1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/GlobalsModRef.h" 22 #include "llvm/Analysis/CFG.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LazyValueInfo.h" 29 #include "llvm/Analysis/Loads.h" 30 #include "llvm/Analysis/LoopInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/Metadata.h" 37 #include "llvm/IR/ValueHandle.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include "llvm/Transforms/Utils/SSAUpdater.h" 45 #include <algorithm> 46 #include <memory> 47 using namespace llvm; 48 49 #define DEBUG_TYPE "jump-threading" 50 51 STATISTIC(NumThreads, "Number of jumps threaded"); 52 STATISTIC(NumFolds, "Number of terminators folded"); 53 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 54 55 static cl::opt<unsigned> 56 BBDuplicateThreshold("jump-threading-threshold", 57 cl::desc("Max block size to duplicate for jump threading"), 58 cl::init(6), cl::Hidden); 59 60 namespace { 61 // These are at global scope so static functions can use them too. 62 typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo; 63 typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy; 64 65 // This is used to keep track of what kind of constant we're currently hoping 66 // to find. 67 enum ConstantPreference { 68 WantInteger, 69 WantBlockAddress 70 }; 71 72 /// This pass performs 'jump threading', which looks at blocks that have 73 /// multiple predecessors and multiple successors. If one or more of the 74 /// predecessors of the block can be proven to always jump to one of the 75 /// successors, we forward the edge from the predecessor to the successor by 76 /// duplicating the contents of this block. 77 /// 78 /// An example of when this can occur is code like this: 79 /// 80 /// if () { ... 81 /// X = 4; 82 /// } 83 /// if (X < 3) { 84 /// 85 /// In this case, the unconditional branch at the end of the first if can be 86 /// revectored to the false side of the second if. 87 /// 88 class JumpThreading : public FunctionPass { 89 TargetLibraryInfo *TLI; 90 LazyValueInfo *LVI; 91 std::unique_ptr<BlockFrequencyInfo> BFI; 92 std::unique_ptr<BranchProbabilityInfo> BPI; 93 bool HasProfileData; 94 #ifdef NDEBUG 95 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 96 #else 97 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 98 #endif 99 DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet; 100 101 unsigned BBDupThreshold; 102 103 // RAII helper for updating the recursion stack. 104 struct RecursionSetRemover { 105 DenseSet<std::pair<Value*, BasicBlock*> > &TheSet; 106 std::pair<Value*, BasicBlock*> ThePair; 107 108 RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S, 109 std::pair<Value*, BasicBlock*> P) 110 : TheSet(S), ThePair(P) { } 111 112 ~RecursionSetRemover() { 113 TheSet.erase(ThePair); 114 } 115 }; 116 public: 117 static char ID; // Pass identification 118 JumpThreading(int T = -1) : FunctionPass(ID) { 119 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 120 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 121 } 122 123 bool runOnFunction(Function &F) override; 124 125 void getAnalysisUsage(AnalysisUsage &AU) const override { 126 AU.addRequired<LazyValueInfo>(); 127 AU.addPreserved<LazyValueInfo>(); 128 AU.addPreserved<GlobalsAAWrapperPass>(); 129 AU.addRequired<TargetLibraryInfoWrapperPass>(); 130 } 131 132 void releaseMemory() override { 133 BFI.reset(); 134 BPI.reset(); 135 } 136 137 void FindLoopHeaders(Function &F); 138 bool ProcessBlock(BasicBlock *BB); 139 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 140 BasicBlock *SuccBB); 141 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 142 const SmallVectorImpl<BasicBlock *> &PredBBs); 143 144 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 145 PredValueInfo &Result, 146 ConstantPreference Preference, 147 Instruction *CxtI = nullptr); 148 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 149 ConstantPreference Preference, 150 Instruction *CxtI = nullptr); 151 152 bool ProcessBranchOnPHI(PHINode *PN); 153 bool ProcessBranchOnXOR(BinaryOperator *BO); 154 155 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 156 bool TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB); 157 158 private: 159 BasicBlock *SplitBlockPreds(BasicBlock *BB, ArrayRef<BasicBlock *> Preds, 160 const char *Suffix); 161 void UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, BasicBlock *BB, 162 BasicBlock *NewBB, BasicBlock *SuccBB); 163 }; 164 } 165 166 char JumpThreading::ID = 0; 167 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 168 "Jump Threading", false, false) 169 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo) 170 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 171 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 172 "Jump Threading", false, false) 173 174 // Public interface to the Jump Threading pass 175 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); } 176 177 /// runOnFunction - Top level algorithm. 178 /// 179 bool JumpThreading::runOnFunction(Function &F) { 180 if (skipOptnoneFunction(F)) 181 return false; 182 183 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 184 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 185 LVI = &getAnalysis<LazyValueInfo>(); 186 BFI.reset(); 187 BPI.reset(); 188 // When profile data is available, we need to update edge weights after 189 // successful jump threading, which requires both BPI and BFI being available. 190 HasProfileData = F.getEntryCount().hasValue(); 191 if (HasProfileData) { 192 LoopInfo LI{DominatorTree(F)}; 193 BPI.reset(new BranchProbabilityInfo(F, LI)); 194 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 195 } 196 197 // Remove unreachable blocks from function as they may result in infinite 198 // loop. We do threading if we found something profitable. Jump threading a 199 // branch can create other opportunities. If these opportunities form a cycle 200 // i.e. if any jump threading is undoing previous threading in the path, then 201 // we will loop forever. We take care of this issue by not jump threading for 202 // back edges. This works for normal cases but not for unreachable blocks as 203 // they may have cycle with no back edge. 204 removeUnreachableBlocks(F); 205 206 FindLoopHeaders(F); 207 208 bool Changed, EverChanged = false; 209 do { 210 Changed = false; 211 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 212 BasicBlock *BB = &*I; 213 // Thread all of the branches we can over this block. 214 while (ProcessBlock(BB)) 215 Changed = true; 216 217 ++I; 218 219 // If the block is trivially dead, zap it. This eliminates the successor 220 // edges which simplifies the CFG. 221 if (pred_empty(BB) && 222 BB != &BB->getParent()->getEntryBlock()) { 223 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 224 << "' with terminator: " << *BB->getTerminator() << '\n'); 225 LoopHeaders.erase(BB); 226 LVI->eraseBlock(BB); 227 DeleteDeadBlock(BB); 228 Changed = true; 229 continue; 230 } 231 232 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 233 234 // Can't thread an unconditional jump, but if the block is "almost 235 // empty", we can replace uses of it with uses of the successor and make 236 // this dead. 237 if (BI && BI->isUnconditional() && 238 BB != &BB->getParent()->getEntryBlock() && 239 // If the terminator is the only non-phi instruction, try to nuke it. 240 BB->getFirstNonPHIOrDbg()->isTerminator()) { 241 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 242 // block, we have to make sure it isn't in the LoopHeaders set. We 243 // reinsert afterward if needed. 244 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 245 BasicBlock *Succ = BI->getSuccessor(0); 246 247 // FIXME: It is always conservatively correct to drop the info 248 // for a block even if it doesn't get erased. This isn't totally 249 // awesome, but it allows us to use AssertingVH to prevent nasty 250 // dangling pointer issues within LazyValueInfo. 251 LVI->eraseBlock(BB); 252 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { 253 Changed = true; 254 // If we deleted BB and BB was the header of a loop, then the 255 // successor is now the header of the loop. 256 BB = Succ; 257 } 258 259 if (ErasedFromLoopHeaders) 260 LoopHeaders.insert(BB); 261 } 262 } 263 EverChanged |= Changed; 264 } while (Changed); 265 266 LoopHeaders.clear(); 267 return EverChanged; 268 } 269 270 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 271 /// thread across it. Stop scanning the block when passing the threshold. 272 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB, 273 unsigned Threshold) { 274 /// Ignore PHI nodes, these will be flattened when duplication happens. 