { 1332 for (BasicBlock::iterator PNI = PHIBB->begin(); 1333 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1334 // Ok, we have a PHI node. Figure out what the incoming value was for the 1335 // DestBlock. 1336 Value *IV = PN->getIncomingValueForBlock(OldPred); 1337 1338 // Remap the value if necessary. 1339 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1340 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1341 if (I != ValueMap.end()) 1342 IV = I->second; 1343 } 1344 1345 PN->addIncoming(IV, NewPred); 1346 } 1347 } 1348 1349 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1350 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1351 /// across BB. Transform the IR to reflect this change. 1352 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1353 const SmallVectorImpl<BasicBlock*> &PredBBs, 1354 BasicBlock *SuccBB) { 1355 // If threading to the same block as we come from, we would infinite loop. 1356 if (SuccBB == BB) { 1357 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1358 << "' - would thread to self!\n"); 1359 return false; 1360 } 1361 1362 // If threading this would thread across a loop header, don't thread the edge. 1363 // See the comments above FindLoopHeaders for justifications and caveats. 1364 if (LoopHeaders.count(BB)) { 1365 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1366 << "' to dest BB '" << SuccBB->getName() 1367 << "' - it might create an irreducible loop!\n"); 1368 return false; 1369 } 1370 1371 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB); 1372 if (JumpThreadCost > Threshold) { 1373 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1374 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1375 return false; 1376 } 1377 1378 // And finally, do it! Start by factoring the predecessors is needed. 1379 BasicBlock *PredBB; 1380 if (PredBBs.size() == 1) 1381 PredBB = PredBBs[0]; 1382 else { 1383 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1384 << " common predecessors.\n"); 1385 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), 1386 ".thr_comm", this); 1387 } 1388 1389 // And finally, do it! 1390 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1391 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1392 << ", across block:\n " 1393 << *BB << "\n"); 1394 1395 LVI->threadEdge(PredBB, BB, SuccBB); 1396 1397 // We are going to have to map operands from the original BB block to the new 1398 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1399 // account for entry from PredBB. 1400 DenseMap<Instruction*, Value*> ValueMapping; 1401 1402 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1403 BB->getName()+".thread", 1404 BB->getParent(), BB); 1405 NewBB->moveAfter(PredBB); 1406 1407 BasicBlock::iterator BI = BB->begin(); 1408 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1409 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1410 1411 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1412 // mapping and using it to remap operands in the cloned instructions. 1413 for (; !isa<TerminatorInst>(BI); ++BI) { 1414 Instruction *New = BI->clone(); 1415 New->setName(BI->getName()); 1416 NewBB->getInstList().push_back(New); 1417 ValueMapping[BI] = New; 1418 1419 // Remap operands to patch up intra-block references. 1420 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1421 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1422 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1423 if (I != ValueMapping.end()) 1424 New->setOperand(i, I->second); 1425 } 1426 } 1427 1428 // We didn't copy the terminator from BB over to NewBB, because there is now 1429 // an unconditional jump to SuccBB. Insert the unconditional jump. 1430 BranchInst::Create(SuccBB, NewBB); 1431 1432 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1433 // PHI nodes for NewBB now. 1434 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1435 1436 // If there were values defined in BB that are used outside the block, then we 1437 // now have to update all uses of the value to use either the original value, 1438 // the cloned value, or some PHI derived value. This can require arbitrary 1439 // PHI insertion, of which we are prepared to do, clean these up now. 1440 SSAUpdater SSAUpdate; 1441 SmallVector<Use*, 16> UsesToRename; 1442 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1443 // Scan all uses of this instruction to see if it is used outside of its 1444 // block, and if so, record them in UsesToRename. 1445 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1446 ++UI) { 1447 Instruction *User = cast<Instruction>(*UI); 1448 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1449 if (UserPN->getIncomingBlock(UI) == BB) 1450 continue; 1451 } else if (User->getParent() == BB) 1452 continue; 1453 1454 UsesToRename.push_back(&UI.getUse()); 1455 } 1456 1457 // If there are no uses outside the block, we're done with this instruction. 1458 if (UsesToRename.empty()) 1459 continue; 1460 1461 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1462 1463 // We found a use of I outside of BB. Rename all uses of I that are outside 1464 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1465 // with the two values we know. 1466 SSAUpdate.Initialize(I->getType(), I->getName()); 1467 SSAUpdate.AddAvailableValue(BB, I); 1468 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); 1469 1470 while (!UsesToRename.empty()) 1471 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1472 DEBUG(dbgs() << "\n"); 1473 } 1474 1475 1476 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1477 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1478 // us to simplify any PHI nodes in BB. 1479 TerminatorInst *PredTerm = PredBB->getTerminator(); 1480 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1481 if (PredTerm->getSuccessor(i) == BB) { 1482 BB->removePredecessor(PredBB, true); 1483 PredTerm->setSuccessor(i, NewBB); 1484 } 1485 1486 // At this point, the IR is fully up to date and consistent. Do a quick scan 1487 // over the new instructions and zap any that are constants or dead. This 1488 // frequently happens because of phi translation. 