xref: /llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp (revision 75881dbb0fa5dcfe08518b6fb72621cbf60f45e2)
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Jump Threading pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Scalar/JumpThreading.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/BlockFrequencyInfo.h"
23 #include "llvm/Analysis/BranchProbabilityInfo.h"
24 #include "llvm/Analysis/CFG.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/GlobalsModRef.h"
27 #include "llvm/Analysis/GuardUtils.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/LazyValueInfo.h"
30 #include "llvm/Analysis/Loads.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/PostDominators.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DebugInfo.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/PassManager.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/IR/ProfDataUtils.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/Use.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/Support/BlockFrequency.h"
62 #include "llvm/Support/BranchProbability.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
68 #include "llvm/Transforms/Utils/Cloning.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include "llvm/Transforms/Utils/SSAUpdater.h"
71 #include "llvm/Transforms/Utils/ValueMapper.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <iterator>
76 #include <memory>
77 #include <utility>
78 
79 using namespace llvm;
80 using namespace jumpthreading;
81 
82 #define DEBUG_TYPE "jump-threading"
83 
84 STATISTIC(NumThreads, "Number of jumps threaded");
85 STATISTIC(NumFolds,   "Number of terminators folded");
86 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
87 
88 static cl::opt<unsigned>
89 BBDuplicateThreshold("jump-threading-threshold",
90           cl::desc("Max block size to duplicate for jump threading"),
91           cl::init(6), cl::Hidden);
92 
93 static cl::opt<unsigned>
94 ImplicationSearchThreshold(
95   "jump-threading-implication-search-threshold",
96   cl::desc("The number of predecessors to search for a stronger "
97            "condition to use to thread over a weaker condition"),
98   cl::init(3), cl::Hidden);
99 
100 static cl::opt<unsigned> PhiDuplicateThreshold(
101     "jump-threading-phi-threshold",
102     cl::desc("Max PHIs in BB to duplicate for jump threading"), cl::init(76),
103     cl::Hidden);
104 
105 static cl::opt<bool> PrintLVIAfterJumpThreading(
106     "print-lvi-after-jump-threading",
107     cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
108     cl::Hidden);
109 
110 static cl::opt<bool> ThreadAcrossLoopHeaders(
111     "jump-threading-across-loop-headers",
112     cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
113     cl::init(false), cl::Hidden);
114 
115 JumpThreadingPass::JumpThreadingPass(int T) {
116   DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
117 }
118 
119 // Update branch probability information according to conditional
120 // branch probability. This is usually made possible for cloned branches
121 // in inline instances by the context specific profile in the caller.
122 // For instance,
123 //
124 //  [Block PredBB]
125 //  [Branch PredBr]
126 //  if (t) {
127 //     Block A;
128 //  } else {
129 //     Block B;
130 //  }
131 //
132 //  [Block BB]
133 //  cond = PN([true, %A], [..., %B]); // PHI node
134 //  [Branch CondBr]
135 //  if (cond) {
136 //    ...  // P(cond == true) = 1%
137 //  }
138 //
139 //  Here we know that when block A is taken, cond must be true, which means
140 //      P(cond == true | A) = 1
141 //
142 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
143 //                               P(cond == true | B) * P(B)
144 //  we get:
145 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
146 //
147 //  which gives us:
148 //     P(A) is less than P(cond == true), i.e.
149 //     P(t == true) <= P(cond == true)
150 //
151 //  In other words, if we know P(cond == true) is unlikely, we know
152 //  that P(t == true) is also unlikely.
153 //
154 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
155   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
156   if (!CondBr)
157     return;
158 
159   uint64_t TrueWeight, FalseWeight;
160   if (!extractBranchWeights(*CondBr, TrueWeight, FalseWeight))
161     return;
162 
163   if (TrueWeight + FalseWeight == 0)
164     // Zero branch_weights do not give a hint for getting branch probabilities.
165     // Technically it would result in division by zero denominator, which is
166     // TrueWeight + FalseWeight.
167     return;
168 
169   // Returns the outgoing edge of the dominating predecessor block
170   // that leads to the PhiNode's incoming block:
171   auto GetPredOutEdge =
172       [](BasicBlock *IncomingBB,
173          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
174     auto *PredBB = IncomingBB;
175     auto *SuccBB = PhiBB;
176     SmallPtrSet<BasicBlock *, 16> Visited;
177     while (true) {
178       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
179       if (PredBr && PredBr->isConditional())
180         return {PredBB, SuccBB};
181       Visited.insert(PredBB);
182       auto *SinglePredBB = PredBB->getSinglePredecessor();
183       if (!SinglePredBB)
184         return {nullptr, nullptr};
185 
186       // Stop searching when SinglePredBB has been visited. It means we see
187       // an unreachable loop.
188       if (Visited.count(SinglePredBB))
189         return {nullptr, nullptr};
190 
191       SuccBB = PredBB;
192       PredBB = SinglePredBB;
193     }
194   };
195 
196   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
197     Value *PhiOpnd = PN->getIncomingValue(i);
198     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
199 
200     if (!CI || !CI->getType()->isIntegerTy(1))
201       continue;
202 
203     BranchProbability BP =
204         (CI->isOne() ? BranchProbability::getBranchProbability(
205                            TrueWeight, TrueWeight + FalseWeight)
206                      : BranchProbability::getBranchProbability(
207                            FalseWeight, TrueWeight + FalseWeight));
208 
209     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
210     if (!PredOutEdge.first)
211       return;
212 
213     BasicBlock *PredBB = PredOutEdge.first;
214     BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
215     if (!PredBr)
216       return;
217 
218     uint64_t PredTrueWeight, PredFalseWeight;
219     // FIXME: We currently only set the profile data when it is missing.
220     // With PGO, this can be used to refine even existing profile data with
221     // context information. This needs to be done after more performance
222     // testing.
223     if (extractBranchWeights(*PredBr, PredTrueWeight, PredFalseWeight))
224       continue;
225 
226     // We can not infer anything useful when BP >= 50%, because BP is the
227     // upper bound probability value.
228     if (BP >= BranchProbability(50, 100))
229       continue;
230 
231     SmallVector<uint32_t, 2> Weights;
232     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
233       Weights.push_back(BP.getNumerator());
234       Weights.push_back(BP.getCompl().getNumerator());
235     } else {
236       Weights.push_back(BP.getCompl().getNumerator());
237       Weights.push_back(BP.getNumerator());
238     }
239     PredBr->setMetadata(LLVMContext::MD_prof,
240                         MDBuilder(PredBr->getParent()->getContext())
241                             .createBranchWeights(Weights));
242   }
243 }
244 
245 PreservedAnalyses JumpThreadingPass::run(Function &F,
246                                          FunctionAnalysisManager &AM) {
247   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
248   // Jump Threading has no sense for the targets with divergent CF
249   if (TTI.hasBranchDivergence(&F))
250     return PreservedAnalyses::all();
251   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
252   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
253   auto &AA = AM.getResult<AAManager>(F);
254   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
255 
256   bool Changed =
257       runImpl(F, &AM, &TLI, &TTI, &LVI, &AA,
258               std::make_unique<DomTreeUpdater>(
259                   &DT, nullptr, DomTreeUpdater::UpdateStrategy::Lazy),
260               std::nullopt, std::nullopt);
261 
262   if (PrintLVIAfterJumpThreading) {
263     dbgs() << "LVI for function '" << F.getName() << "':\n";
264     LVI.printLVI(F, getDomTreeUpdater()->getDomTree(), dbgs());
265   }
266 
267   if (!Changed)
268     return PreservedAnalyses::all();
269 
270 
271   getDomTreeUpdater()->flush();
272 
273 #if defined(EXPENSIVE_CHECKS)
274   assert(getDomTreeUpdater()->getDomTree().verify(
275              DominatorTree::VerificationLevel::Full) &&
276          "DT broken after JumpThreading");
277   assert((!getDomTreeUpdater()->hasPostDomTree() ||
278           getDomTreeUpdater()->getPostDomTree().verify(
279               PostDominatorTree::VerificationLevel::Full)) &&
280          "PDT broken after JumpThreading");
281 #else
282   assert(getDomTreeUpdater()->getDomTree().verify(
283              DominatorTree::VerificationLevel::Fast) &&
284          "DT broken after JumpThreading");
285   assert((!getDomTreeUpdater()->hasPostDomTree() ||
286           getDomTreeUpdater()->getPostDomTree().verify(
287               PostDominatorTree::VerificationLevel::Fast)) &&
288          "PDT broken after JumpThreading");
289 #endif
290 
291   return getPreservedAnalysis();
292 }
293 
294 bool JumpThreadingPass::runImpl(Function &F_, FunctionAnalysisManager *FAM_,
295                                 TargetLibraryInfo *TLI_,
296                                 TargetTransformInfo *TTI_, LazyValueInfo *LVI_,
297                                 AliasAnalysis *AA_,
298                                 std::unique_ptr<DomTreeUpdater> DTU_,
299                                 std::optional<BlockFrequencyInfo *> BFI_,
300                                 std::optional<BranchProbabilityInfo *> BPI_) {
301   LLVM_DEBUG(dbgs() << "Jump threading on function '" << F_.getName() << "'\n");
302   F = &F_;
303   FAM = FAM_;
304   TLI = TLI_;
305   TTI = TTI_;
306   LVI = LVI_;
307   AA = AA_;
308   DTU = std::move(DTU_);
309   BFI = BFI_;
310   BPI = BPI_;
311   auto *GuardDecl = F->getParent()->getFunction(
312       Intrinsic::getName(Intrinsic::experimental_guard));
313   HasGuards = GuardDecl && !GuardDecl->use_empty();
314 
315   // Reduce the number of instructions duplicated when optimizing strictly for
316   // size.
317   if (BBDuplicateThreshold.getNumOccurrences())
318     BBDupThreshold = BBDuplicateThreshold;
319   else if (F->hasFnAttribute(Attribute::MinSize))
320     BBDupThreshold = 3;
321   else
322     BBDupThreshold = DefaultBBDupThreshold;
323 
324   // JumpThreading must not processes blocks unreachable from entry. It's a
325   // waste of compute time and can potentially lead to hangs.
326   SmallPtrSet<BasicBlock *, 16> Unreachable;
327   assert(DTU && "DTU isn't passed into JumpThreading before using it.");
328   assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
329   DominatorTree &DT = DTU->getDomTree();
330   for (auto &BB : *F)
331     if (!DT.isReachableFromEntry(&BB))
332       Unreachable.insert(&BB);
333 
334   if (!ThreadAcrossLoopHeaders)
335     findLoopHeaders(*F);
336 
337   bool EverChanged = false;
338   bool Changed;
339   do {
340     Changed = false;
341     for (auto &BB : *F) {
342       if (Unreachable.count(&BB))
343         continue;
344       while (processBlock(&BB)) // Thread all of the branches we can over BB.
345         Changed = ChangedSinceLastAnalysisUpdate = true;
346 
347       // Jump threading may have introduced redundant debug values into BB
348       // which should be removed.
349       if (Changed)
350         RemoveRedundantDbgInstrs(&BB);
351 
352       // Stop processing BB if it's the entry or is now deleted. The following
353       // routines attempt to eliminate BB and locating a suitable replacement
354       // for the entry is non-trivial.
355       if (&BB == &F->getEntryBlock() || DTU->isBBPendingDeletion(&BB))
356         continue;
357 
358       if (pred_empty(&BB)) {
359         // When processBlock makes BB unreachable it doesn't bother to fix up
360         // the instructions in it. We must remove BB to prevent invalid IR.
361         LLVM_DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
362                           << "' with terminator: " << *BB.getTerminator()
363                           << '\n');
364         LoopHeaders.erase(&BB);
365         LVI->eraseBlock(&BB);
366         DeleteDeadBlock(&BB, DTU.get());
367         Changed = ChangedSinceLastAnalysisUpdate = true;
368         continue;
369       }
370 
371       // processBlock doesn't thread BBs with unconditional TIs. However, if BB
372       // is "almost empty", we attempt to merge BB with its sole successor.
373       auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
374       if (BI && BI->isUnconditional()) {
375         BasicBlock *Succ = BI->getSuccessor(0);
376         if (
377             // The terminator must be the only non-phi instruction in BB.
378             BB.getFirstNonPHIOrDbg(true)->isTerminator() &&
379             // Don't alter Loop headers and latches to ensure another pass can
380             // detect and transform nested loops later.
381             !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) &&
382             TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU.get())) {
383           RemoveRedundantDbgInstrs(Succ);
384           // BB is valid for cleanup here because we passed in DTU. F remains
385           // BB's parent until a DTU->getDomTree() event.
386           LVI->eraseBlock(&BB);
387           Changed = ChangedSinceLastAnalysisUpdate = true;
388         }
389       }
390     }
391     EverChanged |= Changed;
392   } while (Changed);
393 
394   LoopHeaders.clear();
395   return EverChanged;
396 }
397 
398 // Replace uses of Cond with ToVal when safe to do so. If all uses are
399 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
400 // because we may incorrectly replace uses when guards/assumes are uses of
401 // of `Cond` and we used the guards/assume to reason about the `Cond` value
402 // at the end of block. RAUW unconditionally replaces all uses
403 // including the guards/assumes themselves and the uses before the
404 // guard/assume.
405 static bool replaceFoldableUses(Instruction *Cond, Value *ToVal,
406                                 BasicBlock *KnownAtEndOfBB) {
407   bool Changed = false;
408   assert(Cond->getType() == ToVal->getType());
409   // We can unconditionally replace all uses in non-local blocks (i.e. uses
410   // strictly dominated by BB), since LVI information is true from the
411   // terminator of BB.
412   if (Cond->getParent() == KnownAtEndOfBB)
413     Changed |= replaceNonLocalUsesWith(Cond, ToVal);
414   for (Instruction &I : reverse(*KnownAtEndOfBB)) {
415     // Reached the Cond whose uses we are trying to replace, so there are no
416     // more uses.
417     if (&I == Cond)
418       break;
419     // We only replace uses in instructions that are guaranteed to reach the end
420     // of BB, where we know Cond is ToVal.
421     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
422       break;
423     Changed |= I.replaceUsesOfWith(Cond, ToVal);
424   }
425   if (Cond->use_empty() && !Cond->mayHaveSideEffects()) {
426     Cond->eraseFromParent();
427     Changed = true;
428   }
429   return Changed;
430 }
431 
432 /// Return the cost of duplicating a piece of this block from first non-phi
433 /// and before StopAt instruction to thread across it. Stop scanning the block
434 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
435 static unsigned getJumpThreadDuplicationCost(const TargetTransformInfo *TTI,
436                                              BasicBlock *BB,
437                                              Instruction *StopAt,
438                                              unsigned Threshold) {
439   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
440 
441   // Do not duplicate the BB if it has a lot of PHI nodes.
