1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "jump-threading" 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/IntrinsicInst.h" 17 #include "llvm/LLVMContext.h" 18 #include "llvm/Pass.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LazyValueInfo.h" 21 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 22 #include "llvm/Transforms/Utils/Local.h" 23 #include "llvm/Transforms/Utils/SSAUpdater.h" 24 #include "llvm/Target/TargetData.h" 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 using namespace llvm; 34 35 STATISTIC(NumThreads, "Number of jumps threaded"); 36 STATISTIC(NumFolds, "Number of terminators folded"); 37 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 38 39 static cl::opt<unsigned> 40 Threshold("jump-threading-threshold", 41 cl::desc("Max block size to duplicate for jump threading"), 42 cl::init(6), cl::Hidden); 43 44 // Turn on use of LazyValueInfo. 45 static cl::opt<bool> 46 EnableLVI("enable-jump-threading-lvi", cl::ReallyHidden); 47 48 49 50 namespace { 51 /// This pass performs 'jump threading', which looks at blocks that have 52 /// multiple predecessors and multiple successors. If one or more of the 53 /// predecessors of the block can be proven to always jump to one of the 54 /// successors, we forward the edge from the predecessor to the successor by 55 /// duplicating the contents of this block. 56 /// 57 /// An example of when this can occur is code like this: 58 /// 59 /// if () { ... 60 /// X = 4; 61 /// } 62 /// if (X < 3) { 63 /// 64 /// In this case, the unconditional branch at the end of the first if can be 65 /// revectored to the false side of the second if. 66 /// 67 class JumpThreading : public FunctionPass { 68 TargetData *TD; 69 LazyValueInfo *LVI; 70 #ifdef NDEBUG 71 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 72 #else 73 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 74 #endif 75 public: 76 static char ID; // Pass identification 77 JumpThreading() : FunctionPass(&ID) {} 78 79 bool runOnFunction(Function &F); 80 81 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 82 if (EnableLVI) 83 AU.addRequired<LazyValueInfo>(); 84 } 85 86 void FindLoopHeaders(Function &F); 87 bool ProcessBlock(BasicBlock *BB); 88 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 89 BasicBlock *SuccBB); 90 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 91 BasicBlock *PredBB); 92 93 typedef SmallVectorImpl<std::pair<ConstantInt*, 94 BasicBlock*> > PredValueInfo; 95 96 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 97 PredValueInfo &Result); 98 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB); 99 100 101 bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 102 bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 103 104 bool ProcessJumpOnPHI(PHINode *PN); 105 106 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 107 }; 108 } 109 110 char JumpThreading::ID = 0; 111 static RegisterPass<JumpThreading> 112 X("jump-threading", "Jump Threading"); 113 114 // Public interface to the Jump Threading pass 115 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); } 116 117 /// runOnFunction - Top level algorithm. 118 /// 119 bool JumpThreading::runOnFunction(Function &F) { 120 DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n"); 121 TD = getAnalysisIfAvailable<TargetData>(); 122 LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0; 123 124 FindLoopHeaders(F); 125 126 bool AnotherIteration = true, EverChanged = false; 127 while (AnotherIteration) { 128 AnotherIteration = false; 129 bool Changed = false; 130 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 131 BasicBlock *BB = I; 132 // Thread all of the branches we can over this block. 133 while (ProcessBlock(BB)) 134 Changed = true; 135 136 ++I; 137 138 // If the block is trivially dead, zap it. This eliminates the successor 139 // edges which simplifies the CFG. 140 if (pred_begin(BB) == pred_end(BB) && 141 BB != &BB->getParent()->getEntryBlock()) { 142 DEBUG(errs() << " JT: Deleting dead block '" << BB->getName() 143 << "' with terminator: " << *BB->getTerminator() << '\n'); 144 LoopHeaders.erase(BB); 145 DeleteDeadBlock(BB); 146 Changed = true; 147 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 148 // Can't thread an unconditional jump, but if the block is "almost 149 // empty", we can replace uses of it with uses of the successor and make 150 // this dead. 151 if (BI->isUnconditional() && 152 BB != &BB->getParent()->getEntryBlock()) { 153 BasicBlock::iterator BBI = BB->getFirstNonPHI(); 154 // Ignore dbg intrinsics. 155 while (isa<DbgInfoIntrinsic>(BBI)) 156 ++BBI; 157 // If the terminator is the only non-phi instruction, try to nuke it. 158 if (BBI->isTerminator()) { 159 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 160 // block, we have to make sure it isn't in the LoopHeaders set. We 161 // reinsert afterward if needed. 162 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 163 BasicBlock *Succ = BI->getSuccessor(0); 164 165 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { 166 Changed = true; 167 // If we deleted BB and BB was the header of a loop, then the 168 // successor is now the header of the loop. 169 BB = Succ; 170 } 171 172 if (ErasedFromLoopHeaders) 173 LoopHeaders.insert(BB); 174 } 175 } 176 } 177 } 178 AnotherIteration = Changed; 179 EverChanged |= Changed; 180 } 181 182 LoopHeaders.clear(); 183 return EverChanged; 184 } 185 186 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 187 /// thread across it. 188 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) { 189 /// Ignore PHI nodes, these will be flattened when duplication happens. 190 BasicBlock::const_iterator I = BB->getFirstNonPHI(); 191 192 // FIXME: THREADING will delete values that are just used to compute the 193 // branch, so they shouldn't count against the duplication cost. 194 195 196 // Sum up the cost of each instruction until we get to the terminator. Don't 197 // include the terminator because the copy won't include it. 198 unsigned Size = 0; 199 for (; !isa<TerminatorInst>(I); ++I) { 200 // Debugger intrinsics don't incur code size. 201 if (isa<DbgInfoIntrinsic>(I)) continue; 202 203 // If this is a pointer->pointer bitcast, it is free. 204 if (isa<BitCastInst>(I) && isa<PointerType>(I->getType())) 205 continue; 206 207 // All other instructions count for at least one unit. 208 ++Size; 209 210 // Calls are more expensive. If they are non-intrinsic calls, we model them 211 // as having cost of 4. If they are a non-vector intrinsic, we model them 212 // as having cost of 2 total, and if they are a vector intrinsic, we model 213 // them as having cost 1. 