275 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 276 277 // FIXME: THREADING will delete values that are just used to compute the 278 // branch, so they shouldn't count against the duplication cost. 279 280 // Sum up the cost of each instruction until we get to the terminator. Don't 281 // include the terminator because the copy won't include it. 282 unsigned Size = 0; 283 for (; !isa<TerminatorInst>(I); ++I) { 284 285 // Stop scanning the block if we've reached the threshold. 286 if (Size > Threshold) 287 return Size; 288 289 // Debugger intrinsics don't incur code size. 290 if (isa<DbgInfoIntrinsic>(I)) continue; 291 292 // If this is a pointer->pointer bitcast, it is free. 293 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 294 continue; 295 296 // Bail out if this instruction gives back a token type, it is not possible 297 // to duplicate it if it is used outside this BB. 298 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 299 return ~0U; 300 301 // All other instructions count for at least one unit. 302 ++Size; 303 304 // Calls are more expensive. If they are non-intrinsic calls, we model them 305 // as having cost of 4. If they are a non-vector intrinsic, we model them 306 // as having cost of 2 total, and if they are a vector intrinsic, we model 307 // them as having cost 1. 308 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 309 if (CI->cannotDuplicate() || CI->isConvergent()) 310 // Blocks with NoDuplicate are modelled as having infinite cost, so they 311 // are never duplicated. 312 return ~0U; 313 else if (!isa<IntrinsicInst>(CI)) 314 Size += 3; 315 else if (!CI->getType()->isVectorTy()) 316 Size += 1; 317 } 318 } 319 320 // Threading through a switch statement is particularly profitable. If this 321 // block ends in a switch, decrease its cost to make it more likely to happen. 322 if (isa<SwitchInst>(I)) 323 Size = Size > 6 ? Size-6 : 0; 324 325 // The same holds for indirect branches, but slightly more so. 326 if (isa<IndirectBrInst>(I)) 327 Size = Size > 8 ? Size-8 : 0; 328 329 return Size; 330 } 331 332 /// FindLoopHeaders - We do not want jump threading to turn proper loop 333 /// structures into irreducible loops. Doing this breaks up the loop nesting 334 /// hierarchy and pessimizes later transformations. To prevent this from 335 /// happening, we first have to find the loop headers. Here we approximate this 336 /// by finding targets of backedges in the CFG. 337 /// 338 /// Note that there definitely are cases when we want to allow threading of 339 /// edges across a loop header. For example, threading a jump from outside the 340 /// loop (the preheader) to an exit block of the loop is definitely profitable. 341 /// It is also almost always profitable to thread backedges from within the loop 342 /// to exit blocks, and is often profitable to thread backedges to other blocks 343 /// within the loop (forming a nested loop). This simple analysis is not rich 344 /// enough to track all of these properties and keep it up-to-date as the CFG 345 /// mutates, so we don't allow any of these transformations. 346 /// 347 void JumpThreading::FindLoopHeaders(Function &F) { 348 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 349 FindFunctionBackedges(F, Edges); 350 351 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 352 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 353 } 354 355 /// getKnownConstant - Helper method to determine if we can thread over a 356 /// terminator with the given value as its condition, and if so what value to 357 /// use for that. What kind of value this is depends on whether we want an 358 /// integer or a block address, but an undef is always accepted. 359 /// Returns null if Val is null or not an appropriate constant. 360 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 361 if (!Val) 362 return nullptr; 363 364 // Undef is "known" enough. 365 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 366 return U; 367 368 if (Preference == WantBlockAddress) 369 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 370 371 return dyn_cast<ConstantInt>(Val); 372 } 373 374 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 375 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 376 /// in any of our predecessors. If so, return the known list of value and pred 377 /// BB in the result vector. 378 /// 379 /// This returns true if there were any known values. 380 /// 381 bool JumpThreading:: 382 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result, 383 ConstantPreference Preference, 384 Instruction *CxtI) { 385 // This method walks up use-def chains recursively. Because of this, we could 386 // get into an infinite loop going around loops in the use-def chain. To 387 // prevent this, keep track of what (value, block) pairs we've already visited 388 // and terminate the search if we loop back to them 389 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 390 return false; 391 392 // An RAII help to remove this pair from the recursion set once the recursion 393 // stack pops back out again. 394 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 395 396 // If V is a constant, then it is known in all predecessors. 397 if (Constant *KC = getKnownConstant(V, Preference)) { 398 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 399 Result.push_back(std::make_pair(KC, *PI)); 400 401 return true; 402 } 403 404 // If V is a non-instruction value, or an instruction in a different block, 405 // then it can't be derived from a PHI. 406 Instruction *I = dyn_cast<Instruction>(V); 407 if (!I || I->getParent() != BB) { 408 409 // Okay, if this is a live-in value, see if it has a known value at the end 410 // of any of our predecessors. 411 // 412 // FIXME: This should be an edge property, not a block end property. 413 /// TODO: Per PR2563, we could infer value range information about a 414 /// predecessor based on its terminator. 415 // 416 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 417 // "I" is a non-local compare-with-a-constant instruction. This would be 418 // able to handle value inequalities better, for example if the compare is 419 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 420 // Perhaps getConstantOnEdge should be smart enough to do this? 421 422 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 423 BasicBlock *P = *PI; 424 // If the value is known by LazyValueInfo to be a constant in a 425 // predecessor, use that information to try to thread this block. 426 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 427 if (Constant *KC = getKnownConstant(PredCst, Preference)) 428 Result.push_back(std::make_pair(KC, P)); 429 } 430 431 return !Result.empty(); 432 } 433 434 /// If I is a PHI node, then we know the incoming values for any constants. 435 if (PHINode *PN = dyn_cast<PHINode>(I)) { 436 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 437 Value *InVal = PN->getIncomingValue(i); 438 if (Constant *KC = getKnownConstant(InVal, Preference)) { 439 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 440 } else { 441 Constant *CI = LVI->getConstantOnEdge(InVal, 442 PN->getIncomingBlock(i), 443 BB, CxtI); 444 if (Constant *KC = getKnownConstant(CI, Preference)) 445 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 446 } 447 } 448 449 return !Result.empty(); 450 } 451 452 PredValueInfoTy LHSVals, RHSVals; 453 454 // Handle some boolean conditions. 455 if (I->getType()->getPrimitiveSizeInBits() == 1) { 456 assert(Preference == WantInteger && "One-bit non-integer type?"); 457 // X | true -> true 458 // X & false -> false 459 if (I->getOpcode() == Instruction::Or || 460 I->getOpcode() == Instruction::And) { 461 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 462 WantInteger, CxtI); 463 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 464 WantInteger, CxtI); 465 466 if (LHSVals.empty() && RHSVals.empty()) 467 return false; 468 469 ConstantInt *InterestingVal; 470 if (I->getOpcode() == Instruction::Or) 471 InterestingVal = ConstantInt::getTrue(I->getContext()); 472 else 473 InterestingVal = ConstantInt::getFalse(I->getContext()); 474 475 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 476 477 // Scan for the sentinel. If we find an undef, force it to the 478 // interesting value: x|undef -> true and x&undef -> false. 