442   // If a threadable chain is too long then the number of PHI nodes can add up,
443   // leading to a substantial increase in compile time when rewriting the SSA.
444   unsigned PhiCount = 0;
445   Instruction *FirstNonPHI = nullptr;
446   for (Instruction &I : *BB) {
447     if (!isa<PHINode>(&I)) {
448       FirstNonPHI = &I;
449       break;
450     }
451     if (++PhiCount > PhiDuplicateThreshold)
452       return ~0U;
453   }
454 
455   /// Ignore PHI nodes, these will be flattened when duplication happens.
456   BasicBlock::const_iterator I(FirstNonPHI);
457 
458   // FIXME: THREADING will delete values that are just used to compute the
459   // branch, so they shouldn't count against the duplication cost.
460 
461   unsigned Bonus = 0;
462   if (BB->getTerminator() == StopAt) {
463     // Threading through a switch statement is particularly profitable.  If this
464     // block ends in a switch, decrease its cost to make it more likely to
465     // happen.
466     if (isa<SwitchInst>(StopAt))
467       Bonus = 6;
468 
469     // The same holds for indirect branches, but slightly more so.
470     if (isa<IndirectBrInst>(StopAt))
471       Bonus = 8;
472   }
473 
474   // Bump the threshold up so the early exit from the loop doesn't skip the
475   // terminator-based Size adjustment at the end.
476   Threshold += Bonus;
477 
478   // Sum up the cost of each instruction until we get to the terminator.  Don't
479   // include the terminator because the copy won't include it.
480   unsigned Size = 0;
481   for (; &*I != StopAt; ++I) {
482 
483     // Stop scanning the block if we've reached the threshold.
484     if (Size > Threshold)
485       return Size;
486 
487     // Bail out if this instruction gives back a token type, it is not possible
488     // to duplicate it if it is used outside this BB.
489     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
490       return ~0U;
491 
492     // Blocks with NoDuplicate are modelled as having infinite cost, so they
493     // are never duplicated.
494     if (const CallInst *CI = dyn_cast<CallInst>(I))
495       if (CI->cannotDuplicate() || CI->isConvergent())
496         return ~0U;
497 
498     if (TTI->getInstructionCost(&*I, TargetTransformInfo::TCK_SizeAndLatency) ==
499         TargetTransformInfo::TCC_Free)
500       continue;
501 
502     // All other instructions count for at least one unit.
503     ++Size;
504 
505     // Calls are more expensive.  If they are non-intrinsic calls, we model them
506     // as having cost of 4.  If they are a non-vector intrinsic, we model them
507     // as having cost of 2 total, and if they are a vector intrinsic, we model
508     // them as having cost 1.
509     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
510       if (!isa<IntrinsicInst>(CI))
511         Size += 3;
512       else if (!CI->getType()->isVectorTy())
513         Size += 1;
514     }
515   }
516 
517   return Size > Bonus ? Size - Bonus : 0;
518 }
519 
520 /// findLoopHeaders - We do not want jump threading to turn proper loop
521 /// structures into irreducible loops.  Doing this breaks up the loop nesting
522 /// hierarchy and pessimizes later transformations.  To prevent this from
523 /// happening, we first have to find the loop headers.  Here we approximate this
524 /// by finding targets of backedges in the CFG.
525 ///
526 /// Note that there definitely are cases when we want to allow threading of
527 /// edges across a loop header.  For example, threading a jump from outside the
528 /// loop (the preheader) to an exit block of the loop is definitely profitable.
529 /// It is also almost always profitable to thread backedges from within the loop
530 /// to exit blocks, and is often profitable to thread backedges to other blocks
531 /// within the loop (forming a nested loop).  This simple analysis is not rich
532 /// enough to track all of these properties and keep it up-to-date as the CFG
533 /// mutates, so we don't allow any of these transformations.
534 void JumpThreadingPass::findLoopHeaders(Function &F) {
535   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
536   FindFunctionBackedges(F, Edges);
537 
538   for (const auto &Edge : Edges)
539     LoopHeaders.insert(Edge.second);
540 }
541 
542 /// getKnownConstant - Helper method to determine if we can thread over a
543 /// terminator with the given value as its condition, and if so what value to
544 /// use for that. What kind of value this is depends on whether we want an
545 /// integer or a block address, but an undef is always accepted.
546 /// Returns null if Val is null or not an appropriate constant.
547 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
548   if (!Val)
549     return nullptr;
550 
551   // Undef is "known" enough.
552   if (UndefValue *U = dyn_cast<UndefValue>(Val))
553     return U;
554 
555   if (Preference == WantBlockAddress)
556     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
557 
558   return dyn_cast<ConstantInt>(Val);
559 }
560 
561 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see
562 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
563 /// in any of our predecessors.  If so, return the known list of value and pred
564 /// BB in the result vector.
565 ///
566 /// This returns true if there were any known values.
567 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl(
568     Value *V, BasicBlock *BB, PredValueInfo &Result,
569     ConstantPreference Preference, DenseSet<Value *> &RecursionSet,
570     Instruction *CxtI) {
571   const DataLayout &DL = BB->getModule()->getDataLayout();
572 
573   // This method walks up use-def chains recursively.  Because of this, we could
574   // get into an infinite loop going around loops in the use-def chain.  To
575   // prevent this, keep track of what (value, block) pairs we've already visited
576   // and terminate the search if we loop back to them
577   if (!RecursionSet.insert(V).second)
578     return false;
579 
580   // If V is a constant, then it is known in all predecessors.
581   if (Constant *KC = getKnownConstant(V, Preference)) {
582     for (BasicBlock *Pred : predecessors(BB))
583       Result.emplace_back(KC, Pred);
584 
585     return !Result.empty();
586   }
587 
588   // If V is a non-instruction value, or an instruction in a different block,
589   // then it can't be derived from a PHI.
590   Instruction *I = dyn_cast<Instruction>(V);
591   if (!I || I->getParent() != BB) {
592 
593     // Okay, if this is a live-in value, see if it has a known value at the any
594     // edge from our predecessors.
595     for (BasicBlock *P : predecessors(BB)) {
596       using namespace PatternMatch;
597       // If the value is known by LazyValueInfo to be a constant in a
598       // predecessor, use that information to try to thread this block.
599       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
600       // If I is a non-local compare-with-constant instruction, use more-rich
601       // 'getPredicateOnEdge' method. This would be able to handle value
602       // inequalities better, for example if the compare is "X < 4" and "X < 3"
603       // is known true but "X < 4" itself is not available.
604       CmpInst::Predicate Pred;
605       Value *Val;
606       Constant *Cst;
607       if (!PredCst && match(V, m_Cmp(Pred, m_Value(Val), m_Constant(Cst)))) {
608         auto Res = LVI->getPredicateOnEdge(Pred, Val, Cst, P, BB, CxtI);
609         if (Res != LazyValueInfo::Unknown)
610           PredCst = ConstantInt::getBool(V->getContext(), Res);
611       }
612       if (Constant *KC = getKnownConstant(PredCst, Preference))
613         Result.emplace_back(KC, P);
614     }
615 
616     return !Result.empty();
617   }
618 
619   /// If I is a PHI node, then we know the incoming values for any constants.
620   if (PHINode *PN = dyn_cast<PHINode>(I)) {
621     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
622       Value *InVal = PN->getIncomingValue(i);
623       if (Constant *KC = getKnownConstant(InVal, Preference)) {
624         Result.emplace_back(KC, PN->getIncomingBlock(i));
625       } else {
626         Constant *CI = LVI->getConstantOnEdge(InVal,
627                                               PN->getIncomingBlock(i),
628                                               BB, CxtI);
629         if (Constant *KC = getKnownConstant(CI, Preference))
630           Result.emplace_back(KC, PN->getIncomingBlock(i));
631       }
632     }
633 
634     return !Result.empty();
635   }
636 
637   // Handle Cast instructions.
638   if (CastInst *CI = dyn_cast<CastInst>(I)) {
639     Value *Source = CI->getOperand(0);
640     PredValueInfoTy Vals;
641     computeValueKnownInPredecessorsImpl(Source, BB, Vals, Preference,
642                                         RecursionSet, CxtI);
643     if (Vals.empty())
644       return false;
645 
646     // Convert the known values.
647     for (auto &Val : Vals)
648       if (Constant *Folded = ConstantFoldCastOperand(CI->getOpcode(), Val.first,
649                                                      CI->getType(), DL))
650         Result.emplace_back(Folded, Val.second);
651 
652     return !Result.empty();
653   }
654 
655   if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
656     Value *Source = FI->getOperand(0);
657     computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
658                                         RecursionSet, CxtI);
659 
660     erase_if(Result, [](auto &Pair) {
661       return !isGuaranteedNotToBeUndefOrPoison(Pair.first);
662     });
663 
664     return !Result.empty();
665   }
666 
667   // Handle some boolean conditions.
668   if (I->getType()->getPrimitiveSizeInBits() == 1) {
669     using namespace PatternMatch;
670     if (Preference != WantInteger)
671       return false;
672     // X | true -> true
673     // X & false -> false
674     Value *Op0, *Op1;
675     if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
676         match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
677       PredValueInfoTy LHSVals, RHSVals;
678 
679       computeValueKnownInPredecessorsImpl(Op0, BB, LHSVals, WantInteger,
680                                           RecursionSet, CxtI);
681       computeValueKnownInPredecessorsImpl(Op1, BB, RHSVals, WantInteger,
682                                           RecursionSet, CxtI);
683 
684       if (LHSVals.empty() && RHSVals.empty())
685         return false;
686 
687       ConstantInt *InterestingVal;
688       if (match(I, m_LogicalOr()))
689         InterestingVal = ConstantInt::getTrue(I->getContext());
690       else
691         InterestingVal = ConstantInt::getFalse(I->getContext());
692 
693       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
694 
695       // Scan for the sentinel.  If we find an undef, force it to the
696       // interesting value: x|undef -> true and x&undef -> false.
697       for (const auto &LHSVal : LHSVals)
698         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
699           Result.emplace_back(InterestingVal, LHSVal.second);
700           LHSKnownBBs.insert(LHSVal.second);
701         }
702       for (const auto &RHSVal : RHSVals)
703         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
704           // If we already inferred a value for this block on the LHS, don't
705           // re-add it.
706           if (!LHSKnownBBs.count(RHSVal.second))
707             Result.emplace_back(InterestingVal, RHSVal.second);
708         }
709 
710       return !Result.empty();
711     }
712 
713     // Handle the NOT form of XOR.
714     if (I->getOpcode() == Instruction::Xor &&
715         isa<ConstantInt>(I->getOperand(1)) &&
716         cast<ConstantInt>(I->getOperand(1))->isOne()) {
717       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
718                                           WantInteger, RecursionSet, CxtI);
719       if (Result.empty())
720         return false;
721 
722       // Invert the known values.
723       for (auto &R : Result)
724         R.first = ConstantExpr::getNot(R.first);
725 
726       return true;
727     }
728 
729   // Try to simplify some other binary operator values.
730   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
731     if (Preference != WantInteger)
732       return false;
733     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
734       PredValueInfoTy LHSVals;
735       computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
736                                           WantInteger, RecursionSet, CxtI);
737 
738       // Try to use constant folding to simplify the binary operator.
739       for (const auto &LHSVal : LHSVals) {
740         Constant *V = LHSVal.first;
741         Constant *Folded =
742             ConstantFoldBinaryOpOperands(BO->getOpcode(), V, CI, DL);
743 
744         if (Constant *KC = getKnownConstant(Folded, WantInteger))
745           Result.emplace_back(KC, LHSVal.second);
746       }
747     }
748 
749     return !Result.empty();
750   }
751 
752   // Handle compare with phi operand, where the PHI is defined in this block.
753   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
754     if (Preference != WantInteger)
755       return false;
756     Type *CmpType = Cmp->getType();
757     Value *CmpLHS = Cmp->getOperand(0);
758     Value *CmpRHS = Cmp->getOperand(1);
759     CmpInst::Predicate Pred = Cmp->getPredicate();
760 
761     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
762     if (!PN)
763       PN = dyn_cast<PHINode>(CmpRHS);
764     // Do not perform phi translation across a loop header phi, because this
765     // may result in comparison of values from two different loop iterations.
766     // FIXME: This check is broken if LoopHeaders is not populated.
767     if (PN && PN->getParent() == BB && !LoopHeaders.contains(BB)) {
768       const DataLayout &DL = PN->getModule()->getDataLayout();
769       // We can do this simplification if any comparisons fold to true or false.
770       // See if any do.
771       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
772         BasicBlock *PredBB = PN->getIncomingBlock(i);
773         Value *LHS, *RHS;
774         if (PN == CmpLHS) {
775           LHS = PN->getIncomingValue(i);
776           RHS = CmpRHS->DoPHITranslation(BB, PredBB);
777         } else {
778           LHS = CmpLHS->DoPHITranslation(BB, PredBB);
779           RHS = PN->getIncomingValue(i);
780         }
781         Value *Res = simplifyCmpInst(Pred, LHS, RHS, {DL});
782         if (!Res) {
783           if (!isa<Constant>(RHS))
784             continue;
785 
786           // getPredicateOnEdge call will make no sense if LHS is defined in BB.
787           auto LHSInst = dyn_cast<Instruction>(LHS);
788           if (LHSInst && LHSInst->getParent() == BB)
789             continue;
790 
791           LazyValueInfo::Tristate
792             ResT = LVI->getPredicateOnEdge(Pred, LHS,
793                                            cast<Constant>(RHS), PredBB, BB,
794                                            CxtI ? CxtI : Cmp);
795           if (ResT == LazyValueInfo::Unknown)
796             continue;
797           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
798         }
799 
800         if (Constant *KC = getKnownConstant(Res, WantInteger))
801           Result.emplace_back(KC, PredBB);
802       }
803 
804       return !Result.empty();
805     }
806 
807     // If comparing a live-in value against a constant, see if we know the
808     // live-in value on any predecessors.
809     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
810       Constant *CmpConst = cast<Constant>(CmpRHS);
811 
812       if (!isa<Instruction>(CmpLHS) ||
813           cast<Instruction>(CmpLHS)->getParent() != BB) {
814         for (BasicBlock *P : predecessors(BB)) {
815           // If the value is known by LazyValueInfo to be a constant in a
816           // predecessor, use that information to try to thread this block.