214 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 215 if (!isa<IntrinsicInst>(CI)) 216 Size += 3; 217 else if (!isa<VectorType>(CI->getType())) 218 Size += 1; 219 } 220 } 221 222 // Threading through a switch statement is particularly profitable. If this 223 // block ends in a switch, decrease its cost to make it more likely to happen. 224 if (isa<SwitchInst>(I)) 225 Size = Size > 6 ? Size-6 : 0; 226 227 return Size; 228 } 229 230 /// FindLoopHeaders - We do not want jump threading to turn proper loop 231 /// structures into irreducible loops. Doing this breaks up the loop nesting 232 /// hierarchy and pessimizes later transformations. To prevent this from 233 /// happening, we first have to find the loop headers. Here we approximate this 234 /// by finding targets of backedges in the CFG. 235 /// 236 /// Note that there definitely are cases when we want to allow threading of 237 /// edges across a loop header. For example, threading a jump from outside the 238 /// loop (the preheader) to an exit block of the loop is definitely profitable. 239 /// It is also almost always profitable to thread backedges from within the loop 240 /// to exit blocks, and is often profitable to thread backedges to other blocks 241 /// within the loop (forming a nested loop). This simple analysis is not rich 242 /// enough to track all of these properties and keep it up-to-date as the CFG 243 /// mutates, so we don't allow any of these transformations. 244 /// 245 void JumpThreading::FindLoopHeaders(Function &F) { 246 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 247 FindFunctionBackedges(F, Edges); 248 249 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 250 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 251 } 252 253 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 254 /// if we can infer that the value is a known ConstantInt in any of our 255 /// predecessors. If so, return the known list of value and pred BB in the 256 /// result vector. If a value is known to be undef, it is returned as null. 257 /// 258 /// This returns true if there were any known values. 259 /// 260 bool JumpThreading:: 261 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){ 262 // If V is a constantint, then it is known in all predecessors. 263 if (isa<ConstantInt>(V) || isa<UndefValue>(V)) { 264 ConstantInt *CI = dyn_cast<ConstantInt>(V); 265 266 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 267 Result.push_back(std::make_pair(CI, *PI)); 268 return true; 269 } 270 271 // If V is a non-instruction value, or an instruction in a different block, 272 // then it can't be derived from a PHI. 273 Instruction *I = dyn_cast<Instruction>(V); 274 if (I == 0 || I->getParent() != BB) { 275 276 // Okay, if this is a live-in value, see if it has a known value at the end 277 // of any of our predecessors. 278 // 279 // FIXME: This should be an edge property, not a block end property. 280 /// TODO: Per PR2563, we could infer value range information about a 281 /// predecessor based on its terminator. 282 // 283 if (LVI) { 284 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 285 // "I" is a non-local compare-with-a-constant instruction. This would be 286 // able to handle value inequalities better, for example if the compare is 287 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 288 // Perhaps getConstantOnEdge should be smart enough to do this? 289 290 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 291 // If the value is known by LazyValueInfo to be a constant in a 292 // predecessor, use that information to try to thread this block. 293 Constant *PredCst = LVI->getConstantOnEdge(V, *PI, BB); 294 if (PredCst == 0 || 295 (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst))) 296 continue; 297 298 Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), *PI)); 299 } 300 301 return !Result.empty(); 302 } 303 304 return false; 305 } 306 307 /// If I is a PHI node, then we know the incoming values for any constants. 308 if (PHINode *PN = dyn_cast<PHINode>(I)) { 309 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 310 Value *InVal = PN->getIncomingValue(i); 311 if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) { 312 ConstantInt *CI = dyn_cast<ConstantInt>(InVal); 313 Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i))); 314 } 315 } 316 return !Result.empty(); 317 } 318 319 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals; 320 321 // Handle some boolean conditions. 322 if (I->getType()->getPrimitiveSizeInBits() == 1) { 323 // X | true -> true 324 // X & false -> false 325 if (I->getOpcode() == Instruction::Or || 326 I->getOpcode() == Instruction::And) { 327 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals); 328 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals); 329 330 if (LHSVals.empty() && RHSVals.empty()) 331 return false; 332 333 ConstantInt *InterestingVal; 334 if (I->getOpcode() == Instruction::Or) 335 InterestingVal = ConstantInt::getTrue(I->getContext()); 336 else 337 InterestingVal = ConstantInt::getFalse(I->getContext()); 338 339 // Scan for the sentinel. 340 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 341 if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) 342 Result.push_back(LHSVals[i]); 343 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 344 if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) 345 Result.push_back(RHSVals[i]); 346 return !Result.empty(); 347 } 348 349 // Handle the NOT form of XOR. 350 if (I->getOpcode() == Instruction::Xor && 351 isa<ConstantInt>(I->getOperand(1)) && 352 cast<ConstantInt>(I->getOperand(1))->isOne()) { 353 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result); 354 if (Result.empty()) 355 return false; 356 357 // Invert the known values. 358 for (unsigned i = 0, e = Result.size(); i != e; ++i) 359 if (Result[i].first) 360 Result[i].first = 361 cast<ConstantInt>(ConstantExpr::getNot(Result[i].first)); 362 return true; 363 } 364 } 365 366 // Handle compare with phi operand, where the PHI is defined in this block. 367 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 368 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 369 if (PN && PN->getParent() == BB) { 370 // We can do this simplification if any comparisons fold to true or false. 