479 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 480 if (LHSVals[i].first == InterestingVal || 481 isa<UndefValue>(LHSVals[i].first)) { 482 Result.push_back(LHSVals[i]); 483 Result.back().first = InterestingVal; 484 LHSKnownBBs.insert(LHSVals[i].second); 485 } 486 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 487 if (RHSVals[i].first == InterestingVal || 488 isa<UndefValue>(RHSVals[i].first)) { 489 // If we already inferred a value for this block on the LHS, don't 490 // re-add it. 491 if (!LHSKnownBBs.count(RHSVals[i].second)) { 492 Result.push_back(RHSVals[i]); 493 Result.back().first = InterestingVal; 494 } 495 } 496 497 return !Result.empty(); 498 } 499 500 // Handle the NOT form of XOR. 501 if (I->getOpcode() == Instruction::Xor && 502 isa<ConstantInt>(I->getOperand(1)) && 503 cast<ConstantInt>(I->getOperand(1))->isOne()) { 504 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 505 WantInteger, CxtI); 506 if (Result.empty()) 507 return false; 508 509 // Invert the known values. 510 for (unsigned i = 0, e = Result.size(); i != e; ++i) 511 Result[i].first = ConstantExpr::getNot(Result[i].first); 512 513 return true; 514 } 515 516 // Try to simplify some other binary operator values. 517 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 518 assert(Preference != WantBlockAddress 519 && "A binary operator creating a block address?"); 520 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 521 PredValueInfoTy LHSVals; 522 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 523 WantInteger, CxtI); 524 525 // Try to use constant folding to simplify the binary operator. 526 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 527 Constant *V = LHSVals[i].first; 528 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 529 530 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 531 Result.push_back(std::make_pair(KC, LHSVals[i].second)); 532 } 533 } 534 535 return !Result.empty(); 536 } 537 538 // Handle compare with phi operand, where the PHI is defined in this block. 539 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 540 assert(Preference == WantInteger && "Compares only produce integers"); 541 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 542 if (PN && PN->getParent() == BB) { 543 const DataLayout &DL = PN->getModule()->getDataLayout(); 544 // We can do this simplification if any comparisons fold to true or false. 545 // See if any do. 546 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 547 BasicBlock *PredBB = PN->getIncomingBlock(i); 548 Value *LHS = PN->getIncomingValue(i); 549 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 550 551 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL); 552 if (!Res) { 553 if (!isa<Constant>(RHS)) 554 continue; 555 556 LazyValueInfo::Tristate 557 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 558 cast<Constant>(RHS), PredBB, BB, 559 CxtI ? CxtI : Cmp); 560 if (ResT == LazyValueInfo::Unknown) 561 continue; 562 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 563 } 564 565 if (Constant *KC = getKnownConstant(Res, WantInteger)) 566 Result.push_back(std::make_pair(KC, PredBB)); 567 } 568 569 return !Result.empty(); 570 } 571 572 // If comparing a live-in value against a constant, see if we know the 573 // live-in value on any predecessors. 574 if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) { 575 if (!isa<Instruction>(Cmp->getOperand(0)) || 576 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) { 577 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 578 579 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){ 580 BasicBlock *P = *PI; 581 // If the value is known by LazyValueInfo to be a constant in a 582 // predecessor, use that information to try to thread this block. 583 LazyValueInfo::Tristate Res = 584 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 585 RHSCst, P, BB, CxtI ? CxtI : Cmp); 586 if (Res == LazyValueInfo::Unknown) 587 continue; 588 589 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 590 Result.push_back(std::make_pair(ResC, P)); 591 } 592 593 return !Result.empty(); 594 } 595 596 // Try to find a constant value for the LHS of a comparison, 597 // and evaluate it statically if we can. 598 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) { 599 PredValueInfoTy LHSVals; 600 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 601 WantInteger, CxtI); 602 603 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 604 Constant *V = LHSVals[i].first; 605 Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(), 606 V, CmpConst); 607 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 608 Result.push_back(std::make_pair(KC, LHSVals[i].second)); 609 } 610 611 return !Result.empty(); 612 } 613 } 614 } 615 616 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 617 // Handle select instructions where at least one operand is a known constant 618 // and we can figure out the condition value for any predecessor block. 619 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 620 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 621 PredValueInfoTy Conds; 622 if ((TrueVal || FalseVal) && 623 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 624 WantInteger, CxtI)) { 625 for (unsigned i = 0, e = Conds.size(); i != e; ++i) { 626 Constant *Cond = Conds[i].first; 627 628 // Figure out what value to use for the condition. 629 bool KnownCond; 630 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 631 // A known boolean. 632 KnownCond = CI->isOne(); 633 } else { 634 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 635 // Either operand will do, so be sure to pick the one that's a known 636 // constant. 637 // FIXME: Do this more cleverly if both values are known constants? 638 KnownCond = (TrueVal != nullptr); 639 } 640 641 // See if the select has a known constant value for this predecessor. 642 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 643 Result.push_back(std::make_pair(Val, Conds[i].second)); 644 } 645 646 return !Result.empty(); 647 } 648 } 649 650 // If all else fails, see if LVI can figure out a constant value for us. 651 Constant *CI = LVI->getConstant(V, BB, CxtI); 652 if (Constant *KC = getKnownConstant(CI, Preference)) { 653 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 654 Result.push_back(std::make_pair(KC, *PI)); 655 } 656 657 return !Result.empty(); 658 } 659 660 661 662 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 663 /// in an undefined jump, decide which block is best to revector to. 664 /// 665 /// Since we can pick an arbitrary destination, we pick the successor with the 666 /// fewest predecessors. This should reduce the in-degree of the others. 667 /// 668 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 669 TerminatorInst *BBTerm = BB->getTerminator(); 670 unsigned MinSucc = 0; 671 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 672 // Compute the successor with the minimum number of predecessors. 673 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 674 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 675 TestBB = BBTerm->getSuccessor(i); 676 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 677 if (NumPreds < MinNumPreds) { 678 MinSucc = i; 679 MinNumPreds = NumPreds; 680 } 681 } 682 683 return MinSucc; 684 } 685 686 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 687 if (!BB->hasAddressTaken()) return false; 688 689 // If the block has its address taken, it may be a tree of dead constants 690 // hanging off of it. These shouldn't keep the block alive. 691 BlockAddress *BA = BlockAddress::get(BB); 692 BA->removeDeadConstantUsers(); 693 return !BA->use_empty(); 694 } 695 696 /// ProcessBlock - If there are any predecessors whose control can be threaded 697 /// through to a successor, transform them now. 698 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 699 // If the block is trivially dead, just return and let the caller nuke it. 700 // This simplifies other transformations. 701 if (pred_empty(BB) && 702 BB != &BB->getParent()->getEntryBlock()) 703 return false; 704 705 // If this block has a single predecessor, and if that pred has a single 706 // successor, merge the blocks. This encourages recursive jump threading 707 // because now the condition in this block can be threaded through 708 // predecessors of our predecessor block. 709 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 710 const TerminatorInst *TI = SinglePred->getTerminator(); 711 if (!TI->isExceptional() && TI->getNumSuccessors() == 1 && 712 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 713 // If SinglePred was a loop header, BB becomes one. 714 if (LoopHeaders.erase(SinglePred)) 715 LoopHeaders.insert(BB); 716 717 LVI->eraseBlock(SinglePred); 718 MergeBasicBlockIntoOnlyPred(BB); 719 720 return true; 721 } 722 } 723 724 // What kind of constant we're looking for. 725 ConstantPreference Preference = WantInteger; 726 727 // Look to see if the terminator is a conditional branch, switch or indirect 728 // branch, if not we can't thread it. 729 Value *Condition; 730 Instruction *Terminator = BB->getTerminator(); 731 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 732 // Can't thread an unconditional jump. 733 if (BI->isUnconditional()) return false; 734 Condition = BI->getCondition(); 735 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 736 Condition = SI->getCondition(); 737 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 738 // Can't thread indirect branch with no successors. 