817           LazyValueInfo::Tristate Res =
818             LVI->getPredicateOnEdge(Pred, CmpLHS,
819                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
820           if (Res == LazyValueInfo::Unknown)
821             continue;
822 
823           Constant *ResC = ConstantInt::get(CmpType, Res);
824           Result.emplace_back(ResC, P);
825         }
826 
827         return !Result.empty();
828       }
829 
830       // InstCombine can fold some forms of constant range checks into
831       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
832       // x as a live-in.
833       {
834         using namespace PatternMatch;
835 
836         Value *AddLHS;
837         ConstantInt *AddConst;
838         if (isa<ConstantInt>(CmpConst) &&
839             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
840           if (!isa<Instruction>(AddLHS) ||
841               cast<Instruction>(AddLHS)->getParent() != BB) {
842             for (BasicBlock *P : predecessors(BB)) {
843               // If the value is known by LazyValueInfo to be a ConstantRange in
844               // a predecessor, use that information to try to thread this
845               // block.
846               ConstantRange CR = LVI->getConstantRangeOnEdge(
847                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
848               // Propagate the range through the addition.
849               CR = CR.add(AddConst->getValue());
850 
851               // Get the range where the compare returns true.
852               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
853                   Pred, cast<ConstantInt>(CmpConst)->getValue());
854 
855               Constant *ResC;
856               if (CmpRange.contains(CR))
857                 ResC = ConstantInt::getTrue(CmpType);
858               else if (CmpRange.inverse().contains(CR))
859                 ResC = ConstantInt::getFalse(CmpType);
860               else
861                 continue;
862 
863               Result.emplace_back(ResC, P);
864             }
865 
866             return !Result.empty();
867           }
868         }
869       }
870 
871       // Try to find a constant value for the LHS of a comparison,
872       // and evaluate it statically if we can.
873       PredValueInfoTy LHSVals;
874       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
875                                           WantInteger, RecursionSet, CxtI);
876 
877       for (const auto &LHSVal : LHSVals) {
878         Constant *V = LHSVal.first;
879         Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
880         if (Constant *KC = getKnownConstant(Folded, WantInteger))
881           Result.emplace_back(KC, LHSVal.second);
882       }
883 
884       return !Result.empty();
885     }
886   }
887 
888   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
889     // Handle select instructions where at least one operand is a known constant
890     // and we can figure out the condition value for any predecessor block.
891     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
892     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
893     PredValueInfoTy Conds;
894     if ((TrueVal || FalseVal) &&
895         computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
896                                             WantInteger, RecursionSet, CxtI)) {
897       for (auto &C : Conds) {
898         Constant *Cond = C.first;
899 
900         // Figure out what value to use for the condition.
901         bool KnownCond;
902         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
903           // A known boolean.
904           KnownCond = CI->isOne();
905         } else {
906           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
907           // Either operand will do, so be sure to pick the one that's a known
908           // constant.
909           // FIXME: Do this more cleverly if both values are known constants?
910           KnownCond = (TrueVal != nullptr);
911         }
912 
913         // See if the select has a known constant value for this predecessor.
914         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
915           Result.emplace_back(Val, C.second);
916       }
917 
918       return !Result.empty();
919     }
920   }
921 
922   // If all else fails, see if LVI can figure out a constant value for us.
923   assert(CxtI->getParent() == BB && "CxtI should be in BB");
924   Constant *CI = LVI->getConstant(V, CxtI);
925   if (Constant *KC = getKnownConstant(CI, Preference)) {
926     for (BasicBlock *Pred : predecessors(BB))
927       Result.emplace_back(KC, Pred);
928   }
929 
930   return !Result.empty();
931 }
932 
933 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
934 /// in an undefined jump, decide which block is best to revector to.
935 ///
936 /// Since we can pick an arbitrary destination, we pick the successor with the
937 /// fewest predecessors.  This should reduce the in-degree of the others.
938 static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) {
939   Instruction *BBTerm = BB->getTerminator();
940   unsigned MinSucc = 0;
941   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
942   // Compute the successor with the minimum number of predecessors.
943   unsigned MinNumPreds = pred_size(TestBB);
944   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
945     TestBB = BBTerm->getSuccessor(i);
946     unsigned NumPreds = pred_size(TestBB);
947     if (NumPreds < MinNumPreds) {
948       MinSucc = i;
949       MinNumPreds = NumPreds;
950     }
951   }
952 
953   return MinSucc;
954 }
955 
956 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
957   if (!BB->hasAddressTaken()) return false;
958 
959   // If the block has its address taken, it may be a tree of dead constants
960   // hanging off of it.  These shouldn't keep the block alive.
961   BlockAddress *BA = BlockAddress::get(BB);
962   BA->removeDeadConstantUsers();
963   return !BA->use_empty();
964 }
965 
966 /// processBlock - If there are any predecessors whose control can be threaded
967 /// through to a successor, transform them now.
968 bool JumpThreadingPass::processBlock(BasicBlock *BB) {
969   // If the block is trivially dead, just return and let the caller nuke it.
970   // This simplifies other transformations.
971   if (DTU->isBBPendingDeletion(BB) ||
972       (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
973     return false;
974 
975   // If this block has a single predecessor, and if that pred has a single
976   // successor, merge the blocks.  This encourages recursive jump threading
977   // because now the condition in this block can be threaded through
978   // predecessors of our predecessor block.
979   if (maybeMergeBasicBlockIntoOnlyPred(BB))
980     return true;
981 
982   if (tryToUnfoldSelectInCurrBB(BB))
983     return true;
984 
985   // Look if we can propagate guards to predecessors.
986   if (HasGuards && processGuards(BB))
987     return true;
988 
989   // What kind of constant we're looking for.
990   ConstantPreference Preference = WantInteger;
991 
992   // Look to see if the terminator is a conditional branch, switch or indirect
993   // branch, if not we can't thread it.
994   Value *Condition;
995   Instruction *Terminator = BB->getTerminator();
996   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
997     // Can't thread an unconditional jump.
998     if (BI->isUnconditional()) return false;
999     Condition = BI->getCondition();
1000   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1001     Condition = SI->getCondition();
1002   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1003     // Can't thread indirect branch with no successors.
1004     if (IB->getNumSuccessors() == 0) return false;
1005     Condition = IB->getAddress()->stripPointerCasts();
1006     Preference = WantBlockAddress;
1007   } else {
1008     return false; // Must be an invoke or callbr.
1009   }
1010 
1011   // Keep track if we constant folded the condition in this invocation.
1012   bool ConstantFolded = false;
1013 
1014   // Run constant folding to see if we can reduce the condition to a simple
1015   // constant.
1016   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1017     Value *SimpleVal =
1018         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1019     if (SimpleVal) {
1020       I->replaceAllUsesWith(SimpleVal);
1021       if (isInstructionTriviallyDead(I, TLI))
1022         I->eraseFromParent();
1023       Condition = SimpleVal;
1024       ConstantFolded = true;
1025     }
1026   }
1027 
1028   // If the terminator is branching on an undef or freeze undef, we can pick any
1029   // of the successors to branch to.  Let getBestDestForJumpOnUndef decide.
1030   auto *FI = dyn_cast<FreezeInst>(Condition);
1031   if (isa<UndefValue>(Condition) ||
1032       (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) {
1033     unsigned BestSucc = getBestDestForJumpOnUndef(BB);
1034     std::vector<DominatorTree::UpdateType> Updates;
1035 
1036     // Fold the branch/switch.
1037     Instruction *BBTerm = BB->getTerminator();
1038     Updates.reserve(BBTerm->getNumSuccessors());
1039     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1040       if (i == BestSucc) continue;
1041       BasicBlock *Succ = BBTerm->getSuccessor(i);
1042       Succ->removePredecessor(BB, true);
1043       Updates.push_back({DominatorTree::Delete, BB, Succ});
1044     }
1045 
1046     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1047                       << "' folding undef terminator: " << *BBTerm << '\n');
1048     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1049     ++NumFolds;
1050     BBTerm->eraseFromParent();
1051     DTU->applyUpdatesPermissive(Updates);
1052     if (FI)
1053       FI->eraseFromParent();
1054     return true;
1055   }
1056 
1057   // If the terminator of this block is branching on a constant, simplify the
1058   // terminator to an unconditional branch.  This can occur due to threading in
1059   // other blocks.
1060   if (getKnownConstant(Condition, Preference)) {
1061     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1062                       << "' folding terminator: " << *BB->getTerminator()
1063                       << '\n');
1064     ++NumFolds;
1065     ConstantFoldTerminator(BB, true, nullptr, DTU.get());
1066     if (auto *BPI = getBPI())
1067       BPI->eraseBlock(BB);
1068     return true;
1069   }
1070 
1071   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1072 
1073   // All the rest of our checks depend on the condition being an instruction.
1074   if (!CondInst) {
1075     // FIXME: Unify this with code below.
1076     if (processThreadableEdges(Condition, BB, Preference, Terminator))
1077       return true;
1078     return ConstantFolded;
1079   }
1080 
1081   // Some of the following optimization can safely work on the unfrozen cond.
1082   Value *CondWithoutFreeze = CondInst;
1083   if (auto *FI = dyn_cast<FreezeInst>(CondInst))
1084     CondWithoutFreeze = FI->getOperand(0);
1085 
1086   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondWithoutFreeze)) {
1087     // If we're branching on a conditional, LVI might be able to determine
1088     // it's value at the branch instruction.  We only handle comparisons
1089     // against a constant at this time.
1090     if (Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1))) {
1091       LazyValueInfo::Tristate Ret =
1092           LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1093                               CondConst, BB->getTerminator(),
1094                               /*UseBlockValue=*/false);
1095       if (Ret != LazyValueInfo::Unknown) {
1096         // We can safely replace *some* uses of the CondInst if it has
1097         // exactly one value as returned by LVI. RAUW is incorrect in the
1098         // presence of guards and assumes, that have the `Cond` as the use. This
1099         // is because we use the guards/assume to reason about the `Cond` value
1100         // at the end of block, but RAUW unconditionally replaces all uses
1101         // including the guards/assumes themselves and the uses before the
1102         // guard/assume.
1103         auto *CI = Ret == LazyValueInfo::True ?
1104           ConstantInt::getTrue(CondCmp->getType()) :
1105           ConstantInt::getFalse(CondCmp->getType());
1106         if (replaceFoldableUses(CondCmp, CI, BB))
1107           return true;
1108       }
1109 
1110       // We did not manage to simplify this branch, try to see whether
1111       // CondCmp depends on a known phi-select pattern.
1112       if (tryToUnfoldSelect(CondCmp, BB))
1113         return true;
1114     }
1115   }
1116 
1117   if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1118     if (tryToUnfoldSelect(SI, BB))
1119       return true;
1120 
1121   // Check for some cases that are worth simplifying.  Right now we want to look
1122   // for loads that are used by a switch or by the condition for the branch.  If
1123   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1124   // which can then be used to thread the values.
1125   Value *SimplifyValue = CondWithoutFreeze;
1126 
1127   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1128     if (isa<Constant>(CondCmp->getOperand(1)))
1129       SimplifyValue = CondCmp->getOperand(0);
1130 
1131   // TODO: There are other places where load PRE would be profitable, such as
1132   // more complex comparisons.
1133   if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1134     if (simplifyPartiallyRedundantLoad(LoadI))
1135       return true;
1136 
1137   // Before threading, try to propagate profile data backwards:
1138   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1139     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1140       updatePredecessorProfileMetadata(PN, BB);
1141 
1142   // Handle a variety of cases where we are branching on something derived from
1143   // a PHI node in the current block.  If we can prove that any predecessors
1144   // compute a predictable value based on a PHI node, thread those predecessors.
1145   if (processThreadableEdges(CondInst, BB, Preference, Terminator))
1146     return true;
1147 
1148   // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in
1149   // the current block, see if we can simplify.
1150   PHINode *PN = dyn_cast<PHINode>(CondWithoutFreeze);
1151   if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1152     return processBranchOnPHI(PN);
1153 
1154   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1155   if (CondInst->getOpcode() == Instruction::Xor &&
1156       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1157     return processBranchOnXOR(cast<BinaryOperator>(CondInst));
1158 
1159   // Search for a stronger dominating condition that can be used to simplify a
1160   // conditional branch leaving BB.
1161   if (processImpliedCondition(BB))
1162     return true;
1163 
1164   return false;
1165 }
1166 
1167 bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) {
1168   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1169   if (!BI || !BI->isConditional())
1170     return false;
1171 
1172   Value *Cond = BI->getCondition();
1173   // Assuming that predecessor's branch was taken, if pred's branch condition
1174   // (V) implies Cond, Cond can be either true, undef, or poison. In this case,
1175   // freeze(Cond) is either true or a nondeterministic value.
1176   // If freeze(Cond) has only one use, we can freely fold freeze(Cond) to true
1177   // without affecting other instructions.
1178   auto *FICond = dyn_cast<FreezeInst>(Cond);
1179   if (FICond && FICond->hasOneUse())
1180     Cond = FICond->getOperand(0);
1181   else
1182     FICond = nullptr;
1183 
1184   BasicBlock *CurrentBB = BB;
1185   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1186   unsigned Iter = 0;
1187 
1188   auto &DL = BB->getModule()->getDataLayout();
1189 
1190   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1191     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1192     if (!PBI || !PBI->isConditional())
1193       return false;
1194     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1195       return false;
1196 
1197     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1198     std::optional<bool> Implication =
1199         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1200 
1201     // If the branch condition of BB (which is Cond) and CurrentPred are
1202     // exactly the same freeze instruction, Cond can be folded into CondIsTrue.
1203     if (!Implication && FICond && isa<FreezeInst>(PBI->getCondition())) {
1204       if (cast<FreezeInst>(PBI->getCondition())->getOperand(0) ==
1205           FICond->getOperand(0))
1206         Implication = CondIsTrue;
1207     }
1208 
1209     if (Implication) {
1210       BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1211       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1212       RemoveSucc->removePredecessor(BB);
1213       BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI);
1214       UncondBI->setDebugLoc(BI->getDebugLoc());
1215       ++NumFolds;
1216       BI->eraseFromParent();
1217       if (FICond)
1218         FICond->eraseFromParent();
1219 
1220       DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}});
1221       if (auto *BPI = getBPI())
1222         BPI->eraseBlock(BB);
1223       return true;
1224     }
1225     CurrentBB = CurrentPred;
1226     CurrentPred = CurrentBB->getSinglePredecessor();
1227   }
1228 
1229   return false;
1230 }
1231 
1232 /// Return true if Op is an instruction defined in the given block.
1233 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1234   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1235     if (OpInst->getParent() == BB)
1236       return true;
1237   return false;
1238 }
1239 
1240 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1241 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1242 /// This is an important optimization that encourages jump threading, and needs
1243 /// to be run interlaced with other jump threading tasks.