371 // See if any do. 372 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 373 BasicBlock *PredBB = PN->getIncomingBlock(i); 374 Value *LHS = PN->getIncomingValue(i); 375 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 376 377 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD); 378 if (Res == 0) { 379 if (!LVI || !isa<Constant>(RHS)) 380 continue; 381 382 LazyValueInfo::Tristate 383 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 384 cast<Constant>(RHS), PredBB, BB); 385 if (ResT == LazyValueInfo::Unknown) 386 continue; 387 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 388 } 389 390 if (isa<UndefValue>(Res)) 391 Result.push_back(std::make_pair((ConstantInt*)0, PredBB)); 392 else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res)) 393 Result.push_back(std::make_pair(CI, PredBB)); 394 } 395 396 return !Result.empty(); 397 } 398 399 400 // If comparing a live-in value against a constant, see if we know the 401 // live-in value on any predecessors. 402 if (LVI && isa<Constant>(Cmp->getOperand(1)) && 403 Cmp->getType()->isInteger() && // Not vector compare. 404 (!isa<Instruction>(Cmp->getOperand(0)) || 405 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB)) { 406 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 407 408 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 409 // If the value is known by LazyValueInfo to be a constant in a 410 // predecessor, use that information to try to thread this block. 411 LazyValueInfo::Tristate 412 Res = LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 413 RHSCst, *PI, BB); 414 if (Res == LazyValueInfo::Unknown) 415 continue; 416 417 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 418 Result.push_back(std::make_pair(cast<ConstantInt>(ResC), *PI)); 419 } 420 421 return !Result.empty(); 422 } 423 } 424 return false; 425 } 426 427 428 429 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 430 /// in an undefined jump, decide which block is best to revector to. 431 /// 432 /// Since we can pick an arbitrary destination, we pick the successor with the 433 /// fewest predecessors. This should reduce the in-degree of the others. 434 /// 435 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 436 TerminatorInst *BBTerm = BB->getTerminator(); 437 unsigned MinSucc = 0; 438 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 439 // Compute the successor with the minimum number of predecessors. 440 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 441 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 442 TestBB = BBTerm->getSuccessor(i); 443 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 444 if (NumPreds < MinNumPreds) 445 MinSucc = i; 446 } 447 448 return MinSucc; 449 } 450 451 /// ProcessBlock - If there are any predecessors whose control can be threaded 452 /// through to a successor, transform them now. 453 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 454 // If this block has a single predecessor, and if that pred has a single 455 // successor, merge the blocks. This encourages recursive jump threading 456 // because now the condition in this block can be threaded through 457 // predecessors of our predecessor block. 458 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 459 if (SinglePred->getTerminator()->getNumSuccessors() == 1 && 460 SinglePred != BB) { 461 // If SinglePred was a loop header, BB becomes one. 462 if (LoopHeaders.erase(SinglePred)) 463 LoopHeaders.insert(BB); 464 465 // Remember if SinglePred was the entry block of the function. If so, we 466 // will need to move BB back to the entry position. 467 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 468 MergeBasicBlockIntoOnlyPred(BB); 469 470 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 471 BB->moveBefore(&BB->getParent()->getEntryBlock()); 472 return true; 473 } 474 } 475 476 // Look to see if the terminator is a branch of switch, if not we can't thread 477 // it. 478 Value *Condition; 479 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 480 // Can't thread an unconditional jump. 481 if (BI->isUnconditional()) return false; 482 Condition = BI->getCondition(); 483 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 484 Condition = SI->getCondition(); 485 else 486 return false; // Must be an invoke. 487 488 // If the terminator of this block is branching on a constant, simplify the 489 // terminator to an unconditional branch. This can occur due to threading in 490 // other blocks. 491 if (isa<ConstantInt>(Condition)) { 492 DEBUG(errs() << " In block '" << BB->getName() 493 << "' folding terminator: " << *BB->getTerminator() << '\n'); 494 ++NumFolds; 495 ConstantFoldTerminator(BB); 496 return true; 497 } 498 499 // If the terminator is branching on an undef, we can pick any of the 500 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 501 if (isa<UndefValue>(Condition)) { 502 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 503 504 // Fold the branch/switch. 505 TerminatorInst *BBTerm = BB->getTerminator(); 506 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 507 if (i == BestSucc) continue; 508 RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD); 509 } 510 511 DEBUG(errs() << " In block '" << BB->getName() 512 << "' folding undef terminator: " << *BBTerm << '\n'); 513 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 514 BBTerm->eraseFromParent(); 515 return true; 516 } 517 518 Instruction *CondInst = dyn_cast<Instruction>(Condition); 519 520 // If the condition is an instruction defined in another block, see if a 521 // predecessor has the same condition: 522 // br COND, BBX, BBY 523 // BBX: 524 // br COND, BBZ, BBW 525 if (!LVI && 526 !Condition->hasOneUse() && // Multiple uses. 527 (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition. 528 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 529 if (isa<BranchInst>(BB->getTerminator())) { 530 for (; PI != E; ++PI) 531 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 532 if (PBI->isConditional() && PBI->getCondition() == Condition && 533 ProcessBranchOnDuplicateCond(*PI, BB)) 534 return true; 535 } else { 536 assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator"); 537 for (; PI != E; ++PI) 538 if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator())) 539 if (PSI->getCondition() == Condition && 540 ProcessSwitchOnDuplicateCond(*PI, BB)) 541 return true; 542 } 543 } 544 545 // All the rest of our checks depend on the condition being an instruction. 546 if (CondInst == 0) { 547 // FIXME: Unify this with code below. 548 if (LVI && ProcessThreadableEdges(Condition, BB)) 549 return true; 550 return false; 551 } 552 553 554 // See if this is a phi node in the current block. 