739 if (IB->getNumSuccessors() == 0) return false; 740 Condition = IB->getAddress()->stripPointerCasts(); 741 Preference = WantBlockAddress; 742 } else { 743 return false; // Must be an invoke. 744 } 745 746 // Run constant folding to see if we can reduce the condition to a simple 747 // constant. 748 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 749 Value *SimpleVal = 750 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 751 if (SimpleVal) { 752 I->replaceAllUsesWith(SimpleVal); 753 I->eraseFromParent(); 754 Condition = SimpleVal; 755 } 756 } 757 758 // If the terminator is branching on an undef, we can pick any of the 759 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 760 if (isa<UndefValue>(Condition)) { 761 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 762 763 // Fold the branch/switch. 764 TerminatorInst *BBTerm = BB->getTerminator(); 765 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 766 if (i == BestSucc) continue; 767 BBTerm->getSuccessor(i)->removePredecessor(BB, true); 768 } 769 770 DEBUG(dbgs() << " In block '" << BB->getName() 771 << "' folding undef terminator: " << *BBTerm << '\n'); 772 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 773 BBTerm->eraseFromParent(); 774 return true; 775 } 776 777 // If the terminator of this block is branching on a constant, simplify the 778 // terminator to an unconditional branch. This can occur due to threading in 779 // other blocks. 780 if (getKnownConstant(Condition, Preference)) { 781 DEBUG(dbgs() << " In block '" << BB->getName() 782 << "' folding terminator: " << *BB->getTerminator() << '\n'); 783 ++NumFolds; 784 ConstantFoldTerminator(BB, true); 785 return true; 786 } 787 788 Instruction *CondInst = dyn_cast<Instruction>(Condition); 789 790 // All the rest of our checks depend on the condition being an instruction. 791 if (!CondInst) { 792 // FIXME: Unify this with code below. 793 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 794 return true; 795 return false; 796 } 797 798 799 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 800 // If we're branching on a conditional, LVI might be able to determine 801 // it's value at the branch instruction. We only handle comparisons 802 // against a constant at this time. 803 // TODO: This should be extended to handle switches as well. 804 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 805 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 806 if (CondBr && CondConst && CondBr->isConditional()) { 807 LazyValueInfo::Tristate Ret = 808 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 809 CondConst, CondBr); 810 if (Ret != LazyValueInfo::Unknown) { 811 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 812 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 813 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 814 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 815 CondBr->eraseFromParent(); 816 if (CondCmp->use_empty()) 817 CondCmp->eraseFromParent(); 818 else if (CondCmp->getParent() == BB) { 819 // If the fact we just learned is true for all uses of the 820 // condition, replace it with a constant value 821 auto *CI = Ret == LazyValueInfo::True ? 822 ConstantInt::getTrue(CondCmp->getType()) : 823 ConstantInt::getFalse(CondCmp->getType()); 824 CondCmp->replaceAllUsesWith(CI); 825 CondCmp->eraseFromParent(); 826 } 827 return true; 828 } 829 } 830 831 if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB)) 832 return true; 833 } 834 835 // Check for some cases that are worth simplifying. Right now we want to look 836 // for loads that are used by a switch or by the condition for the branch. If 837 // we see one, check to see if it's partially redundant. If so, insert a PHI 838 // which can then be used to thread the values. 839 // 840 Value *SimplifyValue = CondInst; 841 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 842 if (isa<Constant>(CondCmp->getOperand(1))) 843 SimplifyValue = CondCmp->getOperand(0); 844 845 // TODO: There are other places where load PRE would be profitable, such as 846 // more complex comparisons. 847 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 848 if (SimplifyPartiallyRedundantLoad(LI)) 849 return true; 850 851 852 // Handle a variety of cases where we are branching on something derived from 853 // a PHI node in the current block. If we can prove that any predecessors 854 // compute a predictable value based on a PHI node, thread those predecessors. 855 // 856 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 857 return true; 858 859 // If this is an otherwise-unfoldable branch on a phi node in the current 860 // block, see if we can simplify. 861 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 862 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 863 return ProcessBranchOnPHI(PN); 864 865 866 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 867 if (CondInst->getOpcode() == Instruction::Xor && 868 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 869 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 870 871 872 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 873 // "(X == 4)", thread through this block. 874 875 return false; 876 } 877 878 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 879 /// load instruction, eliminate it by replacing it with a PHI node. This is an 880 /// important optimization that encourages jump threading, and needs to be run 881 /// interlaced with other jump threading tasks. 882 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 883 // Don't hack volatile/atomic loads. 884 if (!LI->isSimple()) return false; 885 886 // If the load is defined in a block with exactly one predecessor, it can't be 887 // partially redundant. 888 BasicBlock *LoadBB = LI->getParent(); 889 if (LoadBB->getSinglePredecessor()) 890 return false; 891 892 // If the load is defined in an EH pad, it can't be partially redundant, 893 // because the edges between the invoke and the EH pad cannot have other 894 // instructions between them. 895 if (LoadBB->isEHPad()) 896 return false; 897 898 Value *LoadedPtr = LI->getOperand(0); 899 900 // If the loaded operand is defined in the LoadBB, it can't be available. 901 // TODO: Could do simple PHI translation, that would be fun :) 902 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 903 if (PtrOp->getParent() == LoadBB) 904 return false; 905 906 // Scan a few instructions up from the load, to see if it is obviously live at 907 // the entry to its block. 908 BasicBlock::iterator BBIt(LI); 909 910 if (Value *AvailableVal = 911 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, DefMaxInstsToScan)) { 912 // If the value of the load is locally available within the block, just use 913 // it. This frequently occurs for reg2mem'd allocas. 914 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 915 916 // If the returned value is the load itself, replace with an undef. This can 917 // only happen in dead loops. 918 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 919 if (AvailableVal->getType() != LI->getType()) 920 AvailableVal = 921 CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI); 922 LI->replaceAllUsesWith(AvailableVal); 923 LI->eraseFromParent(); 924 return true; 925 } 926 927 // Otherwise, if we scanned the whole block and got to the top of the block, 928 // we know the block is locally transparent to the load. If not, something 929 // might clobber its value. 930 if (BBIt != LoadBB->begin()) 931 return false; 932 933 // If all of the loads and stores that feed the value have the same AA tags, 934 // then we can propagate them onto any newly inserted loads. 935 AAMDNodes AATags; 936 LI->getAAMetadata(AATags); 937 938 SmallPtrSet<BasicBlock*, 8> PredsScanned; 939 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 940 AvailablePredsTy AvailablePreds; 941 BasicBlock *OneUnavailablePred = nullptr; 942 943 // If we got here, the loaded value is transparent through to the start of the 944 // block. Check to see if it is available in any of the predecessor blocks. 