1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "jump-threading" 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/IntrinsicInst.h" 17 #include "llvm/LLVMContext.h" 18 #include "llvm/Pass.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 21 #include "llvm/Transforms/Utils/Local.h" 22 #include "llvm/Transforms/Utils/SSAUpdater.h" 23 #include "llvm/Target/TargetData.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 using namespace llvm; 33 34 STATISTIC(NumThreads, "Number of jumps threaded"); 35 STATISTIC(NumFolds, "Number of terminators folded"); 36 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 37 38 static cl::opt<unsigned> 39 Threshold("jump-threading-threshold", 40 cl::desc("Max block size to duplicate for jump threading"), 41 cl::init(6), cl::Hidden); 42 43 namespace { 44 /// This pass performs 'jump threading', which looks at blocks that have 45 /// multiple predecessors and multiple successors. If one or more of the 46 /// predecessors of the block can be proven to always jump to one of the 47 /// successors, we forward the edge from the predecessor to the successor by 48 /// duplicating the contents of this block. 49 /// 50 /// An example of when this can occur is code like this: 51 /// 52 /// if () { ... 53 /// X = 4; 54 /// } 55 /// if (X < 3) { 56 /// 57 /// In this case, the unconditional branch at the end of the first if can be 58 /// revectored to the false side of the second if. 59 /// 60 class JumpThreading : public FunctionPass { 61 TargetData *TD; 62 #ifdef NDEBUG 63 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 64 #else 65 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 66 #endif 67 public: 68 static char ID; // Pass identification 69 JumpThreading() : FunctionPass(&ID) {} 70 71 bool runOnFunction(Function &F); 72 void FindLoopHeaders(Function &F); 73 74 bool ProcessBlock(BasicBlock *BB); 75 bool ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, BasicBlock *SuccBB); 76 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 77 BasicBlock *PredBB); 78 BasicBlock *FactorCommonPHIPreds(PHINode *PN, Value *Val); 79 80 typedef SmallVectorImpl<std::pair<ConstantInt*, 81 BasicBlock*> > PredValueInfo; 82 83 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 84 PredValueInfo &Result); 85 bool ProcessThreadableEdges(Instruction *CondInst, BasicBlock *BB); 86 87 88 bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 89 bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 90 91 bool ProcessJumpOnPHI(PHINode *PN); 92 bool ProcessBranchOnLogical(Value *V, BasicBlock *BB, bool isAnd); 93 bool ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB); 94 95 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 96 }; 97 } 98 99 char JumpThreading::ID = 0; 100 static RegisterPass<JumpThreading> 101 X("jump-threading", "Jump Threading"); 102 103 // Public interface to the Jump Threading pass 104 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); } 105 106 /// runOnFunction - Top level algorithm. 107 /// 108 bool JumpThreading::runOnFunction(Function &F) { 109 DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n"); 110 TD = getAnalysisIfAvailable<TargetData>(); 111 112 FindLoopHeaders(F); 113 114 bool AnotherIteration = true, EverChanged = false; 115 while (AnotherIteration) { 116 AnotherIteration = false; 117 bool Changed = false; 118 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 119 BasicBlock *BB = I; 120 while (ProcessBlock(BB)) 121 Changed = true; 122 123 ++I; 124 125 // If the block is trivially dead, zap it. This eliminates the successor 126 // edges which simplifies the CFG. 127 if (pred_begin(BB) == pred_end(BB) && 128 BB != &BB->getParent()->getEntryBlock()) { 129 DEBUG(errs() << " JT: Deleting dead block '" << BB->getName() 130 << "' with terminator: " << *BB->getTerminator() << '\n'); 131 LoopHeaders.erase(BB); 132 DeleteDeadBlock(BB); 133 Changed = true; 134 } 135 } 136 AnotherIteration = Changed; 137 EverChanged |= Changed; 138 } 139 140 LoopHeaders.clear(); 141 return EverChanged; 142 } 143 144 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 145 /// thread across it. 146 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) { 147 /// Ignore PHI nodes, these will be flattened when duplication happens. 148 BasicBlock::const_iterator I = BB->getFirstNonPHI(); 149 150 // Sum up the cost of each instruction until we get to the terminator. Don't 151 // include the terminator because the copy won't include it. 152 unsigned Size = 0; 153 for (; !isa<TerminatorInst>(I); ++I) { 154 // Debugger intrinsics don't incur code size. 155 if (isa<DbgInfoIntrinsic>(I)) continue; 156 157 // If this is a pointer->pointer bitcast, it is free. 158 if (isa<BitCastInst>(I) && isa<PointerType>(I->getType())) 159 continue; 160 161 // All other instructions count for at least one unit. 162 ++Size; 163 164 // Calls are more expensive. If they are non-intrinsic calls, we model them 165 // as having cost of 4. If they are a non-vector intrinsic, we model them 166 // as having cost of 2 total, and if they are a vector intrinsic, we model 167 // them as having cost 1. 