555 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 556 if (PN->getParent() == BB) 557 return ProcessJumpOnPHI(PN); 558 559 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 560 if (!LVI && 561 (!isa<PHINode>(CondCmp->getOperand(0)) || 562 cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) { 563 // If we have a comparison, loop over the predecessors to see if there is 564 // a condition with a lexically identical value. 565 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 566 for (; PI != E; ++PI) 567 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 568 if (PBI->isConditional() && *PI != BB) { 569 if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) { 570 if (CI->getOperand(0) == CondCmp->getOperand(0) && 571 CI->getOperand(1) == CondCmp->getOperand(1) && 572 CI->getPredicate() == CondCmp->getPredicate()) { 573 // TODO: Could handle things like (x != 4) --> (x == 17) 574 if (ProcessBranchOnDuplicateCond(*PI, BB)) 575 return true; 576 } 577 } 578 } 579 } 580 } 581 582 // Check for some cases that are worth simplifying. Right now we want to look 583 // for loads that are used by a switch or by the condition for the branch. If 584 // we see one, check to see if it's partially redundant. If so, insert a PHI 585 // which can then be used to thread the values. 586 // 587 // This is particularly important because reg2mem inserts loads and stores all 588 // over the place, and this blocks jump threading if we don't zap them. 589 Value *SimplifyValue = CondInst; 590 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 591 if (isa<Constant>(CondCmp->getOperand(1))) 592 SimplifyValue = CondCmp->getOperand(0); 593 594 // TODO: There are other places where load PRE would be profitable, such as 595 // more complex comparisons. 596 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 597 if (SimplifyPartiallyRedundantLoad(LI)) 598 return true; 599 600 601 // Handle a variety of cases where we are branching on something derived from 602 // a PHI node in the current block. If we can prove that any predecessors 603 // compute a predictable value based on a PHI node, thread those predecessors. 604 // 605 if (ProcessThreadableEdges(CondInst, BB)) 606 return true; 607 608 609 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 610 // "(X == 4)" thread through this block. 611 612 return false; 613 } 614 615 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that 616 /// block that jump on exactly the same condition. This means that we almost 617 /// always know the direction of the edge in the DESTBB: 618 /// PREDBB: 619 /// br COND, DESTBB, BBY 620 /// DESTBB: 621 /// br COND, BBZ, BBW 622 /// 623 /// If DESTBB has multiple predecessors, we can't just constant fold the branch 624 /// in DESTBB, we have to thread over it. 625 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB, 626 BasicBlock *BB) { 627 BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator()); 628 629 // If both successors of PredBB go to DESTBB, we don't know anything. We can 630 // fold the branch to an unconditional one, which allows other recursive 631 // simplifications. 632 bool BranchDir; 633 if (PredBI->getSuccessor(1) != BB) 634 BranchDir = true; 635 else if (PredBI->getSuccessor(0) != BB) 636 BranchDir = false; 637 else { 638 DEBUG(errs() << " In block '" << PredBB->getName() 639 << "' folding terminator: " << *PredBB->getTerminator() << '\n'); 640 ++NumFolds; 641 ConstantFoldTerminator(PredBB); 642 return true; 643 } 644 645 BranchInst *DestBI = cast<BranchInst>(BB->getTerminator()); 646 647 // If the dest block has one predecessor, just fix the branch condition to a 648 // constant and fold it. 649 if (BB->getSinglePredecessor()) { 650 DEBUG(errs() << " In block '" << BB->getName() 651 << "' folding condition to '" << BranchDir << "': " 652 << *BB->getTerminator() << '\n'); 653 ++NumFolds; 654 Value *OldCond = DestBI->getCondition(); 655 DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 656 BranchDir)); 657 ConstantFoldTerminator(BB); 658 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 659 return true; 660 } 661 662 663 // Next, figure out which successor we are threading to. 664 BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir); 665 666 SmallVector<BasicBlock*, 2> Preds; 667 Preds.push_back(PredBB); 668 669 // Ok, try to thread it! 670 return ThreadEdge(BB, Preds, SuccBB); 671 } 672 673 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that 674 /// block that switch on exactly the same condition. This means that we almost 675 /// always know the direction of the edge in the DESTBB: 676 /// PREDBB: 677 /// switch COND [... DESTBB, BBY ... ] 678 /// DESTBB: 679 /// switch COND [... BBZ, BBW ] 680 /// 681 /// Optimizing switches like this is very important, because simplifycfg builds 682 /// switches out of repeated 'if' conditions. 683 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, 684 BasicBlock *DestBB) { 685 // Can't thread edge to self. 686 if (PredBB == DestBB) 687 return false; 688 689 SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator()); 690 SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator()); 691 692 // There are a variety of optimizations that we can potentially do on these 693 // blocks: we order them from most to least preferable. 694 695 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB 696 // directly to their destination. This does not introduce *any* code size 697 // growth. Skip debug info first. 698 BasicBlock::iterator BBI = DestBB->begin(); 699 while (isa<DbgInfoIntrinsic>(BBI)) 700 BBI++; 701 702 // FIXME: Thread if it just contains a PHI. 703 if (isa<SwitchInst>(BBI)) { 704 bool MadeChange = false; 705 // Ignore the default edge for now. 706 for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) { 707 ConstantInt *DestVal = DestSI->getCaseValue(i); 708 BasicBlock *DestSucc = DestSI->getSuccessor(i); 709 710 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if 711 // PredSI has an explicit case for it. If so, forward. If it is covered 712 // by the default case, we can't update PredSI. 713 unsigned PredCase = PredSI->findCaseValue(DestVal); 714 if (PredCase == 0) continue; 715 716 // If PredSI doesn't go to DestBB on this value, then it won't reach the 717 // case on this condition. 