945 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 946 PI != PE; ++PI) { 947 BasicBlock *PredBB = *PI; 948 949 // If we already scanned this predecessor, skip it. 950 if (!PredsScanned.insert(PredBB).second) 951 continue; 952 953 // Scan the predecessor to see if the value is available in the pred. 954 BBIt = PredBB->end(); 955 AAMDNodes ThisAATags; 956 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 957 DefMaxInstsToScan, 958 nullptr, &ThisAATags); 959 if (!PredAvailable) { 960 OneUnavailablePred = PredBB; 961 continue; 962 } 963 964 // If AA tags disagree or are not present, forget about them. 965 if (AATags != ThisAATags) AATags = AAMDNodes(); 966 967 // If so, this load is partially redundant. Remember this info so that we 968 // can create a PHI node. 969 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 970 } 971 972 // If the loaded value isn't available in any predecessor, it isn't partially 973 // redundant. 974 if (AvailablePreds.empty()) return false; 975 976 // Okay, the loaded value is available in at least one (and maybe all!) 977 // predecessors. If the value is unavailable in more than one unique 978 // predecessor, we want to insert a merge block for those common predecessors. 979 // This ensures that we only have to insert one reload, thus not increasing 980 // code size. 981 BasicBlock *UnavailablePred = nullptr; 982 983 // If there is exactly one predecessor where the value is unavailable, the 984 // already computed 'OneUnavailablePred' block is it. If it ends in an 985 // unconditional branch, we know that it isn't a critical edge. 986 if (PredsScanned.size() == AvailablePreds.size()+1 && 987 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 988 UnavailablePred = OneUnavailablePred; 989 } else if (PredsScanned.size() != AvailablePreds.size()) { 990 // Otherwise, we had multiple unavailable predecessors or we had a critical 991 // edge from the one. 992 SmallVector<BasicBlock*, 8> PredsToSplit; 993 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 994 995 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 996 AvailablePredSet.insert(AvailablePreds[i].first); 997 998 // Add all the unavailable predecessors to the PredsToSplit list. 999 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 1000 PI != PE; ++PI) { 1001 BasicBlock *P = *PI; 1002 // If the predecessor is an indirect goto, we can't split the edge. 1003 if (isa<IndirectBrInst>(P->getTerminator())) 1004 return false; 1005 1006 if (!AvailablePredSet.count(P)) 1007 PredsToSplit.push_back(P); 1008 } 1009 1010 // Split them out to their own block. 1011 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1012 } 1013 1014 // If the value isn't available in all predecessors, then there will be 1015 // exactly one where it isn't available. Insert a load on that edge and add 1016 // it to the AvailablePreds list. 1017 if (UnavailablePred) { 1018 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1019 "Can't handle critical edge here!"); 1020 LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, 1021 LI->getAlignment(), 1022 UnavailablePred->getTerminator()); 1023 NewVal->setDebugLoc(LI->getDebugLoc()); 1024 if (AATags) 1025 NewVal->setAAMetadata(AATags); 1026 1027 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1028 } 1029 1030 // Now we know that each predecessor of this block has a value in 1031 // AvailablePreds, sort them for efficient access as we're walking the preds. 1032 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1033 1034 // Create a PHI node at the start of the block for the PRE'd load value. 1035 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1036 PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "", 1037 &LoadBB->front()); 1038 PN->takeName(LI); 1039 PN->setDebugLoc(LI->getDebugLoc()); 1040 1041 // Insert new entries into the PHI for each predecessor. A single block may 1042 // have multiple entries here. 1043 for (pred_iterator PI = PB; PI != PE; ++PI) { 1044 BasicBlock *P = *PI; 1045 AvailablePredsTy::iterator I = 1046 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1047 std::make_pair(P, (Value*)nullptr)); 1048 1049 assert(I != AvailablePreds.end() && I->first == P && 1050 "Didn't find entry for predecessor!"); 1051 1052 // If we have an available predecessor but it requires casting, insert the 1053 // cast in the predecessor and use the cast. Note that we have to update the 1054 // AvailablePreds vector as we go so that all of the PHI entries for this 1055 // predecessor use the same bitcast. 1056 Value *&PredV = I->second; 1057 if (PredV->getType() != LI->getType()) 1058 PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "", 1059 P->getTerminator()); 1060 1061 PN->addIncoming(PredV, I->first); 1062 } 1063 1064 //cerr << "PRE: " << *LI << *PN << "\n"; 1065 1066 LI->replaceAllUsesWith(PN); 1067 LI->eraseFromParent(); 1068 1069 return true; 1070 } 1071 1072 /// FindMostPopularDest - The specified list contains multiple possible 1073 /// threadable destinations. Pick the one that occurs the most frequently in 1074 /// the list. 1075 static BasicBlock * 1076 FindMostPopularDest(BasicBlock *BB, 1077 const SmallVectorImpl<std::pair<BasicBlock*, 1078 BasicBlock*> > &PredToDestList) { 1079 assert(!PredToDestList.empty()); 1080 1081 // Determine popularity. If there are multiple possible destinations, we 1082 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1083 // blocks with known and real destinations to threading undef. We'll handle 1084 // them later if interesting. 1085 DenseMap<BasicBlock*, unsigned> DestPopularity; 1086 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1087 if (PredToDestList[i].second) 1088 DestPopularity[PredToDestList[i].second]++; 1089 1090 // Find the most popular dest. 1091 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1092 BasicBlock *MostPopularDest = DPI->first; 1093 unsigned Popularity = DPI->second; 1094 SmallVector<BasicBlock*, 4> SamePopularity; 1095 1096 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1097 // If the popularity of this entry isn't higher than the popularity we've 1098 // seen so far, ignore it. 1099 if (DPI->second < Popularity) 1100 ; // ignore. 1101 else if (DPI->second == Popularity) { 1102 // If it is the same as what we've seen so far, keep track of it. 1103 SamePopularity.push_back(DPI->first); 1104 } else { 1105 // If it is more popular, remember it. 1106 SamePopularity.clear(); 1107 MostPopularDest = DPI->first; 1108 Popularity = DPI->second; 1109 } 1110 } 1111 1112 // Okay, now we know the most popular destination. If there is more than one 1113 // destination, we need to determine one. This is arbitrary, but we need 1114 // to make a deterministic decision. Pick the first one that appears in the 1115 // successor list. 1116 if (!SamePopularity.empty()) { 1117 SamePopularity.push_back(MostPopularDest); 1118 TerminatorInst *TI = BB->getTerminator(); 1119 for (unsigned i = 0; ; ++i) { 1120 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1121 1122 if (std::find(SamePopularity.begin(), SamePopularity.end(), 1123 TI->getSuccessor(i)) == SamePopularity.end()) 1124 continue; 1125 1126 MostPopularDest = TI->getSuccessor(i); 1127 break; 1128 } 1129 } 1130 1131 // Okay, we have finally picked the most popular destination. 1132 return MostPopularDest; 1133 } 1134 1135 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1136 ConstantPreference Preference, 1137 Instruction *CxtI) { 1138 // If threading this would thread across a loop header, don't even try to 1139 // thread the edge. 1140 if (LoopHeaders.count(BB)) 1141 return false; 1142 1143 PredValueInfoTy PredValues; 1144 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1145 return false; 1146 1147 assert(!PredValues.empty() && 1148 "ComputeValueKnownInPredecessors returned true with no values"); 1149 1150 DEBUG(dbgs() << "IN BB: " << *BB; 1151 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1152 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1153 << *PredValues[i].first 1154 << " for pred '" << PredValues[i].second->getName() << "'.\n"; 1155 }); 1156 1157 // Decide what we want to thread through. Convert our list of known values to 1158 // a list of known destinations for each pred. This also discards duplicate 1159 // predecessors and keeps track of the undefined inputs (which are represented 1160 // as a null dest in the PredToDestList). 1161 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1162 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1163 1164 BasicBlock *OnlyDest = nullptr; 1165 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1166 1167 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1168 BasicBlock *Pred = PredValues[i].second; 1169 if (!SeenPreds.insert(Pred).second) 1170 continue; // Duplicate predecessor entry. 