1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "jump-threading" 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/IntrinsicInst.h" 17 #include "llvm/LLVMContext.h" 18 #include "llvm/Pass.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LazyValueInfo.h" 21 #include "llvm/Analysis/Loads.h" 22 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 23 #include "llvm/Transforms/Utils/Local.h" 24 #include "llvm/Transforms/Utils/SSAUpdater.h" 25 #include "llvm/Target/TargetData.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ValueHandle.h" 35 #include "llvm/Support/raw_ostream.h" 36 using namespace llvm; 37 38 STATISTIC(NumThreads, "Number of jumps threaded"); 39 STATISTIC(NumFolds, "Number of terminators folded"); 40 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 41 42 static cl::opt<unsigned> 43 Threshold("jump-threading-threshold", 44 cl::desc("Max block size to duplicate for jump threading"), 45 cl::init(6), cl::Hidden); 46 47 // Turn on use of LazyValueInfo. 48 static cl::opt<bool> 49 EnableLVI("enable-jump-threading-lvi", 50 cl::desc("Use LVI for jump threading"), 51 cl::init(true), 52 cl::ReallyHidden); 53 54 55 56 namespace { 57 /// This pass performs 'jump threading', which looks at blocks that have 58 /// multiple predecessors and multiple successors. If one or more of the 59 /// predecessors of the block can be proven to always jump to one of the 60 /// successors, we forward the edge from the predecessor to the successor by 61 /// duplicating the contents of this block. 62 /// 63 /// An example of when this can occur is code like this: 64 /// 65 /// if () { ... 66 /// X = 4; 67 /// } 68 /// if (X < 3) { 69 /// 70 /// In this case, the unconditional branch at the end of the first if can be 71 /// revectored to the false side of the second if. 72 /// 73 class JumpThreading : public FunctionPass { 74 TargetData *TD; 75 LazyValueInfo *LVI; 76 #ifdef NDEBUG 77 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 78 #else 79 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 80 #endif 81 DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet; 82 83 // RAII helper for updating the recursion stack. 84 struct RecursionSetRemover { 85 DenseSet<std::pair<Value*, BasicBlock*> > &TheSet; 86 std::pair<Value*, BasicBlock*> ThePair; 87 88 RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S, 89 std::pair<Value*, BasicBlock*> P) 90 : TheSet(S), ThePair(P) { } 91 92 ~RecursionSetRemover() { 93 TheSet.erase(ThePair); 94 } 95 }; 96 public: 97 static char ID; // Pass identification 98 JumpThreading() : FunctionPass(ID) {} 99 100 bool runOnFunction(Function &F); 101 102 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 103 if (EnableLVI) 104 AU.addRequired<LazyValueInfo>(); 105 } 106 107 void FindLoopHeaders(Function &F); 108 bool ProcessBlock(BasicBlock *BB); 109 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 110 BasicBlock *SuccBB); 111 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 112 const SmallVectorImpl<BasicBlock *> &PredBBs); 113 114 typedef SmallVectorImpl<std::pair<ConstantInt*, 115 BasicBlock*> > PredValueInfo; 116 117 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 118 PredValueInfo &Result); 119 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB); 120 121 122 bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 123 bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 124 125 bool ProcessBranchOnPHI(PHINode *PN); 126 bool ProcessBranchOnXOR(BinaryOperator *BO); 127 128 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 129 }; 130 } 131 132 char JumpThreading::ID = 0; 133 INITIALIZE_PASS(JumpThreading, "jump-threading", 134 "Jump Threading", false, false); 135 136 // Public interface to the Jump Threading pass 137 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); } 138 139 /// runOnFunction - Top level algorithm. 140 /// 141 bool JumpThreading::runOnFunction(Function &F) { 142 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 143 TD = getAnalysisIfAvailable<TargetData>(); 144 LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0; 145 146 FindLoopHeaders(F); 147 148 bool Changed, EverChanged = false; 149 do { 150 Changed = false; 151 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 152 BasicBlock *BB = I; 153 // Thread all of the branches we can over this block. 154 while (ProcessBlock(BB)) 155 Changed = true; 156 157 ++I; 158 159 // If the block is trivially dead, zap it. This eliminates the successor 160 // edges which simplifies the CFG. 161 if (pred_begin(BB) == pred_end(BB) && 162 BB != &BB->getParent()->getEntryBlock()) { 163 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 164 << "' with terminator: " << *BB->getTerminator() << '\n'); 165 LoopHeaders.erase(BB); 166 if (LVI) LVI->eraseBlock(BB); 167 DeleteDeadBlock(BB); 168 Changed = true; 169 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 170 // Can't thread an unconditional jump, but if the block is "almost 171 // empty", we can replace uses of it with uses of the successor and make 172 // this dead. 173 if (BI->isUnconditional() && 174 BB != &BB->getParent()->getEntryBlock()) { 175 BasicBlock::iterator BBI = BB->getFirstNonPHI(); 176 // Ignore dbg intrinsics. 177 while (isa<DbgInfoIntrinsic>(BBI)) 178 ++BBI; 179 // If the terminator is the only non-phi instruction, try to nuke it. 180 if (BBI->isTerminator()) { 181 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 182 // block, we have to make sure it isn't in the LoopHeaders set. We 183 // reinsert afterward if needed. 184 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 185 BasicBlock *Succ = BI->getSuccessor(0); 186 187 // FIXME: It is always conservatively correct to drop the info 188 // for a block even if it doesn't get erased. This isn't totally 189 // awesome, but it allows us to use AssertingVH to prevent nasty 190 // dangling pointer issues within LazyValueInfo. 191 if (LVI) LVI->eraseBlock(BB); 192 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { 193 Changed = true; 194 // If we deleted BB and BB was the header of a loop, then the 195 // successor is now the header of the loop. 196 BB = Succ; 197 } 198 199 if (ErasedFromLoopHeaders) 200 LoopHeaders.insert(BB); 201 } 202 } 203 } 204 } 205 EverChanged |= Changed; 206 } while (Changed); 207 208 LoopHeaders.clear(); 209 return EverChanged; 210 } 211 212 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 213 /// thread across it. 214 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) { 215 /// Ignore PHI nodes, these will be flattened when duplication happens. 216 BasicBlock::const_iterator I = BB->getFirstNonPHI(); 217 218 // FIXME: THREADING will delete values that are just used to compute the 219 // branch, so they shouldn't count against the duplication cost. 220 221 222 // Sum up the cost of each instruction until we get to the terminator. Don't 223 // include the terminator because the copy won't include it. 224 unsigned Size = 0; 225 for (; !isa<TerminatorInst>(I); ++I) { 226 // Debugger intrinsics don't incur code size. 227 if (isa<DbgInfoIntrinsic>(I)) continue; 228 229 // If this is a pointer->pointer bitcast, it is free. 230 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 231 continue; 232 233 // All other instructions count for at least one unit. 234 ++Size; 235 236 // Calls are more expensive. If they are non-intrinsic calls, we model them 237 // as having cost of 4. If they are a non-vector intrinsic, we model them 238 // as having cost of 2 total, and if they are a vector intrinsic, we model 239 // them as having cost 1. 240 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 241 if (!isa<IntrinsicInst>(CI)) 242 Size += 3; 243 else if (!CI->getType()->isVectorTy()) 244 Size += 1; 245 } 246 } 247 248 // Threading through a switch statement is particularly profitable. If this 249 // block ends in a switch, decrease its cost to make it more likely to happen. 