xref: /llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp (revision 6ded69f294a9a62a68b0a07aa987c8165a4b31e7)
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Jump Threading pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Scalar/JumpThreading.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/BlockFrequencyInfo.h"
23 #include "llvm/Analysis/BranchProbabilityInfo.h"
24 #include "llvm/Analysis/CFG.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/DomTreeUpdater.h"
27 #include "llvm/Analysis/GlobalsModRef.h"
28 #include "llvm/Analysis/GuardUtils.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/LazyValueInfo.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/ConstantRange.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/MDBuilder.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/PassManager.h"
53 #include "llvm/IR/PatternMatch.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Use.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/InitializePasses.h"
59 #include "llvm/Pass.h"
60 #include "llvm/Support/BlockFrequency.h"
61 #include "llvm/Support/BranchProbability.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include "llvm/Transforms/Scalar.h"
67 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
68 #include "llvm/Transforms/Utils/Cloning.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include "llvm/Transforms/Utils/SSAUpdater.h"
71 #include "llvm/Transforms/Utils/ValueMapper.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstddef>
75 #include <cstdint>
76 #include <iterator>
77 #include <memory>
78 #include <utility>
79 
80 using namespace llvm;
81 using namespace jumpthreading;
82 
83 #define DEBUG_TYPE "jump-threading"
84 
85 STATISTIC(NumThreads, "Number of jumps threaded");
86 STATISTIC(NumFolds,   "Number of terminators folded");
87 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
88 
89 static cl::opt<unsigned>
90 BBDuplicateThreshold("jump-threading-threshold",
91           cl::desc("Max block size to duplicate for jump threading"),
92           cl::init(6), cl::Hidden);
93 
94 static cl::opt<unsigned>
95 ImplicationSearchThreshold(
96   "jump-threading-implication-search-threshold",
97   cl::desc("The number of predecessors to search for a stronger "
98            "condition to use to thread over a weaker condition"),
99   cl::init(3), cl::Hidden);
100 
101 static cl::opt<bool> PrintLVIAfterJumpThreading(
102     "print-lvi-after-jump-threading",
103     cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
104     cl::Hidden);
105 
106 static cl::opt<bool> ThreadAcrossLoopHeaders(
107     "jump-threading-across-loop-headers",
108     cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
109     cl::init(false), cl::Hidden);
110 
111 
112 namespace {
113 
114   /// This pass performs 'jump threading', which looks at blocks that have
115   /// multiple predecessors and multiple successors.  If one or more of the
116   /// predecessors of the block can be proven to always jump to one of the
117   /// successors, we forward the edge from the predecessor to the successor by
118   /// duplicating the contents of this block.
119   ///
120   /// An example of when this can occur is code like this:
121   ///
122   ///   if () { ...
123   ///     X = 4;
124   ///   }
125   ///   if (X < 3) {
126   ///
127   /// In this case, the unconditional branch at the end of the first if can be
128   /// revectored to the false side of the second if.
129   class JumpThreading : public FunctionPass {
130     JumpThreadingPass Impl;
131 
132   public:
133     static char ID; // Pass identification
134 
135     JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
136       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
137     }
138 
139     bool runOnFunction(Function &F) override;
140 
141     void getAnalysisUsage(AnalysisUsage &AU) const override {
142       AU.addRequired<DominatorTreeWrapperPass>();
143       AU.addPreserved<DominatorTreeWrapperPass>();
144       AU.addRequired<AAResultsWrapperPass>();
145       AU.addRequired<LazyValueInfoWrapperPass>();
146       AU.addPreserved<LazyValueInfoWrapperPass>();
147       AU.addPreserved<GlobalsAAWrapperPass>();
148       AU.addRequired<TargetLibraryInfoWrapperPass>();
149     }
150 
151     void releaseMemory() override { Impl.releaseMemory(); }
152   };
153 
154 } // end anonymous namespace
155 
156 char JumpThreading::ID = 0;
157 
158 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
159                 "Jump Threading", false, false)
160 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
161 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
162 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
163 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
164 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
165                 "Jump Threading", false, false)
166 
167 // Public interface to the Jump Threading pass
168 FunctionPass *llvm::createJumpThreadingPass(int Threshold) {
169   return new JumpThreading(Threshold);
170 }
171 
172 JumpThreadingPass::JumpThreadingPass(int T) {
173   DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
174 }
175 
176 // Update branch probability information according to conditional
177 // branch probability. This is usually made possible for cloned branches
178 // in inline instances by the context specific profile in the caller.
179 // For instance,
180 //
181 //  [Block PredBB]
182 //  [Branch PredBr]
183 //  if (t) {
184 //     Block A;
185 //  } else {
186 //     Block B;
187 //  }
188 //
189 //  [Block BB]
190 //  cond = PN([true, %A], [..., %B]); // PHI node
191 //  [Branch CondBr]
192 //  if (cond) {
193 //    ...  // P(cond == true) = 1%
194 //  }
195 //
196 //  Here we know that when block A is taken, cond must be true, which means
197 //      P(cond == true | A) = 1
198 //
199 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
200 //                               P(cond == true | B) * P(B)
201 //  we get:
202 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
203 //
204 //  which gives us:
205 //     P(A) is less than P(cond == true), i.e.
206 //     P(t == true) <= P(cond == true)
207 //
208 //  In other words, if we know P(cond == true) is unlikely, we know
209 //  that P(t == true) is also unlikely.
210 //
211 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
212   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
213   if (!CondBr)
214     return;
215 
216   BranchProbability BP;
217   uint64_t TrueWeight, FalseWeight;
218   if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
219     return;
220 
221   // Returns the outgoing edge of the dominating predecessor block
222   // that leads to the PhiNode's incoming block:
223   auto GetPredOutEdge =
224       [](BasicBlock *IncomingBB,
225          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
226     auto *PredBB = IncomingBB;
227     auto *SuccBB = PhiBB;
228     SmallPtrSet<BasicBlock *, 16> Visited;
229     while (true) {
230       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
231       if (PredBr && PredBr->isConditional())
232         return {PredBB, SuccBB};
233       Visited.insert(PredBB);
234       auto *SinglePredBB = PredBB->getSinglePredecessor();
235       if (!SinglePredBB)
236         return {nullptr, nullptr};
237 
238       // Stop searching when SinglePredBB has been visited. It means we see
239       // an unreachable loop.
240       if (Visited.count(SinglePredBB))
241         return {nullptr, nullptr};
242 
243       SuccBB = PredBB;
244       PredBB = SinglePredBB;
245     }
246   };
247 
248   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
249     Value *PhiOpnd = PN->getIncomingValue(i);
250     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
251 
252     if (!CI || !CI->getType()->isIntegerTy(1))
253       continue;
254 
255     BP = (CI->isOne() ? BranchProbability::getBranchProbability(
256                             TrueWeight, TrueWeight + FalseWeight)
257                       : BranchProbability::getBranchProbability(
258                             FalseWeight, TrueWeight + FalseWeight));
259 
260     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
261     if (!PredOutEdge.first)
262       return;
263 
264     BasicBlock *PredBB = PredOutEdge.first;
265     BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
266     if (!PredBr)
267       return;
268 
269     uint64_t PredTrueWeight, PredFalseWeight;
270     // FIXME: We currently only set the profile data when it is missing.
271     // With PGO, this can be used to refine even existing profile data with
272     // context information. This needs to be done after more performance
273     // testing.
274     if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
275       continue;
276 
277     // We can not infer anything useful when BP >= 50%, because BP is the
278     // upper bound probability value.
279     if (BP >= BranchProbability(50, 100))
280       continue;
281 
282     SmallVector<uint32_t, 2> Weights;
283     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
284       Weights.push_back(BP.getNumerator());
285       Weights.push_back(BP.getCompl().getNumerator());
286     } else {
287       Weights.push_back(BP.getCompl().getNumerator());
288       Weights.push_back(BP.getNumerator());
289     }
290     PredBr->setMetadata(LLVMContext::MD_prof,
291                         MDBuilder(PredBr->getParent()->getContext())
292                             .createBranchWeights(Weights));
293   }
294 }
295 
296 /// runOnFunction - Toplevel algorithm.
297 bool JumpThreading::runOnFunction(Function &F) {
298   if (skipFunction(F))
299     return false;
300   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
301   // Get DT analysis before LVI. When LVI is initialized it conditionally adds
302   // DT if it's available.
303   auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
304   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
305   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
306   DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
307   std::unique_ptr<BlockFrequencyInfo> BFI;
308   std::unique_ptr<BranchProbabilityInfo> BPI;
309   if (F.hasProfileData()) {
310     LoopInfo LI{DominatorTree(F)};
311     BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
312     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
313   }
314 
315   bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, F.hasProfileData(),
316                               std::move(BFI), std::move(BPI));
317   if (PrintLVIAfterJumpThreading) {
318     dbgs() << "LVI for function '" << F.getName() << "':\n";
319     LVI->printLVI(F, *DT, dbgs());
320   }
321   return Changed;
322 }
323 
324 PreservedAnalyses JumpThreadingPass::run(Function &F,
325                                          FunctionAnalysisManager &AM) {
326   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
327   // Get DT analysis before LVI. When LVI is initialized it conditionally adds
328   // DT if it's available.
329   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
330   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
331   auto &AA = AM.getResult<AAManager>(F);
332   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
333 
334   std::unique_ptr<BlockFrequencyInfo> BFI;
335   std::unique_ptr<BranchProbabilityInfo> BPI;
336   if (F.hasProfileData()) {
337     LoopInfo LI{DominatorTree(F)};
338     BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
339     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
340   }
341 
342   bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, F.hasProfileData(),
343                          std::move(BFI), std::move(BPI));
344 
345   if (!Changed)
346     return PreservedAnalyses::all();
347   PreservedAnalyses PA;
348   PA.preserve<GlobalsAA>();
349   PA.preserve<DominatorTreeAnalysis>();
350   PA.preserve<LazyValueAnalysis>();
351   return PA;
352 }
353 
354 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
355                                 LazyValueInfo *LVI_, AliasAnalysis *AA_,
356                                 DomTreeUpdater *DTU_, bool HasProfileData_,
357                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
358                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
359   LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
360   TLI = TLI_;
361   LVI = LVI_;
362   AA = AA_;
363   DTU = DTU_;
364   BFI.reset();
365   BPI.reset();
366   // When profile data is available, we need to update edge weights after
367   // successful jump threading, which requires both BPI and BFI being available.
368   HasProfileData = HasProfileData_;
369   auto *GuardDecl = F.getParent()->getFunction(
370       Intrinsic::getName(Intrinsic::experimental_guard));
371   HasGuards = GuardDecl && !GuardDecl->use_empty();
372   if (HasProfileData) {
373     BPI = std::move(BPI_);
374     BFI = std::move(BFI_);
375   }
376 
377   // Reduce the number of instructions duplicated when optimizing strictly for
378   // size.
379   if (BBDuplicateThreshold.getNumOccurrences())
380     BBDupThreshold = BBDuplicateThreshold;
381   else if (F.hasFnAttribute(Attribute::MinSize))
382     BBDupThreshold = 3;
383   else
384     BBDupThreshold = DefaultBBDupThreshold;
385 
386   // JumpThreading must not processes blocks unreachable from entry. It's a
387   // waste of compute time and can potentially lead to hangs.
388   SmallPtrSet<BasicBlock *, 16> Unreachable;
389   assert(DTU && "DTU isn't passed into JumpThreading before using it.");
390   assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
391   DominatorTree &DT = DTU->getDomTree();
392   for (auto &BB : F)
393     if (!DT.isReachableFromEntry(&BB))
394       Unreachable.insert(&BB);
395 
396   if (!ThreadAcrossLoopHeaders)
397     FindLoopHeaders(F);
398 
399   bool EverChanged = false;
400   bool Changed;
401   do {
402     Changed = false;
403     for (auto &BB : F) {
404       if (Unreachable.count(&BB))
405         continue;
406       while (ProcessBlock(&BB)) // Thread all of the branches we can over BB.
407         Changed = true;
408       // Stop processing BB if it's the entry or is now deleted. The following
409       // routines attempt to eliminate BB and locating a suitable replacement
410       // for the entry is non-trivial.
411       if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB))
412         continue;
413 
414       if (pred_empty(&BB)) {
415         // When ProcessBlock makes BB unreachable it doesn't bother to fix up
416         // the instructions in it. We must remove BB to prevent invalid IR.
417         LLVM_DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
418                           << "' with terminator: " << *BB.getTerminator()
419                           << '\n');
420         LoopHeaders.erase(&BB);
421         LVI->eraseBlock(&BB);
422         DeleteDeadBlock(&BB, DTU);
423         Changed = true;
424         continue;
425       }
426 
427       // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB
428       // is "almost empty", we attempt to merge BB with its sole successor.
429       auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
430       if (BI && BI->isUnconditional() &&
431           // The terminator must be the only non-phi instruction in BB.
432           BB.getFirstNonPHIOrDbg()->isTerminator() &&
433           // Don't alter Loop headers and latches to ensure another pass can
434           // detect and transform nested loops later.