1171 1172 // If the predecessor ends with an indirect goto, we can't change its 1173 // destination. 1174 if (isa<IndirectBrInst>(Pred->getTerminator())) 1175 continue; 1176 1177 Constant *Val = PredValues[i].first; 1178 1179 BasicBlock *DestBB; 1180 if (isa<UndefValue>(Val)) 1181 DestBB = nullptr; 1182 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1183 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1184 else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1185 DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor(); 1186 } else { 1187 assert(isa<IndirectBrInst>(BB->getTerminator()) 1188 && "Unexpected terminator"); 1189 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1190 } 1191 1192 // If we have exactly one destination, remember it for efficiency below. 1193 if (PredToDestList.empty()) 1194 OnlyDest = DestBB; 1195 else if (OnlyDest != DestBB) 1196 OnlyDest = MultipleDestSentinel; 1197 1198 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1199 } 1200 1201 // If all edges were unthreadable, we fail. 1202 if (PredToDestList.empty()) 1203 return false; 1204 1205 // Determine which is the most common successor. If we have many inputs and 1206 // this block is a switch, we want to start by threading the batch that goes 1207 // to the most popular destination first. If we only know about one 1208 // threadable destination (the common case) we can avoid this. 1209 BasicBlock *MostPopularDest = OnlyDest; 1210 1211 if (MostPopularDest == MultipleDestSentinel) 1212 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1213 1214 // Now that we know what the most popular destination is, factor all 1215 // predecessors that will jump to it into a single predecessor. 1216 SmallVector<BasicBlock*, 16> PredsToFactor; 1217 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1218 if (PredToDestList[i].second == MostPopularDest) { 1219 BasicBlock *Pred = PredToDestList[i].first; 1220 1221 // This predecessor may be a switch or something else that has multiple 1222 // edges to the block. Factor each of these edges by listing them 1223 // according to # occurrences in PredsToFactor. 1224 TerminatorInst *PredTI = Pred->getTerminator(); 1225 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 1226 if (PredTI->getSuccessor(i) == BB) 1227 PredsToFactor.push_back(Pred); 1228 } 1229 1230 // If the threadable edges are branching on an undefined value, we get to pick 1231 // the destination that these predecessors should get to. 1232 if (!MostPopularDest) 1233 MostPopularDest = BB->getTerminator()-> 1234 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1235 1236 // Ok, try to thread it! 1237 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1238 } 1239 1240 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1241 /// a PHI node in the current block. See if there are any simplifications we 1242 /// can do based on inputs to the phi node. 1243 /// 1244 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) { 1245 BasicBlock *BB = PN->getParent(); 1246 1247 // TODO: We could make use of this to do it once for blocks with common PHI 1248 // values. 1249 SmallVector<BasicBlock*, 1> PredBBs; 1250 PredBBs.resize(1); 1251 1252 // If any of the predecessor blocks end in an unconditional branch, we can 1253 // *duplicate* the conditional branch into that block in order to further 1254 // encourage jump threading and to eliminate cases where we have branch on a 1255 // phi of an icmp (branch on icmp is much better). 1256 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1257 BasicBlock *PredBB = PN->getIncomingBlock(i); 1258 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1259 if (PredBr->isUnconditional()) { 1260 PredBBs[0] = PredBB; 1261 // Try to duplicate BB into PredBB. 1262 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1263 return true; 1264 } 1265 } 1266 1267 return false; 1268 } 1269 1270 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1271 /// a xor instruction in the current block. See if there are any 1272 /// simplifications we can do based on inputs to the xor. 1273 /// 1274 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) { 1275 BasicBlock *BB = BO->getParent(); 1276 1277 // If either the LHS or RHS of the xor is a constant, don't do this 1278 // optimization. 1279 if (isa<ConstantInt>(BO->getOperand(0)) || 1280 isa<ConstantInt>(BO->getOperand(1))) 1281 return false; 1282 1283 // If the first instruction in BB isn't a phi, we won't be able to infer 1284 // anything special about any particular predecessor. 1285 if (!isa<PHINode>(BB->front())) 1286 return false; 1287 1288 // If we have a xor as the branch input to this block, and we know that the 1289 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1290 // the condition into the predecessor and fix that value to true, saving some 1291 // logical ops on that path and encouraging other paths to simplify. 1292 // 1293 // This copies something like this: 1294 // 1295 // BB: 1296 // %X = phi i1 [1], [%X'] 1297 // %Y = icmp eq i32 %A, %B 1298 // %Z = xor i1 %X, %Y 1299 // br i1 %Z, ... 1300 // 1301 // Into: 1302 // BB': 1303 // %Y = icmp ne i32 %A, %B 1304 // br i1 %Y, ... 1305 1306 PredValueInfoTy XorOpValues; 1307 bool isLHS = true; 1308 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1309 WantInteger, BO)) { 1310 assert(XorOpValues.empty()); 1311 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1312 WantInteger, BO)) 1313 return false; 1314 isLHS = false; 1315 } 1316 1317 assert(!XorOpValues.empty() && 1318 "ComputeValueKnownInPredecessors returned true with no values"); 1319 1320 // Scan the information to see which is most popular: true or false. The 1321 // predecessors can be of the set true, false, or undef. 1322 unsigned NumTrue = 0, NumFalse = 0; 1323 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1324 if (isa<UndefValue>(XorOpValues[i].first)) 1325 // Ignore undefs for the count. 1326 continue; 1327 if (cast<ConstantInt>(XorOpValues[i].first)->isZero()) 1328 ++NumFalse; 1329 else 1330 ++NumTrue; 1331 } 1332 1333 // Determine which value to split on, true, false, or undef if neither. 1334 ConstantInt *SplitVal = nullptr; 1335 if (NumTrue > NumFalse) 1336 SplitVal = ConstantInt::getTrue(BB->getContext()); 1337 else if (NumTrue != 0 || NumFalse != 0) 1338 SplitVal = ConstantInt::getFalse(BB->getContext()); 1339 1340 // Collect all of the blocks that this can be folded into so that we can 1341 // factor this once and clone it once. 1342 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1343 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1344 if (XorOpValues[i].first != SplitVal && 1345 !isa<UndefValue>(XorOpValues[i].first)) 1346 continue; 1347 1348 BlocksToFoldInto.push_back(XorOpValues[i].second); 1349 } 1350 1351 // If we inferred a value for all of the predecessors, then duplication won't 1352 // help us. However, we can just replace the LHS or RHS with the constant. 1353 if (BlocksToFoldInto.size() == 1354 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1355 if (!SplitVal) { 1356 // If all preds provide undef, just nuke the xor, because it is undef too. 1357 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1358 BO->eraseFromParent(); 1359 } else if (SplitVal->isZero()) { 1360 // If all preds provide 0, replace the xor with the other input. 1361 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1362 BO->eraseFromParent(); 1363 } else { 1364 // If all preds provide 1, set the computed value to 1. 1365 BO->setOperand(!isLHS, SplitVal); 1366 } 1367 1368 return true; 1369 } 1370 1371 // Try to duplicate BB into PredBB. 1372 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1373 } 1374 1375 1376 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1377 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1378 /// NewPred using the entries from OldPred (suitably mapped). 1379 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1380 BasicBlock *OldPred, 1381 BasicBlock *NewPred, 1382 DenseMap<Instruction*, Value*> &ValueMap) { 1383 for (BasicBlock::iterator PNI = PHIBB->begin(); 1384 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1385 // Ok, we have a PHI node. Figure out what the incoming value was for the 1386 // DestBlock. 1387 Value *IV = PN->getIncomingValueForBlock(OldPred); 1388 1389 // Remap the value if necessary. 1390 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1391 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1392 if (I != ValueMap.end()) 1393 IV = I->second; 1394 } 1395 1396 PN->addIncoming(IV, NewPred); 1397 } 1398 } 1399 1400 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1401 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1402 /// across BB. Transform the IR to reflect this change. 