168 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 169 if (!isa<IntrinsicInst>(CI)) 170 Size += 3; 171 else if (!isa<VectorType>(CI->getType())) 172 Size += 1; 173 } 174 } 175 176 // Threading through a switch statement is particularly profitable. If this 177 // block ends in a switch, decrease its cost to make it more likely to happen. 178 if (isa<SwitchInst>(I)) 179 Size = Size > 6 ? Size-6 : 0; 180 181 return Size; 182 } 183 184 185 186 /// FindLoopHeaders - We do not want jump threading to turn proper loop 187 /// structures into irreducible loops. Doing this breaks up the loop nesting 188 /// hierarchy and pessimizes later transformations. To prevent this from 189 /// happening, we first have to find the loop headers. Here we approximate this 190 /// by finding targets of backedges in the CFG. 191 /// 192 /// Note that there definitely are cases when we want to allow threading of 193 /// edges across a loop header. For example, threading a jump from outside the 194 /// loop (the preheader) to an exit block of the loop is definitely profitable. 195 /// It is also almost always profitable to thread backedges from within the loop 196 /// to exit blocks, and is often profitable to thread backedges to other blocks 197 /// within the loop (forming a nested loop). This simple analysis is not rich 198 /// enough to track all of these properties and keep it up-to-date as the CFG 199 /// mutates, so we don't allow any of these transformations. 200 /// 201 void JumpThreading::FindLoopHeaders(Function &F) { 202 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 203 FindFunctionBackedges(F, Edges); 204 205 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 206 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 207 } 208 209 210 /// FactorCommonPHIPreds - If there are multiple preds with the same incoming 211 /// value for the PHI, factor them together so we get one block to thread for 212 /// the whole group. 213 /// This is important for things like "phi i1 [true, true, false, true, x]" 214 /// where we only need to clone the block for the true blocks once. 215 /// 216 BasicBlock *JumpThreading::FactorCommonPHIPreds(PHINode *PN, Value *Val) { 217 SmallVector<BasicBlock*, 16> CommonPreds; 218 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 219 if (PN->getIncomingValue(i) == Val) 220 CommonPreds.push_back(PN->getIncomingBlock(i)); 221 222 if (CommonPreds.size() == 1) 223 return CommonPreds[0]; 224 225 DEBUG(errs() << " Factoring out " << CommonPreds.size() 226 << " common predecessors.\n"); 227 return SplitBlockPredecessors(PN->getParent(), 228 &CommonPreds[0], CommonPreds.size(), 229 ".thr_comm", this); 230 } 231 232 /// GetResultOfComparison - Given an icmp/fcmp predicate and the left and right 233 /// hand sides of the compare instruction, try to determine the result. If the 234 /// result can not be determined, a null pointer is returned. 235 static Constant *GetResultOfComparison(CmpInst::Predicate pred, 236 Value *LHS, Value *RHS) { 237 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 238 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 239 return ConstantExpr::getCompare(pred, CLHS, CRHS); 240 241 if (LHS == RHS) 242 if (isa<IntegerType>(LHS->getType()) || isa<PointerType>(LHS->getType())) 243 if (ICmpInst::isTrueWhenEqual(pred)) 244 return ConstantInt::getTrue(LHS->getContext()); 245 else 246 return ConstantInt::getFalse(LHS->getContext()); 247 return 0; 248 } 249 250 251 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 252 /// if we can infer that the value is a known ConstantInt in any of our 253 /// predecessors. If so, return the known the list of value and pred BB in the 254 /// result vector. If a value is known to be undef, it is returned as null. 255 /// 256 /// The BB basic block is known to start with a PHI node. 257 /// 258 /// This returns true if there were any known values. 259 /// 260 /// 261 /// TODO: Per PR2563, we could infer value range information about a predecessor 262 /// based on its terminator. 263 bool JumpThreading:: 264 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){ 265 PHINode *TheFirstPHI = cast<PHINode>(BB->begin()); 266 267 // If V is a constantint, then it is known in all predecessors. 268 if (isa<ConstantInt>(V) || isa<UndefValue>(V)) { 269 ConstantInt *CI = dyn_cast<ConstantInt>(V); 270 Result.resize(TheFirstPHI->getNumIncomingValues()); 271 for (unsigned i = 0, e = Result.size(); i != e; ++i) 272 Result.push_back(std::make_pair(CI, TheFirstPHI->getIncomingBlock(i))); 273 return true; 274 } 275 276 // If V is a non-instruction value, or an instruction in a different block, 277 // then it can't be derived from a PHI. 278 Instruction *I = dyn_cast<Instruction>(V); 279 if (I == 0 || I->getParent() != BB) 280 return false; 281 282 /// If I is a PHI node, then we know the incoming values for any constants. 283 if (PHINode *PN = dyn_cast<PHINode>(I)) { 284 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 285 Value *InVal = PN->getIncomingValue(i); 286 if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) { 287 ConstantInt *CI = dyn_cast<ConstantInt>(InVal); 288 Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i))); 289 } 290 } 291 return !Result.empty(); 292 } 293 294 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals; 295 296 // Handle some boolean conditions. 