1244 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1245   // Don't hack volatile and ordered loads.
1246   if (!LoadI->isUnordered()) return false;
1247 
1248   // If the load is defined in a block with exactly one predecessor, it can't be
1249   // partially redundant.
1250   BasicBlock *LoadBB = LoadI->getParent();
1251   if (LoadBB->getSinglePredecessor())
1252     return false;
1253 
1254   // If the load is defined in an EH pad, it can't be partially redundant,
1255   // because the edges between the invoke and the EH pad cannot have other
1256   // instructions between them.
1257   if (LoadBB->isEHPad())
1258     return false;
1259 
1260   Value *LoadedPtr = LoadI->getOperand(0);
1261 
1262   // If the loaded operand is defined in the LoadBB and its not a phi,
1263   // it can't be available in predecessors.
1264   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1265     return false;
1266 
1267   // Scan a few instructions up from the load, to see if it is obviously live at
1268   // the entry to its block.
1269   BasicBlock::iterator BBIt(LoadI);
1270   bool IsLoadCSE;
1271   if (Value *AvailableVal = FindAvailableLoadedValue(
1272           LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1273     // If the value of the load is locally available within the block, just use
1274     // it.  This frequently occurs for reg2mem'd allocas.
1275 
1276     if (IsLoadCSE) {
1277       LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1278       combineMetadataForCSE(NLoadI, LoadI, false);
1279       LVI->forgetValue(NLoadI);
1280     };
1281 
1282     // If the returned value is the load itself, replace with poison. This can
1283     // only happen in dead loops.
1284     if (AvailableVal == LoadI)
1285       AvailableVal = PoisonValue::get(LoadI->getType());
1286     if (AvailableVal->getType() != LoadI->getType())
1287       AvailableVal = CastInst::CreateBitOrPointerCast(
1288           AvailableVal, LoadI->getType(), "", LoadI);
1289     LoadI->replaceAllUsesWith(AvailableVal);
1290     LoadI->eraseFromParent();
1291     return true;
1292   }
1293 
1294   // Otherwise, if we scanned the whole block and got to the top of the block,
1295   // we know the block is locally transparent to the load.  If not, something
1296   // might clobber its value.
1297   if (BBIt != LoadBB->begin())
1298     return false;
1299 
1300   // If all of the loads and stores that feed the value have the same AA tags,
1301   // then we can propagate them onto any newly inserted loads.
1302   AAMDNodes AATags = LoadI->getAAMetadata();
1303 
1304   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1305 
1306   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1307 
1308   AvailablePredsTy AvailablePreds;
1309   BasicBlock *OneUnavailablePred = nullptr;
1310   SmallVector<LoadInst*, 8> CSELoads;
1311 
1312   // If we got here, the loaded value is transparent through to the start of the
1313   // block.  Check to see if it is available in any of the predecessor blocks.
1314   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1315     // If we already scanned this predecessor, skip it.
1316     if (!PredsScanned.insert(PredBB).second)
1317       continue;
1318 
1319     BBIt = PredBB->end();
1320     unsigned NumScanedInst = 0;
1321     Value *PredAvailable = nullptr;
1322     // NOTE: We don't CSE load that is volatile or anything stronger than
1323     // unordered, that should have been checked when we entered the function.
1324     assert(LoadI->isUnordered() &&
1325            "Attempting to CSE volatile or atomic loads");
1326     // If this is a load on a phi pointer, phi-translate it and search
1327     // for available load/store to the pointer in predecessors.
1328     Type *AccessTy = LoadI->getType();
1329     const auto &DL = LoadI->getModule()->getDataLayout();
1330     MemoryLocation Loc(LoadedPtr->DoPHITranslation(LoadBB, PredBB),
1331                        LocationSize::precise(DL.getTypeStoreSize(AccessTy)),
1332                        AATags);
1333     PredAvailable = findAvailablePtrLoadStore(Loc, AccessTy, LoadI->isAtomic(),
1334                                               PredBB, BBIt, DefMaxInstsToScan,
1335                                               AA, &IsLoadCSE, &NumScanedInst);
1336 
1337     // If PredBB has a single predecessor, continue scanning through the
1338     // single predecessor.
1339     BasicBlock *SinglePredBB = PredBB;
1340     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1341            NumScanedInst < DefMaxInstsToScan) {
1342       SinglePredBB = SinglePredBB->getSinglePredecessor();
1343       if (SinglePredBB) {
1344         BBIt = SinglePredBB->end();
1345         PredAvailable = findAvailablePtrLoadStore(
1346             Loc, AccessTy, LoadI->isAtomic(), SinglePredBB, BBIt,
1347             (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1348             &NumScanedInst);
1349       }
1350     }
1351 
1352     if (!PredAvailable) {
1353       OneUnavailablePred = PredBB;
1354       continue;
1355     }
1356 
1357     if (IsLoadCSE)
1358       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1359 
1360     // If so, this load is partially redundant.  Remember this info so that we
1361     // can create a PHI node.
1362     AvailablePreds.emplace_back(PredBB, PredAvailable);
1363   }
1364 
1365   // If the loaded value isn't available in any predecessor, it isn't partially
1366   // redundant.
1367   if (AvailablePreds.empty()) return false;
1368 
1369   // Okay, the loaded value is available in at least one (and maybe all!)
1370   // predecessors.  If the value is unavailable in more than one unique
1371   // predecessor, we want to insert a merge block for those common predecessors.
1372   // This ensures that we only have to insert one reload, thus not increasing
1373   // code size.
1374   BasicBlock *UnavailablePred = nullptr;
1375 
1376   // If the value is unavailable in one of predecessors, we will end up
1377   // inserting a new instruction into them. It is only valid if all the
1378   // instructions before LoadI are guaranteed to pass execution to its
1379   // successor, or if LoadI is safe to speculate.
1380   // TODO: If this logic becomes more complex, and we will perform PRE insertion
1381   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1382   // It requires domination tree analysis, so for this simple case it is an
1383   // overkill.
1384   if (PredsScanned.size() != AvailablePreds.size() &&
1385       !isSafeToSpeculativelyExecute(LoadI))
1386     for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1387       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1388         return false;
1389 
1390   // If there is exactly one predecessor where the value is unavailable, the
1391   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1392   // unconditional branch, we know that it isn't a critical edge.
1393   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1394       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1395     UnavailablePred = OneUnavailablePred;
1396   } else if (PredsScanned.size() != AvailablePreds.size()) {
1397     // Otherwise, we had multiple unavailable predecessors or we had a critical
1398     // edge from the one.
1399     SmallVector<BasicBlock*, 8> PredsToSplit;
1400     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1401 
1402     for (const auto &AvailablePred : AvailablePreds)
1403       AvailablePredSet.insert(AvailablePred.first);
1404 
1405     // Add all the unavailable predecessors to the PredsToSplit list.
1406     for (BasicBlock *P : predecessors(LoadBB)) {
1407       // If the predecessor is an indirect goto, we can't split the edge.
1408       if (isa<IndirectBrInst>(P->getTerminator()))
1409         return false;
1410 
1411       if (!AvailablePredSet.count(P))
1412         PredsToSplit.push_back(P);
1413     }
1414 
1415     // Split them out to their own block.
1416     UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1417   }
1418 
1419   // If the value isn't available in all predecessors, then there will be
1420   // exactly one where it isn't available.  Insert a load on that edge and add
1421   // it to the AvailablePreds list.
1422   if (UnavailablePred) {
1423     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1424            "Can't handle critical edge here!");
1425     LoadInst *NewVal = new LoadInst(
1426         LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1427         LoadI->getName() + ".pr", false, LoadI->getAlign(),
1428         LoadI->getOrdering(), LoadI->getSyncScopeID(),
1429         UnavailablePred->getTerminator());
1430     NewVal->setDebugLoc(LoadI->getDebugLoc());
1431     if (AATags)
1432       NewVal->setAAMetadata(AATags);
1433 
1434     AvailablePreds.emplace_back(UnavailablePred, NewVal);
1435   }
1436 
1437   // Now we know that each predecessor of this block has a value in
1438   // AvailablePreds, sort them for efficient access as we're walking the preds.
1439   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1440 
1441   // Create a PHI node at the start of the block for the PRE'd load value.
1442   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1443   PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "");
1444   PN->insertBefore(LoadBB->begin());
1445   PN->takeName(LoadI);
1446   PN->setDebugLoc(LoadI->getDebugLoc());
1447 
1448   // Insert new entries into the PHI for each predecessor.  A single block may
1449   // have multiple entries here.
1450   for (pred_iterator PI = PB; PI != PE; ++PI) {
1451     BasicBlock *P = *PI;
1452     AvailablePredsTy::iterator I =
1453         llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr));
1454 
1455     assert(I != AvailablePreds.end() && I->first == P &&
1456            "Didn't find entry for predecessor!");
1457 
1458     // If we have an available predecessor but it requires casting, insert the
1459     // cast in the predecessor and use the cast. Note that we have to update the
1460     // AvailablePreds vector as we go so that all of the PHI entries for this
1461     // predecessor use the same bitcast.
1462     Value *&PredV = I->second;
1463     if (PredV->getType() != LoadI->getType())
1464       PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1465                                                P->getTerminator());
1466 
1467     PN->addIncoming(PredV, I->first);
1468   }
1469 
1470   for (LoadInst *PredLoadI : CSELoads) {
1471     combineMetadataForCSE(PredLoadI, LoadI, true);
1472     LVI->forgetValue(PredLoadI);
1473   }
1474 
1475   LoadI->replaceAllUsesWith(PN);
1476   LoadI->eraseFromParent();
1477 
1478   return true;
1479 }
1480 
1481 /// findMostPopularDest - The specified list contains multiple possible
1482 /// threadable destinations.  Pick the one that occurs the most frequently in
1483 /// the list.
1484 static BasicBlock *
1485 findMostPopularDest(BasicBlock *BB,
1486                     const SmallVectorImpl<std::pair<BasicBlock *,
1487                                           BasicBlock *>> &PredToDestList) {
1488   assert(!PredToDestList.empty());
1489 
1490   // Determine popularity.  If there are multiple possible destinations, we
1491   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1492   // blocks with known and real destinations to threading undef.  We'll handle
1493   // them later if interesting.
1494   MapVector<BasicBlock *, unsigned> DestPopularity;
1495 
1496   // Populate DestPopularity with the successors in the order they appear in the
1497   // successor list.  This way, we ensure determinism by iterating it in the
1498   // same order in std::max_element below.  We map nullptr to 0 so that we can
1499   // return nullptr when PredToDestList contains nullptr only.
1500   DestPopularity[nullptr] = 0;
1501   for (auto *SuccBB : successors(BB))
1502     DestPopularity[SuccBB] = 0;
1503 
1504   for (const auto &PredToDest : PredToDestList)
1505     if (PredToDest.second)
1506       DestPopularity[PredToDest.second]++;
1507 
1508   // Find the most popular dest.
1509   auto MostPopular = std::max_element(
1510       DestPopularity.begin(), DestPopularity.end(), llvm::less_second());
1511 
1512   // Okay, we have finally picked the most popular destination.
1513   return MostPopular->first;
1514 }
1515 
1516 // Try to evaluate the value of V when the control flows from PredPredBB to
1517 // BB->getSinglePredecessor() and then on to BB.
1518 Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB,
1519                                                        BasicBlock *PredPredBB,
1520                                                        Value *V) {
1521   BasicBlock *PredBB = BB->getSinglePredecessor();
1522   assert(PredBB && "Expected a single predecessor");
1523 
1524   if (Constant *Cst = dyn_cast<Constant>(V)) {
1525     return Cst;
1526   }
1527 
1528   // Consult LVI if V is not an instruction in BB or PredBB.
1529   Instruction *I = dyn_cast<Instruction>(V);
1530   if (!I || (I->getParent() != BB && I->getParent() != PredBB)) {
1531     return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr);
1532   }
1533 
1534   // Look into a PHI argument.
1535   if (PHINode *PHI = dyn_cast<PHINode>(V)) {
1536     if (PHI->getParent() == PredBB)
1537       return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB));
1538     return nullptr;
1539   }
1540 
1541   // If we have a CmpInst, try to fold it for each incoming edge into PredBB.
1542   if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) {
1543     if (CondCmp->getParent() == BB) {
1544       Constant *Op0 =
1545           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0));
1546       Constant *Op1 =
1547           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1));
1548       if (Op0 && Op1) {
1549         return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1);
1550       }
1551     }
1552     return nullptr;
1553   }
1554 
1555   return nullptr;
1556 }
1557 
1558 bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB,
1559                                                ConstantPreference Preference,
1560                                                Instruction *CxtI) {
1561   // If threading this would thread across a loop header, don't even try to
1562   // thread the edge.
1563   if (LoopHeaders.count(BB))
1564     return false;
1565 
1566   PredValueInfoTy PredValues;
1567   if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference,
1568                                        CxtI)) {
1569     // We don't have known values in predecessors.  See if we can thread through
1570     // BB and its sole predecessor.
1571     return maybethreadThroughTwoBasicBlocks(BB, Cond);
1572   }
1573 
1574   assert(!PredValues.empty() &&
1575          "computeValueKnownInPredecessors returned true with no values");
1576 
1577   LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1578              for (const auto &PredValue : PredValues) {
1579                dbgs() << "  BB '" << BB->getName()
1580                       << "': FOUND condition = " << *PredValue.first
1581                       << " for pred '" << PredValue.second->getName() << "'.\n";
1582   });
1583 
1584   // Decide what we want to thread through.  Convert our list of known values to
1585   // a list of known destinations for each pred.  This also discards duplicate
1586   // predecessors and keeps track of the undefined inputs (which are represented
1587   // as a null dest in the PredToDestList).
1588   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1589   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1590 
1591   BasicBlock *OnlyDest = nullptr;
1592   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1593   Constant *OnlyVal = nullptr;
1594   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1595 
1596   for (const auto &PredValue : PredValues) {
1597     BasicBlock *Pred = PredValue.second;
1598     if (!SeenPreds.insert(Pred).second)
1599       continue;  // Duplicate predecessor entry.
1600 
1601     Constant *Val = PredValue.first;
1602 
1603     BasicBlock *DestBB;
1604     if (isa<UndefValue>(Val))
1605       DestBB = nullptr;
1606     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1607       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1608       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1609     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1610       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1611       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1612     } else {
1613       assert(isa<IndirectBrInst>(BB->getTerminator())
1614               && "Unexpected terminator");
1615       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1616       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1617     }
1618 
1619     // If we have exactly one destination, remember it for efficiency below.