1403 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1404 const SmallVectorImpl<BasicBlock*> &PredBBs, 1405 BasicBlock *SuccBB) { 1406 // If threading to the same block as we come from, we would infinite loop. 1407 if (SuccBB == BB) { 1408 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1409 << "' - would thread to self!\n"); 1410 return false; 1411 } 1412 1413 // If threading this would thread across a loop header, don't thread the edge. 1414 // See the comments above FindLoopHeaders for justifications and caveats. 1415 if (LoopHeaders.count(BB)) { 1416 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1417 << "' to dest BB '" << SuccBB->getName() 1418 << "' - it might create an irreducible loop!\n"); 1419 return false; 1420 } 1421 1422 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, BBDupThreshold); 1423 if (JumpThreadCost > BBDupThreshold) { 1424 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1425 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1426 return false; 1427 } 1428 1429 // And finally, do it! Start by factoring the predecessors if needed. 1430 BasicBlock *PredBB; 1431 if (PredBBs.size() == 1) 1432 PredBB = PredBBs[0]; 1433 else { 1434 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1435 << " common predecessors.\n"); 1436 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1437 } 1438 1439 // And finally, do it! 1440 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1441 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1442 << ", across block:\n " 1443 << *BB << "\n"); 1444 1445 LVI->threadEdge(PredBB, BB, SuccBB); 1446 1447 // We are going to have to map operands from the original BB block to the new 1448 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1449 // account for entry from PredBB. 1450 DenseMap<Instruction*, Value*> ValueMapping; 1451 1452 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1453 BB->getName()+".thread", 1454 BB->getParent(), BB); 1455 NewBB->moveAfter(PredBB); 1456 1457 // Set the block frequency of NewBB. 1458 if (HasProfileData) { 1459 auto NewBBFreq = 1460 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 1461 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 1462 } 1463 1464 BasicBlock::iterator BI = BB->begin(); 1465 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1466 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1467 1468 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1469 // mapping and using it to remap operands in the cloned instructions. 1470 for (; !isa<TerminatorInst>(BI); ++BI) { 1471 Instruction *New = BI->clone(); 1472 New->setName(BI->getName()); 1473 NewBB->getInstList().push_back(New); 1474 ValueMapping[&*BI] = New; 1475 1476 // Remap operands to patch up intra-block references. 1477 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1478 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1479 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1480 if (I != ValueMapping.end()) 1481 New->setOperand(i, I->second); 1482 } 1483 } 1484 1485 // We didn't copy the terminator from BB over to NewBB, because there is now 1486 // an unconditional jump to SuccBB. Insert the unconditional jump. 1487 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 1488 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1489 1490 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1491 // PHI nodes for NewBB now. 1492 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1493 1494 // If there were values defined in BB that are used outside the block, then we 1495 // now have to update all uses of the value to use either the original value, 1496 // the cloned value, or some PHI derived value. This can require arbitrary 1497 // PHI insertion, of which we are prepared to do, clean these up now. 1498 SSAUpdater SSAUpdate; 1499 SmallVector<Use*, 16> UsesToRename; 1500 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1501 // Scan all uses of this instruction to see if it is used outside of its 1502 // block, and if so, record them in UsesToRename. 1503 for (Use &U : I->uses()) { 1504 Instruction *User = cast<Instruction>(U.getUser()); 1505 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1506 if (UserPN->getIncomingBlock(U) == BB) 1507 continue; 1508 } else if (User->getParent() == BB) 1509 continue; 1510 1511 UsesToRename.push_back(&U); 1512 } 1513 1514 // If there are no uses outside the block, we're done with this instruction. 1515 if (UsesToRename.empty()) 1516 continue; 1517 1518 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1519 1520 // We found a use of I outside of BB. Rename all uses of I that are outside 1521 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1522 // with the two values we know. 1523 SSAUpdate.Initialize(I->getType(), I->getName()); 1524 SSAUpdate.AddAvailableValue(BB, &*I); 1525 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&*I]); 1526 1527 while (!UsesToRename.empty()) 1528 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1529 DEBUG(dbgs() << "\n"); 1530 } 1531 1532 1533 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1534 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1535 // us to simplify any PHI nodes in BB. 1536 TerminatorInst *PredTerm = PredBB->getTerminator(); 1537 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1538 if (PredTerm->getSuccessor(i) == BB) { 1539 BB->removePredecessor(PredBB, true); 1540 PredTerm->setSuccessor(i, NewBB); 1541 } 1542 1543 // At this point, the IR is fully up to date and consistent. Do a quick scan 1544 // over the new instructions and zap any that are constants or dead. This 1545 // frequently happens because of phi translation. 1546 SimplifyInstructionsInBlock(NewBB, TLI); 1547 1548 // Update the edge weight from BB to SuccBB, which should be less than before. 1549 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 1550 1551 // Threaded an edge! 1552 ++NumThreads; 1553 return true; 1554 } 1555 1556 /// Create a new basic block that will be the predecessor of BB and successor of 1557 /// all blocks in Preds. When profile data is availble, update the frequency of 1558 /// this new block. 1559 BasicBlock *JumpThreading::SplitBlockPreds(BasicBlock *BB, 1560 ArrayRef<BasicBlock *> Preds, 1561 const char *Suffix) { 1562 // Collect the frequencies of all predecessors of BB, which will be used to 1563 // update the edge weight on BB->SuccBB. 1564 BlockFrequency PredBBFreq(0); 1565 if (HasProfileData) 1566 for (auto Pred : Preds) 1567 PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB); 1568 1569 BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix); 1570 1571 // Set the block frequency of the newly created PredBB, which is the sum of 1572 // frequencies of Preds. 1573 if (HasProfileData) 1574 BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency()); 1575 return PredBB; 1576 } 1577 1578 /// Update the block frequency of BB and branch weight and the metadata on the 1579 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 1580 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 1581 void JumpThreading::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 1582 BasicBlock *BB, 1583 BasicBlock *NewBB, 1584 BasicBlock *SuccBB) { 1585 if (!HasProfileData) 1586 return; 1587 1588 assert(BFI && BPI && "BFI & BPI should have been created here"); 1589 1590 // As the edge from PredBB to BB is deleted, we have to update the block 1591 // frequency of BB. 1592 auto BBOrigFreq = BFI->getBlockFreq(BB); 1593 auto NewBBFreq = BFI->getBlockFreq(NewBB); 1594 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 1595 auto BBNewFreq = BBOrigFreq - NewBBFreq; 1596 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 1597 1598 // Collect updated outgoing edges' frequencies from BB and use them to update 1599 // edge weights. 1600 SmallVector<uint64_t, 4> BBSuccFreq; 1601 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I) { 1602 auto SuccFreq = (*I == SuccBB) 1603 ? BB2SuccBBFreq - NewBBFreq 1604 : BBOrigFreq * BPI->getEdgeProbability(BB, *I); 1605 BBSuccFreq.push_back(SuccFreq.getFrequency()); 1606 } 1607 1608 // Normalize edge weights in Weights64 so that the sum of them can fit in 1609 BranchProbability::normalizeEdgeWeights(BBSuccFreq.begin(), BBSuccFreq.end()); 1610 1611 SmallVector<uint32_t, 4> Weights; 1612 for (auto Freq : BBSuccFreq) 1613 Weights.push_back(static_cast<uint32_t>(Freq)); 1614 1615 // Update edge weights in BPI. 1616 for (int I = 0, E = Weights.size(); I < E; I++) 1617 BPI->setEdgeWeight(BB, I, Weights[I]); 1618 1619 if (Weights.size() >= 2) { 1620 auto TI = BB->getTerminator(); 1621 TI->setMetadata( 1622 LLVMContext::MD_prof, 1623 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 1624 } 1625 } 1626 1627 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1628 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1629 /// If we can duplicate the contents of BB up into PredBB do so now, this 1630 /// improves the odds that the branch will be on an analyzable instruction like 1631 /// a compare. 