250 if (isa<SwitchInst>(I)) 251 Size = Size > 6 ? Size-6 : 0; 252 253 return Size; 254 } 255 256 /// FindLoopHeaders - We do not want jump threading to turn proper loop 257 /// structures into irreducible loops. Doing this breaks up the loop nesting 258 /// hierarchy and pessimizes later transformations. To prevent this from 259 /// happening, we first have to find the loop headers. Here we approximate this 260 /// by finding targets of backedges in the CFG. 261 /// 262 /// Note that there definitely are cases when we want to allow threading of 263 /// edges across a loop header. For example, threading a jump from outside the 264 /// loop (the preheader) to an exit block of the loop is definitely profitable. 265 /// It is also almost always profitable to thread backedges from within the loop 266 /// to exit blocks, and is often profitable to thread backedges to other blocks 267 /// within the loop (forming a nested loop). This simple analysis is not rich 268 /// enough to track all of these properties and keep it up-to-date as the CFG 269 /// mutates, so we don't allow any of these transformations. 270 /// 271 void JumpThreading::FindLoopHeaders(Function &F) { 272 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 273 FindFunctionBackedges(F, Edges); 274 275 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 276 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 277 } 278 279 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 280 /// if we can infer that the value is a known ConstantInt in any of our 281 /// predecessors. If so, return the known list of value and pred BB in the 282 /// result vector. If a value is known to be undef, it is returned as null. 283 /// 284 /// This returns true if there were any known values. 285 /// 286 bool JumpThreading:: 287 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){ 288 // This method walks up use-def chains recursively. Because of this, we could 289 // get into an infinite loop going around loops in the use-def chain. To 290 // prevent this, keep track of what (value, block) pairs we've already visited 291 // and terminate the search if we loop back to them 292 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 293 return false; 294 295 // An RAII help to remove this pair from the recursion set once the recursion 296 // stack pops back out again. 297 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 298 299 // If V is a constantint, then it is known in all predecessors. 300 if (isa<ConstantInt>(V) || isa<UndefValue>(V)) { 301 ConstantInt *CI = dyn_cast<ConstantInt>(V); 302 303 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 304 Result.push_back(std::make_pair(CI, *PI)); 305 306 return true; 307 } 308 309 // If V is a non-instruction value, or an instruction in a different block, 310 // then it can't be derived from a PHI. 311 Instruction *I = dyn_cast<Instruction>(V); 312 if (I == 0 || I->getParent() != BB) { 313 314 // Okay, if this is a live-in value, see if it has a known value at the end 315 // of any of our predecessors. 316 // 317 // FIXME: This should be an edge property, not a block end property. 318 /// TODO: Per PR2563, we could infer value range information about a 319 /// predecessor based on its terminator. 320 // 321 if (LVI) { 322 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 323 // "I" is a non-local compare-with-a-constant instruction. This would be 324 // able to handle value inequalities better, for example if the compare is 325 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 326 // Perhaps getConstantOnEdge should be smart enough to do this? 327 328 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 329 BasicBlock *P = *PI; 330 // If the value is known by LazyValueInfo to be a constant in a 331 // predecessor, use that information to try to thread this block. 332 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB); 333 if (PredCst == 0 || 334 (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst))) 335 continue; 336 337 Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), P)); 338 } 339 340 return !Result.empty(); 341 } 342 343 return false; 344 } 345 346 /// If I is a PHI node, then we know the incoming values for any constants. 347 if (PHINode *PN = dyn_cast<PHINode>(I)) { 348 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 349 Value *InVal = PN->getIncomingValue(i); 350 if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) { 351 ConstantInt *CI = dyn_cast<ConstantInt>(InVal); 352 Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i))); 353 } else if (LVI) { 354 Constant *CI = LVI->getConstantOnEdge(InVal, 355 PN->getIncomingBlock(i), BB); 356 // LVI returns null is no value could be determined. 357 if (!CI) continue; 358 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI)) 359 Result.push_back(std::make_pair(CInt, PN->getIncomingBlock(i))); 360 else if (isa<UndefValue>(CI)) 361 Result.push_back(std::make_pair((ConstantInt*)0, 362 PN->getIncomingBlock(i))); 363 } 364 } 365 366 return !Result.empty(); 367 } 368 369 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals; 370 371 // Handle some boolean conditions. 372 if (I->getType()->getPrimitiveSizeInBits() == 1) { 373 // X | true -> true 374 // X & false -> false 375 if (I->getOpcode() == Instruction::Or || 376 I->getOpcode() == Instruction::And) { 377 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals); 378 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals); 379 380 if (LHSVals.empty() && RHSVals.empty()) 381 return false; 382 383 ConstantInt *InterestingVal; 384 if (I->getOpcode() == Instruction::Or) 385 InterestingVal = ConstantInt::getTrue(I->getContext()); 386 else 387 InterestingVal = ConstantInt::getFalse(I->getContext()); 388 389 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 390 391 // Scan for the sentinel. If we find an undef, force it to the 392 // interesting value: x|undef -> true and x&undef -> false. 393 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 394 if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) { 395 Result.push_back(LHSVals[i]); 396 Result.back().first = InterestingVal; 397 LHSKnownBBs.insert(LHSVals[i].second); 398 } 399 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 400 if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) { 401 // If we already inferred a value for this block on the LHS, don't 402 // re-add it. 403 if (!LHSKnownBBs.count(RHSVals[i].second)) { 404 Result.push_back(RHSVals[i]); 405 Result.back().first = InterestingVal; 406 } 407 } 408 409 return !Result.empty(); 410 } 411 412 // Handle the NOT form of XOR. 413 if (I->getOpcode() == Instruction::Xor && 414 isa<ConstantInt>(I->getOperand(1)) && 415 cast<ConstantInt>(I->getOperand(1))->isOne()) { 416 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result); 417 if (Result.empty()) 418 return false; 419 420 // Invert the known values. 421 for (unsigned i = 0, e = Result.size(); i != e; ++i) 422 if (Result[i].first) 423 Result[i].first = 424 cast<ConstantInt>(ConstantExpr::getNot(Result[i].first)); 425 426 return true; 427 } 428 429 // Try to simplify some other binary operator values. 430 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 431 ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)); 432 if (CI) { 433 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals; 434 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals); 435 436 // Try to use constant folding to simplify the binary operator. 437 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 438 Constant *Folded = 0; 439 if (LHSVals[i].first == 0) { 440 Folded = ConstantExpr::get(BO->getOpcode(), 441 UndefValue::get(BO->getType()), 442 CI); 443 } else { 444 Folded = ConstantExpr::get(BO->getOpcode(), LHSVals[i].first, CI); 445 } 446 447 if (ConstantInt *FoldedCInt = dyn_cast<ConstantInt>(Folded)) 448 Result.push_back(std::make_pair(FoldedCInt, LHSVals[i].second)); 449 else if (isa<UndefValue>(Folded)) 450 Result.push_back(std::make_pair((ConstantInt*)0, LHSVals[i].second)); 451 } 452 } 453 454 return !Result.empty(); 455 } 456 457 // Handle compare with phi operand, where the PHI is defined in this block. 