435           !LoopHeaders.count(&BB) && !LoopHeaders.count(BI->getSuccessor(0)) &&
436           TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) {
437         // BB is valid for cleanup here because we passed in DTU. F remains
438         // BB's parent until a DTU->getDomTree() event.
439         LVI->eraseBlock(&BB);
440         Changed = true;
441       }
442     }
443     EverChanged |= Changed;
444   } while (Changed);
445 
446   LoopHeaders.clear();
447   // Flush only the Dominator Tree.
448   DTU->getDomTree();
449   LVI->enableDT();
450   return EverChanged;
451 }
452 
453 // Replace uses of Cond with ToVal when safe to do so. If all uses are
454 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
455 // because we may incorrectly replace uses when guards/assumes are uses of
456 // of `Cond` and we used the guards/assume to reason about the `Cond` value
457 // at the end of block. RAUW unconditionally replaces all uses
458 // including the guards/assumes themselves and the uses before the
459 // guard/assume.
460 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) {
461   assert(Cond->getType() == ToVal->getType());
462   auto *BB = Cond->getParent();
463   // We can unconditionally replace all uses in non-local blocks (i.e. uses
464   // strictly dominated by BB), since LVI information is true from the
465   // terminator of BB.
466   replaceNonLocalUsesWith(Cond, ToVal);
467   for (Instruction &I : reverse(*BB)) {
468     // Reached the Cond whose uses we are trying to replace, so there are no
469     // more uses.
470     if (&I == Cond)
471       break;
472     // We only replace uses in instructions that are guaranteed to reach the end
473     // of BB, where we know Cond is ToVal.
474     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
475       break;
476     I.replaceUsesOfWith(Cond, ToVal);
477   }
478   if (Cond->use_empty() && !Cond->mayHaveSideEffects())
479     Cond->eraseFromParent();
480 }
481 
482 /// Return the cost of duplicating a piece of this block from first non-phi
483 /// and before StopAt instruction to thread across it. Stop scanning the block
484 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
485 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB,
486                                              Instruction *StopAt,
487                                              unsigned Threshold) {
488   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
489   /// Ignore PHI nodes, these will be flattened when duplication happens.
490   BasicBlock::const_iterator I(BB->getFirstNonPHI());
491 
492   // FIXME: THREADING will delete values that are just used to compute the
493   // branch, so they shouldn't count against the duplication cost.
494 
495   unsigned Bonus = 0;
496   if (BB->getTerminator() == StopAt) {
497     // Threading through a switch statement is particularly profitable.  If this
498     // block ends in a switch, decrease its cost to make it more likely to
499     // happen.
500     if (isa<SwitchInst>(StopAt))
501       Bonus = 6;
502 
503     // The same holds for indirect branches, but slightly more so.
504     if (isa<IndirectBrInst>(StopAt))
505       Bonus = 8;
506   }
507 
508   // Bump the threshold up so the early exit from the loop doesn't skip the
509   // terminator-based Size adjustment at the end.
510   Threshold += Bonus;
511 
512   // Sum up the cost of each instruction until we get to the terminator.  Don't
513   // include the terminator because the copy won't include it.
514   unsigned Size = 0;
515   for (; &*I != StopAt; ++I) {
516 
517     // Stop scanning the block if we've reached the threshold.
518     if (Size > Threshold)
519       return Size;
520 
521     // Debugger intrinsics don't incur code size.
522     if (isa<DbgInfoIntrinsic>(I)) continue;
523 
524     // If this is a pointer->pointer bitcast, it is free.
525     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
526       continue;
527 
528     // Bail out if this instruction gives back a token type, it is not possible
529     // to duplicate it if it is used outside this BB.
530     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
531       return ~0U;
532 
533     // All other instructions count for at least one unit.
534     ++Size;
535 
536     // Calls are more expensive.  If they are non-intrinsic calls, we model them
537     // as having cost of 4.  If they are a non-vector intrinsic, we model them
538     // as having cost of 2 total, and if they are a vector intrinsic, we model
539     // them as having cost 1.
540     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
541       if (CI->cannotDuplicate() || CI->isConvergent())
542         // Blocks with NoDuplicate are modelled as having infinite cost, so they
543         // are never duplicated.
544         return ~0U;
545       else if (!isa<IntrinsicInst>(CI))
546         Size += 3;
547       else if (!CI->getType()->isVectorTy())
548         Size += 1;
549     }
550   }
551 
552   return Size > Bonus ? Size - Bonus : 0;
553 }
554 
555 /// FindLoopHeaders - We do not want jump threading to turn proper loop
556 /// structures into irreducible loops.  Doing this breaks up the loop nesting
557 /// hierarchy and pessimizes later transformations.  To prevent this from
558 /// happening, we first have to find the loop headers.  Here we approximate this
559 /// by finding targets of backedges in the CFG.
560 ///
561 /// Note that there definitely are cases when we want to allow threading of
562 /// edges across a loop header.  For example, threading a jump from outside the
563 /// loop (the preheader) to an exit block of the loop is definitely profitable.
564 /// It is also almost always profitable to thread backedges from within the loop
565 /// to exit blocks, and is often profitable to thread backedges to other blocks
566 /// within the loop (forming a nested loop).  This simple analysis is not rich
567 /// enough to track all of these properties and keep it up-to-date as the CFG
568 /// mutates, so we don't allow any of these transformations.
569 void JumpThreadingPass::FindLoopHeaders(Function &F) {
570   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
571   FindFunctionBackedges(F, Edges);
572 
573   for (const auto &Edge : Edges)
574     LoopHeaders.insert(Edge.second);
575 }
576 
577 /// getKnownConstant - Helper method to determine if we can thread over a
578 /// terminator with the given value as its condition, and if so what value to
579 /// use for that. What kind of value this is depends on whether we want an
580 /// integer or a block address, but an undef is always accepted.
581 /// Returns null if Val is null or not an appropriate constant.
582 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
583   if (!Val)
584     return nullptr;
585 
586   // Undef is "known" enough.
587   if (UndefValue *U = dyn_cast<UndefValue>(Val))
588     return U;
589 
590   if (Preference == WantBlockAddress)
591     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
592 
593   return dyn_cast<ConstantInt>(Val);
594 }
595 
596 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
597 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
598 /// in any of our predecessors.  If so, return the known list of value and pred
599 /// BB in the result vector.
600 ///
601 /// This returns true if there were any known values.
602 bool JumpThreadingPass::ComputeValueKnownInPredecessorsImpl(
603     Value *V, BasicBlock *BB, PredValueInfo &Result,
604     ConstantPreference Preference,
605     DenseSet<std::pair<Value *, BasicBlock *>> &RecursionSet,
606     Instruction *CxtI) {
607   // This method walks up use-def chains recursively.  Because of this, we could
608   // get into an infinite loop going around loops in the use-def chain.  To
609   // prevent this, keep track of what (value, block) pairs we've already visited
610   // and terminate the search if we loop back to them
611   if (!RecursionSet.insert(std::make_pair(V, BB)).second)
612     return false;
613 
614   // If V is a constant, then it is known in all predecessors.
615   if (Constant *KC = getKnownConstant(V, Preference)) {
616     for (BasicBlock *Pred : predecessors(BB))
617       Result.push_back(std::make_pair(KC, Pred));
618 
619     return !Result.empty();
620   }
621 
622   // If V is a non-instruction value, or an instruction in a different block,
623   // then it can't be derived from a PHI.
624   Instruction *I = dyn_cast<Instruction>(V);
625   if (!I || I->getParent() != BB) {
626 
627     // Okay, if this is a live-in value, see if it has a known value at the end
628     // of any of our predecessors.
629     //
630     // FIXME: This should be an edge property, not a block end property.
631     /// TODO: Per PR2563, we could infer value range information about a
632     /// predecessor based on its terminator.
633     //
634     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
635     // "I" is a non-local compare-with-a-constant instruction.  This would be
636     // able to handle value inequalities better, for example if the compare is
637     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
638     // Perhaps getConstantOnEdge should be smart enough to do this?
639 
640     if (DTU->hasPendingDomTreeUpdates())
641       LVI->disableDT();
642     else
643       LVI->enableDT();
644     for (BasicBlock *P : predecessors(BB)) {
645       // If the value is known by LazyValueInfo to be a constant in a
646       // predecessor, use that information to try to thread this block.
647       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
648       if (Constant *KC = getKnownConstant(PredCst, Preference))
649         Result.push_back(std::make_pair(KC, P));
650     }
651 
652     return !Result.empty();
653   }
654 
655   /// If I is a PHI node, then we know the incoming values for any constants.
656   if (PHINode *PN = dyn_cast<PHINode>(I)) {
657     if (DTU->hasPendingDomTreeUpdates())
658       LVI->disableDT();
659     else
660       LVI->enableDT();
661     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
662       Value *InVal = PN->getIncomingValue(i);
663       if (Constant *KC = getKnownConstant(InVal, Preference)) {
664         Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
665       } else {
666         Constant *CI = LVI->getConstantOnEdge(InVal,
667                                               PN->getIncomingBlock(i),
668                                               BB, CxtI);
669         if (Constant *KC = getKnownConstant(CI, Preference))
670           Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
671       }
672     }
673 
674     return !Result.empty();
675   }
676 
677   // Handle Cast instructions.  Only see through Cast when the source operand is
678   // PHI or Cmp to save the compilation time.
679   if (CastInst *CI = dyn_cast<CastInst>(I)) {
680     Value *Source = CI->getOperand(0);
681     if (!isa<PHINode>(Source) && !isa<CmpInst>(Source))
682       return false;
683     ComputeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
684                                         RecursionSet, CxtI);
685     if (Result.empty())
686       return false;
687 
688     // Convert the known values.
689     for (auto &R : Result)
690       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
691 
692     return true;
693   }
694 
695   // Handle some boolean conditions.
696   if (I->getType()->getPrimitiveSizeInBits() == 1) {
697     assert(Preference == WantInteger && "One-bit non-integer type?");
698     // X | true -> true
699     // X & false -> false
700     if (I->getOpcode() == Instruction::Or ||
701         I->getOpcode() == Instruction::And) {
702       PredValueInfoTy LHSVals, RHSVals;
703 
704       ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
705                                       WantInteger, RecursionSet, CxtI);
706       ComputeValueKnownInPredecessorsImpl(I->getOperand(1), BB, RHSVals,
707                                           WantInteger, RecursionSet, CxtI);
708 
709       if (LHSVals.empty() && RHSVals.empty())
710         return false;
711 
712       ConstantInt *InterestingVal;
713       if (I->getOpcode() == Instruction::Or)
714         InterestingVal = ConstantInt::getTrue(I->getContext());
715       else
716         InterestingVal = ConstantInt::getFalse(I->getContext());
717 
718       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
719 
720       // Scan for the sentinel.  If we find an undef, force it to the
721       // interesting value: x|undef -> true and x&undef -> false.
722       for (const auto &LHSVal : LHSVals)
723         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
724           Result.emplace_back(InterestingVal, LHSVal.second);
725           LHSKnownBBs.insert(LHSVal.second);
726         }
727       for (const auto &RHSVal : RHSVals)
728         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
729           // If we already inferred a value for this block on the LHS, don't
730           // re-add it.
731           if (!LHSKnownBBs.count(RHSVal.second))
732             Result.emplace_back(InterestingVal, RHSVal.second);
733         }
734 
735       return !Result.empty();
736     }
737 
738     // Handle the NOT form of XOR.
739     if (I->getOpcode() == Instruction::Xor &&
740         isa<ConstantInt>(I->getOperand(1)) &&
741         cast<ConstantInt>(I->getOperand(1))->isOne()) {
742       ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
743                                           WantInteger, RecursionSet, CxtI);
744       if (Result.empty())
745         return false;
746 
747       // Invert the known values.
748       for (auto &R : Result)
749         R.first = ConstantExpr::getNot(R.first);
750 
751       return true;
752     }
753 
754   // Try to simplify some other binary operator values.
755   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
756     assert(Preference != WantBlockAddress
757             && "A binary operator creating a block address?");
758     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
759       PredValueInfoTy LHSVals;
760       ComputeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
761                                           WantInteger, RecursionSet, CxtI);
762 
763       // Try to use constant folding to simplify the binary operator.
764       for (const auto &LHSVal : LHSVals) {
765         Constant *V = LHSVal.first;
766         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
767 
768         if (Constant *KC = getKnownConstant(Folded, WantInteger))
769           Result.push_back(std::make_pair(KC, LHSVal.second));
770       }
771     }
772 
773     return !Result.empty();
774   }
775 
776   // Handle compare with phi operand, where the PHI is defined in this block.
777   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
778     assert(Preference == WantInteger && "Compares only produce integers");
779     Type *CmpType = Cmp->getType();
780     Value *CmpLHS = Cmp->getOperand(0);
781     Value *CmpRHS = Cmp->getOperand(1);
782     CmpInst::Predicate Pred = Cmp->getPredicate();
783 
784     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
785     if (!PN)
786       PN = dyn_cast<PHINode>(CmpRHS);
787     if (PN && PN->getParent() == BB) {
788       const DataLayout &DL = PN->getModule()->getDataLayout();
789       // We can do this simplification if any comparisons fold to true or false.