297 if (I->getType()->getPrimitiveSizeInBits() == 1) { 298 // X | true -> true 299 // X & false -> false 300 if (I->getOpcode() == Instruction::Or || 301 I->getOpcode() == Instruction::And) { 302 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals); 303 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals); 304 305 if (LHSVals.empty() && RHSVals.empty()) 306 return false; 307 308 ConstantInt *InterestingVal; 309 if (I->getOpcode() == Instruction::Or) 310 InterestingVal = ConstantInt::getTrue(I->getContext()); 311 else 312 InterestingVal = ConstantInt::getFalse(I->getContext()); 313 314 // Scan for the sentinel. 315 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 316 if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) 317 Result.push_back(LHSVals[i]); 318 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 319 if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) 320 Result.push_back(RHSVals[i]); 321 return !Result.empty(); 322 } 323 324 // TODO: Should handle the NOT form of XOR. 325 326 } 327 328 // Handle compare with phi operand, where the PHI is defined in this block. 329 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 330 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 331 if (PN && PN->getParent() == BB) { 332 // We can do this simplification if any comparisons fold to true or false. 333 // See if any do. 334 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 335 BasicBlock *PredBB = PN->getIncomingBlock(i); 336 Value *LHS = PN->getIncomingValue(i); 337 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 338 339 Constant *Res = GetResultOfComparison(Cmp->getPredicate(), LHS, RHS); 340 if (Res == 0) continue; 341 342 if (isa<UndefValue>(Res)) 343 Result.push_back(std::make_pair((ConstantInt*)0, PredBB)); 344 else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res)) 345 Result.push_back(std::make_pair(CI, PredBB)); 346 } 347 348 return !Result.empty(); 349 } 350 351 // TODO: We could also recurse to see if we can determine constants another 352 // way. 353 } 354 return false; 355 } 356 357 358 359 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 360 /// in an undefined jump, decide which block is best to revector to. 361 /// 362 /// Since we can pick an arbitrary destination, we pick the successor with the 363 /// fewest predecessors. This should reduce the in-degree of the others. 364 /// 365 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 366 TerminatorInst *BBTerm = BB->getTerminator(); 367 unsigned MinSucc = 0; 368 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 369 // Compute the successor with the minimum number of predecessors. 370 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 371 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 372 TestBB = BBTerm->getSuccessor(i); 373 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 374 if (NumPreds < MinNumPreds) 375 MinSucc = i; 376 } 377 378 return MinSucc; 379 } 380 381 /// ProcessBlock - If there are any predecessors whose control can be threaded 382 /// through to a successor, transform them now. 383 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 384 // If this block has a single predecessor, and if that pred has a single 385 // successor, merge the blocks. This encourages recursive jump threading 386 // because now the condition in this block can be threaded through 387 // predecessors of our predecessor block. 388 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 389 if (SinglePred->getTerminator()->getNumSuccessors() == 1 && 390 SinglePred != BB) { 391 // If SinglePred was a loop header, BB becomes one. 392 if (LoopHeaders.erase(SinglePred)) 393 LoopHeaders.insert(BB); 394 395 // Remember if SinglePred was the entry block of the function. If so, we 396 // will need to move BB back to the entry position. 397 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 398 MergeBasicBlockIntoOnlyPred(BB); 399 400 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 401 BB->moveBefore(&BB->getParent()->getEntryBlock()); 402 return true; 403 } 404 } 405 406 // Look to see if the terminator is a branch of switch, if not we can't thread 407 // it. 408 Value *Condition; 409 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 410 // Can't thread an unconditional jump. 411 if (BI->isUnconditional()) return false; 412 Condition = BI->getCondition(); 413 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 414 Condition = SI->getCondition(); 415 else 416 return false; // Must be an invoke. 417 418 // If the terminator of this block is branching on a constant, simplify the 419 // terminator to an unconditional branch. This can occur due to threading in 420 // other blocks. 421 if (isa<ConstantInt>(Condition)) { 422 DEBUG(errs() << " In block '" << BB->getName() 423 << "' folding terminator: " << *BB->getTerminator() << '\n'); 424 ++NumFolds; 425 ConstantFoldTerminator(BB); 426 return true; 427 } 428 429 // If the terminator is branching on an undef, we can pick any of the 430 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 431 if (isa<UndefValue>(Condition)) { 432 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 433 434 // Fold the branch/switch. 