458 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 459 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 460 if (PN && PN->getParent() == BB) { 461 // We can do this simplification if any comparisons fold to true or false. 462 // See if any do. 463 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 464 BasicBlock *PredBB = PN->getIncomingBlock(i); 465 Value *LHS = PN->getIncomingValue(i); 466 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 467 468 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD); 469 if (Res == 0) { 470 if (!LVI || !isa<Constant>(RHS)) 471 continue; 472 473 LazyValueInfo::Tristate 474 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 475 cast<Constant>(RHS), PredBB, BB); 476 if (ResT == LazyValueInfo::Unknown) 477 continue; 478 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 479 } 480 481 if (isa<UndefValue>(Res)) 482 Result.push_back(std::make_pair((ConstantInt*)0, PredBB)); 483 else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res)) 484 Result.push_back(std::make_pair(CI, PredBB)); 485 } 486 487 return !Result.empty(); 488 } 489 490 491 // If comparing a live-in value against a constant, see if we know the 492 // live-in value on any predecessors. 493 if (LVI && isa<Constant>(Cmp->getOperand(1)) && 494 Cmp->getType()->isIntegerTy()) { 495 if (!isa<Instruction>(Cmp->getOperand(0)) || 496 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) { 497 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 498 499 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){ 500 BasicBlock *P = *PI; 501 // If the value is known by LazyValueInfo to be a constant in a 502 // predecessor, use that information to try to thread this block. 503 LazyValueInfo::Tristate Res = 504 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 505 RHSCst, P, BB); 506 if (Res == LazyValueInfo::Unknown) 507 continue; 508 509 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 510 Result.push_back(std::make_pair(cast<ConstantInt>(ResC), P)); 511 } 512 513 return !Result.empty(); 514 } 515 516 // Try to find a constant value for the LHS of a comparison, 517 // and evaluate it statically if we can. 518 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) { 519 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals; 520 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals); 521 522 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 523 Constant * Folded = 0; 524 if (LHSVals[i].first == 0) 525 Folded = ConstantExpr::getCompare(Cmp->getPredicate(), 526 UndefValue::get(CmpConst->getType()), CmpConst); 527 else 528 Folded = ConstantExpr::getCompare(Cmp->getPredicate(), 529 LHSVals[i].first, CmpConst); 530 531 if (ConstantInt *FoldedCInt = dyn_cast<ConstantInt>(Folded)) 532 Result.push_back(std::make_pair(FoldedCInt, LHSVals[i].second)); 533 else if (isa<UndefValue>(Folded)) 534 Result.push_back(std::make_pair((ConstantInt*)0,LHSVals[i].second)); 535 } 536 537 return !Result.empty(); 538 } 539 } 540 } 541 542 if (LVI) { 543 // If all else fails, see if LVI can figure out a constant value for us. 544 Constant *CI = LVI->getConstant(V, BB); 545 ConstantInt *CInt = dyn_cast_or_null<ConstantInt>(CI); 546 if (CInt) { 547 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 548 Result.push_back(std::make_pair(CInt, *PI)); 549 } 550 551 return !Result.empty(); 552 } 553 554 return false; 555 } 556 557 558 559 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 560 /// in an undefined jump, decide which block is best to revector to. 561 /// 562 /// Since we can pick an arbitrary destination, we pick the successor with the 563 /// fewest predecessors. This should reduce the in-degree of the others. 564 /// 565 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 566 TerminatorInst *BBTerm = BB->getTerminator(); 567 unsigned MinSucc = 0; 568 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 569 // Compute the successor with the minimum number of predecessors. 570 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 571 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 572 TestBB = BBTerm->getSuccessor(i); 573 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 574 if (NumPreds < MinNumPreds) 575 MinSucc = i; 576 } 577 578 return MinSucc; 579 } 580 581 /// ProcessBlock - If there are any predecessors whose control can be threaded 582 /// through to a successor, transform them now. 583 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 584 // If the block is trivially dead, just return and let the caller nuke it. 585 // This simplifies other transformations. 586 if (pred_begin(BB) == pred_end(BB) && 587 BB != &BB->getParent()->getEntryBlock()) 588 return false; 589 590 // If this block has a single predecessor, and if that pred has a single 591 // successor, merge the blocks. This encourages recursive jump threading 592 // because now the condition in this block can be threaded through 593 // predecessors of our predecessor block. 594 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 595 if (SinglePred->getTerminator()->getNumSuccessors() == 1 && 596 SinglePred != BB) { 597 // If SinglePred was a loop header, BB becomes one. 598 if (LoopHeaders.erase(SinglePred)) 599 LoopHeaders.insert(BB); 600 601 // Remember if SinglePred was the entry block of the function. If so, we 602 // will need to move BB back to the entry position. 603 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 604 if (LVI) LVI->eraseBlock(SinglePred); 605 MergeBasicBlockIntoOnlyPred(BB); 606 607 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 608 BB->moveBefore(&BB->getParent()->getEntryBlock()); 609 return true; 610 } 611 } 612 613 // Look to see if the terminator is a branch of switch, if not we can't thread 614 // it. 615 Value *Condition; 616 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 617 // Can't thread an unconditional jump. 618 if (BI->isUnconditional()) return false; 619 Condition = BI->getCondition(); 620 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 621 Condition = SI->getCondition(); 622 else 623 return false; // Must be an invoke. 624 625 // If the terminator of this block is branching on a constant, simplify the 626 // terminator to an unconditional branch. This can occur due to threading in 627 // other blocks. 628 if (isa<ConstantInt>(Condition)) { 629 DEBUG(dbgs() << " In block '" << BB->getName() 630 << "' folding terminator: " << *BB->getTerminator() << '\n'); 631 ++NumFolds; 632 ConstantFoldTerminator(BB); 633 return true; 634 } 635 636 // If the terminator is branching on an undef, we can pick any of the 637 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 638 if (isa<UndefValue>(Condition)) { 639 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 640 641 // Fold the branch/switch. 642 TerminatorInst *BBTerm = BB->getTerminator(); 643 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 644 if (i == BestSucc) continue; 645 RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD); 646 } 647 648 DEBUG(dbgs() << " In block '" << BB->getName() 649 << "' folding undef terminator: " << *BBTerm << '\n'); 650 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 651 BBTerm->eraseFromParent(); 652 return true; 653 } 654 655 Instruction *CondInst = dyn_cast<Instruction>(Condition); 656 657 // If the condition is an instruction defined in another block, see if a 658 // predecessor has the same condition: 659 // br COND, BBX, BBY 660 // BBX: 661 // br COND, BBZ, BBW 662 if (!LVI && 663 !Condition->hasOneUse() && // Multiple uses. 664 (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition. 