1620     if (PredToDestList.empty()) {
1621       OnlyDest = DestBB;
1622       OnlyVal = Val;
1623     } else {
1624       if (OnlyDest != DestBB)
1625         OnlyDest = MultipleDestSentinel;
1626       // It possible we have same destination, but different value, e.g. default
1627       // case in switchinst.
1628       if (Val != OnlyVal)
1629         OnlyVal = MultipleVal;
1630     }
1631 
1632     // If the predecessor ends with an indirect goto, we can't change its
1633     // destination.
1634     if (isa<IndirectBrInst>(Pred->getTerminator()))
1635       continue;
1636 
1637     PredToDestList.emplace_back(Pred, DestBB);
1638   }
1639 
1640   // If all edges were unthreadable, we fail.
1641   if (PredToDestList.empty())
1642     return false;
1643 
1644   // If all the predecessors go to a single known successor, we want to fold,
1645   // not thread. By doing so, we do not need to duplicate the current block and
1646   // also miss potential opportunities in case we dont/cant duplicate.
1647   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1648     if (BB->hasNPredecessors(PredToDestList.size())) {
1649       bool SeenFirstBranchToOnlyDest = false;
1650       std::vector <DominatorTree::UpdateType> Updates;
1651       Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1652       for (BasicBlock *SuccBB : successors(BB)) {
1653         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1654           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1655         } else {
1656           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1657           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1658         }
1659       }
1660 
1661       // Finally update the terminator.
1662       Instruction *Term = BB->getTerminator();
1663       BranchInst::Create(OnlyDest, Term);
1664       ++NumFolds;
1665       Term->eraseFromParent();
1666       DTU->applyUpdatesPermissive(Updates);
1667       if (auto *BPI = getBPI())
1668         BPI->eraseBlock(BB);
1669 
1670       // If the condition is now dead due to the removal of the old terminator,
1671       // erase it.
1672       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1673         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1674           CondInst->eraseFromParent();
1675         // We can safely replace *some* uses of the CondInst if it has
1676         // exactly one value as returned by LVI. RAUW is incorrect in the
1677         // presence of guards and assumes, that have the `Cond` as the use. This
1678         // is because we use the guards/assume to reason about the `Cond` value
1679         // at the end of block, but RAUW unconditionally replaces all uses
1680         // including the guards/assumes themselves and the uses before the
1681         // guard/assume.
1682         else if (OnlyVal && OnlyVal != MultipleVal)
1683           replaceFoldableUses(CondInst, OnlyVal, BB);
1684       }
1685       return true;
1686     }
1687   }
1688 
1689   // Determine which is the most common successor.  If we have many inputs and
1690   // this block is a switch, we want to start by threading the batch that goes
1691   // to the most popular destination first.  If we only know about one
1692   // threadable destination (the common case) we can avoid this.
1693   BasicBlock *MostPopularDest = OnlyDest;
1694 
1695   if (MostPopularDest == MultipleDestSentinel) {
1696     // Remove any loop headers from the Dest list, threadEdge conservatively
1697     // won't process them, but we might have other destination that are eligible
1698     // and we still want to process.
1699     erase_if(PredToDestList,
1700              [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1701                return LoopHeaders.contains(PredToDest.second);
1702              });
1703 
1704     if (PredToDestList.empty())
1705       return false;
1706 
1707     MostPopularDest = findMostPopularDest(BB, PredToDestList);
1708   }
1709 
1710   // Now that we know what the most popular destination is, factor all
1711   // predecessors that will jump to it into a single predecessor.
1712   SmallVector<BasicBlock*, 16> PredsToFactor;
1713   for (const auto &PredToDest : PredToDestList)
1714     if (PredToDest.second == MostPopularDest) {
1715       BasicBlock *Pred = PredToDest.first;
1716 
1717       // This predecessor may be a switch or something else that has multiple
1718       // edges to the block.  Factor each of these edges by listing them
1719       // according to # occurrences in PredsToFactor.
1720       for (BasicBlock *Succ : successors(Pred))
1721         if (Succ == BB)
1722           PredsToFactor.push_back(Pred);
1723     }
1724 
1725   // If the threadable edges are branching on an undefined value, we get to pick
1726   // the destination that these predecessors should get to.
1727   if (!MostPopularDest)
1728     MostPopularDest = BB->getTerminator()->
1729                             getSuccessor(getBestDestForJumpOnUndef(BB));
1730 
1731   // Ok, try to thread it!
1732   return tryThreadEdge(BB, PredsToFactor, MostPopularDest);
1733 }
1734 
1735 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on
1736 /// a PHI node (or freeze PHI) in the current block.  See if there are any
1737 /// simplifications we can do based on inputs to the phi node.
1738 bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) {
1739   BasicBlock *BB = PN->getParent();
1740 
1741   // TODO: We could make use of this to do it once for blocks with common PHI
1742   // values.
1743   SmallVector<BasicBlock*, 1> PredBBs;
1744   PredBBs.resize(1);
1745 
1746   // If any of the predecessor blocks end in an unconditional branch, we can
1747   // *duplicate* the conditional branch into that block in order to further
1748   // encourage jump threading and to eliminate cases where we have branch on a
1749   // phi of an icmp (branch on icmp is much better).
1750   // This is still beneficial when a frozen phi is used as the branch condition
1751   // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp))
1752   // to br(icmp(freeze ...)).
1753   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1754     BasicBlock *PredBB = PN->getIncomingBlock(i);
1755     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1756       if (PredBr->isUnconditional()) {
1757         PredBBs[0] = PredBB;
1758         // Try to duplicate BB into PredBB.
1759         if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1760           return true;
1761       }
1762   }
1763 
1764   return false;
1765 }
1766 
1767 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on
1768 /// a xor instruction in the current block.  See if there are any
1769 /// simplifications we can do based on inputs to the xor.
1770 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) {
1771   BasicBlock *BB = BO->getParent();
1772 
1773   // If either the LHS or RHS of the xor is a constant, don't do this
1774   // optimization.
1775   if (isa<ConstantInt>(BO->getOperand(0)) ||
1776       isa<ConstantInt>(BO->getOperand(1)))
1777     return false;
1778 
1779   // If the first instruction in BB isn't a phi, we won't be able to infer
1780   // anything special about any particular predecessor.
1781   if (!isa<PHINode>(BB->front()))
1782     return false;
1783 
1784   // If this BB is a landing pad, we won't be able to split the edge into it.
1785   if (BB->isEHPad())
1786     return false;
1787 
1788   // If we have a xor as the branch input to this block, and we know that the
1789   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1790   // the condition into the predecessor and fix that value to true, saving some
1791   // logical ops on that path and encouraging other paths to simplify.
1792   //
1793   // This copies something like this:
1794   //
1795   //  BB:
1796   //    %X = phi i1 [1],  [%X']
1797   //    %Y = icmp eq i32 %A, %B
1798   //    %Z = xor i1 %X, %Y
1799   //    br i1 %Z, ...
1800   //
1801   // Into:
1802   //  BB':
1803   //    %Y = icmp ne i32 %A, %B
1804   //    br i1 %Y, ...
1805 
1806   PredValueInfoTy XorOpValues;
1807   bool isLHS = true;
1808   if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1809                                        WantInteger, BO)) {
1810     assert(XorOpValues.empty());
1811     if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1812                                          WantInteger, BO))
1813       return false;
1814     isLHS = false;
1815   }
1816 
1817   assert(!XorOpValues.empty() &&
1818          "computeValueKnownInPredecessors returned true with no values");
1819 
1820   // Scan the information to see which is most popular: true or false.  The
1821   // predecessors can be of the set true, false, or undef.
1822   unsigned NumTrue = 0, NumFalse = 0;
1823   for (const auto &XorOpValue : XorOpValues) {
1824     if (isa<UndefValue>(XorOpValue.first))
1825       // Ignore undefs for the count.
1826       continue;
1827     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1828       ++NumFalse;
1829     else
1830       ++NumTrue;
1831   }
1832 
1833   // Determine which value to split on, true, false, or undef if neither.
1834   ConstantInt *SplitVal = nullptr;
1835   if (NumTrue > NumFalse)
1836     SplitVal = ConstantInt::getTrue(BB->getContext());
1837   else if (NumTrue != 0 || NumFalse != 0)
1838     SplitVal = ConstantInt::getFalse(BB->getContext());
1839 
1840   // Collect all of the blocks that this can be folded into so that we can
1841   // factor this once and clone it once.
1842   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1843   for (const auto &XorOpValue : XorOpValues) {
1844     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1845       continue;
1846 
1847     BlocksToFoldInto.push_back(XorOpValue.second);
1848   }
1849 
1850   // If we inferred a value for all of the predecessors, then duplication won't
1851   // help us.  However, we can just replace the LHS or RHS with the constant.
1852   if (BlocksToFoldInto.size() ==
1853       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1854     if (!SplitVal) {
1855       // If all preds provide undef, just nuke the xor, because it is undef too.
1856       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1857       BO->eraseFromParent();
1858     } else if (SplitVal->isZero() && BO != BO->getOperand(isLHS)) {
1859       // If all preds provide 0, replace the xor with the other input.
1860       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1861       BO->eraseFromParent();
1862     } else {
1863       // If all preds provide 1, set the computed value to 1.
1864       BO->setOperand(!isLHS, SplitVal);
1865     }
1866 
1867     return true;
1868   }
1869 
1870   // If any of predecessors end with an indirect goto, we can't change its
1871   // destination.
1872   if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) {
1873         return isa<IndirectBrInst>(Pred->getTerminator());
1874       }))
1875     return false;
1876 
1877   // Try to duplicate BB into PredBB.
1878   return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1879 }
1880 
1881 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1882 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1883 /// NewPred using the entries from OldPred (suitably mapped).
1884 static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1885                                             BasicBlock *OldPred,
1886                                             BasicBlock *NewPred,
1887                                      DenseMap<Instruction*, Value*> &ValueMap) {
1888   for (PHINode &PN : PHIBB->phis()) {
1889     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1890     // DestBlock.
1891     Value *IV = PN.getIncomingValueForBlock(OldPred);
1892 
1893     // Remap the value if necessary.
1894     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1895       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1896       if (I != ValueMap.end())
1897         IV = I->second;
1898     }
1899 
1900     PN.addIncoming(IV, NewPred);
1901   }
1902 }
1903 
1904 /// Merge basic block BB into its sole predecessor if possible.
1905 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) {
1906   BasicBlock *SinglePred = BB->getSinglePredecessor();
1907   if (!SinglePred)
1908     return false;
1909 
1910   const Instruction *TI = SinglePred->getTerminator();
1911   if (TI->isSpecialTerminator() || TI->getNumSuccessors() != 1 ||
1912       SinglePred == BB || hasAddressTakenAndUsed(BB))
1913     return false;
1914 
1915   // If SinglePred was a loop header, BB becomes one.
1916   if (LoopHeaders.erase(SinglePred))
1917     LoopHeaders.insert(BB);
1918 
1919   LVI->eraseBlock(SinglePred);
1920   MergeBasicBlockIntoOnlyPred(BB, DTU.get());
1921 
1922   // Now that BB is merged into SinglePred (i.e. SinglePred code followed by
1923   // BB code within one basic block `BB`), we need to invalidate the LVI
1924   // information associated with BB, because the LVI information need not be
1925   // true for all of BB after the merge. For example,
1926   // Before the merge, LVI info and code is as follows:
1927   // SinglePred: <LVI info1 for %p val>
1928   // %y = use of %p
1929   // call @exit() // need not transfer execution to successor.
1930   // assume(%p) // from this point on %p is true
1931   // br label %BB
1932   // BB: <LVI info2 for %p val, i.e. %p is true>
1933   // %x = use of %p
1934   // br label exit
1935   //
1936   // Note that this LVI info for blocks BB and SinglPred is correct for %p
1937   // (info2 and info1 respectively). After the merge and the deletion of the
1938   // LVI info1 for SinglePred. We have the following code:
1939   // BB: <LVI info2 for %p val>
1940   // %y = use of %p
1941   // call @exit()
1942   // assume(%p)
1943   // %x = use of %p <-- LVI info2 is correct from here onwards.
1944   // br label exit
1945   // LVI info2 for BB is incorrect at the beginning of BB.
1946 
1947   // Invalidate LVI information for BB if the LVI is not provably true for
1948   // all of BB.
1949   if (!isGuaranteedToTransferExecutionToSuccessor(BB))
1950     LVI->eraseBlock(BB);
1951   return true;
1952 }
1953 
1954 /// Update the SSA form.  NewBB contains instructions that are copied from BB.
1955 /// ValueMapping maps old values in BB to new ones in NewBB.
1956 void JumpThreadingPass::updateSSA(
1957     BasicBlock *BB, BasicBlock *NewBB,
1958     DenseMap<Instruction *, Value *> &ValueMapping) {
1959   // If there were values defined in BB that are used outside the block, then we
1960   // now have to update all uses of the value to use either the original value,
1961   // the cloned value, or some PHI derived value.  This can require arbitrary
1962   // PHI insertion, of which we are prepared to do, clean these up now.
1963   SSAUpdater SSAUpdate;
1964   SmallVector<Use *, 16> UsesToRename;
1965   SmallVector<DbgValueInst *, 4> DbgValues;
1966 
1967   for (Instruction &I : *BB) {
1968     // Scan all uses of this instruction to see if it is used outside of its
1969     // block, and if so, record them in UsesToRename.
1970     for (Use &U : I.uses()) {
1971       Instruction *User = cast<Instruction>(U.getUser());
1972       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1973         if (UserPN->getIncomingBlock(U) == BB)
1974           continue;
1975       } else if (User->getParent() == BB)
1976         continue;
1977 
1978       UsesToRename.push_back(&U);
1979     }
1980 
1981     // Find debug values outside of the block
1982     findDbgValues(DbgValues, &I);
1983     llvm::erase_if(DbgValues, [&](const DbgValueInst *DbgVal) {
1984       return DbgVal->getParent() == BB;
1985     });
1986 
1987     // If there are no uses outside the block, we're done with this instruction.
1988     if (UsesToRename.empty() && DbgValues.empty())
1989       continue;
1990     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
1991 
1992     // We found a use of I outside of BB.  Rename all uses of I that are outside
1993     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1994     // with the two values we know.
1995     SSAUpdate.Initialize(I.getType(), I.getName());
1996     SSAUpdate.AddAvailableValue(BB, &I);
1997     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
1998 
1999     while (!UsesToRename.empty())
2000       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2001     if (!DbgValues.empty()) {
2002       SSAUpdate.UpdateDebugValues(&I, DbgValues);
2003       DbgValues.clear();
2004     }
2005 
2006     LLVM_DEBUG(dbgs() << "\n");
2007   }
2008 }
2009 
2010 /// Clone instructions in range [BI, BE) to NewBB.  For PHI nodes, we only clone
2011 /// arguments that come from PredBB.  Return the map from the variables in the
2012 /// source basic block to the variables in the newly created basic block.