790       // See if any do.
791       if (DTU->hasPendingDomTreeUpdates())
792         LVI->disableDT();
793       else
794         LVI->enableDT();
795       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
796         BasicBlock *PredBB = PN->getIncomingBlock(i);
797         Value *LHS, *RHS;
798         if (PN == CmpLHS) {
799           LHS = PN->getIncomingValue(i);
800           RHS = CmpRHS->DoPHITranslation(BB, PredBB);
801         } else {
802           LHS = CmpLHS->DoPHITranslation(BB, PredBB);
803           RHS = PN->getIncomingValue(i);
804         }
805         Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
806         if (!Res) {
807           if (!isa<Constant>(RHS))
808             continue;
809 
810           // getPredicateOnEdge call will make no sense if LHS is defined in BB.
811           auto LHSInst = dyn_cast<Instruction>(LHS);
812           if (LHSInst && LHSInst->getParent() == BB)
813             continue;
814 
815           LazyValueInfo::Tristate
816             ResT = LVI->getPredicateOnEdge(Pred, LHS,
817                                            cast<Constant>(RHS), PredBB, BB,
818                                            CxtI ? CxtI : Cmp);
819           if (ResT == LazyValueInfo::Unknown)
820             continue;
821           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
822         }
823 
824         if (Constant *KC = getKnownConstant(Res, WantInteger))
825           Result.push_back(std::make_pair(KC, PredBB));
826       }
827 
828       return !Result.empty();
829     }
830 
831     // If comparing a live-in value against a constant, see if we know the
832     // live-in value on any predecessors.
833     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
834       Constant *CmpConst = cast<Constant>(CmpRHS);
835 
836       if (!isa<Instruction>(CmpLHS) ||
837           cast<Instruction>(CmpLHS)->getParent() != BB) {
838         if (DTU->hasPendingDomTreeUpdates())
839           LVI->disableDT();
840         else
841           LVI->enableDT();
842         for (BasicBlock *P : predecessors(BB)) {
843           // If the value is known by LazyValueInfo to be a constant in a
844           // predecessor, use that information to try to thread this block.
845           LazyValueInfo::Tristate Res =
846             LVI->getPredicateOnEdge(Pred, CmpLHS,
847                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
848           if (Res == LazyValueInfo::Unknown)
849             continue;
850 
851           Constant *ResC = ConstantInt::get(CmpType, Res);
852           Result.push_back(std::make_pair(ResC, P));
853         }
854 
855         return !Result.empty();
856       }
857 
858       // InstCombine can fold some forms of constant range checks into
859       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
860       // x as a live-in.
861       {
862         using namespace PatternMatch;
863 
864         Value *AddLHS;
865         ConstantInt *AddConst;
866         if (isa<ConstantInt>(CmpConst) &&
867             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
868           if (!isa<Instruction>(AddLHS) ||
869               cast<Instruction>(AddLHS)->getParent() != BB) {
870             if (DTU->hasPendingDomTreeUpdates())
871               LVI->disableDT();
872             else
873               LVI->enableDT();
874             for (BasicBlock *P : predecessors(BB)) {
875               // If the value is known by LazyValueInfo to be a ConstantRange in
876               // a predecessor, use that information to try to thread this
877               // block.
878               ConstantRange CR = LVI->getConstantRangeOnEdge(
879                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
880               // Propagate the range through the addition.
881               CR = CR.add(AddConst->getValue());
882 
883               // Get the range where the compare returns true.
884               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
885                   Pred, cast<ConstantInt>(CmpConst)->getValue());
886 
887               Constant *ResC;
888               if (CmpRange.contains(CR))
889                 ResC = ConstantInt::getTrue(CmpType);
890               else if (CmpRange.inverse().contains(CR))
891                 ResC = ConstantInt::getFalse(CmpType);
892               else
893                 continue;
894 
895               Result.push_back(std::make_pair(ResC, P));
896             }
897 
898             return !Result.empty();
899           }
900         }
901       }
902 
903       // Try to find a constant value for the LHS of a comparison,
904       // and evaluate it statically if we can.
905       PredValueInfoTy LHSVals;
906       ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
907                                           WantInteger, RecursionSet, CxtI);
908 
909       for (const auto &LHSVal : LHSVals) {
910         Constant *V = LHSVal.first;
911         Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
912         if (Constant *KC = getKnownConstant(Folded, WantInteger))
913           Result.push_back(std::make_pair(KC, LHSVal.second));
914       }
915 
916       return !Result.empty();
917     }
918   }
919 
920   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
921     // Handle select instructions where at least one operand is a known constant
922     // and we can figure out the condition value for any predecessor block.
923     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
924     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
925     PredValueInfoTy Conds;
926     if ((TrueVal || FalseVal) &&
927         ComputeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
928                                             WantInteger, RecursionSet, CxtI)) {
929       for (auto &C : Conds) {
930         Constant *Cond = C.first;
931 
932         // Figure out what value to use for the condition.
933         bool KnownCond;
934         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
935           // A known boolean.
936           KnownCond = CI->isOne();
937         } else {
938           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
939           // Either operand will do, so be sure to pick the one that's a known
940           // constant.
941           // FIXME: Do this more cleverly if both values are known constants?
942           KnownCond = (TrueVal != nullptr);
943         }
944 
945         // See if the select has a known constant value for this predecessor.
946         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
947           Result.push_back(std::make_pair(Val, C.second));
948       }
949 
950       return !Result.empty();
951     }
952   }
953 
954   // If all else fails, see if LVI can figure out a constant value for us.
955   if (DTU->hasPendingDomTreeUpdates())
956     LVI->disableDT();
957   else
958     LVI->enableDT();
959   Constant *CI = LVI->getConstant(V, BB, CxtI);
960   if (Constant *KC = getKnownConstant(CI, Preference)) {
961     for (BasicBlock *Pred : predecessors(BB))
962       Result.push_back(std::make_pair(KC, Pred));
963   }
964 
965   return !Result.empty();
966 }
967 
968 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
969 /// in an undefined jump, decide which block is best to revector to.
970 ///
971 /// Since we can pick an arbitrary destination, we pick the successor with the
972 /// fewest predecessors.  This should reduce the in-degree of the others.
973 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
974   Instruction *BBTerm = BB->getTerminator();
975   unsigned MinSucc = 0;
976   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
977   // Compute the successor with the minimum number of predecessors.
978   unsigned MinNumPreds = pred_size(TestBB);
979   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
980     TestBB = BBTerm->getSuccessor(i);
981     unsigned NumPreds = pred_size(TestBB);
982     if (NumPreds < MinNumPreds) {
983       MinSucc = i;
984       MinNumPreds = NumPreds;
985     }
986   }
987 
988   return MinSucc;
989 }
990 
991 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
992   if (!BB->hasAddressTaken()) return false;
993 
994   // If the block has its address taken, it may be a tree of dead constants
995   // hanging off of it.  These shouldn't keep the block alive.
996   BlockAddress *BA = BlockAddress::get(BB);
997   BA->removeDeadConstantUsers();
998   return !BA->use_empty();
999 }
1000 
1001 /// ProcessBlock - If there are any predecessors whose control can be threaded
1002 /// through to a successor, transform them now.
1003 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) {
1004   // If the block is trivially dead, just return and let the caller nuke it.
1005   // This simplifies other transformations.
1006   if (DTU->isBBPendingDeletion(BB) ||
1007       (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
1008     return false;
1009 
1010   // If this block has a single predecessor, and if that pred has a single
1011   // successor, merge the blocks.  This encourages recursive jump threading
1012   // because now the condition in this block can be threaded through
1013   // predecessors of our predecessor block.
1014   if (MaybeMergeBasicBlockIntoOnlyPred(BB))
1015     return true;
1016 
1017   if (TryToUnfoldSelectInCurrBB(BB))
1018     return true;
1019 
1020   // Look if we can propagate guards to predecessors.
1021   if (HasGuards && ProcessGuards(BB))
1022     return true;
1023 
1024   // What kind of constant we're looking for.
1025   ConstantPreference Preference = WantInteger;
1026 
1027   // Look to see if the terminator is a conditional branch, switch or indirect
1028   // branch, if not we can't thread it.
1029   Value *Condition;
1030   Instruction *Terminator = BB->getTerminator();
1031   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1032     // Can't thread an unconditional jump.
1033     if (BI->isUnconditional()) return false;
1034     Condition = BI->getCondition();
1035   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1036     Condition = SI->getCondition();
1037   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1038     // Can't thread indirect branch with no successors.
1039     if (IB->getNumSuccessors() == 0) return false;
1040     Condition = IB->getAddress()->stripPointerCasts();
1041     Preference = WantBlockAddress;
1042   } else {
1043     return false; // Must be an invoke or callbr.
1044   }
1045 
1046   // Run constant folding to see if we can reduce the condition to a simple
1047   // constant.
1048   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1049     Value *SimpleVal =
1050         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1051     if (SimpleVal) {
1052       I->replaceAllUsesWith(SimpleVal);
1053       if (isInstructionTriviallyDead(I, TLI))
1054         I->eraseFromParent();
1055       Condition = SimpleVal;
1056     }
1057   }
1058 
1059   // If the terminator is branching on an undef, we can pick any of the
1060   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
1061   if (isa<UndefValue>(Condition)) {
1062     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
1063     std::vector<DominatorTree::UpdateType> Updates;
1064 
1065     // Fold the branch/switch.
1066     Instruction *BBTerm = BB->getTerminator();
1067     Updates.reserve(BBTerm->getNumSuccessors());
1068     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1069       if (i == BestSucc) continue;
1070       BasicBlock *Succ = BBTerm->getSuccessor(i);
1071       Succ->removePredecessor(BB, true);
1072       Updates.push_back({DominatorTree::Delete, BB, Succ});
1073     }
1074 
1075     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1076                       << "' folding undef terminator: " << *BBTerm << '\n');
1077     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1078     BBTerm->eraseFromParent();
1079     DTU->applyUpdatesPermissive(Updates);
1080     return true;
1081   }
1082 
1083   // If the terminator of this block is branching on a constant, simplify the
1084   // terminator to an unconditional branch.  This can occur due to threading in
1085   // other blocks.
1086   if (getKnownConstant(Condition, Preference)) {
1087     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1088                       << "' folding terminator: " << *BB->getTerminator()
1089                       << '\n');
1090     ++NumFolds;
1091     ConstantFoldTerminator(BB, true, nullptr, DTU);
1092     return true;
1093   }
1094 
1095   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1096 
1097   // All the rest of our checks depend on the condition being an instruction.
1098   if (!CondInst) {
1099     // FIXME: Unify this with code below.
1100     if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
1101       return true;
1102     return false;
1103   }
1104 
1105   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
1106     // If we're branching on a conditional, LVI might be able to determine
1107     // it's value at the branch instruction.  We only handle comparisons
1108     // against a constant at this time.
1109     // TODO: This should be extended to handle switches as well.
1110     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1111     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
1112     if (CondBr && CondConst) {
1113       // We should have returned as soon as we turn a conditional branch to
1114       // unconditional. Because its no longer interesting as far as jump
1115       // threading is concerned.
1116       assert(CondBr->isConditional() && "Threading on unconditional terminator");
1117 
1118       if (DTU->hasPendingDomTreeUpdates())
1119         LVI->disableDT();
1120       else
1121         LVI->enableDT();
1122       LazyValueInfo::Tristate Ret =
1123         LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1124                             CondConst, CondBr);
1125       if (Ret != LazyValueInfo::Unknown) {
1126         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
1127         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
1128         BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove);
1129         ToRemoveSucc->removePredecessor(BB, true);
1130         BranchInst *UncondBr =
1131           BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
1132         UncondBr->setDebugLoc(CondBr->getDebugLoc());
1133         CondBr->eraseFromParent();
1134         if (CondCmp->use_empty())
1135           CondCmp->eraseFromParent();
1136         // We can safely replace *some* uses of the CondInst if it has
1137         // exactly one value as returned by LVI. RAUW is incorrect in the
1138         // presence of guards and assumes, that have the `Cond` as the use. This
1139         // is because we use the guards/assume to reason about the `Cond` value
1140         // at the end of block, but RAUW unconditionally replaces all uses
1141         // including the guards/assumes themselves and the uses before the
1142         // guard/assume.
1143         else if (CondCmp->getParent() == BB) {
1144           auto *CI = Ret == LazyValueInfo::True ?
1145             ConstantInt::getTrue(CondCmp->getType()) :
1146             ConstantInt::getFalse(CondCmp->getType());
1147           ReplaceFoldableUses(CondCmp, CI);
1148         }
1149         DTU->applyUpdatesPermissive(
1150             {{DominatorTree::Delete, BB, ToRemoveSucc}});
1151         return true;
1152       }
1153 
1154       // We did not manage to simplify this branch, try to see whether
1155       // CondCmp depends on a known phi-select pattern.
1156       if (TryToUnfoldSelect(CondCmp, BB))
1157         return true;
1158     }
1159   }
1160 
1161   if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1162     if (TryToUnfoldSelect(SI, BB))
1163       return true;
1164 
1165   // Check for some cases that are worth simplifying.  Right now we want to look
1166   // for loads that are used by a switch or by the condition for the branch.  If
1167   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1168   // which can then be used to thread the values.