718 if (PredSI->getSuccessor(PredCase) != DestBB && 719 DestSI->getSuccessor(i) != DestBB) 720 continue; 721 722 // Do not forward this if it already goes to this destination, this would 723 // be an infinite loop. 724 if (PredSI->getSuccessor(PredCase) == DestSucc) 725 continue; 726 727 // Otherwise, we're safe to make the change. Make sure that the edge from 728 // DestSI to DestSucc is not critical and has no PHI nodes. 729 DEBUG(errs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI); 730 DEBUG(errs() << "THROUGH: " << *DestSI); 731 732 // If the destination has PHI nodes, just split the edge for updating 733 // simplicity. 734 if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){ 735 SplitCriticalEdge(DestSI, i, this); 736 DestSucc = DestSI->getSuccessor(i); 737 } 738 FoldSingleEntryPHINodes(DestSucc); 739 PredSI->setSuccessor(PredCase, DestSucc); 740 MadeChange = true; 741 } 742 743 if (MadeChange) 744 return true; 745 } 746 747 return false; 748 } 749 750 751 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 752 /// load instruction, eliminate it by replacing it with a PHI node. This is an 753 /// important optimization that encourages jump threading, and needs to be run 754 /// interlaced with other jump threading tasks. 755 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 756 // Don't hack volatile loads. 757 if (LI->isVolatile()) return false; 758 759 // If the load is defined in a block with exactly one predecessor, it can't be 760 // partially redundant. 761 BasicBlock *LoadBB = LI->getParent(); 762 if (LoadBB->getSinglePredecessor()) 763 return false; 764 765 Value *LoadedPtr = LI->getOperand(0); 766 767 // If the loaded operand is defined in the LoadBB, it can't be available. 768 // TODO: Could do simple PHI translation, that would be fun :) 769 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 770 if (PtrOp->getParent() == LoadBB) 771 return false; 772 773 // Scan a few instructions up from the load, to see if it is obviously live at 774 // the entry to its block. 775 BasicBlock::iterator BBIt = LI; 776 777 if (Value *AvailableVal = 778 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) { 779 // If the value if the load is locally available within the block, just use 780 // it. This frequently occurs for reg2mem'd allocas. 781 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 782 783 // If the returned value is the load itself, replace with an undef. This can 784 // only happen in dead loops. 785 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 786 LI->replaceAllUsesWith(AvailableVal); 787 LI->eraseFromParent(); 788 return true; 789 } 790 791 // Otherwise, if we scanned the whole block and got to the top of the block, 792 // we know the block is locally transparent to the load. If not, something 793 // might clobber its value. 794 if (BBIt != LoadBB->begin()) 795 return false; 796 797 798 SmallPtrSet<BasicBlock*, 8> PredsScanned; 799 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 800 AvailablePredsTy AvailablePreds; 801 BasicBlock *OneUnavailablePred = 0; 802 803 // If we got here, the loaded value is transparent through to the start of the 804 // block. Check to see if it is available in any of the predecessor blocks. 805 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 806 PI != PE; ++PI) { 807 BasicBlock *PredBB = *PI; 808 809 // If we already scanned this predecessor, skip it. 810 if (!PredsScanned.insert(PredBB)) 811 continue; 812 813 // Scan the predecessor to see if the value is available in the pred. 814 BBIt = PredBB->end(); 815 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6); 816 if (!PredAvailable) { 817 OneUnavailablePred = PredBB; 818 continue; 819 } 820 821 // If so, this load is partially redundant. Remember this info so that we 822 // can create a PHI node. 823 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 824 } 825 826 // If the loaded value isn't available in any predecessor, it isn't partially 827 // redundant. 828 if (AvailablePreds.empty()) return false; 829 830 // Okay, the loaded value is available in at least one (and maybe all!) 831 // predecessors. If the value is unavailable in more than one unique 832 // predecessor, we want to insert a merge block for those common predecessors. 833 // This ensures that we only have to insert one reload, thus not increasing 834 // code size. 835 BasicBlock *UnavailablePred = 0; 836 837 // If there is exactly one predecessor where the value is unavailable, the 838 // already computed 'OneUnavailablePred' block is it. If it ends in an 839 // unconditional branch, we know that it isn't a critical edge. 840 if (PredsScanned.size() == AvailablePreds.size()+1 && 841 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 842 UnavailablePred = OneUnavailablePred; 843 } else if (PredsScanned.size() != AvailablePreds.size()) { 844 // Otherwise, we had multiple unavailable predecessors or we had a critical 845 // edge from the one. 846 SmallVector<BasicBlock*, 8> PredsToSplit; 847 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 848 849 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 850 AvailablePredSet.insert(AvailablePreds[i].first); 851 852 // Add all the unavailable predecessors to the PredsToSplit list. 853 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 854 PI != PE; ++PI) 855 if (!AvailablePredSet.count(*PI)) 856 PredsToSplit.push_back(*PI); 857 858 // Split them out to their own block. 859 UnavailablePred = 860 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(), 861 "thread-pre-split", this); 862 } 863 864 // If the value isn't available in all predecessors, then there will be 865 // exactly one where it isn't available. Insert a load on that edge and add 866 // it to the AvailablePreds list. 867 if (UnavailablePred) { 868 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 869 "Can't handle critical edge here!"); 870 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, 871 LI->getAlignment(), 872 UnavailablePred->getTerminator()); 873 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 874 } 875 876 // Now we know that each predecessor of this block has a value in 877 // AvailablePreds, sort them for efficient access as we're walking the preds. 878 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 879 880 // Create a PHI node at the start of the block for the PRE'd load value. 