435 TerminatorInst *BBTerm = BB->getTerminator(); 436 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 437 if (i == BestSucc) continue; 438 BBTerm->getSuccessor(i)->removePredecessor(BB); 439 } 440 441 DEBUG(errs() << " In block '" << BB->getName() 442 << "' folding undef terminator: " << *BBTerm << '\n'); 443 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 444 BBTerm->eraseFromParent(); 445 return true; 446 } 447 448 Instruction *CondInst = dyn_cast<Instruction>(Condition); 449 450 // If the condition is an instruction defined in another block, see if a 451 // predecessor has the same condition: 452 // br COND, BBX, BBY 453 // BBX: 454 // br COND, BBZ, BBW 455 if (!Condition->hasOneUse() && // Multiple uses. 456 (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition. 457 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 458 if (isa<BranchInst>(BB->getTerminator())) { 459 for (; PI != E; ++PI) 460 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 461 if (PBI->isConditional() && PBI->getCondition() == Condition && 462 ProcessBranchOnDuplicateCond(*PI, BB)) 463 return true; 464 } else { 465 assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator"); 466 for (; PI != E; ++PI) 467 if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator())) 468 if (PSI->getCondition() == Condition && 469 ProcessSwitchOnDuplicateCond(*PI, BB)) 470 return true; 471 } 472 } 473 474 // All the rest of our checks depend on the condition being an instruction. 475 if (CondInst == 0) 476 return false; 477 478 // See if this is a phi node in the current block. 479 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 480 if (PN->getParent() == BB) 481 return ProcessJumpOnPHI(PN); 482 483 // If this is a conditional branch whose condition is and/or of a phi, try to 484 // simplify it. 485 if ((CondInst->getOpcode() == Instruction::And || 486 CondInst->getOpcode() == Instruction::Or) && 487 isa<BranchInst>(BB->getTerminator()) && 488 ProcessBranchOnLogical(CondInst, BB, 489 CondInst->getOpcode() == Instruction::And)) 490 return true; 491 492 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 493 if (isa<PHINode>(CondCmp->getOperand(0))) { 494 // If we have "br (phi != 42)" and the phi node has any constant values 495 // as operands, we can thread through this block. 496 // 497 // If we have "br (cmp phi, x)" and the phi node contains x such that the 498 // comparison uniquely identifies the branch target, we can thread 499 // through this block. 500 501 if (ProcessBranchOnCompare(CondCmp, BB)) 502 return true; 503 } 504 505 // If we have a comparison, loop over the predecessors to see if there is 506 // a condition with a lexically identical value. 507 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 508 for (; PI != E; ++PI) 509 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 510 if (PBI->isConditional() && *PI != BB) { 511 if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) { 512 if (CI->getOperand(0) == CondCmp->getOperand(0) && 513 CI->getOperand(1) == CondCmp->getOperand(1) && 514 CI->getPredicate() == CondCmp->getPredicate()) { 515 // TODO: Could handle things like (x != 4) --> (x == 17) 516 if (ProcessBranchOnDuplicateCond(*PI, BB)) 517 return true; 518 } 519 } 520 } 521 } 522 523 // Check for some cases that are worth simplifying. Right now we want to look 524 // for loads that are used by a switch or by the condition for the branch. If 525 // we see one, check to see if it's partially redundant. If so, insert a PHI 526 // which can then be used to thread the values. 527 // 528 // This is particularly important because reg2mem inserts loads and stores all 529 // over the place, and this blocks jump threading if we don't zap them. 530 Value *SimplifyValue = CondInst; 531 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 532 if (isa<Constant>(CondCmp->getOperand(1))) 533 SimplifyValue = CondCmp->getOperand(0); 534 535 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 536 if (SimplifyPartiallyRedundantLoad(LI)) 537 return true; 538 539 540 // Handle a variety of cases where we are branching on something derived from 541 // a PHI node in the current block. If we can prove that any predecessors 542 // compute a predictable value based on a PHI node, thread those predecessors. 543 // 544 // We only bother doing this if the current block has a PHI node and if the 545 // conditional instruction lives in the current block. If either condition 546 // fail, this won't be a computable value anyway. 547 if (CondInst->getParent() == BB && isa<PHINode>(BB->front())) 548 if (ProcessThreadableEdges(CondInst, BB)) 549 return true; 550 551 552 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 553 // "(X == 4)" thread through this block. 