1169   Value *SimplifyValue = CondInst;
1170   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1171     if (isa<Constant>(CondCmp->getOperand(1)))
1172       SimplifyValue = CondCmp->getOperand(0);
1173 
1174   // TODO: There are other places where load PRE would be profitable, such as
1175   // more complex comparisons.
1176   if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1177     if (SimplifyPartiallyRedundantLoad(LoadI))
1178       return true;
1179 
1180   // Before threading, try to propagate profile data backwards:
1181   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1182     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1183       updatePredecessorProfileMetadata(PN, BB);
1184 
1185   // Handle a variety of cases where we are branching on something derived from
1186   // a PHI node in the current block.  If we can prove that any predecessors
1187   // compute a predictable value based on a PHI node, thread those predecessors.
1188   if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
1189     return true;
1190 
1191   // If this is an otherwise-unfoldable branch on a phi node in the current
1192   // block, see if we can simplify.
1193   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1194     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1195       return ProcessBranchOnPHI(PN);
1196 
1197   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1198   if (CondInst->getOpcode() == Instruction::Xor &&
1199       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1200     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
1201 
1202   // Search for a stronger dominating condition that can be used to simplify a
1203   // conditional branch leaving BB.
1204   if (ProcessImpliedCondition(BB))
1205     return true;
1206 
1207   return false;
1208 }
1209 
1210 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) {
1211   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1212   if (!BI || !BI->isConditional())
1213     return false;
1214 
1215   Value *Cond = BI->getCondition();
1216   BasicBlock *CurrentBB = BB;
1217   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1218   unsigned Iter = 0;
1219 
1220   auto &DL = BB->getModule()->getDataLayout();
1221 
1222   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1223     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1224     if (!PBI || !PBI->isConditional())
1225       return false;
1226     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1227       return false;
1228 
1229     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1230     Optional<bool> Implication =
1231         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1232     if (Implication) {
1233       BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1234       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1235       RemoveSucc->removePredecessor(BB);
1236       BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI);
1237       UncondBI->setDebugLoc(BI->getDebugLoc());
1238       BI->eraseFromParent();
1239       DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}});
1240       return true;
1241     }
1242     CurrentBB = CurrentPred;
1243     CurrentPred = CurrentBB->getSinglePredecessor();
1244   }
1245 
1246   return false;
1247 }
1248 
1249 /// Return true if Op is an instruction defined in the given block.
1250 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1251   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1252     if (OpInst->getParent() == BB)
1253       return true;
1254   return false;
1255 }
1256 
1257 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1258 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1259 /// This is an important optimization that encourages jump threading, and needs
1260 /// to be run interlaced with other jump threading tasks.
1261 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1262   // Don't hack volatile and ordered loads.
1263   if (!LoadI->isUnordered()) return false;
1264 
1265   // If the load is defined in a block with exactly one predecessor, it can't be
1266   // partially redundant.
1267   BasicBlock *LoadBB = LoadI->getParent();
1268   if (LoadBB->getSinglePredecessor())
1269     return false;
1270 
1271   // If the load is defined in an EH pad, it can't be partially redundant,
1272   // because the edges between the invoke and the EH pad cannot have other
1273   // instructions between them.
1274   if (LoadBB->isEHPad())
1275     return false;
1276 
1277   Value *LoadedPtr = LoadI->getOperand(0);
1278 
1279   // If the loaded operand is defined in the LoadBB and its not a phi,
1280   // it can't be available in predecessors.
1281   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1282     return false;
1283 
1284   // Scan a few instructions up from the load, to see if it is obviously live at
1285   // the entry to its block.
1286   BasicBlock::iterator BBIt(LoadI);
1287   bool IsLoadCSE;
1288   if (Value *AvailableVal = FindAvailableLoadedValue(
1289           LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1290     // If the value of the load is locally available within the block, just use
1291     // it.  This frequently occurs for reg2mem'd allocas.
1292 
1293     if (IsLoadCSE) {
1294       LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1295       combineMetadataForCSE(NLoadI, LoadI, false);
1296     };
1297 
1298     // If the returned value is the load itself, replace with an undef. This can
1299     // only happen in dead loops.
1300     if (AvailableVal == LoadI)
1301       AvailableVal = UndefValue::get(LoadI->getType());
1302     if (AvailableVal->getType() != LoadI->getType())
1303       AvailableVal = CastInst::CreateBitOrPointerCast(
1304           AvailableVal, LoadI->getType(), "", LoadI);
1305     LoadI->replaceAllUsesWith(AvailableVal);
1306     LoadI->eraseFromParent();
1307     return true;
1308   }
1309 
1310   // Otherwise, if we scanned the whole block and got to the top of the block,
1311   // we know the block is locally transparent to the load.  If not, something
1312   // might clobber its value.
1313   if (BBIt != LoadBB->begin())
1314     return false;
1315 
1316   // If all of the loads and stores that feed the value have the same AA tags,
1317   // then we can propagate them onto any newly inserted loads.
1318   AAMDNodes AATags;
1319   LoadI->getAAMetadata(AATags);
1320 
1321   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1322 
1323   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1324 
1325   AvailablePredsTy AvailablePreds;
1326   BasicBlock *OneUnavailablePred = nullptr;
1327   SmallVector<LoadInst*, 8> CSELoads;
1328 
1329   // If we got here, the loaded value is transparent through to the start of the
1330   // block.  Check to see if it is available in any of the predecessor blocks.
1331   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1332     // If we already scanned this predecessor, skip it.
1333     if (!PredsScanned.insert(PredBB).second)
1334       continue;
1335 
1336     BBIt = PredBB->end();
1337     unsigned NumScanedInst = 0;
1338     Value *PredAvailable = nullptr;
1339     // NOTE: We don't CSE load that is volatile or anything stronger than
1340     // unordered, that should have been checked when we entered the function.
1341     assert(LoadI->isUnordered() &&
1342            "Attempting to CSE volatile or atomic loads");
1343     // If this is a load on a phi pointer, phi-translate it and search
1344     // for available load/store to the pointer in predecessors.
1345     Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB);
1346     PredAvailable = FindAvailablePtrLoadStore(
1347         Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt,
1348         DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst);
1349 
1350     // If PredBB has a single predecessor, continue scanning through the
1351     // single predecessor.
1352     BasicBlock *SinglePredBB = PredBB;
1353     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1354            NumScanedInst < DefMaxInstsToScan) {
1355       SinglePredBB = SinglePredBB->getSinglePredecessor();
1356       if (SinglePredBB) {
1357         BBIt = SinglePredBB->end();
1358         PredAvailable = FindAvailablePtrLoadStore(
1359             Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt,
1360             (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1361             &NumScanedInst);
1362       }
1363     }
1364 
1365     if (!PredAvailable) {
1366       OneUnavailablePred = PredBB;
1367       continue;
1368     }
1369 
1370     if (IsLoadCSE)
1371       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1372 
1373     // If so, this load is partially redundant.  Remember this info so that we
1374     // can create a PHI node.
1375     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
1376   }
1377 
1378   // If the loaded value isn't available in any predecessor, it isn't partially
1379   // redundant.
1380   if (AvailablePreds.empty()) return false;
1381 
1382   // Okay, the loaded value is available in at least one (and maybe all!)
1383   // predecessors.  If the value is unavailable in more than one unique
1384   // predecessor, we want to insert a merge block for those common predecessors.
1385   // This ensures that we only have to insert one reload, thus not increasing
1386   // code size.
1387   BasicBlock *UnavailablePred = nullptr;
1388 
1389   // If the value is unavailable in one of predecessors, we will end up
1390   // inserting a new instruction into them. It is only valid if all the
1391   // instructions before LoadI are guaranteed to pass execution to its
1392   // successor, or if LoadI is safe to speculate.
1393   // TODO: If this logic becomes more complex, and we will perform PRE insertion
1394   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1395   // It requires domination tree analysis, so for this simple case it is an
1396   // overkill.
1397   if (PredsScanned.size() != AvailablePreds.size() &&
1398       !isSafeToSpeculativelyExecute(LoadI))
1399     for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1400       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1401         return false;
1402 
1403   // If there is exactly one predecessor where the value is unavailable, the
1404   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1405   // unconditional branch, we know that it isn't a critical edge.
1406   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1407       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1408     UnavailablePred = OneUnavailablePred;
1409   } else if (PredsScanned.size() != AvailablePreds.size()) {
1410     // Otherwise, we had multiple unavailable predecessors or we had a critical
1411     // edge from the one.
1412     SmallVector<BasicBlock*, 8> PredsToSplit;
1413     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1414 
1415     for (const auto &AvailablePred : AvailablePreds)
1416       AvailablePredSet.insert(AvailablePred.first);
1417 
1418     // Add all the unavailable predecessors to the PredsToSplit list.
1419     for (BasicBlock *P : predecessors(LoadBB)) {
1420       // If the predecessor is an indirect goto, we can't split the edge.
1421       // Same for CallBr.
1422       if (isa<IndirectBrInst>(P->getTerminator()) ||
1423           isa<CallBrInst>(P->getTerminator()))
1424         return false;
1425 
1426       if (!AvailablePredSet.count(P))
1427         PredsToSplit.push_back(P);
1428     }
1429 
1430     // Split them out to their own block.
1431     UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1432   }
1433 
1434   // If the value isn't available in all predecessors, then there will be
1435   // exactly one where it isn't available.  Insert a load on that edge and add
1436   // it to the AvailablePreds list.
1437   if (UnavailablePred) {
1438     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1439            "Can't handle critical edge here!");
1440     LoadInst *NewVal = new LoadInst(
1441         LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1442         LoadI->getName() + ".pr", false, MaybeAlign(LoadI->getAlignment()),
1443         LoadI->getOrdering(), LoadI->getSyncScopeID(),
1444         UnavailablePred->getTerminator());
1445     NewVal->setDebugLoc(LoadI->getDebugLoc());
1446     if (AATags)
1447       NewVal->setAAMetadata(AATags);
1448 
1449     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
1450   }
1451 
1452   // Now we know that each predecessor of this block has a value in
1453   // AvailablePreds, sort them for efficient access as we're walking the preds.
1454   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1455 
1456   // Create a PHI node at the start of the block for the PRE'd load value.
1457   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1458   PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
1459                                 &LoadBB->front());
1460   PN->takeName(LoadI);
1461   PN->setDebugLoc(LoadI->getDebugLoc());
1462 
1463   // Insert new entries into the PHI for each predecessor.  A single block may
1464   // have multiple entries here.
1465   for (pred_iterator PI = PB; PI != PE; ++PI) {
1466     BasicBlock *P = *PI;
1467     AvailablePredsTy::iterator I =
1468         llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr));
1469 
1470     assert(I != AvailablePreds.end() && I->first == P &&
1471            "Didn't find entry for predecessor!");
1472 
1473     // If we have an available predecessor but it requires casting, insert the
1474     // cast in the predecessor and use the cast. Note that we have to update the
1475     // AvailablePreds vector as we go so that all of the PHI entries for this
1476     // predecessor use the same bitcast.
1477     Value *&PredV = I->second;
1478     if (PredV->getType() != LoadI->getType())
1479       PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1480                                                P->getTerminator());
1481 
1482     PN->addIncoming(PredV, I->first);
1483   }
1484 
1485   for (LoadInst *PredLoadI : CSELoads) {
1486     combineMetadataForCSE(PredLoadI, LoadI, true);
1487   }
1488 
1489   LoadI->replaceAllUsesWith(PN);
1490   LoadI->eraseFromParent();
1491 
1492   return true;
1493 }
1494 
1495 /// FindMostPopularDest - The specified list contains multiple possible
1496 /// threadable destinations.  Pick the one that occurs the most frequently in
1497 /// the list.
1498 static BasicBlock *
1499 FindMostPopularDest(BasicBlock *BB,
1500                     const SmallVectorImpl<std::pair<BasicBlock *,
1501                                           BasicBlock *>> &PredToDestList) {
1502   assert(!PredToDestList.empty());
1503 
1504   // Determine popularity.  If there are multiple possible destinations, we
1505   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1506   // blocks with known and real destinations to threading undef.  We'll handle
1507   // them later if interesting.
1508   DenseMap<BasicBlock*, unsigned> DestPopularity;
1509   for (const auto &PredToDest : PredToDestList)
1510     if (PredToDest.second)
1511       DestPopularity[PredToDest.second]++;
1512 
1513   if (DestPopularity.empty())
1514     return nullptr;
1515 
1516   // Find the most popular dest.
1517   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1518   BasicBlock *MostPopularDest = DPI->first;
1519   unsigned Popularity = DPI->second;
1520   SmallVector<BasicBlock*, 4> SamePopularity;
1521 
1522   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1523     // If the popularity of this entry isn't higher than the popularity we've
1524     // seen so far, ignore it.
1525     if (DPI->second < Popularity)
1526       ; // ignore.
1527     else if (DPI->second == Popularity) {
1528       // If it is the same as what we've seen so far, keep track of it.