881 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin()); 882 PN->takeName(LI); 883 884 // Insert new entries into the PHI for each predecessor. A single block may 885 // have multiple entries here. 886 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E; 887 ++PI) { 888 AvailablePredsTy::iterator I = 889 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 890 std::make_pair(*PI, (Value*)0)); 891 892 assert(I != AvailablePreds.end() && I->first == *PI && 893 "Didn't find entry for predecessor!"); 894 895 PN->addIncoming(I->second, I->first); 896 } 897 898 //cerr << "PRE: " << *LI << *PN << "\n"; 899 900 LI->replaceAllUsesWith(PN); 901 LI->eraseFromParent(); 902 903 return true; 904 } 905 906 /// FindMostPopularDest - The specified list contains multiple possible 907 /// threadable destinations. Pick the one that occurs the most frequently in 908 /// the list. 909 static BasicBlock * 910 FindMostPopularDest(BasicBlock *BB, 911 const SmallVectorImpl<std::pair<BasicBlock*, 912 BasicBlock*> > &PredToDestList) { 913 assert(!PredToDestList.empty()); 914 915 // Determine popularity. If there are multiple possible destinations, we 916 // explicitly choose to ignore 'undef' destinations. We prefer to thread 917 // blocks with known and real destinations to threading undef. We'll handle 918 // them later if interesting. 919 DenseMap<BasicBlock*, unsigned> DestPopularity; 920 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 921 if (PredToDestList[i].second) 922 DestPopularity[PredToDestList[i].second]++; 923 924 // Find the most popular dest. 925 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 926 BasicBlock *MostPopularDest = DPI->first; 927 unsigned Popularity = DPI->second; 928 SmallVector<BasicBlock*, 4> SamePopularity; 929 930 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 931 // If the popularity of this entry isn't higher than the popularity we've 932 // seen so far, ignore it. 933 if (DPI->second < Popularity) 934 ; // ignore. 935 else if (DPI->second == Popularity) { 936 // If it is the same as what we've seen so far, keep track of it. 937 SamePopularity.push_back(DPI->first); 938 } else { 939 // If it is more popular, remember it. 940 SamePopularity.clear(); 941 MostPopularDest = DPI->first; 942 Popularity = DPI->second; 943 } 944 } 945 946 // Okay, now we know the most popular destination. If there is more than 947 // destination, we need to determine one. This is arbitrary, but we need 948 // to make a deterministic decision. Pick the first one that appears in the 949 // successor list. 950 if (!SamePopularity.empty()) { 951 SamePopularity.push_back(MostPopularDest); 952 TerminatorInst *TI = BB->getTerminator(); 953 for (unsigned i = 0; ; ++i) { 954 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 955 956 if (std::find(SamePopularity.begin(), SamePopularity.end(), 957 TI->getSuccessor(i)) == SamePopularity.end()) 958 continue; 959 960 MostPopularDest = TI->getSuccessor(i); 961 break; 962 } 963 } 964 965 // Okay, we have finally picked the most popular destination. 966 return MostPopularDest; 967 } 968 969 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) { 970 // If threading this would thread across a loop header, don't even try to 971 // thread the edge. 972 if (LoopHeaders.count(BB)) 973 return false; 974 975 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues; 976 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues)) 977 return false; 978 assert(!PredValues.empty() && 979 "ComputeValueKnownInPredecessors returned true with no values"); 980 981 DEBUG(errs() << "IN BB: " << *BB; 982 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 983 errs() << " BB '" << BB->getName() << "': FOUND condition = "; 984 if (PredValues[i].first) 985 errs() << *PredValues[i].first; 986 else 987 errs() << "UNDEF"; 988 errs() << " for pred '" << PredValues[i].second->getName() 989 << "'.\n"; 990 }); 991 992 // Decide what we want to thread through. Convert our list of known values to 993 // a list of known destinations for each pred. This also discards duplicate 994 // predecessors and keeps track of the undefined inputs (which are represented 995 // as a null dest in the PredToDestList). 996 SmallPtrSet<BasicBlock*, 16> SeenPreds; 997 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 998 999 BasicBlock *OnlyDest = 0; 1000 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1001 1002 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1003 BasicBlock *Pred = PredValues[i].second; 1004 if (!SeenPreds.insert(Pred)) 1005 continue; // Duplicate predecessor entry. 1006 1007 // If the predecessor ends with an indirect goto, we can't change its 1008 // destination. 1009 if (isa<IndirectBrInst>(Pred->getTerminator())) 1010 continue; 1011 1012 ConstantInt *Val = PredValues[i].first; 1013 1014 BasicBlock *DestBB; 1015 if (Val == 0) // Undef. 1016 DestBB = 0; 1017 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1018 DestBB = BI->getSuccessor(Val->isZero()); 1019 else { 1020 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator()); 1021 DestBB = SI->getSuccessor(SI->findCaseValue(Val)); 1022 } 1023 1024 // If we have exactly one destination, remember it for efficiency below. 1025 if (i == 0) 1026 OnlyDest = DestBB; 1027 else if (OnlyDest != DestBB) 1028 OnlyDest = MultipleDestSentinel; 1029 1030 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1031 } 1032 1033 // If all edges were unthreadable, we fail. 1034 if (PredToDestList.empty()) 1035 return false; 1036 1037 // Determine which is the most common successor. If we have many inputs and 1038 // this block is a switch, we want to start by threading the batch that goes 1039 // to the most popular destination first. If we only know about one 1040 // threadable destination (the common case) we can avoid this. 1041 BasicBlock *MostPopularDest = OnlyDest; 1042 1043 if (MostPopularDest == MultipleDestSentinel) 1044 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1045 1046 // Now that we know what the most popular destination is, factor all 1047 // predecessors that will jump to it into a single predecessor. 1048 SmallVector<BasicBlock*, 16> PredsToFactor; 1049 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1050 if (PredToDestList[i].second == MostPopularDest) { 1051 BasicBlock *Pred = PredToDestList[i].first; 1052 1053 // This predecessor may be a switch or something else that has multiple 1054 // edges to the block. Factor each of these edges by listing them 1055 // according to # occurrences in PredsToFactor. 