2013 DenseMap<Instruction *, Value *>
2014 JumpThreadingPass::cloneInstructions(BasicBlock::iterator BI,
2015                                      BasicBlock::iterator BE, BasicBlock *NewBB,
2016                                      BasicBlock *PredBB) {
2017   // We are going to have to map operands from the source basic block to the new
2018   // copy of the block 'NewBB'.  If there are PHI nodes in the source basic
2019   // block, evaluate them to account for entry from PredBB.
2020   DenseMap<Instruction *, Value *> ValueMapping;
2021 
2022   // Retargets llvm.dbg.value to any renamed variables.
2023   auto RetargetDbgValueIfPossible = [&](Instruction *NewInst) -> bool {
2024     auto DbgInstruction = dyn_cast<DbgValueInst>(NewInst);
2025     if (!DbgInstruction)
2026       return false;
2027 
2028     SmallSet<std::pair<Value *, Value *>, 16> OperandsToRemap;
2029     for (auto DbgOperand : DbgInstruction->location_ops()) {
2030       auto DbgOperandInstruction = dyn_cast<Instruction>(DbgOperand);
2031       if (!DbgOperandInstruction)
2032         continue;
2033 
2034       auto I = ValueMapping.find(DbgOperandInstruction);
2035       if (I != ValueMapping.end()) {
2036         OperandsToRemap.insert(
2037             std::pair<Value *, Value *>(DbgOperand, I->second));
2038       }
2039     }
2040 
2041     for (auto &[OldOp, MappedOp] : OperandsToRemap)
2042       DbgInstruction->replaceVariableLocationOp(OldOp, MappedOp);
2043     return true;
2044   };
2045 
2046   // Clone the phi nodes of the source basic block into NewBB.  The resulting
2047   // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater
2048   // might need to rewrite the operand of the cloned phi.
2049   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2050     PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB);
2051     NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB);
2052     ValueMapping[PN] = NewPN;
2053   }
2054 
2055   // Clone noalias scope declarations in the threaded block. When threading a
2056   // loop exit, we would otherwise end up with two idential scope declarations
2057   // visible at the same time.
2058   SmallVector<MDNode *> NoAliasScopes;
2059   DenseMap<MDNode *, MDNode *> ClonedScopes;
2060   LLVMContext &Context = PredBB->getContext();
2061   identifyNoAliasScopesToClone(BI, BE, NoAliasScopes);
2062   cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context);
2063 
2064   // Clone the non-phi instructions of the source basic block into NewBB,
2065   // keeping track of the mapping and using it to remap operands in the cloned
2066   // instructions.
2067   for (; BI != BE; ++BI) {
2068     Instruction *New = BI->clone();
2069     New->setName(BI->getName());
2070     New->insertInto(NewBB, NewBB->end());
2071     ValueMapping[&*BI] = New;
2072     adaptNoAliasScopes(New, ClonedScopes, Context);
2073 
2074     if (RetargetDbgValueIfPossible(New))
2075       continue;
2076 
2077     // Remap operands to patch up intra-block references.
2078     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2079       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2080         DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst);
2081         if (I != ValueMapping.end())
2082           New->setOperand(i, I->second);
2083       }
2084   }
2085 
2086   return ValueMapping;
2087 }
2088 
2089 /// Attempt to thread through two successive basic blocks.
2090 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB,
2091                                                          Value *Cond) {
2092   // Consider:
2093   //
2094   // PredBB:
2095   //   %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ]
2096   //   %tobool = icmp eq i32 %cond, 0
2097   //   br i1 %tobool, label %BB, label ...
2098   //
2099   // BB:
2100   //   %cmp = icmp eq i32* %var, null
2101   //   br i1 %cmp, label ..., label ...
2102   //
2103   // We don't know the value of %var at BB even if we know which incoming edge
2104   // we take to BB.  However, once we duplicate PredBB for each of its incoming
2105   // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of
2106   // PredBB.  Then we can thread edges PredBB1->BB and PredBB2->BB through BB.
2107 
2108   // Require that BB end with a Branch for simplicity.
2109   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2110   if (!CondBr)
2111     return false;
2112 
2113   // BB must have exactly one predecessor.
2114   BasicBlock *PredBB = BB->getSinglePredecessor();
2115   if (!PredBB)
2116     return false;
2117 
2118   // Require that PredBB end with a conditional Branch. If PredBB ends with an
2119   // unconditional branch, we should be merging PredBB and BB instead. For
2120   // simplicity, we don't deal with a switch.
2121   BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2122   if (!PredBBBranch || PredBBBranch->isUnconditional())
2123     return false;
2124 
2125   // If PredBB has exactly one incoming edge, we don't gain anything by copying
2126   // PredBB.
2127   if (PredBB->getSinglePredecessor())
2128     return false;
2129 
2130   // Don't thread through PredBB if it contains a successor edge to itself, in
2131   // which case we would infinite loop.  Suppose we are threading an edge from
2132   // PredPredBB through PredBB and BB to SuccBB with PredBB containing a
2133   // successor edge to itself.  If we allowed jump threading in this case, we
2134   // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread.  Since
2135   // PredBB.thread has a successor edge to PredBB, we would immediately come up
2136   // with another jump threading opportunity from PredBB.thread through PredBB
2137   // and BB to SuccBB.  This jump threading would repeatedly occur.  That is, we
2138   // would keep peeling one iteration from PredBB.
2139   if (llvm::is_contained(successors(PredBB), PredBB))
2140     return false;
2141 
2142   // Don't thread across a loop header.
2143   if (LoopHeaders.count(PredBB))
2144     return false;
2145 
2146   // Avoid complication with duplicating EH pads.
2147   if (PredBB->isEHPad())
2148     return false;
2149 
2150   // Find a predecessor that we can thread.  For simplicity, we only consider a
2151   // successor edge out of BB to which we thread exactly one incoming edge into
2152   // PredBB.
2153   unsigned ZeroCount = 0;
2154   unsigned OneCount = 0;
2155   BasicBlock *ZeroPred = nullptr;
2156   BasicBlock *OnePred = nullptr;
2157   for (BasicBlock *P : predecessors(PredBB)) {
2158     // If PredPred ends with IndirectBrInst, we can't handle it.
2159     if (isa<IndirectBrInst>(P->getTerminator()))
2160       continue;
2161     if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(
2162             evaluateOnPredecessorEdge(BB, P, Cond))) {
2163       if (CI->isZero()) {
2164         ZeroCount++;
2165         ZeroPred = P;
2166       } else if (CI->isOne()) {
2167         OneCount++;
2168         OnePred = P;
2169       }
2170     }
2171   }
2172 
2173   // Disregard complicated cases where we have to thread multiple edges.
2174   BasicBlock *PredPredBB;
2175   if (ZeroCount == 1) {
2176     PredPredBB = ZeroPred;
2177   } else if (OneCount == 1) {
2178     PredPredBB = OnePred;
2179   } else {
2180     return false;
2181   }
2182 
2183   BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred);
2184 
2185   // If threading to the same block as we come from, we would infinite loop.
2186   if (SuccBB == BB) {
2187     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2188                       << "' - would thread to self!\n");
2189     return false;
2190   }
2191 
2192   // If threading this would thread across a loop header, don't thread the edge.
2193   // See the comments above findLoopHeaders for justifications and caveats.
2194   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2195     LLVM_DEBUG({
2196       bool BBIsHeader = LoopHeaders.count(BB);
2197       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2198       dbgs() << "  Not threading across "
2199              << (BBIsHeader ? "loop header BB '" : "block BB '")
2200              << BB->getName() << "' to dest "
2201              << (SuccIsHeader ? "loop header BB '" : "block BB '")
2202              << SuccBB->getName()
2203              << "' - it might create an irreducible loop!\n";
2204     });
2205     return false;
2206   }
2207 
2208   // Compute the cost of duplicating BB and PredBB.
2209   unsigned BBCost = getJumpThreadDuplicationCost(
2210       TTI, BB, BB->getTerminator(), BBDupThreshold);
2211   unsigned PredBBCost = getJumpThreadDuplicationCost(
2212       TTI, PredBB, PredBB->getTerminator(), BBDupThreshold);
2213 
2214   // Give up if costs are too high.  We need to check BBCost and PredBBCost
2215   // individually before checking their sum because getJumpThreadDuplicationCost
2216   // return (unsigned)~0 for those basic blocks that cannot be duplicated.
2217   if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold ||
2218       BBCost + PredBBCost > BBDupThreshold) {
2219     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2220                       << "' - Cost is too high: " << PredBBCost
2221                       << " for PredBB, " << BBCost << "for BB\n");
2222     return false;
2223   }
2224 
2225   // Now we are ready to duplicate PredBB.
2226   threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB);
2227   return true;
2228 }
2229 
2230 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB,
2231                                                     BasicBlock *PredBB,
2232                                                     BasicBlock *BB,
2233                                                     BasicBlock *SuccBB) {
2234   LLVM_DEBUG(dbgs() << "  Threading through '" << PredBB->getName() << "' and '"
2235                     << BB->getName() << "'\n");
2236 
2237   // Build BPI/BFI before any changes are made to IR.
2238   bool HasProfile = doesBlockHaveProfileData(BB);
2239   auto *BFI = getOrCreateBFI(HasProfile);
2240   auto *BPI = getOrCreateBPI(BFI != nullptr);
2241 
2242   BranchInst *CondBr = cast<BranchInst>(BB->getTerminator());
2243   BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator());
2244 
2245   BasicBlock *NewBB =
2246       BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread",
2247                          PredBB->getParent(), PredBB);
2248   NewBB->moveAfter(PredBB);
2249 
2250   // Set the block frequency of NewBB.
2251   if (BFI) {
2252     assert(BPI && "It's expected BPI to exist along with BFI");
2253     auto NewBBFreq = BFI->getBlockFreq(PredPredBB) *
2254                      BPI->getEdgeProbability(PredPredBB, PredBB);
2255     BFI->setBlockFreq(NewBB, NewBBFreq);
2256   }
2257 
2258   // We are going to have to map operands from the original BB block to the new
2259   // copy of the block 'NewBB'.  If there are PHI nodes in PredBB, evaluate them
2260   // to account for entry from PredPredBB.
2261   DenseMap<Instruction *, Value *> ValueMapping =
2262       cloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB);
2263 
2264   // Copy the edge probabilities from PredBB to NewBB.
2265   if (BPI)
2266     BPI->copyEdgeProbabilities(PredBB, NewBB);
2267 
2268   // Update the terminator of PredPredBB to jump to NewBB instead of PredBB.
2269   // This eliminates predecessors from PredPredBB, which requires us to simplify
2270   // any PHI nodes in PredBB.
2271   Instruction *PredPredTerm = PredPredBB->getTerminator();
2272   for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i)
2273     if (PredPredTerm->getSuccessor(i) == PredBB) {
2274       PredBB->removePredecessor(PredPredBB, true);
2275       PredPredTerm->setSuccessor(i, NewBB);
2276     }
2277 
2278   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB,
2279                                   ValueMapping);
2280   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB,
2281                                   ValueMapping);
2282 
2283   DTU->applyUpdatesPermissive(
2284       {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)},
2285        {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)},
2286        {DominatorTree::Insert, PredPredBB, NewBB},
2287        {DominatorTree::Delete, PredPredBB, PredBB}});
2288 
2289   updateSSA(PredBB, NewBB, ValueMapping);
2290 
2291   // Clean up things like PHI nodes with single operands, dead instructions,
2292   // etc.
2293   SimplifyInstructionsInBlock(NewBB, TLI);
2294   SimplifyInstructionsInBlock(PredBB, TLI);
2295 
2296   SmallVector<BasicBlock *, 1> PredsToFactor;
2297   PredsToFactor.push_back(NewBB);
2298   threadEdge(BB, PredsToFactor, SuccBB);
2299 }
2300 
2301 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so.
2302 bool JumpThreadingPass::tryThreadEdge(
2303     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs,
2304     BasicBlock *SuccBB) {
2305   // If threading to the same block as we come from, we would infinite loop.
2306   if (SuccBB == BB) {
2307     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2308                       << "' - would thread to self!\n");
2309     return false;
2310   }
2311 
2312   // If threading this would thread across a loop header, don't thread the edge.
2313   // See the comments above findLoopHeaders for justifications and caveats.
2314   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2315     LLVM_DEBUG({
2316       bool BBIsHeader = LoopHeaders.count(BB);
2317       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2318       dbgs() << "  Not threading across "
2319           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
2320           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
2321           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
2322     });
2323     return false;
2324   }
2325 
2326   unsigned JumpThreadCost = getJumpThreadDuplicationCost(
2327       TTI, BB, BB->getTerminator(), BBDupThreshold);
2328   if (JumpThreadCost > BBDupThreshold) {
2329     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2330                       << "' - Cost is too high: " << JumpThreadCost << "\n");
2331     return false;
2332   }
2333 
2334   threadEdge(BB, PredBBs, SuccBB);
2335   return true;
2336 }
2337 
2338 /// threadEdge - We have decided that it is safe and profitable to factor the
2339 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
2340 /// across BB.  Transform the IR to reflect this change.
2341 void JumpThreadingPass::threadEdge(BasicBlock *BB,
2342                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
2343                                    BasicBlock *SuccBB) {
2344   assert(SuccBB != BB && "Don't create an infinite loop");
2345 
2346   assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) &&
2347          "Don't thread across loop headers");
2348 
2349   // Build BPI/BFI before any changes are made to IR.
2350   bool HasProfile = doesBlockHaveProfileData(BB);
2351   auto *BFI = getOrCreateBFI(HasProfile);
2352   auto *BPI = getOrCreateBPI(BFI != nullptr);
2353 
2354   // And finally, do it!  Start by factoring the predecessors if needed.
2355   BasicBlock *PredBB;
2356   if (PredBBs.size() == 1)
2357     PredBB = PredBBs[0];
2358   else {
2359     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2360                       << " common predecessors.\n");
2361     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2362   }
2363 
2364   // And finally, do it!
2365   LLVM_DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName()
2366                     << "' to '" << SuccBB->getName()
2367                     << ", across block:\n    " << *BB << "\n");
2368 
2369   LVI->threadEdge(PredBB, BB, SuccBB);
2370 
2371   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
2372                                          BB->getName()+".thread",
2373                                          BB->getParent(), BB);
2374   NewBB->moveAfter(PredBB);
2375 
2376   // Set the block frequency of NewBB.