1632 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1633 const SmallVectorImpl<BasicBlock *> &PredBBs) { 1634 assert(!PredBBs.empty() && "Can't handle an empty set"); 1635 1636 // If BB is a loop header, then duplicating this block outside the loop would 1637 // cause us to transform this into an irreducible loop, don't do this. 1638 // See the comments above FindLoopHeaders for justifications and caveats. 1639 if (LoopHeaders.count(BB)) { 1640 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1641 << "' into predecessor block '" << PredBBs[0]->getName() 1642 << "' - it might create an irreducible loop!\n"); 1643 return false; 1644 } 1645 1646 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, BBDupThreshold); 1647 if (DuplicationCost > BBDupThreshold) { 1648 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1649 << "' - Cost is too high: " << DuplicationCost << "\n"); 1650 return false; 1651 } 1652 1653 // And finally, do it! Start by factoring the predecessors if needed. 1654 BasicBlock *PredBB; 1655 if (PredBBs.size() == 1) 1656 PredBB = PredBBs[0]; 1657 else { 1658 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1659 << " common predecessors.\n"); 1660 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1661 } 1662 1663 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1664 // of PredBB. 1665 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1666 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1667 << DuplicationCost << " block is:" << *BB << "\n"); 1668 1669 // Unless PredBB ends with an unconditional branch, split the edge so that we 1670 // can just clone the bits from BB into the end of the new PredBB. 1671 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 1672 1673 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 1674 PredBB = SplitEdge(PredBB, BB); 1675 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1676 } 1677 1678 // We are going to have to map operands from the original BB block into the 1679 // PredBB block. Evaluate PHI nodes in BB. 1680 DenseMap<Instruction*, Value*> ValueMapping; 1681 1682 BasicBlock::iterator BI = BB->begin(); 1683 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1684 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1685 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1686 // mapping and using it to remap operands in the cloned instructions. 1687 for (; BI != BB->end(); ++BI) { 1688 Instruction *New = BI->clone(); 1689 1690 // Remap operands to patch up intra-block references. 1691 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1692 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1693 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1694 if (I != ValueMapping.end()) 1695 New->setOperand(i, I->second); 1696 } 1697 1698 // If this instruction can be simplified after the operands are updated, 1699 // just use the simplified value instead. This frequently happens due to 1700 // phi translation. 1701 if (Value *IV = 1702 SimplifyInstruction(New, BB->getModule()->getDataLayout())) { 1703 delete New; 1704 ValueMapping[&*BI] = IV; 1705 } else { 1706 // Otherwise, insert the new instruction into the block. 1707 New->setName(BI->getName()); 1708 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 1709 ValueMapping[&*BI] = New; 1710 } 1711 } 1712 1713 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1714 // add entries to the PHI nodes for branch from PredBB now. 1715 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1716 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1717 ValueMapping); 1718 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1719 ValueMapping); 1720 1721 // If there were values defined in BB that are used outside the block, then we 1722 // now have to update all uses of the value to use either the original value, 1723 // the cloned value, or some PHI derived value. This can require arbitrary 1724 // PHI insertion, of which we are prepared to do, clean these up now. 1725 SSAUpdater SSAUpdate; 1726 SmallVector<Use*, 16> UsesToRename; 1727 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1728 // Scan all uses of this instruction to see if it is used outside of its 1729 // block, and if so, record them in UsesToRename. 1730 for (Use &U : I->uses()) { 1731 Instruction *User = cast<Instruction>(U.getUser()); 1732 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1733 if (UserPN->getIncomingBlock(U) == BB) 1734 continue; 1735 } else if (User->getParent() == BB) 1736 continue; 1737 1738 UsesToRename.push_back(&U); 1739 } 1740 1741 // If there are no uses outside the block, we're done with this instruction. 1742 if (UsesToRename.empty()) 1743 continue; 1744 1745 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1746 1747 // We found a use of I outside of BB. Rename all uses of I that are outside 1748 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1749 // with the two values we know. 1750 SSAUpdate.Initialize(I->getType(), I->getName()); 1751 SSAUpdate.AddAvailableValue(BB, &*I); 1752 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&*I]); 1753 1754 while (!UsesToRename.empty()) 1755 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1756 DEBUG(dbgs() << "\n"); 1757 } 1758 1759 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1760 // that we nuked. 1761 BB->removePredecessor(PredBB, true); 1762 1763 // Remove the unconditional branch at the end of the PredBB block. 1764 OldPredBranch->eraseFromParent(); 1765 1766 ++NumDupes; 1767 return true; 1768 } 1769 1770 /// TryToUnfoldSelect - Look for blocks of the form 1771 /// bb1: 1772 /// %a = select 1773 /// br bb 1774 /// 1775 /// bb2: 1776 /// %p = phi [%a, %bb] ... 1777 /// %c = icmp %p 1778 /// br i1 %c 1779 /// 1780 /// And expand the select into a branch structure if one of its arms allows %c 1781 /// to be folded. This later enables threading from bb1 over bb2. 1782 bool JumpThreading::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 1783 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1784 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 1785 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 1786 1787 if (!CondBr || !CondBr->isConditional() || !CondLHS || 1788 CondLHS->getParent() != BB) 1789 return false; 1790 1791 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 1792 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 1793 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 1794 1795 // Look if one of the incoming values is a select in the corresponding 1796 // predecessor. 1797 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 1798 continue; 1799 1800 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 1801 if (!PredTerm || !PredTerm->isUnconditional()) 1802 continue; 1803 1804 // Now check if one of the select values would allow us to constant fold the 1805 // terminator in BB. We don't do the transform if both sides fold, those 1806 // cases will be threaded in any case. 1807 LazyValueInfo::Tristate LHSFolds = 1808 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 1809 CondRHS, Pred, BB, CondCmp); 1810 LazyValueInfo::Tristate RHSFolds = 1811 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 1812 CondRHS, Pred, BB, CondCmp); 1813 if ((LHSFolds != LazyValueInfo::Unknown || 1814 RHSFolds != LazyValueInfo::Unknown) && 1815 LHSFolds != RHSFolds) { 1816 // Expand the select. 1817 // 1818 // Pred -- 1819 // | v 1820 // | NewBB 1821 // | | 1822 // |----- 1823 // v 1824 // BB 1825 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 1826 BB->getParent(), BB); 1827 // Move the unconditional branch to NewBB. 1828 PredTerm->removeFromParent(); 1829 NewBB->getInstList().insert(NewBB->end(), PredTerm); 1830 // Create a conditional branch and update PHI nodes. 1831 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 1832 CondLHS->setIncomingValue(I, SI->getFalseValue()); 1833 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 1834 // The select is now dead. 1835 SI->eraseFromParent(); 1836 1837 // Update any other PHI nodes in BB. 1838 for (BasicBlock::iterator BI = BB->begin(); 1839 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 1840 if (Phi != CondLHS) 1841 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 1842 return true; 1843 } 1844 } 1845 return false; 1846 } 1847