1529       SamePopularity.push_back(DPI->first);
1530     } else {
1531       // If it is more popular, remember it.
1532       SamePopularity.clear();
1533       MostPopularDest = DPI->first;
1534       Popularity = DPI->second;
1535     }
1536   }
1537 
1538   // Okay, now we know the most popular destination.  If there is more than one
1539   // destination, we need to determine one.  This is arbitrary, but we need
1540   // to make a deterministic decision.  Pick the first one that appears in the
1541   // successor list.
1542   if (!SamePopularity.empty()) {
1543     SamePopularity.push_back(MostPopularDest);
1544     Instruction *TI = BB->getTerminator();
1545     for (unsigned i = 0; ; ++i) {
1546       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1547 
1548       if (!is_contained(SamePopularity, TI->getSuccessor(i)))
1549         continue;
1550 
1551       MostPopularDest = TI->getSuccessor(i);
1552       break;
1553     }
1554   }
1555 
1556   // Okay, we have finally picked the most popular destination.
1557   return MostPopularDest;
1558 }
1559 
1560 // Try to evaluate the value of V when the control flows from PredPredBB to
1561 // BB->getSinglePredecessor() and then on to BB.
1562 Constant *JumpThreadingPass::EvaluateOnPredecessorEdge(BasicBlock *BB,
1563                                                        BasicBlock *PredPredBB,
1564                                                        Value *V) {
1565   BasicBlock *PredBB = BB->getSinglePredecessor();
1566   assert(PredBB && "Expected a single predecessor");
1567 
1568   if (Constant *Cst = dyn_cast<Constant>(V)) {
1569     return Cst;
1570   }
1571 
1572   // Consult LVI if V is not an instruction in BB or PredBB.
1573   Instruction *I = dyn_cast<Instruction>(V);
1574   if (!I || (I->getParent() != BB && I->getParent() != PredBB)) {
1575     if (DTU->hasPendingDomTreeUpdates())
1576       LVI->disableDT();
1577     else
1578       LVI->enableDT();
1579     return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr);
1580   }
1581 
1582   // Look into a PHI argument.
1583   if (PHINode *PHI = dyn_cast<PHINode>(V)) {
1584     if (PHI->getParent() == PredBB)
1585       return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB));
1586     return nullptr;
1587   }
1588 
1589   // If we have a CmpInst, try to fold it for each incoming edge into PredBB.
1590   if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) {
1591     if (CondCmp->getParent() == BB) {
1592       Constant *Op0 =
1593           EvaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0));
1594       Constant *Op1 =
1595           EvaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1));
1596       if (Op0 && Op1) {
1597         return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1);
1598       }
1599     }
1600     return nullptr;
1601   }
1602 
1603   return nullptr;
1604 }
1605 
1606 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1607                                                ConstantPreference Preference,
1608                                                Instruction *CxtI) {
1609   // If threading this would thread across a loop header, don't even try to
1610   // thread the edge.
1611   if (LoopHeaders.count(BB))
1612     return false;
1613 
1614   PredValueInfoTy PredValues;
1615   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference,
1616                                        CxtI)) {
1617     // We don't have known values in predecessors.  See if we can thread through
1618     // BB and its sole predecessor.
1619     return MaybeThreadThroughTwoBasicBlocks(BB, Cond);
1620   }
1621 
1622   assert(!PredValues.empty() &&
1623          "ComputeValueKnownInPredecessors returned true with no values");
1624 
1625   LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1626              for (const auto &PredValue : PredValues) {
1627                dbgs() << "  BB '" << BB->getName()
1628                       << "': FOUND condition = " << *PredValue.first
1629                       << " for pred '" << PredValue.second->getName() << "'.\n";
1630   });
1631 
1632   // Decide what we want to thread through.  Convert our list of known values to
1633   // a list of known destinations for each pred.  This also discards duplicate
1634   // predecessors and keeps track of the undefined inputs (which are represented
1635   // as a null dest in the PredToDestList).
1636   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1637   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1638 
1639   BasicBlock *OnlyDest = nullptr;
1640   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1641   Constant *OnlyVal = nullptr;
1642   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1643 
1644   for (const auto &PredValue : PredValues) {
1645     BasicBlock *Pred = PredValue.second;
1646     if (!SeenPreds.insert(Pred).second)
1647       continue;  // Duplicate predecessor entry.
1648 
1649     Constant *Val = PredValue.first;
1650 
1651     BasicBlock *DestBB;
1652     if (isa<UndefValue>(Val))
1653       DestBB = nullptr;
1654     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1655       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1656       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1657     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1658       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1659       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1660     } else {
1661       assert(isa<IndirectBrInst>(BB->getTerminator())
1662               && "Unexpected terminator");
1663       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1664       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1665     }
1666 
1667     // If we have exactly one destination, remember it for efficiency below.
1668     if (PredToDestList.empty()) {
1669       OnlyDest = DestBB;
1670       OnlyVal = Val;
1671     } else {
1672       if (OnlyDest != DestBB)
1673         OnlyDest = MultipleDestSentinel;
1674       // It possible we have same destination, but different value, e.g. default
1675       // case in switchinst.
1676       if (Val != OnlyVal)
1677         OnlyVal = MultipleVal;
1678     }
1679 
1680     // If the predecessor ends with an indirect goto, we can't change its
1681     // destination. Same for CallBr.
1682     if (isa<IndirectBrInst>(Pred->getTerminator()) ||
1683         isa<CallBrInst>(Pred->getTerminator()))
1684       continue;
1685 
1686     PredToDestList.push_back(std::make_pair(Pred, DestBB));
1687   }
1688 
1689   // If all edges were unthreadable, we fail.
1690   if (PredToDestList.empty())
1691     return false;
1692 
1693   // If all the predecessors go to a single known successor, we want to fold,
1694   // not thread. By doing so, we do not need to duplicate the current block and
1695   // also miss potential opportunities in case we dont/cant duplicate.
1696   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1697     if (BB->hasNPredecessors(PredToDestList.size())) {
1698       bool SeenFirstBranchToOnlyDest = false;
1699       std::vector <DominatorTree::UpdateType> Updates;
1700       Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1701       for (BasicBlock *SuccBB : successors(BB)) {
1702         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1703           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1704         } else {
1705           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1706           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1707         }
1708       }
1709 
1710       // Finally update the terminator.
1711       Instruction *Term = BB->getTerminator();
1712       BranchInst::Create(OnlyDest, Term);
1713       Term->eraseFromParent();
1714       DTU->applyUpdatesPermissive(Updates);
1715 
1716       // If the condition is now dead due to the removal of the old terminator,
1717       // erase it.
1718       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1719         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1720           CondInst->eraseFromParent();
1721         // We can safely replace *some* uses of the CondInst if it has
1722         // exactly one value as returned by LVI. RAUW is incorrect in the
1723         // presence of guards and assumes, that have the `Cond` as the use. This
1724         // is because we use the guards/assume to reason about the `Cond` value
1725         // at the end of block, but RAUW unconditionally replaces all uses
1726         // including the guards/assumes themselves and the uses before the
1727         // guard/assume.
1728         else if (OnlyVal && OnlyVal != MultipleVal &&
1729                  CondInst->getParent() == BB)
1730           ReplaceFoldableUses(CondInst, OnlyVal);
1731       }
1732       return true;
1733     }
1734   }
1735 
1736   // Determine which is the most common successor.  If we have many inputs and
1737   // this block is a switch, we want to start by threading the batch that goes
1738   // to the most popular destination first.  If we only know about one
1739   // threadable destination (the common case) we can avoid this.
1740   BasicBlock *MostPopularDest = OnlyDest;
1741 
1742   if (MostPopularDest == MultipleDestSentinel) {
1743     // Remove any loop headers from the Dest list, ThreadEdge conservatively
1744     // won't process them, but we might have other destination that are eligible
1745     // and we still want to process.
1746     erase_if(PredToDestList,
1747              [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1748                return LoopHeaders.count(PredToDest.second) != 0;
1749              });
1750 
1751     if (PredToDestList.empty())
1752       return false;
1753 
1754     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1755   }
1756 
1757   // Now that we know what the most popular destination is, factor all
1758   // predecessors that will jump to it into a single predecessor.
1759   SmallVector<BasicBlock*, 16> PredsToFactor;
1760   for (const auto &PredToDest : PredToDestList)
1761     if (PredToDest.second == MostPopularDest) {
1762       BasicBlock *Pred = PredToDest.first;
1763 
1764       // This predecessor may be a switch or something else that has multiple
1765       // edges to the block.  Factor each of these edges by listing them
1766       // according to # occurrences in PredsToFactor.
1767       for (BasicBlock *Succ : successors(Pred))
1768         if (Succ == BB)
1769           PredsToFactor.push_back(Pred);
1770     }
1771 
1772   // If the threadable edges are branching on an undefined value, we get to pick
1773   // the destination that these predecessors should get to.
1774   if (!MostPopularDest)
1775     MostPopularDest = BB->getTerminator()->
1776                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1777 
1778   // Ok, try to thread it!
1779   return TryThreadEdge(BB, PredsToFactor, MostPopularDest);
1780 }
1781 
1782 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1783 /// a PHI node in the current block.  See if there are any simplifications we
1784 /// can do based on inputs to the phi node.
1785 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) {
1786   BasicBlock *BB = PN->getParent();
1787 
1788   // TODO: We could make use of this to do it once for blocks with common PHI
1789   // values.
1790   SmallVector<BasicBlock*, 1> PredBBs;
1791   PredBBs.resize(1);
1792 
1793   // If any of the predecessor blocks end in an unconditional branch, we can
1794   // *duplicate* the conditional branch into that block in order to further
1795   // encourage jump threading and to eliminate cases where we have branch on a
1796   // phi of an icmp (branch on icmp is much better).
1797   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1798     BasicBlock *PredBB = PN->getIncomingBlock(i);
1799     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1800       if (PredBr->isUnconditional()) {
1801         PredBBs[0] = PredBB;
1802         // Try to duplicate BB into PredBB.
1803         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1804           return true;
1805       }
1806   }
1807 
1808   return false;
1809 }
1810 
1811 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1812 /// a xor instruction in the current block.  See if there are any
1813 /// simplifications we can do based on inputs to the xor.
1814 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) {
1815   BasicBlock *BB = BO->getParent();
1816 
1817   // If either the LHS or RHS of the xor is a constant, don't do this
1818   // optimization.
1819   if (isa<ConstantInt>(BO->getOperand(0)) ||
1820       isa<ConstantInt>(BO->getOperand(1)))
1821     return false;
1822 
1823   // If the first instruction in BB isn't a phi, we won't be able to infer
1824   // anything special about any particular predecessor.
1825   if (!isa<PHINode>(BB->front()))
1826     return false;
1827 
1828   // If this BB is a landing pad, we won't be able to split the edge into it.
1829   if (BB->isEHPad())
1830     return false;
1831 
1832   // If we have a xor as the branch input to this block, and we know that the
1833   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1834   // the condition into the predecessor and fix that value to true, saving some
1835   // logical ops on that path and encouraging other paths to simplify.
1836   //
1837   // This copies something like this:
1838   //
1839   //  BB:
1840   //    %X = phi i1 [1],  [%X']
1841   //    %Y = icmp eq i32 %A, %B
1842   //    %Z = xor i1 %X, %Y
1843   //    br i1 %Z, ...
1844   //
1845   // Into:
1846   //  BB':
1847   //    %Y = icmp ne i32 %A, %B
1848   //    br i1 %Y, ...
1849 
1850   PredValueInfoTy XorOpValues;
1851   bool isLHS = true;
1852   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1853                                        WantInteger, BO)) {
1854     assert(XorOpValues.empty());
1855     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1856                                          WantInteger, BO))
1857       return false;
1858     isLHS = false;
1859   }
1860 
1861   assert(!XorOpValues.empty() &&
1862          "ComputeValueKnownInPredecessors returned true with no values");
1863 
1864   // Scan the information to see which is most popular: true or false.  The
1865   // predecessors can be of the set true, false, or undef.
1866   unsigned NumTrue = 0, NumFalse = 0;
1867   for (const auto &XorOpValue : XorOpValues) {
1868     if (isa<UndefValue>(XorOpValue.first))
1869       // Ignore undefs for the count.
1870       continue;
1871     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1872       ++NumFalse;
1873     else
1874       ++NumTrue;
1875   }
1876 
1877   // Determine which value to split on, true, false, or undef if neither.
1878   ConstantInt *SplitVal = nullptr;
1879   if (NumTrue > NumFalse)
1880     SplitVal = ConstantInt::getTrue(BB->getContext());
1881   else if (NumTrue != 0 || NumFalse != 0)
1882     SplitVal = ConstantInt::getFalse(BB->getContext());
1883 
1884   // Collect all of the blocks that this can be folded into so that we can
1885   // factor this once and clone it once.
1886   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1887   for (const auto &XorOpValue : XorOpValues) {
1888     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1889       continue;
1890 
1891     BlocksToFoldInto.push_back(XorOpValue.second);
1892   }
1893 
1894   // If we inferred a value for all of the predecessors, then duplication won't
1895   // help us.  However, we can just replace the LHS or RHS with the constant.