554 555 return false; 556 } 557 558 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that 559 /// block that jump on exactly the same condition. This means that we almost 560 /// always know the direction of the edge in the DESTBB: 561 /// PREDBB: 562 /// br COND, DESTBB, BBY 563 /// DESTBB: 564 /// br COND, BBZ, BBW 565 /// 566 /// If DESTBB has multiple predecessors, we can't just constant fold the branch 567 /// in DESTBB, we have to thread over it. 568 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB, 569 BasicBlock *BB) { 570 BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator()); 571 572 // If both successors of PredBB go to DESTBB, we don't know anything. We can 573 // fold the branch to an unconditional one, which allows other recursive 574 // simplifications. 575 bool BranchDir; 576 if (PredBI->getSuccessor(1) != BB) 577 BranchDir = true; 578 else if (PredBI->getSuccessor(0) != BB) 579 BranchDir = false; 580 else { 581 DEBUG(errs() << " In block '" << PredBB->getName() 582 << "' folding terminator: " << *PredBB->getTerminator() << '\n'); 583 ++NumFolds; 584 ConstantFoldTerminator(PredBB); 585 return true; 586 } 587 588 BranchInst *DestBI = cast<BranchInst>(BB->getTerminator()); 589 590 // If the dest block has one predecessor, just fix the branch condition to a 591 // constant and fold it. 592 if (BB->getSinglePredecessor()) { 593 DEBUG(errs() << " In block '" << BB->getName() 594 << "' folding condition to '" << BranchDir << "': " 595 << *BB->getTerminator() << '\n'); 596 ++NumFolds; 597 Value *OldCond = DestBI->getCondition(); 598 DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 599 BranchDir)); 600 ConstantFoldTerminator(BB); 601 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 602 return true; 603 } 604 605 606 // Next, figure out which successor we are threading to. 607 BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir); 608 609 // Ok, try to thread it! 610 return ThreadEdge(BB, PredBB, SuccBB); 611 } 612 613 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that 614 /// block that switch on exactly the same condition. This means that we almost 615 /// always know the direction of the edge in the DESTBB: 616 /// PREDBB: 617 /// switch COND [... DESTBB, BBY ... ] 618 /// DESTBB: 619 /// switch COND [... BBZ, BBW ] 620 /// 621 /// Optimizing switches like this is very important, because simplifycfg builds 622 /// switches out of repeated 'if' conditions. 623 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, 624 BasicBlock *DestBB) { 625 // Can't thread edge to self. 626 if (PredBB == DestBB) 627 return false; 628 629 SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator()); 630 SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator()); 631 632 // There are a variety of optimizations that we can potentially do on these 633 // blocks: we order them from most to least preferable. 634 635 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB 636 // directly to their destination. This does not introduce *any* code size 637 // growth. Skip debug info first. 638 BasicBlock::iterator BBI = DestBB->begin(); 639 while (isa<DbgInfoIntrinsic>(BBI)) 640 BBI++; 641 642 // FIXME: Thread if it just contains a PHI. 643 if (isa<SwitchInst>(BBI)) { 644 bool MadeChange = false; 645 // Ignore the default edge for now. 646 for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) { 647 ConstantInt *DestVal = DestSI->getCaseValue(i); 648 BasicBlock *DestSucc = DestSI->getSuccessor(i); 649 650 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if 651 // PredSI has an explicit case for it. If so, forward. If it is covered 652 // by the default case, we can't update PredSI. 653 unsigned PredCase = PredSI->findCaseValue(DestVal); 654 if (PredCase == 0) continue; 655 656 // If PredSI doesn't go to DestBB on this value, then it won't reach the 657 // case on this condition. 658 if (PredSI->getSuccessor(PredCase) != DestBB && 659 DestSI->getSuccessor(i) != DestBB) 660 continue; 661 662 // Otherwise, we're safe to make the change. Make sure that the edge from 663 // DestSI to DestSucc is not critical and has no PHI nodes. 664 DEBUG(errs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI); 665 DEBUG(errs() << "THROUGH: " << *DestSI); 666 667 // If the destination has PHI nodes, just split the edge for updating 668 // simplicity. 669 if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){ 670 SplitCriticalEdge(DestSI, i, this); 671 DestSucc = DestSI->getSuccessor(i); 672 } 673 FoldSingleEntryPHINodes(DestSucc); 674 PredSI->setSuccessor(PredCase, DestSucc); 675 MadeChange = true; 676 } 677 678 if (MadeChange) 679 return true; 680 } 681 682 return false; 683 } 684 685 686 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 687 /// load instruction, eliminate it by replacing it with a PHI node. This is an 688 /// important optimization that encourages jump threading, and needs to be run 689 /// interlaced with other jump threading tasks. 690 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 691 // Don't hack volatile loads. 692 if (LI->isVolatile()) return false; 693 694 // If the load is defined in a block with exactly one predecessor, it can't be 695 // partially redundant. 696 BasicBlock *LoadBB = LI->getParent(); 697 if (LoadBB->getSinglePredecessor()) 698 return false; 699 700 Value *LoadedPtr = LI->getOperand(0); 701 702 // If the loaded operand is defined in the LoadBB, it can't be available. 