665 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 666 if (isa<BranchInst>(BB->getTerminator())) { 667 for (; PI != E; ++PI) { 668 BasicBlock *P = *PI; 669 if (BranchInst *PBI = dyn_cast<BranchInst>(P->getTerminator())) 670 if (PBI->isConditional() && PBI->getCondition() == Condition && 671 ProcessBranchOnDuplicateCond(P, BB)) 672 return true; 673 } 674 } else { 675 assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator"); 676 for (; PI != E; ++PI) { 677 BasicBlock *P = *PI; 678 if (SwitchInst *PSI = dyn_cast<SwitchInst>(P->getTerminator())) 679 if (PSI->getCondition() == Condition && 680 ProcessSwitchOnDuplicateCond(P, BB)) 681 return true; 682 } 683 } 684 } 685 686 // All the rest of our checks depend on the condition being an instruction. 687 if (CondInst == 0) { 688 // FIXME: Unify this with code below. 689 if (LVI && ProcessThreadableEdges(Condition, BB)) 690 return true; 691 return false; 692 } 693 694 695 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 696 if (!LVI && 697 (!isa<PHINode>(CondCmp->getOperand(0)) || 698 cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) { 699 // If we have a comparison, loop over the predecessors to see if there is 700 // a condition with a lexically identical value. 701 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 702 for (; PI != E; ++PI) { 703 BasicBlock *P = *PI; 704 if (BranchInst *PBI = dyn_cast<BranchInst>(P->getTerminator())) 705 if (PBI->isConditional() && P != BB) { 706 if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) { 707 if (CI->getOperand(0) == CondCmp->getOperand(0) && 708 CI->getOperand(1) == CondCmp->getOperand(1) && 709 CI->getPredicate() == CondCmp->getPredicate()) { 710 // TODO: Could handle things like (x != 4) --> (x == 17) 711 if (ProcessBranchOnDuplicateCond(P, BB)) 712 return true; 713 } 714 } 715 } 716 } 717 } 718 719 // For a comparison where the LHS is outside this block, it's possible 720 // that we've branched on it before. Used LVI to see if we can simplify 721 // the branch based on that. 722 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 723 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 724 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 725 if (LVI && CondBr && CondConst && CondBr->isConditional() && PI != PE && 726 (!isa<Instruction>(CondCmp->getOperand(0)) || 727 cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) { 728 // For predecessor edge, determine if the comparison is true or false 729 // on that edge. If they're all true or all false, we can simplify the 730 // branch. 731 // FIXME: We could handle mixed true/false by duplicating code. 732 LazyValueInfo::Tristate Baseline = 733 LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0), 734 CondConst, *PI, BB); 735 if (Baseline != LazyValueInfo::Unknown) { 736 // Check that all remaining incoming values match the first one. 737 while (++PI != PE) { 738 LazyValueInfo::Tristate Ret = LVI->getPredicateOnEdge( 739 CondCmp->getPredicate(), 740 CondCmp->getOperand(0), 741 CondConst, *PI, BB); 742 if (Ret != Baseline) break; 743 } 744 745 // If we terminated early, then one of the values didn't match. 746 if (PI == PE) { 747 unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0; 748 unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1; 749 RemovePredecessorAndSimplify(CondBr->getSuccessor(ToRemove), BB, TD); 750 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 751 CondBr->eraseFromParent(); 752 return true; 753 } 754 } 755 } 756 } 757 758 // Check for some cases that are worth simplifying. Right now we want to look 759 // for loads that are used by a switch or by the condition for the branch. If 760 // we see one, check to see if it's partially redundant. If so, insert a PHI 761 // which can then be used to thread the values. 762 // 763 Value *SimplifyValue = CondInst; 764 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 765 if (isa<Constant>(CondCmp->getOperand(1))) 766 SimplifyValue = CondCmp->getOperand(0); 767 768 // TODO: There are other places where load PRE would be profitable, such as 769 // more complex comparisons. 770 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 771 if (SimplifyPartiallyRedundantLoad(LI)) 772 return true; 773 774 775 // Handle a variety of cases where we are branching on something derived from 776 // a PHI node in the current block. If we can prove that any predecessors 777 // compute a predictable value based on a PHI node, thread those predecessors. 778 // 779 if (ProcessThreadableEdges(CondInst, BB)) 780 return true; 781 782 // If this is an otherwise-unfoldable branch on a phi node in the current 783 // block, see if we can simplify. 784 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 785 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 786 return ProcessBranchOnPHI(PN); 787 788 789 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 790 if (CondInst->getOpcode() == Instruction::Xor && 791 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 792 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 793 794 795 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 796 // "(X == 4)", thread through this block. 797 798 return false; 799 } 800 801 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that 802 /// block that jump on exactly the same condition. This means that we almost 803 /// always know the direction of the edge in the DESTBB: 804 /// PREDBB: 805 /// br COND, DESTBB, BBY 806 /// DESTBB: 807 /// br COND, BBZ, BBW 808 /// 809 /// If DESTBB has multiple predecessors, we can't just constant fold the branch 810 /// in DESTBB, we have to thread over it. 811 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB, 812 BasicBlock *BB) { 813 BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator()); 814 815 // If both successors of PredBB go to DESTBB, we don't know anything. We can 816 // fold the branch to an unconditional one, which allows other recursive 817 // simplifications. 818 bool BranchDir; 819 if (PredBI->getSuccessor(1) != BB) 820 BranchDir = true; 821 else if (PredBI->getSuccessor(0) != BB) 822 BranchDir = false; 823 else { 824 DEBUG(dbgs() << " In block '" << PredBB->getName() 825 << "' folding terminator: " << *PredBB->getTerminator() << '\n'); 826 ++NumFolds; 827 ConstantFoldTerminator(PredBB); 828 return true; 829 } 830 831 BranchInst *DestBI = cast<BranchInst>(BB->getTerminator()); 832 833 // If the dest block has one predecessor, just fix the branch condition to a 834 // constant and fold it. 835 if (BB->getSinglePredecessor()) { 836 DEBUG(dbgs() << " In block '" << BB->getName() 837 << "' folding condition to '" << BranchDir << "': " 838 << *BB->getTerminator() << '\n'); 839 ++NumFolds; 840 Value *OldCond = DestBI->getCondition(); 841 DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 842 BranchDir)); 843 // Delete dead instructions before we fold the branch. Folding the branch 844 // can eliminate edges from the CFG which can end up deleting OldCond. 845 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 846 ConstantFoldTerminator(BB); 847 return true; 848 } 849 850 851 // Next, figure out which successor we are threading to. 852 BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir); 853 854 SmallVector<BasicBlock*, 2> Preds; 855 Preds.push_back(PredBB); 856 857 // Ok, try to thread it! 858 return ThreadEdge(BB, Preds, SuccBB); 859 } 860 861 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that 862 /// block that switch on exactly the same condition. This means that we almost 863 /// always know the direction of the edge in the DESTBB: 864 /// PREDBB: 865 /// switch COND [... DESTBB, BBY ... ] 866 /// DESTBB: 867 /// switch COND [... BBZ, BBW ] 868 /// 869 /// Optimizing switches like this is very important, because simplifycfg builds 870 /// switches out of repeated 'if' conditions. 871 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, 872 BasicBlock *DestBB) { 873 // Can't thread edge to self. 874 if (PredBB == DestBB) 875 return false; 876 877 SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator()); 878 SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator()); 879 880 // There are a variety of optimizations that we can potentially do on these 881 // blocks: we order them from most to least preferable. 882 883 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB 884 // directly to their destination. This does not introduce *any* code size 885 // growth. Skip debug info first. 