1896   if (BlocksToFoldInto.size() ==
1897       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1898     if (!SplitVal) {
1899       // If all preds provide undef, just nuke the xor, because it is undef too.
1900       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1901       BO->eraseFromParent();
1902     } else if (SplitVal->isZero()) {
1903       // If all preds provide 0, replace the xor with the other input.
1904       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1905       BO->eraseFromParent();
1906     } else {
1907       // If all preds provide 1, set the computed value to 1.
1908       BO->setOperand(!isLHS, SplitVal);
1909     }
1910 
1911     return true;
1912   }
1913 
1914   // Try to duplicate BB into PredBB.
1915   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1916 }
1917 
1918 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1919 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1920 /// NewPred using the entries from OldPred (suitably mapped).
1921 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1922                                             BasicBlock *OldPred,
1923                                             BasicBlock *NewPred,
1924                                      DenseMap<Instruction*, Value*> &ValueMap) {
1925   for (PHINode &PN : PHIBB->phis()) {
1926     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1927     // DestBlock.
1928     Value *IV = PN.getIncomingValueForBlock(OldPred);
1929 
1930     // Remap the value if necessary.
1931     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1932       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1933       if (I != ValueMap.end())
1934         IV = I->second;
1935     }
1936 
1937     PN.addIncoming(IV, NewPred);
1938   }
1939 }
1940 
1941 /// Merge basic block BB into its sole predecessor if possible.
1942 bool JumpThreadingPass::MaybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) {
1943   BasicBlock *SinglePred = BB->getSinglePredecessor();
1944   if (!SinglePred)
1945     return false;
1946 
1947   const Instruction *TI = SinglePred->getTerminator();
1948   if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 ||
1949       SinglePred == BB || hasAddressTakenAndUsed(BB))
1950     return false;
1951 
1952   // If SinglePred was a loop header, BB becomes one.
1953   if (LoopHeaders.erase(SinglePred))
1954     LoopHeaders.insert(BB);
1955 
1956   LVI->eraseBlock(SinglePred);
1957   MergeBasicBlockIntoOnlyPred(BB, DTU);
1958 
1959   // Now that BB is merged into SinglePred (i.e. SinglePred code followed by
1960   // BB code within one basic block `BB`), we need to invalidate the LVI
1961   // information associated with BB, because the LVI information need not be
1962   // true for all of BB after the merge. For example,
1963   // Before the merge, LVI info and code is as follows:
1964   // SinglePred: <LVI info1 for %p val>
1965   // %y = use of %p
1966   // call @exit() // need not transfer execution to successor.
1967   // assume(%p) // from this point on %p is true
1968   // br label %BB
1969   // BB: <LVI info2 for %p val, i.e. %p is true>
1970   // %x = use of %p
1971   // br label exit
1972   //
1973   // Note that this LVI info for blocks BB and SinglPred is correct for %p
1974   // (info2 and info1 respectively). After the merge and the deletion of the
1975   // LVI info1 for SinglePred. We have the following code:
1976   // BB: <LVI info2 for %p val>
1977   // %y = use of %p
1978   // call @exit()
1979   // assume(%p)
1980   // %x = use of %p <-- LVI info2 is correct from here onwards.
1981   // br label exit
1982   // LVI info2 for BB is incorrect at the beginning of BB.
1983 
1984   // Invalidate LVI information for BB if the LVI is not provably true for
1985   // all of BB.
1986   if (!isGuaranteedToTransferExecutionToSuccessor(BB))
1987     LVI->eraseBlock(BB);
1988   return true;
1989 }
1990 
1991 /// Update the SSA form.  NewBB contains instructions that are copied from BB.
1992 /// ValueMapping maps old values in BB to new ones in NewBB.
1993 void JumpThreadingPass::UpdateSSA(
1994     BasicBlock *BB, BasicBlock *NewBB,
1995     DenseMap<Instruction *, Value *> &ValueMapping) {
1996   // If there were values defined in BB that are used outside the block, then we
1997   // now have to update all uses of the value to use either the original value,
1998   // the cloned value, or some PHI derived value.  This can require arbitrary
1999   // PHI insertion, of which we are prepared to do, clean these up now.
2000   SSAUpdater SSAUpdate;
2001   SmallVector<Use *, 16> UsesToRename;
2002 
2003   for (Instruction &I : *BB) {
2004     // Scan all uses of this instruction to see if it is used outside of its
2005     // block, and if so, record them in UsesToRename.
2006     for (Use &U : I.uses()) {
2007       Instruction *User = cast<Instruction>(U.getUser());
2008       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2009         if (UserPN->getIncomingBlock(U) == BB)
2010           continue;
2011       } else if (User->getParent() == BB)
2012         continue;
2013 
2014       UsesToRename.push_back(&U);
2015     }
2016 
2017     // If there are no uses outside the block, we're done with this instruction.
2018     if (UsesToRename.empty())
2019       continue;
2020     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2021 
2022     // We found a use of I outside of BB.  Rename all uses of I that are outside
2023     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2024     // with the two values we know.
2025     SSAUpdate.Initialize(I.getType(), I.getName());
2026     SSAUpdate.AddAvailableValue(BB, &I);
2027     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
2028 
2029     while (!UsesToRename.empty())
2030       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2031     LLVM_DEBUG(dbgs() << "\n");
2032   }
2033 }
2034 
2035 /// Clone instructions in range [BI, BE) to NewBB.  For PHI nodes, we only clone
2036 /// arguments that come from PredBB.  Return the map from the variables in the
2037 /// source basic block to the variables in the newly created basic block.
2038 DenseMap<Instruction *, Value *>
2039 JumpThreadingPass::CloneInstructions(BasicBlock::iterator BI,
2040                                      BasicBlock::iterator BE, BasicBlock *NewBB,
2041                                      BasicBlock *PredBB) {
2042   // We are going to have to map operands from the source basic block to the new
2043   // copy of the block 'NewBB'.  If there are PHI nodes in the source basic
2044   // block, evaluate them to account for entry from PredBB.
2045   DenseMap<Instruction *, Value *> ValueMapping;
2046 
2047   // Clone the phi nodes of the source basic block into NewBB.  The resulting
2048   // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater
2049   // might need to rewrite the operand of the cloned phi.
2050   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2051     PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB);
2052     NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB);
2053     ValueMapping[PN] = NewPN;
2054   }
2055 
2056   // Clone the non-phi instructions of the source basic block into NewBB,
2057   // keeping track of the mapping and using it to remap operands in the cloned
2058   // instructions.
2059   for (; BI != BE; ++BI) {
2060     Instruction *New = BI->clone();
2061     New->setName(BI->getName());
2062     NewBB->getInstList().push_back(New);
2063     ValueMapping[&*BI] = New;
2064 
2065     // Remap operands to patch up intra-block references.
2066     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2067       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2068         DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst);
2069         if (I != ValueMapping.end())
2070           New->setOperand(i, I->second);
2071       }
2072   }
2073 
2074   return ValueMapping;
2075 }
2076 
2077 /// Attempt to thread through two successive basic blocks.
2078 bool JumpThreadingPass::MaybeThreadThroughTwoBasicBlocks(BasicBlock *BB,
2079                                                          Value *Cond) {
2080   // Consider:
2081   //
2082   // PredBB:
2083   //   %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ]
2084   //   %tobool = icmp eq i32 %cond, 0
2085   //   br i1 %tobool, label %BB, label ...
2086   //
2087   // BB:
2088   //   %cmp = icmp eq i32* %var, null
2089   //   br i1 %cmp, label ..., label ...
2090   //
2091   // We don't know the value of %var at BB even if we know which incoming edge
2092   // we take to BB.  However, once we duplicate PredBB for each of its incoming
2093   // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of
2094   // PredBB.  Then we can thread edges PredBB1->BB and PredBB2->BB through BB.
2095 
2096   // Require that BB end with a Branch for simplicity.
2097   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2098   if (!CondBr)
2099     return false;
2100 
2101   // BB must have exactly one predecessor.
2102   BasicBlock *PredBB = BB->getSinglePredecessor();
2103   if (!PredBB)
2104     return false;
2105 
2106   // Require that PredBB end with a Branch.  If PredBB ends with an
2107   // unconditional branch, we should be merging PredBB and BB instead.  For
2108   // simplicity, we don't deal with a switch.
2109   BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2110   if (!PredBBBranch)
2111     return false;
2112 
2113   // If PredBB has exactly one incoming edge, we don't gain anything by copying
2114   // PredBB.
2115   if (PredBB->getSinglePredecessor())
2116     return false;
2117 
2118   // Don't thread across a loop header.
2119   if (LoopHeaders.count(PredBB))
2120     return false;
2121 
2122   // Avoid complication with duplicating EH pads.
2123   if (PredBB->isEHPad())
2124     return false;
2125 
2126   // Find a predecessor that we can thread.  For simplicity, we only consider a
2127   // successor edge out of BB to which we thread exactly one incoming edge into
2128   // PredBB.
2129   unsigned ZeroCount = 0;
2130   unsigned OneCount = 0;
2131   BasicBlock *ZeroPred = nullptr;
2132   BasicBlock *OnePred = nullptr;
2133   for (BasicBlock *P : predecessors(PredBB)) {
2134     if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(
2135             EvaluateOnPredecessorEdge(BB, P, Cond))) {
2136       if (CI->isZero()) {
2137         ZeroCount++;
2138         ZeroPred = P;
2139       } else if (CI->isOne()) {
2140         OneCount++;
2141         OnePred = P;
2142       }
2143     }
2144   }
2145 
2146   // Disregard complicated cases where we have to thread multiple edges.
2147   BasicBlock *PredPredBB;
2148   if (ZeroCount == 1) {
2149     PredPredBB = ZeroPred;
2150   } else if (OneCount == 1) {
2151     PredPredBB = OnePred;
2152   } else {
2153     return false;
2154   }
2155 
2156   BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred);
2157 
2158   // If threading to the same block as we come from, we would infinite loop.
2159   if (SuccBB == BB) {
2160     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2161                       << "' - would thread to self!\n");
2162     return false;
2163   }
2164 
2165   // If threading this would thread across a loop header, don't thread the edge.
2166   // See the comments above FindLoopHeaders for justifications and caveats.
2167   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2168     LLVM_DEBUG({
2169       bool BBIsHeader = LoopHeaders.count(BB);
2170       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2171       dbgs() << "  Not threading across "
2172              << (BBIsHeader ? "loop header BB '" : "block BB '")
2173              << BB->getName() << "' to dest "
2174              << (SuccIsHeader ? "loop header BB '" : "block BB '")
2175              << SuccBB->getName()
2176              << "' - it might create an irreducible loop!\n";
2177     });
2178     return false;
2179   }
2180 
2181   // Compute the cost of duplicating BB and PredBB.
2182   unsigned BBCost =
2183       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2184   unsigned PredBBCost = getJumpThreadDuplicationCost(
2185       PredBB, PredBB->getTerminator(), BBDupThreshold);
2186 
2187   // Give up if costs are too high.  We need to check BBCost and PredBBCost
2188   // individually before checking their sum because getJumpThreadDuplicationCost
2189   // return (unsigned)~0 for those basic blocks that cannot be duplicated.
2190   if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold ||
2191       BBCost + PredBBCost > BBDupThreshold) {
2192     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2193                       << "' - Cost is too high: " << PredBBCost
2194                       << " for PredBB, " << BBCost << "for BB\n");
2195     return false;
2196   }
2197 
2198   // Now we are ready to duplicate PredBB.
2199   ThreadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB);
2200   return true;
2201 }
2202 
2203 void JumpThreadingPass::ThreadThroughTwoBasicBlocks(BasicBlock *PredPredBB,
2204                                                     BasicBlock *PredBB,
2205                                                     BasicBlock *BB,
2206                                                     BasicBlock *SuccBB) {
2207   LLVM_DEBUG(dbgs() << "  Threading through '" << PredBB->getName() << "' and '"
2208                     << BB->getName() << "'\n");
2209 
2210   BranchInst *CondBr = cast<BranchInst>(BB->getTerminator());
2211   BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator());
2212 
2213   BasicBlock *NewBB =
2214       BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread",
2215                          PredBB->getParent(), PredBB);
2216   NewBB->moveAfter(PredBB);
2217 
2218   // Set the block frequency of NewBB.
2219   if (HasProfileData) {
2220     auto NewBBFreq = BFI->getBlockFreq(PredPredBB) *
2221                      BPI->getEdgeProbability(PredPredBB, PredBB);
2222     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2223   }
2224 
2225   // We are going to have to map operands from the original BB block to the new
2226   // copy of the block 'NewBB'.  If there are PHI nodes in PredBB, evaluate them
2227   // to account for entry from PredPredBB.
2228   DenseMap<Instruction *, Value *> ValueMapping =
2229       CloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB);
2230 
2231   // Update the terminator of PredPredBB to jump to NewBB instead of PredBB.
2232   // This eliminates predecessors from PredPredBB, which requires us to simplify
2233   // any PHI nodes in PredBB.