703 // FIXME: Could do PHI translation, that would be fun :) 704 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 705 if (PtrOp->getParent() == LoadBB) 706 return false; 707 708 // Scan a few instructions up from the load, to see if it is obviously live at 709 // the entry to its block. 710 BasicBlock::iterator BBIt = LI; 711 712 if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB, 713 BBIt, 6)) { 714 // If the value if the load is locally available within the block, just use 715 // it. This frequently occurs for reg2mem'd allocas. 716 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 717 718 // If the returned value is the load itself, replace with an undef. This can 719 // only happen in dead loops. 720 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 721 LI->replaceAllUsesWith(AvailableVal); 722 LI->eraseFromParent(); 723 return true; 724 } 725 726 // Otherwise, if we scanned the whole block and got to the top of the block, 727 // we know the block is locally transparent to the load. If not, something 728 // might clobber its value. 729 if (BBIt != LoadBB->begin()) 730 return false; 731 732 733 SmallPtrSet<BasicBlock*, 8> PredsScanned; 734 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 735 AvailablePredsTy AvailablePreds; 736 BasicBlock *OneUnavailablePred = 0; 737 738 // If we got here, the loaded value is transparent through to the start of the 739 // block. Check to see if it is available in any of the predecessor blocks. 740 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 741 PI != PE; ++PI) { 742 BasicBlock *PredBB = *PI; 743 744 // If we already scanned this predecessor, skip it. 745 if (!PredsScanned.insert(PredBB)) 746 continue; 747 748 // Scan the predecessor to see if the value is available in the pred. 749 BBIt = PredBB->end(); 750 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6); 751 if (!PredAvailable) { 752 OneUnavailablePred = PredBB; 753 continue; 754 } 755 756 // If so, this load is partially redundant. Remember this info so that we 757 // can create a PHI node. 758 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 759 } 760 761 // If the loaded value isn't available in any predecessor, it isn't partially 762 // redundant. 763 if (AvailablePreds.empty()) return false; 764 765 // Okay, the loaded value is available in at least one (and maybe all!) 766 // predecessors. If the value is unavailable in more than one unique 767 // predecessor, we want to insert a merge block for those common predecessors. 768 // This ensures that we only have to insert one reload, thus not increasing 769 // code size. 770 BasicBlock *UnavailablePred = 0; 771 772 // If there is exactly one predecessor where the value is unavailable, the 773 // already computed 'OneUnavailablePred' block is it. If it ends in an 774 // unconditional branch, we know that it isn't a critical edge. 775 if (PredsScanned.size() == AvailablePreds.size()+1 && 776 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 777 UnavailablePred = OneUnavailablePred; 778 } else if (PredsScanned.size() != AvailablePreds.size()) { 779 // Otherwise, we had multiple unavailable predecessors or we had a critical 780 // edge from the one. 781 SmallVector<BasicBlock*, 8> PredsToSplit; 782 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 783 784 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 785 AvailablePredSet.insert(AvailablePreds[i].first); 786 787 // Add all the unavailable predecessors to the PredsToSplit list. 788 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 789 PI != PE; ++PI) 790 if (!AvailablePredSet.count(*PI)) 791 PredsToSplit.push_back(*PI); 792 793 // Split them out to their own block. 794 UnavailablePred = 795 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(), 796 "thread-split", this); 797 } 798 799 // If the value isn't available in all predecessors, then there will be 800 // exactly one where it isn't available. Insert a load on that edge and add 801 // it to the AvailablePreds list. 802 if (UnavailablePred) { 803 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 804 "Can't handle critical edge here!"); 805 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", 806 UnavailablePred->getTerminator()); 807 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 808 } 809 810 // Now we know that each predecessor of this block has a value in 811 // AvailablePreds, sort them for efficient access as we're walking the preds. 812 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 813 814 // Create a PHI node at the start of the block for the PRE'd load value. 815 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin()); 816 PN->takeName(LI); 817 818 // Insert new entries into the PHI for each predecessor. A single block may 819 // have multiple entries here. 820 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E; 821 ++PI) { 822 AvailablePredsTy::iterator I = 823 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 824 std::make_pair(*PI, (Value*)0)); 825 826 assert(I != AvailablePreds.end() && I->first == *PI && 827 "Didn't find entry for predecessor!"); 828 829 PN->addIncoming(I->second, I->first); 830 } 831 832 //cerr << "PRE: " << *LI << *PN << "\n"; 833 834 LI->replaceAllUsesWith(PN); 835 LI->eraseFromParent(); 836 837 return true; 838 } 839 840 /// FindMostPopularDest - The specified list contains multiple possible 841 /// threadable destinations. Pick the one that occurs the most frequently in 842 /// the list. 843 static BasicBlock * 844 FindMostPopularDest(BasicBlock *BB, 845 const SmallVectorImpl<std::pair<BasicBlock*, 846 BasicBlock*> > &PredToDestList) { 847 assert(!PredToDestList.empty()); 848 849 // Determine popularity. If there are multiple possible destinations, we 850 // explicitly choose to ignore 'undef' destinations. We prefer to thread 851 // blocks with known and real destinations to threading undef. We'll handle 852 // them later if interesting. 