886 BasicBlock::iterator BBI = DestBB->begin(); 887 while (isa<DbgInfoIntrinsic>(BBI)) 888 BBI++; 889 890 // FIXME: Thread if it just contains a PHI. 891 if (isa<SwitchInst>(BBI)) { 892 bool MadeChange = false; 893 // Ignore the default edge for now. 894 for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) { 895 ConstantInt *DestVal = DestSI->getCaseValue(i); 896 BasicBlock *DestSucc = DestSI->getSuccessor(i); 897 898 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if 899 // PredSI has an explicit case for it. If so, forward. If it is covered 900 // by the default case, we can't update PredSI. 901 unsigned PredCase = PredSI->findCaseValue(DestVal); 902 if (PredCase == 0) continue; 903 904 // If PredSI doesn't go to DestBB on this value, then it won't reach the 905 // case on this condition. 906 if (PredSI->getSuccessor(PredCase) != DestBB && 907 DestSI->getSuccessor(i) != DestBB) 908 continue; 909 910 // Do not forward this if it already goes to this destination, this would 911 // be an infinite loop. 912 if (PredSI->getSuccessor(PredCase) == DestSucc) 913 continue; 914 915 // Otherwise, we're safe to make the change. Make sure that the edge from 916 // DestSI to DestSucc is not critical and has no PHI nodes. 917 DEBUG(dbgs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI); 918 DEBUG(dbgs() << "THROUGH: " << *DestSI); 919 920 // If the destination has PHI nodes, just split the edge for updating 921 // simplicity. 922 if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){ 923 SplitCriticalEdge(DestSI, i, this); 924 DestSucc = DestSI->getSuccessor(i); 925 } 926 FoldSingleEntryPHINodes(DestSucc); 927 PredSI->setSuccessor(PredCase, DestSucc); 928 MadeChange = true; 929 } 930 931 if (MadeChange) 932 return true; 933 } 934 935 return false; 936 } 937 938 939 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 940 /// load instruction, eliminate it by replacing it with a PHI node. This is an 941 /// important optimization that encourages jump threading, and needs to be run 942 /// interlaced with other jump threading tasks. 943 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 944 // Don't hack volatile loads. 945 if (LI->isVolatile()) return false; 946 947 // If the load is defined in a block with exactly one predecessor, it can't be 948 // partially redundant. 949 BasicBlock *LoadBB = LI->getParent(); 950 if (LoadBB->getSinglePredecessor()) 951 return false; 952 953 Value *LoadedPtr = LI->getOperand(0); 954 955 // If the loaded operand is defined in the LoadBB, it can't be available. 956 // TODO: Could do simple PHI translation, that would be fun :) 957 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 958 if (PtrOp->getParent() == LoadBB) 959 return false; 960 961 // Scan a few instructions up from the load, to see if it is obviously live at 962 // the entry to its block. 963 BasicBlock::iterator BBIt = LI; 964 965 if (Value *AvailableVal = 966 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) { 967 // If the value if the load is locally available within the block, just use 968 // it. This frequently occurs for reg2mem'd allocas. 969 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 970 971 // If the returned value is the load itself, replace with an undef. This can 972 // only happen in dead loops. 973 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 974 LI->replaceAllUsesWith(AvailableVal); 975 LI->eraseFromParent(); 976 return true; 977 } 978 979 // Otherwise, if we scanned the whole block and got to the top of the block, 980 // we know the block is locally transparent to the load. If not, something 981 // might clobber its value. 982 if (BBIt != LoadBB->begin()) 983 return false; 984 985 986 SmallPtrSet<BasicBlock*, 8> PredsScanned; 987 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 988 AvailablePredsTy AvailablePreds; 989 BasicBlock *OneUnavailablePred = 0; 990 991 // If we got here, the loaded value is transparent through to the start of the 992 // block. Check to see if it is available in any of the predecessor blocks. 993 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 994 PI != PE; ++PI) { 995 BasicBlock *PredBB = *PI; 996 997 // If we already scanned this predecessor, skip it. 998 if (!PredsScanned.insert(PredBB)) 999 continue; 1000 1001 // Scan the predecessor to see if the value is available in the pred. 1002 BBIt = PredBB->end(); 1003 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6); 1004 if (!PredAvailable) { 1005 OneUnavailablePred = PredBB; 1006 continue; 1007 } 1008 1009 // If so, this load is partially redundant. Remember this info so that we 1010 // can create a PHI node. 1011 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 1012 } 1013 1014 // If the loaded value isn't available in any predecessor, it isn't partially 1015 // redundant. 1016 if (AvailablePreds.empty()) return false; 1017 1018 // Okay, the loaded value is available in at least one (and maybe all!) 1019 // predecessors. If the value is unavailable in more than one unique 1020 // predecessor, we want to insert a merge block for those common predecessors. 1021 // This ensures that we only have to insert one reload, thus not increasing 1022 // code size. 1023 BasicBlock *UnavailablePred = 0; 1024 1025 // If there is exactly one predecessor where the value is unavailable, the 1026 // already computed 'OneUnavailablePred' block is it. If it ends in an 1027 // unconditional branch, we know that it isn't a critical edge. 1028 if (PredsScanned.size() == AvailablePreds.size()+1 && 1029 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1030 UnavailablePred = OneUnavailablePred; 1031 } else if (PredsScanned.size() != AvailablePreds.size()) { 1032 // Otherwise, we had multiple unavailable predecessors or we had a critical 1033 // edge from the one. 1034 SmallVector<BasicBlock*, 8> PredsToSplit; 1035 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1036 1037 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 1038 AvailablePredSet.insert(AvailablePreds[i].first); 1039 1040 // Add all the unavailable predecessors to the PredsToSplit list. 1041 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 1042 PI != PE; ++PI) { 1043 BasicBlock *P = *PI; 1044 // If the predecessor is an indirect goto, we can't split the edge. 1045 if (isa<IndirectBrInst>(P->getTerminator())) 1046 return false; 1047 1048 if (!AvailablePredSet.count(P)) 1049 PredsToSplit.push_back(P); 1050 } 1051 1052 // Split them out to their own block. 1053 UnavailablePred = 1054 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(), 1055 "thread-pre-split", this); 1056 } 1057 1058 // If the value isn't available in all predecessors, then there will be 1059 // exactly one where it isn't available. Insert a load on that edge and add 1060 // it to the AvailablePreds list. 1061 if (UnavailablePred) { 1062 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1063 "Can't handle critical edge here!"); 1064 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, 1065 LI->getAlignment(), 1066 UnavailablePred->getTerminator()); 1067 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1068 } 1069 1070 // Now we know that each predecessor of this block has a value in 1071 // AvailablePreds, sort them for efficient access as we're walking the preds. 1072 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1073 1074 // Create a PHI node at the start of the block for the PRE'd load value. 