1056 TerminatorInst *PredTI = Pred->getTerminator(); 1057 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 1058 if (PredTI->getSuccessor(i) == BB) 1059 PredsToFactor.push_back(Pred); 1060 } 1061 1062 // If the threadable edges are branching on an undefined value, we get to pick 1063 // the destination that these predecessors should get to. 1064 if (MostPopularDest == 0) 1065 MostPopularDest = BB->getTerminator()-> 1066 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1067 1068 // Ok, try to thread it! 1069 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1070 } 1071 1072 /// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in 1073 /// the current block. See if there are any simplifications we can do based on 1074 /// inputs to the phi node. 1075 /// 1076 bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) { 1077 BasicBlock *BB = PN->getParent(); 1078 1079 // If any of the predecessor blocks end in an unconditional branch, we can 1080 // *duplicate* the jump into that block in order to further encourage jump 1081 // threading and to eliminate cases where we have branch on a phi of an icmp 1082 // (branch on icmp is much better). 1083 1084 // We don't want to do this tranformation for switches, because we don't 1085 // really want to duplicate a switch. 1086 if (isa<SwitchInst>(BB->getTerminator())) 1087 return false; 1088 1089 // Look for unconditional branch predecessors. 1090 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1091 BasicBlock *PredBB = PN->getIncomingBlock(i); 1092 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1093 if (PredBr->isUnconditional() && 1094 // Try to duplicate BB into PredBB. 1095 DuplicateCondBranchOnPHIIntoPred(BB, PredBB)) 1096 return true; 1097 } 1098 1099 return false; 1100 } 1101 1102 1103 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1104 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1105 /// NewPred using the entries from OldPred (suitably mapped). 1106 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1107 BasicBlock *OldPred, 1108 BasicBlock *NewPred, 1109 DenseMap<Instruction*, Value*> &ValueMap) { 1110 for (BasicBlock::iterator PNI = PHIBB->begin(); 1111 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1112 // Ok, we have a PHI node. Figure out what the incoming value was for the 1113 // DestBlock. 1114 Value *IV = PN->getIncomingValueForBlock(OldPred); 1115 1116 // Remap the value if necessary. 1117 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1118 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1119 if (I != ValueMap.end()) 1120 IV = I->second; 1121 } 1122 1123 PN->addIncoming(IV, NewPred); 1124 } 1125 } 1126 1127 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1128 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1129 /// across BB. Transform the IR to reflect this change. 1130 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1131 const SmallVectorImpl<BasicBlock*> &PredBBs, 1132 BasicBlock *SuccBB) { 1133 // If threading to the same block as we come from, we would infinite loop. 1134 if (SuccBB == BB) { 1135 DEBUG(errs() << " Not threading across BB '" << BB->getName() 1136 << "' - would thread to self!\n"); 1137 return false; 1138 } 1139 1140 // If threading this would thread across a loop header, don't thread the edge. 1141 // See the comments above FindLoopHeaders for justifications and caveats. 1142 if (LoopHeaders.count(BB)) { 1143 DEBUG(errs() << " Not threading across loop header BB '" << BB->getName() 1144 << "' to dest BB '" << SuccBB->getName() 1145 << "' - it might create an irreducible loop!\n"); 1146 return false; 1147 } 1148 1149 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB); 1150 if (JumpThreadCost > Threshold) { 1151 DEBUG(errs() << " Not threading BB '" << BB->getName() 1152 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1153 return false; 1154 } 1155 1156 // And finally, do it! Start by factoring the predecessors is needed. 1157 BasicBlock *PredBB; 1158 if (PredBBs.size() == 1) 1159 PredBB = PredBBs[0]; 1160 else { 1161 DEBUG(errs() << " Factoring out " << PredBBs.size() 1162 << " common predecessors.\n"); 1163 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), 1164 ".thr_comm", this); 1165 } 1166 1167 // And finally, do it! 1168 DEBUG(errs() << " Threading edge from '" << PredBB->getName() << "' to '" 1169 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1170 << ", across block:\n " 1171 << *BB << "\n"); 1172 1173 // We are going to have to map operands from the original BB block to the new 1174 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1175 // account for entry from PredBB. 1176 DenseMap<Instruction*, Value*> ValueMapping; 1177 1178 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1179 BB->getName()+".thread", 1180 BB->getParent(), BB); 1181 NewBB->moveAfter(PredBB); 1182 1183 BasicBlock::iterator BI = BB->begin(); 1184 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1185 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1186 1187 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1188 // mapping and using it to remap operands in the cloned instructions. 1189 for (; !isa<TerminatorInst>(BI); ++BI) { 1190 Instruction *New = BI->clone(); 1191 New->setName(BI->getName()); 1192 NewBB->getInstList().push_back(New); 1193 ValueMapping[BI] = New; 1194 1195 // Remap operands to patch up intra-block references. 1196 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1197 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1198 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1199 if (I != ValueMapping.end()) 1200 New->setOperand(i, I->second); 1201 } 1202 } 1203 1204 // We didn't copy the terminator from BB over to NewBB, because there is now 1205 // an unconditional jump to SuccBB. Insert the unconditional jump. 1206 BranchInst::Create(SuccBB, NewBB); 1207 1208 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1209 // PHI nodes for NewBB now. 1210 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1211 1212 // If there were values defined in BB that are used outside the block, then we 1213 // now have to update all uses of the value to use either the original value, 1214 // the cloned value, or some PHI derived value. This can require arbitrary 1215 // PHI insertion, of which we are prepared to do, clean these up now. 1216 SSAUpdater SSAUpdate; 1217 SmallVector<Use*, 16> UsesToRename; 1218 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1219 // Scan all uses of this instruction to see if it is used outside of its 1220 // block, and if so, record them in UsesToRename. 1221 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1222 ++UI) { 1223 Instruction *User = cast<Instruction>(*UI); 1224 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1225 if (UserPN->getIncomingBlock(UI) == BB) 1226 continue; 1227 } else if (User->getParent() == BB) 1228 continue; 1229 1230 UsesToRename.push_back(&UI.getUse()); 1231 } 1232 1233 // If there are no uses outside the block, we're done with this instruction. 