2377   if (BFI) {
2378     assert(BPI && "It's expected BPI to exist along with BFI");
2379     auto NewBBFreq =
2380         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
2381     BFI->setBlockFreq(NewBB, NewBBFreq);
2382   }
2383 
2384   // Copy all the instructions from BB to NewBB except the terminator.
2385   DenseMap<Instruction *, Value *> ValueMapping =
2386       cloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB);
2387 
2388   // We didn't copy the terminator from BB over to NewBB, because there is now
2389   // an unconditional jump to SuccBB.  Insert the unconditional jump.
2390   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
2391   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2392 
2393   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2394   // PHI nodes for NewBB now.
2395   addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2396 
2397   // Update the terminator of PredBB to jump to NewBB instead of BB.  This
2398   // eliminates predecessors from BB, which requires us to simplify any PHI
2399   // nodes in BB.
2400   Instruction *PredTerm = PredBB->getTerminator();
2401   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2402     if (PredTerm->getSuccessor(i) == BB) {
2403       BB->removePredecessor(PredBB, true);
2404       PredTerm->setSuccessor(i, NewBB);
2405     }
2406 
2407   // Enqueue required DT updates.
2408   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB},
2409                                {DominatorTree::Insert, PredBB, NewBB},
2410                                {DominatorTree::Delete, PredBB, BB}});
2411 
2412   updateSSA(BB, NewBB, ValueMapping);
2413 
2414   // At this point, the IR is fully up to date and consistent.  Do a quick scan
2415   // over the new instructions and zap any that are constants or dead.  This
2416   // frequently happens because of phi translation.
2417   SimplifyInstructionsInBlock(NewBB, TLI);
2418 
2419   // Update the edge weight from BB to SuccBB, which should be less than before.
2420   updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB, BFI, BPI, HasProfile);
2421 
2422   // Threaded an edge!
2423   ++NumThreads;
2424 }
2425 
2426 /// Create a new basic block that will be the predecessor of BB and successor of
2427 /// all blocks in Preds. When profile data is available, update the frequency of
2428 /// this new block.
2429 BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB,
2430                                                ArrayRef<BasicBlock *> Preds,
2431                                                const char *Suffix) {
2432   SmallVector<BasicBlock *, 2> NewBBs;
2433 
2434   // Collect the frequencies of all predecessors of BB, which will be used to
2435   // update the edge weight of the result of splitting predecessors.
2436   DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2437   auto *BFI = getBFI();
2438   if (BFI) {
2439     auto *BPI = getOrCreateBPI(true);
2440     for (auto *Pred : Preds)
2441       FreqMap.insert(std::make_pair(
2442           Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2443   }
2444 
2445   // In the case when BB is a LandingPad block we create 2 new predecessors
2446   // instead of just one.
2447   if (BB->isLandingPad()) {
2448     std::string NewName = std::string(Suffix) + ".split-lp";
2449     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2450   } else {
2451     NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2452   }
2453 
2454   std::vector<DominatorTree::UpdateType> Updates;
2455   Updates.reserve((2 * Preds.size()) + NewBBs.size());
2456   for (auto *NewBB : NewBBs) {
2457     BlockFrequency NewBBFreq(0);
2458     Updates.push_back({DominatorTree::Insert, NewBB, BB});
2459     for (auto *Pred : predecessors(NewBB)) {
2460       Updates.push_back({DominatorTree::Delete, Pred, BB});
2461       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2462       if (BFI) // Update frequencies between Pred -> NewBB.
2463         NewBBFreq += FreqMap.lookup(Pred);
2464     }
2465     if (BFI) // Apply the summed frequency to NewBB.
2466       BFI->setBlockFreq(NewBB, NewBBFreq);
2467   }
2468 
2469   DTU->applyUpdatesPermissive(Updates);
2470   return NewBBs[0];
2471 }
2472 
2473 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2474   const Instruction *TI = BB->getTerminator();
2475   if (!TI || TI->getNumSuccessors() < 2)
2476     return false;
2477 
2478   return hasValidBranchWeightMD(*TI);
2479 }
2480 
2481 /// Update the block frequency of BB and branch weight and the metadata on the
2482 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2483 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2484 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2485                                                      BasicBlock *BB,
2486                                                      BasicBlock *NewBB,
2487                                                      BasicBlock *SuccBB,
2488                                                      BlockFrequencyInfo *BFI,
2489                                                      BranchProbabilityInfo *BPI,
2490                                                      bool HasProfile) {
2491   assert(((BFI && BPI) || (!BFI && !BFI)) &&
2492          "Both BFI & BPI should either be set or unset");
2493 
2494   if (!BFI) {
2495     assert(!HasProfile &&
2496            "It's expected to have BFI/BPI when profile info exists");
2497     return;
2498   }
2499 
2500   // As the edge from PredBB to BB is deleted, we have to update the block
2501   // frequency of BB.
2502   auto BBOrigFreq = BFI->getBlockFreq(BB);
2503   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2504   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2505   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2506   BFI->setBlockFreq(BB, BBNewFreq);
2507 
2508   // Collect updated outgoing edges' frequencies from BB and use them to update
2509   // edge probabilities.
2510   SmallVector<uint64_t, 4> BBSuccFreq;
2511   for (BasicBlock *Succ : successors(BB)) {
2512     auto SuccFreq = (Succ == SuccBB)
2513                         ? BB2SuccBBFreq - NewBBFreq
2514                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2515     BBSuccFreq.push_back(SuccFreq.getFrequency());
2516   }
2517 
2518   uint64_t MaxBBSuccFreq =
2519       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2520 
2521   SmallVector<BranchProbability, 4> BBSuccProbs;
2522   if (MaxBBSuccFreq == 0)
2523     BBSuccProbs.assign(BBSuccFreq.size(),
2524                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2525   else {
2526     for (uint64_t Freq : BBSuccFreq)
2527       BBSuccProbs.push_back(
2528           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2529     // Normalize edge probabilities so that they sum up to one.
2530     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2531                                               BBSuccProbs.end());
2532   }
2533 
2534   // Update edge probabilities in BPI.
2535   BPI->setEdgeProbability(BB, BBSuccProbs);
2536 
2537   // Update the profile metadata as well.
2538   //
2539   // Don't do this if the profile of the transformed blocks was statically
2540   // estimated.  (This could occur despite the function having an entry
2541   // frequency in completely cold parts of the CFG.)
2542   //
2543   // In this case we don't want to suggest to subsequent passes that the
2544   // calculated weights are fully consistent.  Consider this graph:
2545   //
2546   //                 check_1
2547   //             50% /  |
2548   //             eq_1   | 50%
2549   //                 \  |
2550   //                 check_2
2551   //             50% /  |
2552   //             eq_2   | 50%
2553   //                 \  |
2554   //                 check_3
2555   //             50% /  |
2556   //             eq_3   | 50%
2557   //                 \  |
2558   //
2559   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2560   // the overall probabilities are inconsistent; the total probability that the
2561   // value is either 1, 2 or 3 is 150%.
2562   //
2563   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2564   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2565   // the loop exit edge.  Then based solely on static estimation we would assume
2566   // the loop was extremely hot.
2567   //
2568   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2569   // shouldn't make edges extremely likely or unlikely based solely on static
2570   // estimation.
2571   if (BBSuccProbs.size() >= 2 && HasProfile) {
2572     SmallVector<uint32_t, 4> Weights;
2573     for (auto Prob : BBSuccProbs)
2574       Weights.push_back(Prob.getNumerator());
2575 
2576     auto TI = BB->getTerminator();
2577     TI->setMetadata(
2578         LLVMContext::MD_prof,
2579         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2580   }
2581 }
2582 
2583 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2584 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2585 /// If we can duplicate the contents of BB up into PredBB do so now, this
2586 /// improves the odds that the branch will be on an analyzable instruction like
2587 /// a compare.
2588 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred(
2589     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2590   assert(!PredBBs.empty() && "Can't handle an empty set");
2591 
2592   // If BB is a loop header, then duplicating this block outside the loop would
2593   // cause us to transform this into an irreducible loop, don't do this.
2594   // See the comments above findLoopHeaders for justifications and caveats.
2595   if (LoopHeaders.count(BB)) {
2596     LLVM_DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2597                       << "' into predecessor block '" << PredBBs[0]->getName()
2598                       << "' - it might create an irreducible loop!\n");
2599     return false;
2600   }
2601 
2602   unsigned DuplicationCost = getJumpThreadDuplicationCost(
2603       TTI, BB, BB->getTerminator(), BBDupThreshold);
2604   if (DuplicationCost > BBDupThreshold) {
2605     LLVM_DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2606                       << "' - Cost is too high: " << DuplicationCost << "\n");
2607     return false;
2608   }
2609 
2610   // And finally, do it!  Start by factoring the predecessors if needed.
2611   std::vector<DominatorTree::UpdateType> Updates;
2612   BasicBlock *PredBB;
2613   if (PredBBs.size() == 1)
2614     PredBB = PredBBs[0];
2615   else {
2616     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2617                       << " common predecessors.\n");
2618     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2619   }
2620   Updates.push_back({DominatorTree::Delete, PredBB, BB});
2621 
2622   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2623   // of PredBB.
2624   LLVM_DEBUG(dbgs() << "  Duplicating block '" << BB->getName()
2625                     << "' into end of '" << PredBB->getName()
2626                     << "' to eliminate branch on phi.  Cost: "
2627                     << DuplicationCost << " block is:" << *BB << "\n");
2628 
2629   // Unless PredBB ends with an unconditional branch, split the edge so that we
2630   // can just clone the bits from BB into the end of the new PredBB.
2631   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2632 
2633   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2634     BasicBlock *OldPredBB = PredBB;
2635     PredBB = SplitEdge(OldPredBB, BB);
2636     Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2637     Updates.push_back({DominatorTree::Insert, PredBB, BB});
2638     Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2639     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2640   }
2641 
2642   // We are going to have to map operands from the original BB block into the
2643   // PredBB block.  Evaluate PHI nodes in BB.
2644   DenseMap<Instruction*, Value*> ValueMapping;
2645 
2646   BasicBlock::iterator BI = BB->begin();
2647   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2648     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2649   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2650   // mapping and using it to remap operands in the cloned instructions.
2651   for (; BI != BB->end(); ++BI) {
2652     Instruction *New = BI->clone();
2653     New->insertInto(PredBB, OldPredBranch->getIterator());
2654 
2655     // Remap operands to patch up intra-block references.
2656     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2657       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2658         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2659         if (I != ValueMapping.end())
2660           New->setOperand(i, I->second);
2661       }
2662 
2663     // If this instruction can be simplified after the operands are updated,
2664     // just use the simplified value instead.  This frequently happens due to
2665     // phi translation.
2666     if (Value *IV = simplifyInstruction(
2667             New,
2668             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2669       ValueMapping[&*BI] = IV;
2670       if (!New->mayHaveSideEffects()) {
2671         New->eraseFromParent();
2672         New = nullptr;
2673       }
2674     } else {
2675       ValueMapping[&*BI] = New;
2676     }
2677     if (New) {
2678       // Otherwise, insert the new instruction into the block.
2679       New->setName(BI->getName());
2680       // Update Dominance from simplified New instruction operands.
2681       for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2682         if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2683           Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2684     }
2685   }
2686 
2687   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2688   // add entries to the PHI nodes for branch from PredBB now.
2689   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2690   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2691                                   ValueMapping);
2692   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2693                                   ValueMapping);
2694 
2695   updateSSA(BB, PredBB, ValueMapping);
2696 
2697   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2698   // that we nuked.
2699   BB->removePredecessor(PredBB, true);
2700 
2701   // Remove the unconditional branch at the end of the PredBB block.
2702   OldPredBranch->eraseFromParent();
2703   if (auto *BPI = getBPI())
2704     BPI->copyEdgeProbabilities(BB, PredBB);
2705   DTU->applyUpdatesPermissive(Updates);
2706 
2707   ++NumDupes;
2708   return true;
2709 }
2710 
2711 // Pred is a predecessor of BB with an unconditional branch to BB. SI is
2712 // a Select instruction in Pred. BB has other predecessors and SI is used in
2713 // a PHI node in BB. SI has no other use.
2714 // A new basic block, NewBB, is created and SI is converted to compare and
2715 // conditional branch. SI is erased from parent.
2716 void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
2717                                           SelectInst *SI, PHINode *SIUse,
2718                                           unsigned Idx) {
2719   // Expand the select.
2720   //
2721   // Pred --
2722   //  |    v
2723   //  |  NewBB
2724   //  |    |
2725   //  |-----
2726   //  v
2727   // BB
2728   BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator());
2729   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2730                                          BB->getParent(), BB);
2731   // Move the unconditional branch to NewBB.
2732   PredTerm->removeFromParent();
2733   PredTerm->insertInto(NewBB, NewBB->end());
2734   // Create a conditional branch and update PHI nodes.
2735   auto *BI = BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2736   BI->applyMergedLocation(PredTerm->getDebugLoc(), SI->getDebugLoc());
2737   BI->copyMetadata(*SI, {LLVMContext::MD_prof});
2738   SIUse->setIncomingValue(Idx, SI->getFalseValue());
2739   SIUse->addIncoming(SI->getTrueValue(), NewBB);
2740 
2741   uint64_t TrueWeight = 1;
2742   uint64_t FalseWeight = 1;
2743   // Copy probabilities from 'SI' to created conditional branch in 'Pred'.
2744   if (extractBranchWeights(*SI, TrueWeight, FalseWeight) &&
2745       (TrueWeight + FalseWeight) != 0) {
2746     SmallVector<BranchProbability, 2> BP;
2747     BP.emplace_back(BranchProbability::getBranchProbability(
2748         TrueWeight, TrueWeight + FalseWeight));
2749     BP.emplace_back(BranchProbability::getBranchProbability(
2750         FalseWeight, TrueWeight + FalseWeight));
2751     // Update BPI if exists.
2752     if (auto *BPI = getBPI())
2753       BPI->setEdgeProbability(Pred, BP);
2754   }
2755   // Set the block frequency of NewBB.
2756   if (auto *BFI = getBFI()) {
2757     if ((TrueWeight + FalseWeight) == 0) {
2758       TrueWeight = 1;
2759       FalseWeight = 1;
2760     }
2761     BranchProbability PredToNewBBProb = BranchProbability::getBranchProbability(
2762         TrueWeight, TrueWeight + FalseWeight);
2763     auto NewBBFreq = BFI->getBlockFreq(Pred) * PredToNewBBProb;
2764     BFI->setBlockFreq(NewBB, NewBBFreq);
2765   }
2766 
2767   // The select is now dead.