1075 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin()); 1076 PN->takeName(LI); 1077 1078 // Insert new entries into the PHI for each predecessor. A single block may 1079 // have multiple entries here. 1080 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E; 1081 ++PI) { 1082 BasicBlock *P = *PI; 1083 AvailablePredsTy::iterator I = 1084 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1085 std::make_pair(P, (Value*)0)); 1086 1087 assert(I != AvailablePreds.end() && I->first == P && 1088 "Didn't find entry for predecessor!"); 1089 1090 PN->addIncoming(I->second, I->first); 1091 } 1092 1093 //cerr << "PRE: " << *LI << *PN << "\n"; 1094 1095 LI->replaceAllUsesWith(PN); 1096 LI->eraseFromParent(); 1097 1098 return true; 1099 } 1100 1101 /// FindMostPopularDest - The specified list contains multiple possible 1102 /// threadable destinations. Pick the one that occurs the most frequently in 1103 /// the list. 1104 static BasicBlock * 1105 FindMostPopularDest(BasicBlock *BB, 1106 const SmallVectorImpl<std::pair<BasicBlock*, 1107 BasicBlock*> > &PredToDestList) { 1108 assert(!PredToDestList.empty()); 1109 1110 // Determine popularity. If there are multiple possible destinations, we 1111 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1112 // blocks with known and real destinations to threading undef. We'll handle 1113 // them later if interesting. 1114 DenseMap<BasicBlock*, unsigned> DestPopularity; 1115 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1116 if (PredToDestList[i].second) 1117 DestPopularity[PredToDestList[i].second]++; 1118 1119 // Find the most popular dest. 1120 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1121 BasicBlock *MostPopularDest = DPI->first; 1122 unsigned Popularity = DPI->second; 1123 SmallVector<BasicBlock*, 4> SamePopularity; 1124 1125 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1126 // If the popularity of this entry isn't higher than the popularity we've 1127 // seen so far, ignore it. 1128 if (DPI->second < Popularity) 1129 ; // ignore. 1130 else if (DPI->second == Popularity) { 1131 // If it is the same as what we've seen so far, keep track of it. 1132 SamePopularity.push_back(DPI->first); 1133 } else { 1134 // If it is more popular, remember it. 1135 SamePopularity.clear(); 1136 MostPopularDest = DPI->first; 1137 Popularity = DPI->second; 1138 } 1139 } 1140 1141 // Okay, now we know the most popular destination. If there is more than 1142 // destination, we need to determine one. This is arbitrary, but we need 1143 // to make a deterministic decision. Pick the first one that appears in the 1144 // successor list. 1145 if (!SamePopularity.empty()) { 1146 SamePopularity.push_back(MostPopularDest); 1147 TerminatorInst *TI = BB->getTerminator(); 1148 for (unsigned i = 0; ; ++i) { 1149 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1150 1151 if (std::find(SamePopularity.begin(), SamePopularity.end(), 1152 TI->getSuccessor(i)) == SamePopularity.end()) 1153 continue; 1154 1155 MostPopularDest = TI->getSuccessor(i); 1156 break; 1157 } 1158 } 1159 1160 // Okay, we have finally picked the most popular destination. 1161 return MostPopularDest; 1162 } 1163 1164 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) { 1165 // If threading this would thread across a loop header, don't even try to 1166 // thread the edge. 1167 if (LoopHeaders.count(BB)) 1168 return false; 1169 1170 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues; 1171 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues)) { 1172 return false; 1173 } 1174 assert(!PredValues.empty() && 1175 "ComputeValueKnownInPredecessors returned true with no values"); 1176 1177 DEBUG(dbgs() << "IN BB: " << *BB; 1178 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1179 dbgs() << " BB '" << BB->getName() << "': FOUND condition = "; 1180 if (PredValues[i].first) 1181 dbgs() << *PredValues[i].first; 1182 else 1183 dbgs() << "UNDEF"; 1184 dbgs() << " for pred '" << PredValues[i].second->getName() 1185 << "'.\n"; 1186 }); 1187 1188 // Decide what we want to thread through. Convert our list of known values to 1189 // a list of known destinations for each pred. This also discards duplicate 1190 // predecessors and keeps track of the undefined inputs (which are represented 1191 // as a null dest in the PredToDestList). 1192 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1193 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1194 1195 BasicBlock *OnlyDest = 0; 1196 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1197 1198 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1199 BasicBlock *Pred = PredValues[i].second; 1200 if (!SeenPreds.insert(Pred)) 1201 continue; // Duplicate predecessor entry. 1202 1203 // If the predecessor ends with an indirect goto, we can't change its 1204 // destination. 1205 if (isa<IndirectBrInst>(Pred->getTerminator())) 1206 continue; 1207 1208 ConstantInt *Val = PredValues[i].first; 1209 1210 BasicBlock *DestBB; 1211 if (Val == 0) // Undef. 1212 DestBB = 0; 1213 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1214 DestBB = BI->getSuccessor(Val->isZero()); 1215 else { 1216 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator()); 1217 DestBB = SI->getSuccessor(SI->findCaseValue(Val)); 1218 } 1219 1220 // If we have exactly one destination, remember it for efficiency below. 1221 if (i == 0) 1222 OnlyDest = DestBB; 1223 else if (OnlyDest != DestBB) 1224 OnlyDest = MultipleDestSentinel; 1225 1226 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1227 } 1228 1229 // If all edges were unthreadable, we fail. 1230 if (PredToDestList.empty()) 1231 return false; 1232 1233 // Determine which is the most common successor. If we have many inputs and 1234 // this block is a switch, we want to start by threading the batch that goes 1235 // to the most popular destination first. If we only know about one 1236 // threadable destination (the common case) we can avoid this. 1237 BasicBlock *MostPopularDest = OnlyDest; 1238 1239 if (MostPopularDest == MultipleDestSentinel) 1240 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1241 1242 // Now that we know what the most popular destination is, factor all 1243 // predecessors that will jump to it into a single predecessor. 1244 SmallVector<BasicBlock*, 16> PredsToFactor; 1245 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1246 if (PredToDestList[i].second == MostPopularDest) { 1247 BasicBlock *Pred = PredToDestList[i].first; 1248 1249 // This predecessor may be a switch or something else that has multiple 1250 // edges to the block. Factor each of these edges by listing them 1251 // according to # occurrences in PredsToFactor. 1252 TerminatorInst *PredTI = Pred->getTerminator(); 1253 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 1254 if (PredTI->getSuccessor(i) == BB) 1255 PredsToFactor.push_back(Pred); 1256 } 1257 1258 // If the threadable edges are branching on an undefined value, we get to pick 1259 // the destination that these predecessors should get to. 1260 if (MostPopularDest == 0) 1261 MostPopularDest = BB->getTerminator()-> 1262 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1263 1264 // Ok, try to thread it! 1265 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1266 } 1267 1268 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1269 /// a PHI node in the current block. See if there are any simplifications we 1270 /// can do based on inputs to the phi node. 1271 /// 1272 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) { 1273 BasicBlock *BB = PN->getParent(); 1274 1275 // TODO: We could make use of this to do it once for blocks with common PHI 1276 // values. 1277 SmallVector<BasicBlock*, 1> PredBBs; 1278 PredBBs.resize(1); 1279 1280 // If any of the predecessor blocks end in an unconditional branch, we can 1281 // *duplicate* the conditional branch into that block in order to further 1282 // encourage jump threading and to eliminate cases where we have branch on a 1283 // phi of an icmp (branch on icmp is much better). 1284 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1285 BasicBlock *PredBB = PN->getIncomingBlock(i); 1286 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1287 if (PredBr->isUnconditional()) { 1288 PredBBs[0] = PredBB; 1289 // Try to duplicate BB into PredBB. 