1234 if (UsesToRename.empty()) 1235 continue; 1236 1237 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1238 1239 // We found a use of I outside of BB. Rename all uses of I that are outside 1240 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1241 // with the two values we know. 1242 SSAUpdate.Initialize(I); 1243 SSAUpdate.AddAvailableValue(BB, I); 1244 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); 1245 1246 while (!UsesToRename.empty()) 1247 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1248 DEBUG(errs() << "\n"); 1249 } 1250 1251 1252 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1253 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1254 // us to simplify any PHI nodes in BB. 1255 TerminatorInst *PredTerm = PredBB->getTerminator(); 1256 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1257 if (PredTerm->getSuccessor(i) == BB) { 1258 RemovePredecessorAndSimplify(BB, PredBB, TD); 1259 PredTerm->setSuccessor(i, NewBB); 1260 } 1261 1262 // At this point, the IR is fully up to date and consistent. Do a quick scan 1263 // over the new instructions and zap any that are constants or dead. This 1264 // frequently happens because of phi translation. 1265 BI = NewBB->begin(); 1266 for (BasicBlock::iterator E = NewBB->end(); BI != E; ) { 1267 Instruction *Inst = BI++; 1268 1269 if (Value *V = SimplifyInstruction(Inst, TD)) { 1270 WeakVH BIHandle(BI); 1271 ReplaceAndSimplifyAllUses(Inst, V, TD); 1272 if (BIHandle == 0) 1273 BI = NewBB->begin(); 1274 continue; 1275 } 1276 1277 RecursivelyDeleteTriviallyDeadInstructions(Inst); 1278 } 1279 1280 // Threaded an edge! 1281 ++NumThreads; 1282 return true; 1283 } 1284 1285 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1286 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1287 /// If we can duplicate the contents of BB up into PredBB do so now, this 1288 /// improves the odds that the branch will be on an analyzable instruction like 1289 /// a compare. 1290 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1291 BasicBlock *PredBB) { 1292 // If BB is a loop header, then duplicating this block outside the loop would 1293 // cause us to transform this into an irreducible loop, don't do this. 1294 // See the comments above FindLoopHeaders for justifications and caveats. 1295 if (LoopHeaders.count(BB)) { 1296 DEBUG(errs() << " Not duplicating loop header '" << BB->getName() 1297 << "' into predecessor block '" << PredBB->getName() 1298 << "' - it might create an irreducible loop!\n"); 1299 return false; 1300 } 1301 1302 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB); 1303 if (DuplicationCost > Threshold) { 1304 DEBUG(errs() << " Not duplicating BB '" << BB->getName() 1305 << "' - Cost is too high: " << DuplicationCost << "\n"); 1306 return false; 1307 } 1308 1309 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1310 // of PredBB. 1311 DEBUG(errs() << " Duplicating block '" << BB->getName() << "' into end of '" 1312 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1313 << DuplicationCost << " block is:" << *BB << "\n"); 1314 1315 // We are going to have to map operands from the original BB block into the 1316 // PredBB block. Evaluate PHI nodes in BB. 1317 DenseMap<Instruction*, Value*> ValueMapping; 1318 1319 BasicBlock::iterator BI = BB->begin(); 1320 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1321 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1322 1323 BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1324 1325 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1326 // mapping and using it to remap operands in the cloned instructions. 1327 for (; BI != BB->end(); ++BI) { 1328 Instruction *New = BI->clone(); 1329 New->setName(BI->getName()); 1330 PredBB->getInstList().insert(OldPredBranch, New); 1331 ValueMapping[BI] = New; 1332 1333 // Remap operands to patch up intra-block references. 1334 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1335 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1336 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1337 if (I != ValueMapping.end()) 1338 New->setOperand(i, I->second); 1339 } 1340 } 1341 1342 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1343 // add entries to the PHI nodes for branch from PredBB now. 1344 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1345 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1346 ValueMapping); 1347 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1348 ValueMapping); 1349 1350 // If there were values defined in BB that are used outside the block, then we 1351 // now have to update all uses of the value to use either the original value, 1352 // the cloned value, or some PHI derived value. This can require arbitrary 1353 // PHI insertion, of which we are prepared to do, clean these up now. 1354 SSAUpdater SSAUpdate; 1355 SmallVector<Use*, 16> UsesToRename; 1356 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1357 // Scan all uses of this instruction to see if it is used outside of its 1358 // block, and if so, record them in UsesToRename. 1359 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1360 ++UI) { 1361 Instruction *User = cast<Instruction>(*UI); 1362 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1363 if (UserPN->getIncomingBlock(UI) == BB) 1364 continue; 1365 } else if (User->getParent() == BB) 1366 continue; 1367 1368 UsesToRename.push_back(&UI.getUse()); 1369 } 1370 1371 // If there are no uses outside the block, we're done with this instruction. 1372 if (UsesToRename.empty()) 1373 continue; 1374 1375 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1376 1377 // We found a use of I outside of BB. Rename all uses of I that are outside 1378 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1379 // with the two values we know. 1380 SSAUpdate.Initialize(I); 1381 SSAUpdate.AddAvailableValue(BB, I); 1382 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); 1383 1384 while (!UsesToRename.empty()) 1385 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1386 DEBUG(errs() << "\n"); 1387 } 1388 1389 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1390 // that we nuked. 1391 RemovePredecessorAndSimplify(BB, PredBB, TD); 1392 1393 // Remove the unconditional branch at the end of the PredBB block. 1394 OldPredBranch->eraseFromParent(); 1395 1396 ++NumDupes; 1397 return true; 1398 } 1399 1400 1401