2768   SI->eraseFromParent();
2769   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB},
2770                                {DominatorTree::Insert, Pred, NewBB}});
2771 
2772   // Update any other PHI nodes in BB.
2773   for (BasicBlock::iterator BI = BB->begin();
2774        PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2775     if (Phi != SIUse)
2776       Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2777 }
2778 
2779 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
2780   PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
2781 
2782   if (!CondPHI || CondPHI->getParent() != BB)
2783     return false;
2784 
2785   for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
2786     BasicBlock *Pred = CondPHI->getIncomingBlock(I);
2787     SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
2788 
2789     // The second and third condition can be potentially relaxed. Currently
2790     // the conditions help to simplify the code and allow us to reuse existing
2791     // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *)
2792     if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
2793       continue;
2794 
2795     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2796     if (!PredTerm || !PredTerm->isUnconditional())
2797       continue;
2798 
2799     unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
2800     return true;
2801   }
2802   return false;
2803 }
2804 
2805 /// tryToUnfoldSelect - Look for blocks of the form
2806 /// bb1:
2807 ///   %a = select
2808 ///   br bb2
2809 ///
2810 /// bb2:
2811 ///   %p = phi [%a, %bb1] ...
2812 ///   %c = icmp %p
2813 ///   br i1 %c
2814 ///
2815 /// And expand the select into a branch structure if one of its arms allows %c
2816 /// to be folded. This later enables threading from bb1 over bb2.
2817 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2818   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2819   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2820   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2821 
2822   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2823       CondLHS->getParent() != BB)
2824     return false;
2825 
2826   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2827     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2828     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2829 
2830     // Look if one of the incoming values is a select in the corresponding
2831     // predecessor.
2832     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2833       continue;
2834 
2835     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2836     if (!PredTerm || !PredTerm->isUnconditional())
2837       continue;
2838 
2839     // Now check if one of the select values would allow us to constant fold the
2840     // terminator in BB. We don't do the transform if both sides fold, those
2841     // cases will be threaded in any case.
2842     LazyValueInfo::Tristate LHSFolds =
2843         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2844                                 CondRHS, Pred, BB, CondCmp);
2845     LazyValueInfo::Tristate RHSFolds =
2846         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2847                                 CondRHS, Pred, BB, CondCmp);
2848     if ((LHSFolds != LazyValueInfo::Unknown ||
2849          RHSFolds != LazyValueInfo::Unknown) &&
2850         LHSFolds != RHSFolds) {
2851       unfoldSelectInstr(Pred, BB, SI, CondLHS, I);
2852       return true;
2853     }
2854   }
2855   return false;
2856 }
2857 
2858 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2859 /// same BB in the form
2860 /// bb:
2861 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2862 ///   %s = select %p, trueval, falseval
2863 ///
2864 /// or
2865 ///
2866 /// bb:
2867 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2868 ///   %c = cmp %p, 0
2869 ///   %s = select %c, trueval, falseval
2870 ///
2871 /// And expand the select into a branch structure. This later enables
2872 /// jump-threading over bb in this pass.
2873 ///
2874 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2875 /// select if the associated PHI has at least one constant.  If the unfolded
2876 /// select is not jump-threaded, it will be folded again in the later
2877 /// optimizations.
2878 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2879   // This transform would reduce the quality of msan diagnostics.
2880   // Disable this transform under MemorySanitizer.
2881   if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
2882     return false;
2883 
2884   // If threading this would thread across a loop header, don't thread the edge.
2885   // See the comments above findLoopHeaders for justifications and caveats.
2886   if (LoopHeaders.count(BB))
2887     return false;
2888 
2889   for (BasicBlock::iterator BI = BB->begin();
2890        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2891     // Look for a Phi having at least one constant incoming value.
2892     if (llvm::all_of(PN->incoming_values(),
2893                      [](Value *V) { return !isa<ConstantInt>(V); }))
2894       continue;
2895 
2896     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2897       using namespace PatternMatch;
2898 
2899       // Check if SI is in BB and use V as condition.
2900       if (SI->getParent() != BB)
2901         return false;
2902       Value *Cond = SI->getCondition();
2903       bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()));
2904       return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr;
2905     };
2906 
2907     SelectInst *SI = nullptr;
2908     for (Use &U : PN->uses()) {
2909       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2910         // Look for a ICmp in BB that compares PN with a constant and is the
2911         // condition of a Select.
2912         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2913             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2914           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2915             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2916               SI = SelectI;
2917               break;
2918             }
2919       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2920         // Look for a Select in BB that uses PN as condition.
2921         if (isUnfoldCandidate(SelectI, U.get())) {
2922           SI = SelectI;
2923           break;
2924         }
2925       }
2926     }
2927 
2928     if (!SI)
2929       continue;
2930     // Expand the select.
2931     Value *Cond = SI->getCondition();
2932     if (!isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI))
2933       Cond = new FreezeInst(Cond, "cond.fr", SI);
2934     MDNode *BranchWeights = getBranchWeightMDNode(*SI);
2935     Instruction *Term =
2936         SplitBlockAndInsertIfThen(Cond, SI, false, BranchWeights);
2937     BasicBlock *SplitBB = SI->getParent();
2938     BasicBlock *NewBB = Term->getParent();
2939     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2940     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2941     NewPN->addIncoming(SI->getFalseValue(), BB);
2942     SI->replaceAllUsesWith(NewPN);
2943     SI->eraseFromParent();
2944     // NewBB and SplitBB are newly created blocks which require insertion.
2945     std::vector<DominatorTree::UpdateType> Updates;
2946     Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2947     Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2948     Updates.push_back({DominatorTree::Insert, BB, NewBB});
2949     Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2950     // BB's successors were moved to SplitBB, update DTU accordingly.
2951     for (auto *Succ : successors(SplitBB)) {
2952       Updates.push_back({DominatorTree::Delete, BB, Succ});
2953       Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2954     }
2955     DTU->applyUpdatesPermissive(Updates);
2956     return true;
2957   }
2958   return false;
2959 }
2960 
2961 /// Try to propagate a guard from the current BB into one of its predecessors
2962 /// in case if another branch of execution implies that the condition of this
2963 /// guard is always true. Currently we only process the simplest case that
2964 /// looks like:
2965 ///
2966 /// Start:
2967 ///   %cond = ...
2968 ///   br i1 %cond, label %T1, label %F1
2969 /// T1:
2970 ///   br label %Merge
2971 /// F1:
2972 ///   br label %Merge
2973 /// Merge:
2974 ///   %condGuard = ...
2975 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2976 ///
2977 /// And cond either implies condGuard or !condGuard. In this case all the
2978 /// instructions before the guard can be duplicated in both branches, and the
2979 /// guard is then threaded to one of them.
2980 bool JumpThreadingPass::processGuards(BasicBlock *BB) {
2981   using namespace PatternMatch;
2982 
2983   // We only want to deal with two predecessors.
2984   BasicBlock *Pred1, *Pred2;
2985   auto PI = pred_begin(BB), PE = pred_end(BB);
2986   if (PI == PE)
2987     return false;
2988   Pred1 = *PI++;
2989   if (PI == PE)
2990     return false;
2991   Pred2 = *PI++;
2992   if (PI != PE)
2993     return false;
2994   if (Pred1 == Pred2)
2995     return false;
2996 
2997   // Try to thread one of the guards of the block.
2998   // TODO: Look up deeper than to immediate predecessor?
2999   auto *Parent = Pred1->getSinglePredecessor();
3000   if (!Parent || Parent != Pred2->getSinglePredecessor())
3001     return false;
3002 
3003   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
3004     for (auto &I : *BB)
3005       if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI))
3006         return true;
3007 
3008   return false;
3009 }
3010 
3011 /// Try to propagate the guard from BB which is the lower block of a diamond
3012 /// to one of its branches, in case if diamond's condition implies guard's
3013 /// condition.
3014 bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard,
3015                                     BranchInst *BI) {
3016   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
3017   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
3018   Value *GuardCond = Guard->getArgOperand(0);
3019   Value *BranchCond = BI->getCondition();
3020   BasicBlock *TrueDest = BI->getSuccessor(0);
3021   BasicBlock *FalseDest = BI->getSuccessor(1);
3022 
3023   auto &DL = BB->getModule()->getDataLayout();
3024   bool TrueDestIsSafe = false;
3025   bool FalseDestIsSafe = false;
3026 
3027   // True dest is safe if BranchCond => GuardCond.
3028   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
3029   if (Impl && *Impl)
3030     TrueDestIsSafe = true;
3031   else {
3032     // False dest is safe if !BranchCond => GuardCond.
3033     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
3034     if (Impl && *Impl)
3035       FalseDestIsSafe = true;
3036   }
3037 
3038   if (!TrueDestIsSafe && !FalseDestIsSafe)
3039     return false;
3040 
3041   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
3042   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
3043 
3044   ValueToValueMapTy UnguardedMapping, GuardedMapping;
3045   Instruction *AfterGuard = Guard->getNextNode();
3046   unsigned Cost =
3047       getJumpThreadDuplicationCost(TTI, BB, AfterGuard, BBDupThreshold);
3048   if (Cost > BBDupThreshold)
3049     return false;
3050   // Duplicate all instructions before the guard and the guard itself to the
3051   // branch where implication is not proved.
3052   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
3053       BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
3054   assert(GuardedBlock && "Could not create the guarded block?");
3055   // Duplicate all instructions before the guard in the unguarded branch.
3056   // Since we have successfully duplicated the guarded block and this block
3057   // has fewer instructions, we expect it to succeed.
3058   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
3059       BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
3060   assert(UnguardedBlock && "Could not create the unguarded block?");
3061   LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
3062                     << GuardedBlock->getName() << "\n");
3063   // Some instructions before the guard may still have uses. For them, we need
3064   // to create Phi nodes merging their copies in both guarded and unguarded
3065   // branches. Those instructions that have no uses can be just removed.
3066   SmallVector<Instruction *, 4> ToRemove;
3067   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
3068     if (!isa<PHINode>(&*BI))
3069       ToRemove.push_back(&*BI);
3070 
3071   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
3072   assert(InsertionPoint && "Empty block?");
3073   // Substitute with Phis & remove.
3074   for (auto *Inst : reverse(ToRemove)) {
3075     if (!Inst->use_empty()) {
3076       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
3077       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
3078       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
3079       NewPN->insertBefore(InsertionPoint);
3080       Inst->replaceAllUsesWith(NewPN);
3081     }
3082     Inst->eraseFromParent();
3083   }
3084   return true;
3085 }
3086 
3087 PreservedAnalyses JumpThreadingPass::getPreservedAnalysis() const {
3088   PreservedAnalyses PA;
3089   PA.preserve<LazyValueAnalysis>();
3090   PA.preserve<DominatorTreeAnalysis>();
3091 
3092   // TODO: We would like to preserve BPI/BFI. Enable once all paths update them.
3093   // TODO: Would be nice to verify BPI/BFI consistency as well.
3094   return PA;
3095 }
3096 
3097 template <typename AnalysisT>
3098 typename AnalysisT::Result *JumpThreadingPass::runExternalAnalysis() {
3099   assert(FAM && "Can't run external analysis without FunctionAnalysisManager");
3100 
3101   // If there were no changes since last call to 'runExternalAnalysis' then all
3102   // analysis is either up to date or explicitly invalidated. Just go ahead and
3103   // run the "external" analysis.
3104   if (!ChangedSinceLastAnalysisUpdate) {
3105     assert(!DTU->hasPendingUpdates() &&
3106            "Lost update of 'ChangedSinceLastAnalysisUpdate'?");
3107     // Run the "external" analysis.
3108     return &FAM->getResult<AnalysisT>(*F);
3109   }
3110   ChangedSinceLastAnalysisUpdate = false;
3111 
3112   auto PA = getPreservedAnalysis();
3113   // TODO: This shouldn't be needed once 'getPreservedAnalysis' reports BPI/BFI
3114   // as preserved.
3115   PA.preserve<BranchProbabilityAnalysis>();
3116   PA.preserve<BlockFrequencyAnalysis>();
3117   // Report everything except explicitly preserved as invalid.
3118   FAM->invalidate(*F, PA);
3119   // Update DT/PDT.
3120   DTU->flush();
3121   // Make sure DT/PDT are valid before running "external" analysis.
3122   assert(DTU->getDomTree().verify(DominatorTree::VerificationLevel::Fast));
3123   assert((!DTU->hasPostDomTree() ||
3124           DTU->getPostDomTree().verify(
3125               PostDominatorTree::VerificationLevel::Fast)));
3126   // Run the "external" analysis.
3127   auto *Result = &FAM->getResult<AnalysisT>(*F);
3128   // Update analysis JumpThreading depends on and not explicitly preserved.
3129   TTI = &FAM->getResult<TargetIRAnalysis>(*F);
3130   TLI = &FAM->getResult<TargetLibraryAnalysis>(*F);
3131   AA = &FAM->getResult<AAManager>(*F);
3132 
3133   return Result;
3134 }
3135 
3136 BranchProbabilityInfo *JumpThreadingPass::getBPI() {
3137   if (!BPI) {
3138     assert(FAM && "Can't create BPI without FunctionAnalysisManager");
3139     BPI = FAM->getCachedResult<BranchProbabilityAnalysis>(*F);
3140   }
3141   return *BPI;
3142 }
3143 
3144 BlockFrequencyInfo *JumpThreadingPass::getBFI() {
3145   if (!BFI) {
3146     assert(FAM && "Can't create BFI without FunctionAnalysisManager");
3147     BFI = FAM->getCachedResult<BlockFrequencyAnalysis>(*F);
3148   }
3149   return *BFI;
3150 }
3151 
3152 // Important note on validity of BPI/BFI. JumpThreading tries to preserve
3153 // BPI/BFI as it goes. Thus if cached instance exists it will be updated.
3154 // Otherwise, new instance of BPI/BFI is created (up to date by definition).
3155 BranchProbabilityInfo *JumpThreadingPass::getOrCreateBPI(bool Force) {
3156   auto *Res = getBPI();
3157   if (Res)
3158     return Res;
3159 
3160   if (Force)
3161     BPI = runExternalAnalysis<BranchProbabilityAnalysis>();
3162 
3163   return *BPI;
3164 }
3165 
3166 BlockFrequencyInfo *JumpThreadingPass::getOrCreateBFI(bool Force) {
3167   auto *Res = getBFI();
3168   if (Res)
3169     return Res;
3170 
3171   if (Force)
3172     BFI = runExternalAnalysis<BlockFrequencyAnalysis>();
3173 
3174   return *BFI;
3175 }
3176