1290 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1291 return true; 1292 } 1293 } 1294 1295 return false; 1296 } 1297 1298 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1299 /// a xor instruction in the current block. See if there are any 1300 /// simplifications we can do based on inputs to the xor. 1301 /// 1302 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) { 1303 BasicBlock *BB = BO->getParent(); 1304 1305 // If either the LHS or RHS of the xor is a constant, don't do this 1306 // optimization. 1307 if (isa<ConstantInt>(BO->getOperand(0)) || 1308 isa<ConstantInt>(BO->getOperand(1))) 1309 return false; 1310 1311 // If the first instruction in BB isn't a phi, we won't be able to infer 1312 // anything special about any particular predecessor. 1313 if (!isa<PHINode>(BB->front())) 1314 return false; 1315 1316 // If we have a xor as the branch input to this block, and we know that the 1317 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1318 // the condition into the predecessor and fix that value to true, saving some 1319 // logical ops on that path and encouraging other paths to simplify. 1320 // 1321 // This copies something like this: 1322 // 1323 // BB: 1324 // %X = phi i1 [1], [%X'] 1325 // %Y = icmp eq i32 %A, %B 1326 // %Z = xor i1 %X, %Y 1327 // br i1 %Z, ... 1328 // 1329 // Into: 1330 // BB': 1331 // %Y = icmp ne i32 %A, %B 1332 // br i1 %Z, ... 1333 1334 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> XorOpValues; 1335 bool isLHS = true; 1336 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues)) { 1337 assert(XorOpValues.empty()); 1338 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues)) 1339 return false; 1340 isLHS = false; 1341 } 1342 1343 assert(!XorOpValues.empty() && 1344 "ComputeValueKnownInPredecessors returned true with no values"); 1345 1346 // Scan the information to see which is most popular: true or false. The 1347 // predecessors can be of the set true, false, or undef. 1348 unsigned NumTrue = 0, NumFalse = 0; 1349 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1350 if (!XorOpValues[i].first) continue; // Ignore undefs for the count. 1351 if (XorOpValues[i].first->isZero()) 1352 ++NumFalse; 1353 else 1354 ++NumTrue; 1355 } 1356 1357 // Determine which value to split on, true, false, or undef if neither. 1358 ConstantInt *SplitVal = 0; 1359 if (NumTrue > NumFalse) 1360 SplitVal = ConstantInt::getTrue(BB->getContext()); 1361 else if (NumTrue != 0 || NumFalse != 0) 1362 SplitVal = ConstantInt::getFalse(BB->getContext()); 1363 1364 // Collect all of the blocks that this can be folded into so that we can 1365 // factor this once and clone it once. 1366 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1367 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1368 if (XorOpValues[i].first != SplitVal && XorOpValues[i].first != 0) continue; 1369 1370 BlocksToFoldInto.push_back(XorOpValues[i].second); 1371 } 1372 1373 // If we inferred a value for all of the predecessors, then duplication won't 1374 // help us. However, we can just replace the LHS or RHS with the constant. 1375 if (BlocksToFoldInto.size() == 1376 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1377 if (SplitVal == 0) { 1378 // If all preds provide undef, just nuke the xor, because it is undef too. 1379 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1380 BO->eraseFromParent(); 1381 } else if (SplitVal->isZero()) { 1382 // If all preds provide 0, replace the xor with the other input. 1383 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1384 BO->eraseFromParent(); 1385 } else { 1386 // If all preds provide 1, set the computed value to 1. 1387 BO->setOperand(!isLHS, SplitVal); 1388 } 1389 1390 return true; 1391 } 1392 1393 // Try to duplicate BB into PredBB. 1394 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1395 } 1396 1397 1398 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1399 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1400 /// NewPred using the entries from OldPred (suitably mapped). 1401 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1402 BasicBlock *OldPred, 1403 BasicBlock *NewPred, 1404 DenseMap<Instruction*, Value*> &ValueMap) { 1405 for (BasicBlock::iterator PNI = PHIBB->begin(); 1406 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1407 // Ok, we have a PHI node. Figure out what the incoming value was for the 1408 // DestBlock. 1409 Value *IV = PN->getIncomingValueForBlock(OldPred); 1410 1411 // Remap the value if necessary. 1412 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1413 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1414 if (I != ValueMap.end()) 1415 IV = I->second; 1416 } 1417 1418 PN->addIncoming(IV, NewPred); 1419 } 1420 } 1421 1422 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1423 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1424 /// across BB. Transform the IR to reflect this change. 1425 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1426 const SmallVectorImpl<BasicBlock*> &PredBBs, 1427 BasicBlock *SuccBB) { 1428 // If threading to the same block as we come from, we would infinite loop. 1429 if (SuccBB == BB) { 1430 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1431 << "' - would thread to self!\n"); 1432 return false; 1433 } 1434 1435 // If threading this would thread across a loop header, don't thread the edge. 1436 // See the comments above FindLoopHeaders for justifications and caveats. 1437 if (LoopHeaders.count(BB)) { 1438 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1439 << "' to dest BB '" << SuccBB->getName() 1440 << "' - it might create an irreducible loop!\n"); 1441 return false; 1442 } 1443 1444 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB); 1445 if (JumpThreadCost > Threshold) { 1446 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1447 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1448 return false; 1449 } 1450 1451 // And finally, do it! Start by factoring the predecessors is needed. 1452 BasicBlock *PredBB; 1453 if (PredBBs.size() == 1) 1454 PredBB = PredBBs[0]; 1455 else { 1456 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1457 << " common predecessors.\n"); 1458 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), 1459 ".thr_comm", this); 1460 } 1461 1462 // And finally, do it! 1463 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1464 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1465 << ", across block:\n " 1466 << *BB << "\n"); 1467 1468 if (LVI) 1469 LVI->threadEdge(PredBB, BB, SuccBB); 1470 1471 // We are going to have to map operands from the original BB block to the new 1472 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1473 // account for entry from PredBB. 1474 DenseMap<Instruction*, Value*> ValueMapping; 1475 1476 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1477 BB->getName()+".thread", 1478 BB->getParent(), BB); 1479 NewBB->moveAfter(PredBB); 1480 1481 BasicBlock::iterator BI = BB->begin(); 1482 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1483 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1484 1485 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1486 // mapping and using it to remap operands in the cloned instructions. 1487 for (; !isa<TerminatorInst>(BI); ++BI) { 1488 Instruction *New = BI->clone(); 1489 New->setName(BI->getName()); 1490 NewBB->getInstList().push_back(New); 1491 ValueMapping[BI] = New; 1492 1493 // Remap operands to patch up intra-block references. 1494 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1495 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1496 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1497 if (I != ValueMapping.end()) 1498 New->setOperand(i, I->second); 1499 } 1500 } 1501 1502 // We didn't copy the terminator from BB over to NewBB, because there is now 1503 // an unconditional jump to SuccBB. Insert the unconditional jump. 1504 BranchInst::Create(SuccBB, NewBB); 1505 1506 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1507 // PHI nodes for NewBB now. 1508 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1509 1510 // If there were values defined in BB that are used outside the block, then we 1511 // now have to update all uses of the value to use either the original value, 1512 // the cloned value, or some PHI derived value. This can require arbitrary 1513 // PHI insertion, of which we are prepared to do, clean these up now. 1514 SSAUpdater SSAUpdate; 1515 SmallVector<Use*, 16> UsesToRename; 1516 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1517 // Scan all uses of this instruction to see if it is used outside of its 1518 // block, and if so, record them in UsesToRename. 