853 DenseMap<BasicBlock*, unsigned> DestPopularity; 854 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 855 if (PredToDestList[i].second) 856 DestPopularity[PredToDestList[i].second]++; 857 858 // Find the most popular dest. 859 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 860 BasicBlock *MostPopularDest = DPI->first; 861 unsigned Popularity = DPI->second; 862 SmallVector<BasicBlock*, 4> SamePopularity; 863 864 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 865 // If the popularity of this entry isn't higher than the popularity we've 866 // seen so far, ignore it. 867 if (DPI->second < Popularity) 868 ; // ignore. 869 else if (DPI->second == Popularity) { 870 // If it is the same as what we've seen so far, keep track of it. 871 SamePopularity.push_back(DPI->first); 872 } else { 873 // If it is more popular, remember it. 874 SamePopularity.clear(); 875 MostPopularDest = DPI->first; 876 Popularity = DPI->second; 877 } 878 } 879 880 // Okay, now we know the most popular destination. If there is more than 881 // destination, we need to determine one. This is arbitrary, but we need 882 // to make a deterministic decision. Pick the first one that appears in the 883 // successor list. 884 if (!SamePopularity.empty()) { 885 SamePopularity.push_back(MostPopularDest); 886 TerminatorInst *TI = BB->getTerminator(); 887 for (unsigned i = 0; ; ++i) { 888 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 889 890 if (std::find(SamePopularity.begin(), SamePopularity.end(), 891 TI->getSuccessor(i)) == SamePopularity.end()) 892 continue; 893 894 MostPopularDest = TI->getSuccessor(i); 895 break; 896 } 897 } 898 899 // Okay, we have finally picked the most popular destination. 900 return MostPopularDest; 901 } 902 903 bool JumpThreading::ProcessThreadableEdges(Instruction *CondInst, 904 BasicBlock *BB) { 905 // If threading this would thread across a loop header, don't even try to 906 // thread the edge. 907 if (LoopHeaders.count(BB)) 908 return false; 909 910 911 912 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues; 913 if (!ComputeValueKnownInPredecessors(CondInst, BB, PredValues)) 914 return false; 915 assert(!PredValues.empty() && 916 "ComputeValueKnownInPredecessors returned true with no values"); 917 918 DEBUG(errs() << "IN BB: " << *BB; 919 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 920 errs() << " BB '" << BB->getName() << "': FOUND condition = "; 921 if (PredValues[i].first) 922 errs() << *PredValues[i].first; 923 else 924 errs() << "UNDEF"; 925 errs() << " for pred '" << PredValues[i].second->getName() 926 << "'.\n"; 927 }); 928 929 // Decide what we want to thread through. Convert our list of known values to 930 // a list of known destinations for each pred. This also discards duplicate 931 // predecessors and keeps track of the undefined inputs (which are represented 932 // as a null dest in the PredToDestList. 933 SmallPtrSet<BasicBlock*, 16> SeenPreds; 934 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 935 936 BasicBlock *OnlyDest = 0; 937 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 938 939 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 940 BasicBlock *Pred = PredValues[i].second; 941 if (!SeenPreds.insert(Pred)) 942 continue; // Duplicate predecessor entry. 943 944 // If the predecessor ends with an indirect goto, we can't change its 945 // destination. 946 if (isa<IndirectBrInst>(Pred->getTerminator())) 947 continue; 948 949 ConstantInt *Val = PredValues[i].first; 950 951 BasicBlock *DestBB; 952 if (Val == 0) // Undef. 953 DestBB = 0; 954 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 955 DestBB = BI->getSuccessor(Val->isZero()); 956 else { 957 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator()); 958 DestBB = SI->getSuccessor(SI->findCaseValue(Val)); 959 } 960 961 // If we have exactly one destination, remember it for efficiency below. 962 if (i == 0) 963 OnlyDest = DestBB; 964 else if (OnlyDest != DestBB) 965 OnlyDest = MultipleDestSentinel; 966 967 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 968 } 969 970 // If all edges were unthreadable, we fail. 971 if (PredToDestList.empty()) 972 return false; 973 974 // Determine which is the most common successor. If we have many inputs and 975 // this block is a switch, we want to start by threading the batch that goes 976 // to the most popular destination first. If we only know about one 977 // threadable destination (the common case) we can avoid this. 978 BasicBlock *MostPopularDest = OnlyDest; 979 980 if (MostPopularDest == MultipleDestSentinel) 981 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 982 983 // Now that we know what the most popular destination is, factor all 984 // predecessors that will jump to it into a single predecessor. 