2234   Instruction *PredPredTerm = PredPredBB->getTerminator();
2235   for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i)
2236     if (PredPredTerm->getSuccessor(i) == PredBB) {
2237       PredBB->removePredecessor(PredPredBB, true);
2238       PredPredTerm->setSuccessor(i, NewBB);
2239     }
2240 
2241   AddPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB,
2242                                   ValueMapping);
2243   AddPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB,
2244                                   ValueMapping);
2245 
2246   DTU->applyUpdatesPermissive(
2247       {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)},
2248        {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)},
2249        {DominatorTree::Insert, PredPredBB, NewBB},
2250        {DominatorTree::Delete, PredPredBB, PredBB}});
2251 
2252   UpdateSSA(PredBB, NewBB, ValueMapping);
2253 
2254   // Clean up things like PHI nodes with single operands, dead instructions,
2255   // etc.
2256   SimplifyInstructionsInBlock(NewBB, TLI);
2257   SimplifyInstructionsInBlock(PredBB, TLI);
2258 
2259   SmallVector<BasicBlock *, 1> PredsToFactor;
2260   PredsToFactor.push_back(NewBB);
2261   ThreadEdge(BB, PredsToFactor, SuccBB);
2262 }
2263 
2264 /// TryThreadEdge - Thread an edge if it's safe and profitable to do so.
2265 bool JumpThreadingPass::TryThreadEdge(
2266     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs,
2267     BasicBlock *SuccBB) {
2268   // If threading to the same block as we come from, we would infinite loop.
2269   if (SuccBB == BB) {
2270     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2271                       << "' - would thread to self!\n");
2272     return false;
2273   }
2274 
2275   // If threading this would thread across a loop header, don't thread the edge.
2276   // See the comments above FindLoopHeaders for justifications and caveats.
2277   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2278     LLVM_DEBUG({
2279       bool BBIsHeader = LoopHeaders.count(BB);
2280       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2281       dbgs() << "  Not threading across "
2282           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
2283           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
2284           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
2285     });
2286     return false;
2287   }
2288 
2289   unsigned JumpThreadCost =
2290       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2291   if (JumpThreadCost > BBDupThreshold) {
2292     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2293                       << "' - Cost is too high: " << JumpThreadCost << "\n");
2294     return false;
2295   }
2296 
2297   ThreadEdge(BB, PredBBs, SuccBB);
2298   return true;
2299 }
2300 
2301 /// ThreadEdge - We have decided that it is safe and profitable to factor the
2302 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
2303 /// across BB.  Transform the IR to reflect this change.
2304 void JumpThreadingPass::ThreadEdge(BasicBlock *BB,
2305                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
2306                                    BasicBlock *SuccBB) {
2307   assert(SuccBB != BB && "Don't create an infinite loop");
2308 
2309   assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) &&
2310          "Don't thread across loop headers");
2311 
2312   // And finally, do it!  Start by factoring the predecessors if needed.
2313   BasicBlock *PredBB;
2314   if (PredBBs.size() == 1)
2315     PredBB = PredBBs[0];
2316   else {
2317     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2318                       << " common predecessors.\n");
2319     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
2320   }
2321 
2322   // And finally, do it!
2323   LLVM_DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName()
2324                     << "' to '" << SuccBB->getName()
2325                     << ", across block:\n    " << *BB << "\n");
2326 
2327   if (DTU->hasPendingDomTreeUpdates())
2328     LVI->disableDT();
2329   else
2330     LVI->enableDT();
2331   LVI->threadEdge(PredBB, BB, SuccBB);
2332 
2333   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
2334                                          BB->getName()+".thread",
2335                                          BB->getParent(), BB);
2336   NewBB->moveAfter(PredBB);
2337 
2338   // Set the block frequency of NewBB.
2339   if (HasProfileData) {
2340     auto NewBBFreq =
2341         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
2342     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2343   }
2344 
2345   // Copy all the instructions from BB to NewBB except the terminator.
2346   DenseMap<Instruction *, Value *> ValueMapping =
2347       CloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB);
2348 
2349   // We didn't copy the terminator from BB over to NewBB, because there is now
2350   // an unconditional jump to SuccBB.  Insert the unconditional jump.
2351   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
2352   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2353 
2354   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2355   // PHI nodes for NewBB now.
2356   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2357 
2358   // Update the terminator of PredBB to jump to NewBB instead of BB.  This
2359   // eliminates predecessors from BB, which requires us to simplify any PHI
2360   // nodes in BB.
2361   Instruction *PredTerm = PredBB->getTerminator();
2362   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2363     if (PredTerm->getSuccessor(i) == BB) {
2364       BB->removePredecessor(PredBB, true);
2365       PredTerm->setSuccessor(i, NewBB);
2366     }
2367 
2368   // Enqueue required DT updates.
2369   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB},
2370                                {DominatorTree::Insert, PredBB, NewBB},
2371                                {DominatorTree::Delete, PredBB, BB}});
2372 
2373   UpdateSSA(BB, NewBB, ValueMapping);
2374 
2375   // At this point, the IR is fully up to date and consistent.  Do a quick scan
2376   // over the new instructions and zap any that are constants or dead.  This
2377   // frequently happens because of phi translation.
2378   SimplifyInstructionsInBlock(NewBB, TLI);
2379 
2380   // Update the edge weight from BB to SuccBB, which should be less than before.
2381   UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
2382 
2383   // Threaded an edge!
2384   ++NumThreads;
2385 }
2386 
2387 /// Create a new basic block that will be the predecessor of BB and successor of
2388 /// all blocks in Preds. When profile data is available, update the frequency of
2389 /// this new block.
2390 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
2391                                                ArrayRef<BasicBlock *> Preds,
2392                                                const char *Suffix) {
2393   SmallVector<BasicBlock *, 2> NewBBs;
2394 
2395   // Collect the frequencies of all predecessors of BB, which will be used to
2396   // update the edge weight of the result of splitting predecessors.
2397   DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2398   if (HasProfileData)
2399     for (auto Pred : Preds)
2400       FreqMap.insert(std::make_pair(
2401           Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2402 
2403   // In the case when BB is a LandingPad block we create 2 new predecessors
2404   // instead of just one.
2405   if (BB->isLandingPad()) {
2406     std::string NewName = std::string(Suffix) + ".split-lp";
2407     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2408   } else {
2409     NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2410   }
2411 
2412   std::vector<DominatorTree::UpdateType> Updates;
2413   Updates.reserve((2 * Preds.size()) + NewBBs.size());
2414   for (auto NewBB : NewBBs) {
2415     BlockFrequency NewBBFreq(0);
2416     Updates.push_back({DominatorTree::Insert, NewBB, BB});
2417     for (auto Pred : predecessors(NewBB)) {
2418       Updates.push_back({DominatorTree::Delete, Pred, BB});
2419       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2420       if (HasProfileData) // Update frequencies between Pred -> NewBB.
2421         NewBBFreq += FreqMap.lookup(Pred);
2422     }
2423     if (HasProfileData) // Apply the summed frequency to NewBB.
2424       BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2425   }
2426 
2427   DTU->applyUpdatesPermissive(Updates);
2428   return NewBBs[0];
2429 }
2430 
2431 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2432   const Instruction *TI = BB->getTerminator();
2433   assert(TI->getNumSuccessors() > 1 && "not a split");
2434 
2435   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
2436   if (!WeightsNode)
2437     return false;
2438 
2439   MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
2440   if (MDName->getString() != "branch_weights")
2441     return false;
2442 
2443   // Ensure there are weights for all of the successors. Note that the first
2444   // operand to the metadata node is a name, not a weight.
2445   return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
2446 }
2447 
2448 /// Update the block frequency of BB and branch weight and the metadata on the
2449 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2450 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2451 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2452                                                      BasicBlock *BB,
2453                                                      BasicBlock *NewBB,
2454                                                      BasicBlock *SuccBB) {
2455   if (!HasProfileData)
2456     return;
2457 
2458   assert(BFI && BPI && "BFI & BPI should have been created here");
2459 
2460   // As the edge from PredBB to BB is deleted, we have to update the block
2461   // frequency of BB.
2462   auto BBOrigFreq = BFI->getBlockFreq(BB);
2463   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2464   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2465   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2466   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2467 
2468   // Collect updated outgoing edges' frequencies from BB and use them to update
2469   // edge probabilities.
2470   SmallVector<uint64_t, 4> BBSuccFreq;
2471   for (BasicBlock *Succ : successors(BB)) {
2472     auto SuccFreq = (Succ == SuccBB)
2473                         ? BB2SuccBBFreq - NewBBFreq
2474                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2475     BBSuccFreq.push_back(SuccFreq.getFrequency());
2476   }
2477 
2478   uint64_t MaxBBSuccFreq =
2479       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2480 
2481   SmallVector<BranchProbability, 4> BBSuccProbs;
2482   if (MaxBBSuccFreq == 0)
2483     BBSuccProbs.assign(BBSuccFreq.size(),
2484                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2485   else {
2486     for (uint64_t Freq : BBSuccFreq)
2487       BBSuccProbs.push_back(
2488           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2489     // Normalize edge probabilities so that they sum up to one.
2490     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2491                                               BBSuccProbs.end());
2492   }
2493 
2494   // Update edge probabilities in BPI.
2495   for (int I = 0, E = BBSuccProbs.size(); I < E; I++)
2496     BPI->setEdgeProbability(BB, I, BBSuccProbs[I]);
2497 
2498   // Update the profile metadata as well.
2499   //
2500   // Don't do this if the profile of the transformed blocks was statically
2501   // estimated.  (This could occur despite the function having an entry
2502   // frequency in completely cold parts of the CFG.)
2503   //
2504   // In this case we don't want to suggest to subsequent passes that the
2505   // calculated weights are fully consistent.  Consider this graph:
2506   //
2507   //                 check_1
2508   //             50% /  |
2509   //             eq_1   | 50%
2510   //                 \  |
2511   //                 check_2
2512   //             50% /  |
2513   //             eq_2   | 50%
2514   //                 \  |
2515   //                 check_3
2516   //             50% /  |
2517   //             eq_3   | 50%
2518   //                 \  |
2519   //
2520   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2521   // the overall probabilities are inconsistent; the total probability that the
2522   // value is either 1, 2 or 3 is 150%.
2523   //
2524   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2525   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2526   // the loop exit edge.  Then based solely on static estimation we would assume
2527   // the loop was extremely hot.
2528   //
2529   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2530   // shouldn't make edges extremely likely or unlikely based solely on static
2531   // estimation.
2532   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2533     SmallVector<uint32_t, 4> Weights;
2534     for (auto Prob : BBSuccProbs)
2535       Weights.push_back(Prob.getNumerator());
2536 
2537     auto TI = BB->getTerminator();
2538     TI->setMetadata(
2539         LLVMContext::MD_prof,
2540         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2541   }
2542 }
2543 
2544 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2545 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2546 /// If we can duplicate the contents of BB up into PredBB do so now, this
2547 /// improves the odds that the branch will be on an analyzable instruction like
2548 /// a compare.
2549 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred(
2550     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2551   assert(!PredBBs.empty() && "Can't handle an empty set");
2552 
2553   // If BB is a loop header, then duplicating this block outside the loop would
2554   // cause us to transform this into an irreducible loop, don't do this.
2555   // See the comments above FindLoopHeaders for justifications and caveats.
2556   if (LoopHeaders.count(BB)) {
2557     LLVM_DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2558                       << "' into predecessor block '" << PredBBs[0]->getName()
2559                       << "' - it might create an irreducible loop!\n");
2560     return false;
2561   }
2562 
2563   unsigned DuplicationCost =
2564       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2565   if (DuplicationCost > BBDupThreshold) {
2566     LLVM_DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2567                       << "' - Cost is too high: " << DuplicationCost << "\n");
2568     return false;
2569   }
2570 
2571   // And finally, do it!  Start by factoring the predecessors if needed.
2572   std::vector<DominatorTree::UpdateType> Updates;
2573   BasicBlock *PredBB;
2574   if (PredBBs.size() == 1)
2575     PredBB = PredBBs[0];
2576   else {
2577     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2578                       << " common predecessors.\n");
2579     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
2580   }
2581   Updates.push_back({DominatorTree::Delete, PredBB, BB});
2582 
2583   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2584   // of PredBB.
2585   LLVM_DEBUG(dbgs() << "  Duplicating block '" << BB->getName()
2586                     << "' into end of '" << PredBB->getName()
2587                     << "' to eliminate branch on phi.  Cost: "
2588                     << DuplicationCost << " block is:" << *BB << "\n");
2589 
2590   // Unless PredBB ends with an unconditional branch, split the edge so that we
2591   // can just clone the bits from BB into the end of the new PredBB.
2592   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2593 
2594   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2595     BasicBlock *OldPredBB = PredBB;
2596     PredBB = SplitEdge(OldPredBB, BB);
2597     Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2598     Updates.push_back({DominatorTree::Insert, PredBB, BB});
2599     Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2600     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2601   }
2602 
2603   // We are going to have to map operands from the original BB block into the
2604   // PredBB block.  Evaluate PHI nodes in BB.
2605   DenseMap<Instruction*, Value*> ValueMapping;
2606 
2607   BasicBlock::iterator BI = BB->begin();
2608   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2609     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2610   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2611   // mapping and using it to remap operands in the cloned instructions.