1519 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1520 ++UI) { 1521 Instruction *User = cast<Instruction>(*UI); 1522 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1523 if (UserPN->getIncomingBlock(UI) == BB) 1524 continue; 1525 } else if (User->getParent() == BB) 1526 continue; 1527 1528 UsesToRename.push_back(&UI.getUse()); 1529 } 1530 1531 // If there are no uses outside the block, we're done with this instruction. 1532 if (UsesToRename.empty()) 1533 continue; 1534 1535 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1536 1537 // We found a use of I outside of BB. Rename all uses of I that are outside 1538 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1539 // with the two values we know. 1540 SSAUpdate.Initialize(I); 1541 SSAUpdate.AddAvailableValue(BB, I); 1542 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); 1543 1544 while (!UsesToRename.empty()) 1545 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1546 DEBUG(dbgs() << "\n"); 1547 } 1548 1549 1550 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1551 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1552 // us to simplify any PHI nodes in BB. 1553 TerminatorInst *PredTerm = PredBB->getTerminator(); 1554 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1555 if (PredTerm->getSuccessor(i) == BB) { 1556 RemovePredecessorAndSimplify(BB, PredBB, TD); 1557 PredTerm->setSuccessor(i, NewBB); 1558 } 1559 1560 // At this point, the IR is fully up to date and consistent. Do a quick scan 1561 // over the new instructions and zap any that are constants or dead. This 1562 // frequently happens because of phi translation. 1563 SimplifyInstructionsInBlock(NewBB, TD); 1564 1565 // Threaded an edge! 1566 ++NumThreads; 1567 return true; 1568 } 1569 1570 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1571 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1572 /// If we can duplicate the contents of BB up into PredBB do so now, this 1573 /// improves the odds that the branch will be on an analyzable instruction like 1574 /// a compare. 1575 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1576 const SmallVectorImpl<BasicBlock *> &PredBBs) { 1577 assert(!PredBBs.empty() && "Can't handle an empty set"); 1578 1579 // If BB is a loop header, then duplicating this block outside the loop would 1580 // cause us to transform this into an irreducible loop, don't do this. 1581 // See the comments above FindLoopHeaders for justifications and caveats. 1582 if (LoopHeaders.count(BB)) { 1583 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1584 << "' into predecessor block '" << PredBBs[0]->getName() 1585 << "' - it might create an irreducible loop!\n"); 1586 return false; 1587 } 1588 1589 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB); 1590 if (DuplicationCost > Threshold) { 1591 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1592 << "' - Cost is too high: " << DuplicationCost << "\n"); 1593 return false; 1594 } 1595 1596 // And finally, do it! Start by factoring the predecessors is needed. 1597 BasicBlock *PredBB; 1598 if (PredBBs.size() == 1) 1599 PredBB = PredBBs[0]; 1600 else { 1601 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1602 << " common predecessors.\n"); 1603 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), 1604 ".thr_comm", this); 1605 } 1606 1607 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1608 // of PredBB. 1609 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1610 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1611 << DuplicationCost << " block is:" << *BB << "\n"); 1612 1613 // Unless PredBB ends with an unconditional branch, split the edge so that we 1614 // can just clone the bits from BB into the end of the new PredBB. 1615 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 1616 1617 if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) { 1618 PredBB = SplitEdge(PredBB, BB, this); 1619 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1620 } 1621 1622 // We are going to have to map operands from the original BB block into the 1623 // PredBB block. Evaluate PHI nodes in BB. 1624 DenseMap<Instruction*, Value*> ValueMapping; 1625 1626 BasicBlock::iterator BI = BB->begin(); 1627 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1628 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1629 1630 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1631 // mapping and using it to remap operands in the cloned instructions. 1632 for (; BI != BB->end(); ++BI) { 1633 Instruction *New = BI->clone(); 1634 1635 // Remap operands to patch up intra-block references. 1636 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1637 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1638 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1639 if (I != ValueMapping.end()) 1640 New->setOperand(i, I->second); 1641 } 1642 1643 // If this instruction can be simplified after the operands are updated, 1644 // just use the simplified value instead. This frequently happens due to 1645 // phi translation. 1646 if (Value *IV = SimplifyInstruction(New, TD)) { 1647 delete New; 1648 ValueMapping[BI] = IV; 1649 } else { 1650 // Otherwise, insert the new instruction into the block. 1651 New->setName(BI->getName()); 1652 PredBB->getInstList().insert(OldPredBranch, New); 1653 ValueMapping[BI] = New; 1654 } 1655 } 1656 1657 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1658 // add entries to the PHI nodes for branch from PredBB now. 1659 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1660 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1661 ValueMapping); 1662 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1663 ValueMapping); 1664 1665 // If there were values defined in BB that are used outside the block, then we 1666 // now have to update all uses of the value to use either the original value, 1667 // the cloned value, or some PHI derived value. This can require arbitrary 1668 // PHI insertion, of which we are prepared to do, clean these up now. 1669 SSAUpdater SSAUpdate; 1670 SmallVector<Use*, 16> UsesToRename; 1671 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1672 // Scan all uses of this instruction to see if it is used outside of its 1673 // block, and if so, record them in UsesToRename. 1674 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1675 ++UI) { 1676 Instruction *User = cast<Instruction>(*UI); 1677 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1678 if (UserPN->getIncomingBlock(UI) == BB) 1679 continue; 1680 } else if (User->getParent() == BB) 1681 continue; 1682 1683 UsesToRename.push_back(&UI.getUse()); 1684 } 1685 1686 // If there are no uses outside the block, we're done with this instruction. 1687 if (UsesToRename.empty()) 1688 continue; 1689 1690 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1691 1692 // We found a use of I outside of BB. Rename all uses of I that are outside 1693 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1694 // with the two values we know. 1695 SSAUpdate.Initialize(I); 1696 SSAUpdate.AddAvailableValue(BB, I); 1697 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); 1698 1699 while (!UsesToRename.empty()) 1700 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1701 DEBUG(dbgs() << "\n"); 1702 } 1703 1704 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1705 // that we nuked. 1706 RemovePredecessorAndSimplify(BB, PredBB, TD); 1707 1708 // Remove the unconditional branch at the end of the PredBB block. 1709 OldPredBranch->eraseFromParent(); 1710 1711 ++NumDupes; 1712 return true; 1713 } 1714 1715 1716