1489 SimplifyInstructionsInBlock(NewBB, TD); 1490 1491 // Threaded an edge! 1492 ++NumThreads; 1493 return true; 1494 } 1495 1496 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1497 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1498 /// If we can duplicate the contents of BB up into PredBB do so now, this 1499 /// improves the odds that the branch will be on an analyzable instruction like 1500 /// a compare. 1501 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1502 const SmallVectorImpl<BasicBlock *> &PredBBs) { 1503 assert(!PredBBs.empty() && "Can't handle an empty set"); 1504 1505 // If BB is a loop header, then duplicating this block outside the loop would 1506 // cause us to transform this into an irreducible loop, don't do this. 1507 // See the comments above FindLoopHeaders for justifications and caveats. 1508 if (LoopHeaders.count(BB)) { 1509 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1510 << "' into predecessor block '" << PredBBs[0]->getName() 1511 << "' - it might create an irreducible loop!\n"); 1512 return false; 1513 } 1514 1515 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB); 1516 if (DuplicationCost > Threshold) { 1517 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1518 << "' - Cost is too high: " << DuplicationCost << "\n"); 1519 return false; 1520 } 1521 1522 // And finally, do it! Start by factoring the predecessors is needed. 1523 BasicBlock *PredBB; 1524 if (PredBBs.size() == 1) 1525 PredBB = PredBBs[0]; 1526 else { 1527 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1528 << " common predecessors.\n"); 1529 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), 1530 ".thr_comm", this); 1531 } 1532 1533 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1534 // of PredBB. 1535 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1536 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1537 << DuplicationCost << " block is:" << *BB << "\n"); 1538 1539 // Unless PredBB ends with an unconditional branch, split the edge so that we 1540 // can just clone the bits from BB into the end of the new PredBB. 1541 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 1542 1543 if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) { 1544 PredBB = SplitEdge(PredBB, BB, this); 1545 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1546 } 1547 1548 // We are going to have to map operands from the original BB block into the 1549 // PredBB block. Evaluate PHI nodes in BB. 1550 DenseMap<Instruction*, Value*> ValueMapping; 1551 1552 BasicBlock::iterator BI = BB->begin(); 1553 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1554 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1555 1556 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1557 // mapping and using it to remap operands in the cloned instructions. 1558 for (; BI != BB->end(); ++BI) { 1559 Instruction *New = BI->clone(); 1560 1561 // Remap operands to patch up intra-block references. 1562 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1563 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1564 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1565 if (I != ValueMapping.end()) 1566 New->setOperand(i, I->second); 1567 } 1568 1569 // If this instruction can be simplified after the operands are updated, 1570 // just use the simplified value instead. This frequently happens due to 1571 // phi translation. 1572 if (Value *IV = SimplifyInstruction(New, TD)) { 1573 delete New; 1574 ValueMapping[BI] = IV; 1575 } else { 1576 // Otherwise, insert the new instruction into the block. 1577 New->setName(BI->getName()); 1578 PredBB->getInstList().insert(OldPredBranch, New); 1579 ValueMapping[BI] = New; 1580 } 1581 } 1582 1583 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1584 // add entries to the PHI nodes for branch from PredBB now. 1585 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1586 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1587 ValueMapping); 1588 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1589 ValueMapping); 1590 1591 // If there were values defined in BB that are used outside the block, then we 1592 // now have to update all uses of the value to use either the original value, 1593 // the cloned value, or some PHI derived value. This can require arbitrary 1594 // PHI insertion, of which we are prepared to do, clean these up now. 1595 SSAUpdater SSAUpdate; 1596 SmallVector<Use*, 16> UsesToRename; 1597 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1598 // Scan all uses of this instruction to see if it is used outside of its 1599 // block, and if so, record them in UsesToRename. 1600 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1601 ++UI) { 1602 Instruction *User = cast<Instruction>(*UI); 1603 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1604 if (UserPN->getIncomingBlock(UI) == BB) 1605 continue; 1606 } else if (User->getParent() == BB) 1607 continue; 1608 1609 UsesToRename.push_back(&UI.getUse()); 1610 } 1611 1612 // If there are no uses outside the block, we're done with this instruction. 1613 if (UsesToRename.empty()) 1614 continue; 1615 1616 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1617 1618 // We found a use of I outside of BB. Rename all uses of I that are outside 1619 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1620 // with the two values we know. 1621 SSAUpdate.Initialize(I->getType(), I->getName()); 1622 SSAUpdate.AddAvailableValue(BB, I); 1623 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); 1624 1625 while (!UsesToRename.empty()) 1626 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1627 DEBUG(dbgs() << "\n"); 1628 } 1629 1630 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1631 // that we nuked. 1632 BB->removePredecessor(PredBB, true); 1633 1634 // Remove the unconditional branch at the end of the PredBB block. 1635 OldPredBranch->eraseFromParent(); 1636 1637 ++NumDupes; 1638 return true; 1639 } 1640 1641 1642