2612   for (; BI != BB->end(); ++BI) {
2613     Instruction *New = BI->clone();
2614 
2615     // Remap operands to patch up intra-block references.
2616     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2617       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2618         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2619         if (I != ValueMapping.end())
2620           New->setOperand(i, I->second);
2621       }
2622 
2623     // If this instruction can be simplified after the operands are updated,
2624     // just use the simplified value instead.  This frequently happens due to
2625     // phi translation.
2626     if (Value *IV = SimplifyInstruction(
2627             New,
2628             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2629       ValueMapping[&*BI] = IV;
2630       if (!New->mayHaveSideEffects()) {
2631         New->deleteValue();
2632         New = nullptr;
2633       }
2634     } else {
2635       ValueMapping[&*BI] = New;
2636     }
2637     if (New) {
2638       // Otherwise, insert the new instruction into the block.
2639       New->setName(BI->getName());
2640       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2641       // Update Dominance from simplified New instruction operands.
2642       for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2643         if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2644           Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2645     }
2646   }
2647 
2648   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2649   // add entries to the PHI nodes for branch from PredBB now.
2650   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2651   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2652                                   ValueMapping);
2653   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2654                                   ValueMapping);
2655 
2656   UpdateSSA(BB, PredBB, ValueMapping);
2657 
2658   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2659   // that we nuked.
2660   BB->removePredecessor(PredBB, true);
2661 
2662   // Remove the unconditional branch at the end of the PredBB block.
2663   OldPredBranch->eraseFromParent();
2664   DTU->applyUpdatesPermissive(Updates);
2665 
2666   ++NumDupes;
2667   return true;
2668 }
2669 
2670 // Pred is a predecessor of BB with an unconditional branch to BB. SI is
2671 // a Select instruction in Pred. BB has other predecessors and SI is used in
2672 // a PHI node in BB. SI has no other use.
2673 // A new basic block, NewBB, is created and SI is converted to compare and
2674 // conditional branch. SI is erased from parent.
2675 void JumpThreadingPass::UnfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
2676                                           SelectInst *SI, PHINode *SIUse,
2677                                           unsigned Idx) {
2678   // Expand the select.
2679   //
2680   // Pred --
2681   //  |    v
2682   //  |  NewBB
2683   //  |    |
2684   //  |-----
2685   //  v
2686   // BB
2687   BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator());
2688   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2689                                          BB->getParent(), BB);
2690   // Move the unconditional branch to NewBB.
2691   PredTerm->removeFromParent();
2692   NewBB->getInstList().insert(NewBB->end(), PredTerm);
2693   // Create a conditional branch and update PHI nodes.
2694   BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2695   SIUse->setIncomingValue(Idx, SI->getFalseValue());
2696   SIUse->addIncoming(SI->getTrueValue(), NewBB);
2697 
2698   // The select is now dead.
2699   SI->eraseFromParent();
2700   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB},
2701                                {DominatorTree::Insert, Pred, NewBB}});
2702 
2703   // Update any other PHI nodes in BB.
2704   for (BasicBlock::iterator BI = BB->begin();
2705        PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2706     if (Phi != SIUse)
2707       Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2708 }
2709 
2710 bool JumpThreadingPass::TryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
2711   PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
2712 
2713   if (!CondPHI || CondPHI->getParent() != BB)
2714     return false;
2715 
2716   for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
2717     BasicBlock *Pred = CondPHI->getIncomingBlock(I);
2718     SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
2719 
2720     // The second and third condition can be potentially relaxed. Currently
2721     // the conditions help to simplify the code and allow us to reuse existing
2722     // code, developed for TryToUnfoldSelect(CmpInst *, BasicBlock *)
2723     if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
2724       continue;
2725 
2726     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2727     if (!PredTerm || !PredTerm->isUnconditional())
2728       continue;
2729 
2730     UnfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
2731     return true;
2732   }
2733   return false;
2734 }
2735 
2736 /// TryToUnfoldSelect - Look for blocks of the form
2737 /// bb1:
2738 ///   %a = select
2739 ///   br bb2
2740 ///
2741 /// bb2:
2742 ///   %p = phi [%a, %bb1] ...
2743 ///   %c = icmp %p
2744 ///   br i1 %c
2745 ///
2746 /// And expand the select into a branch structure if one of its arms allows %c
2747 /// to be folded. This later enables threading from bb1 over bb2.
2748 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2749   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2750   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2751   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2752 
2753   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2754       CondLHS->getParent() != BB)
2755     return false;
2756 
2757   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2758     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2759     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2760 
2761     // Look if one of the incoming values is a select in the corresponding
2762     // predecessor.
2763     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2764       continue;
2765 
2766     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2767     if (!PredTerm || !PredTerm->isUnconditional())
2768       continue;
2769 
2770     // Now check if one of the select values would allow us to constant fold the
2771     // terminator in BB. We don't do the transform if both sides fold, those
2772     // cases will be threaded in any case.
2773     if (DTU->hasPendingDomTreeUpdates())
2774       LVI->disableDT();
2775     else
2776       LVI->enableDT();
2777     LazyValueInfo::Tristate LHSFolds =
2778         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2779                                 CondRHS, Pred, BB, CondCmp);
2780     LazyValueInfo::Tristate RHSFolds =
2781         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2782                                 CondRHS, Pred, BB, CondCmp);
2783     if ((LHSFolds != LazyValueInfo::Unknown ||
2784          RHSFolds != LazyValueInfo::Unknown) &&
2785         LHSFolds != RHSFolds) {
2786       UnfoldSelectInstr(Pred, BB, SI, CondLHS, I);
2787       return true;
2788     }
2789   }
2790   return false;
2791 }
2792 
2793 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2794 /// same BB in the form
2795 /// bb:
2796 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2797 ///   %s = select %p, trueval, falseval
2798 ///
2799 /// or
2800 ///
2801 /// bb:
2802 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2803 ///   %c = cmp %p, 0
2804 ///   %s = select %c, trueval, falseval
2805 ///
2806 /// And expand the select into a branch structure. This later enables
2807 /// jump-threading over bb in this pass.
2808 ///
2809 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2810 /// select if the associated PHI has at least one constant.  If the unfolded
2811 /// select is not jump-threaded, it will be folded again in the later
2812 /// optimizations.
2813 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2814   // If threading this would thread across a loop header, don't thread the edge.
2815   // See the comments above FindLoopHeaders for justifications and caveats.
2816   if (LoopHeaders.count(BB))
2817     return false;
2818 
2819   for (BasicBlock::iterator BI = BB->begin();
2820        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2821     // Look for a Phi having at least one constant incoming value.
2822     if (llvm::all_of(PN->incoming_values(),
2823                      [](Value *V) { return !isa<ConstantInt>(V); }))
2824       continue;
2825 
2826     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2827       // Check if SI is in BB and use V as condition.
2828       if (SI->getParent() != BB)
2829         return false;
2830       Value *Cond = SI->getCondition();
2831       return (Cond && Cond == V && Cond->getType()->isIntegerTy(1));
2832     };
2833 
2834     SelectInst *SI = nullptr;
2835     for (Use &U : PN->uses()) {
2836       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2837         // Look for a ICmp in BB that compares PN with a constant and is the
2838         // condition of a Select.
2839         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2840             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2841           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2842             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2843               SI = SelectI;
2844               break;
2845             }
2846       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2847         // Look for a Select in BB that uses PN as condition.
2848         if (isUnfoldCandidate(SelectI, U.get())) {
2849           SI = SelectI;
2850           break;
2851         }
2852       }
2853     }
2854 
2855     if (!SI)
2856       continue;
2857     // Expand the select.
2858     Instruction *Term =
2859         SplitBlockAndInsertIfThen(SI->getCondition(), SI, false);
2860     BasicBlock *SplitBB = SI->getParent();
2861     BasicBlock *NewBB = Term->getParent();
2862     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2863     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2864     NewPN->addIncoming(SI->getFalseValue(), BB);
2865     SI->replaceAllUsesWith(NewPN);
2866     SI->eraseFromParent();
2867     // NewBB and SplitBB are newly created blocks which require insertion.
2868     std::vector<DominatorTree::UpdateType> Updates;
2869     Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2870     Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2871     Updates.push_back({DominatorTree::Insert, BB, NewBB});
2872     Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2873     // BB's successors were moved to SplitBB, update DTU accordingly.
2874     for (auto *Succ : successors(SplitBB)) {
2875       Updates.push_back({DominatorTree::Delete, BB, Succ});
2876       Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2877     }
2878     DTU->applyUpdatesPermissive(Updates);
2879     return true;
2880   }
2881   return false;
2882 }
2883 
2884 /// Try to propagate a guard from the current BB into one of its predecessors
2885 /// in case if another branch of execution implies that the condition of this
2886 /// guard is always true. Currently we only process the simplest case that
2887 /// looks like:
2888 ///
2889 /// Start:
2890 ///   %cond = ...
2891 ///   br i1 %cond, label %T1, label %F1
2892 /// T1:
2893 ///   br label %Merge
2894 /// F1:
2895 ///   br label %Merge
2896 /// Merge:
2897 ///   %condGuard = ...
2898 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2899 ///
2900 /// And cond either implies condGuard or !condGuard. In this case all the
2901 /// instructions before the guard can be duplicated in both branches, and the
2902 /// guard is then threaded to one of them.
2903 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) {
2904   using namespace PatternMatch;
2905 
2906   // We only want to deal with two predecessors.
2907   BasicBlock *Pred1, *Pred2;
2908   auto PI = pred_begin(BB), PE = pred_end(BB);
2909   if (PI == PE)
2910     return false;
2911   Pred1 = *PI++;
2912   if (PI == PE)
2913     return false;
2914   Pred2 = *PI++;
2915   if (PI != PE)
2916     return false;
2917   if (Pred1 == Pred2)
2918     return false;
2919 
2920   // Try to thread one of the guards of the block.
2921   // TODO: Look up deeper than to immediate predecessor?
2922   auto *Parent = Pred1->getSinglePredecessor();
2923   if (!Parent || Parent != Pred2->getSinglePredecessor())
2924     return false;
2925 
2926   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2927     for (auto &I : *BB)
2928       if (isGuard(&I) && ThreadGuard(BB, cast<IntrinsicInst>(&I), BI))
2929         return true;
2930 
2931   return false;
2932 }
2933 
2934 /// Try to propagate the guard from BB which is the lower block of a diamond
2935 /// to one of its branches, in case if diamond's condition implies guard's
2936 /// condition.
2937 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard,
2938                                     BranchInst *BI) {
2939   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
2940   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
2941   Value *GuardCond = Guard->getArgOperand(0);
2942   Value *BranchCond = BI->getCondition();
2943   BasicBlock *TrueDest = BI->getSuccessor(0);
2944   BasicBlock *FalseDest = BI->getSuccessor(1);
2945 
2946   auto &DL = BB->getModule()->getDataLayout();
2947   bool TrueDestIsSafe = false;
2948   bool FalseDestIsSafe = false;
2949 
2950   // True dest is safe if BranchCond => GuardCond.
2951   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
2952   if (Impl && *Impl)
2953     TrueDestIsSafe = true;
2954   else {
2955     // False dest is safe if !BranchCond => GuardCond.
2956     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
2957     if (Impl && *Impl)
2958       FalseDestIsSafe = true;
2959   }
2960 
2961   if (!TrueDestIsSafe && !FalseDestIsSafe)
2962     return false;
2963 
2964   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
2965   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
2966 
2967   ValueToValueMapTy UnguardedMapping, GuardedMapping;
2968   Instruction *AfterGuard = Guard->getNextNode();
2969   unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
2970   if (Cost > BBDupThreshold)
2971     return false;
2972   // Duplicate all instructions before the guard and the guard itself to the
2973   // branch where implication is not proved.
2974   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
2975       BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
2976   assert(GuardedBlock && "Could not create the guarded block?");
2977   // Duplicate all instructions before the guard in the unguarded branch.
2978   // Since we have successfully duplicated the guarded block and this block
2979   // has fewer instructions, we expect it to succeed.
2980   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
2981       BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
2982   assert(UnguardedBlock && "Could not create the unguarded block?");
2983   LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
2984                     << GuardedBlock->getName() << "\n");
2985   // Some instructions before the guard may still have uses. For them, we need
2986   // to create Phi nodes merging their copies in both guarded and unguarded
2987   // branches. Those instructions that have no uses can be just removed.
2988   SmallVector<Instruction *, 4> ToRemove;
2989   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
2990     if (!isa<PHINode>(&*BI))
2991       ToRemove.push_back(&*BI);
2992 
2993   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
2994   assert(InsertionPoint && "Empty block?");
2995   // Substitute with Phis & remove.
2996   for (auto *Inst : reverse(ToRemove)) {
2997     if (!Inst->use_empty()) {
2998       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
2999       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
3000       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
3001       NewPN->insertBefore(InsertionPoint);
3002       Inst->replaceAllUsesWith(NewPN);
3003     }
3004     Inst->eraseFromParent();
3005   }
3006   return true;
3007 }
3008