985 SmallVector<BasicBlock*, 16> PredsToFactor; 986 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 987 if (PredToDestList[i].second == MostPopularDest) 988 PredsToFactor.push_back(PredToDestList[i].first); 989 990 BasicBlock *PredToThread; 991 if (PredsToFactor.size() == 1) 992 PredToThread = PredsToFactor[0]; 993 else { 994 DEBUG(errs() << " Factoring out " << PredsToFactor.size() 995 << " common predecessors.\n"); 996 PredToThread = SplitBlockPredecessors(BB, &PredsToFactor[0], 997 PredsToFactor.size(), 998 ".thr_comm", this); 999 } 1000 1001 // If the threadable edges are branching on an undefined value, we get to pick 1002 // the destination that these predecessors should get to. 1003 if (MostPopularDest == 0) 1004 MostPopularDest = BB->getTerminator()-> 1005 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1006 1007 // Ok, try to thread it! 1008 return ThreadEdge(BB, PredToThread, MostPopularDest); 1009 } 1010 1011 /// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in 1012 /// the current block. See if there are any simplifications we can do based on 1013 /// inputs to the phi node. 1014 /// 1015 bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) { 1016 BasicBlock *BB = PN->getParent(); 1017 1018 // See if the phi node has any constant integer or undef values. If so, we 1019 // can determine where the corresponding predecessor will branch. 1020 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1021 Value *PredVal = PN->getIncomingValue(i); 1022 1023 // Check to see if this input is a constant integer. If so, the direction 1024 // of the branch is predictable. 1025 if (ConstantInt *CI = dyn_cast<ConstantInt>(PredVal)) { 1026 // Merge any common predecessors that will act the same. 1027 BasicBlock *PredBB = FactorCommonPHIPreds(PN, CI); 1028 1029 BasicBlock *SuccBB; 1030 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1031 SuccBB = BI->getSuccessor(CI->isZero()); 1032 else { 1033 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator()); 1034 SuccBB = SI->getSuccessor(SI->findCaseValue(CI)); 1035 } 1036 1037 // Ok, try to thread it! 1038 return ThreadEdge(BB, PredBB, SuccBB); 1039 } 1040 1041 // If the input is an undef, then it doesn't matter which way it will go. 1042 // Pick an arbitrary dest and thread the edge. 1043 if (UndefValue *UV = dyn_cast<UndefValue>(PredVal)) { 1044 // Merge any common predecessors that will act the same. 1045 BasicBlock *PredBB = FactorCommonPHIPreds(PN, UV); 1046 BasicBlock *SuccBB = 1047 BB->getTerminator()->getSuccessor(GetBestDestForJumpOnUndef(BB)); 1048 1049 // Ok, try to thread it! 1050 return ThreadEdge(BB, PredBB, SuccBB); 1051 } 1052 } 1053 1054 // If the incoming values are all variables, we don't know the destination of 1055 // any predecessors. However, if any of the predecessor blocks end in an 1056 // unconditional branch, we can *duplicate* the jump into that block in order 1057 // to further encourage jump threading and to eliminate cases where we have 1058 // branch on a phi of an icmp (branch on icmp is much better). 1059 1060 // We don't want to do this tranformation for switches, because we don't 1061 // really want to duplicate a switch. 1062 if (isa<SwitchInst>(BB->getTerminator())) 1063 return false; 1064 1065 // Look for unconditional branch predecessors. 1066 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1067 BasicBlock *PredBB = PN->getIncomingBlock(i); 1068 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1069 if (PredBr->isUnconditional() && 1070 // Try to duplicate BB into PredBB. 1071 DuplicateCondBranchOnPHIIntoPred(BB, PredBB)) 1072 return true; 1073 } 1074 1075 return false; 1076 } 1077 1078 1079 /// ProcessJumpOnLogicalPHI - PN's basic block contains a conditional branch 1080 /// whose condition is an AND/OR where one side is PN. If PN has constant 1081 /// operands that permit us to evaluate the condition for some operand, thread 1082 /// through the block. For example with: 1083 /// br (and X, phi(Y, Z, false)) 1084 /// the predecessor corresponding to the 'false' will always jump to the false 1085 /// destination of the branch. 1086 /// 1087 bool JumpThreading::ProcessBranchOnLogical(Value *V, BasicBlock *BB, 1088 bool isAnd) { 1089 // If this is a binary operator tree of the same AND/OR opcode, check the 1090 // LHS/RHS. 1091 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) 1092 if ((isAnd && BO->getOpcode() == Instruction::And) || 1093 (!isAnd && BO->getOpcode() == Instruction::Or)) { 1094 if (ProcessBranchOnLogical(BO->getOperand(0), BB, isAnd)) 1095 return true; 1096 if (ProcessBranchOnLogical(BO->getOperand(1), BB, isAnd)) 1097 return true; 1098 } 1099 1100 // If this isn't a PHI node, we can't handle it. 1101 PHINode *PN = dyn_cast<PHINode>(V); 1102 if (!PN || PN->getParent() != BB) return false; 1103 1104 // We can only do the simplification for phi nodes of 'false' with AND or 1105 // 'true' with OR. See if we have any entries in the phi for this. 1106 unsigned PredNo = ~0U; 1107 ConstantInt *PredCst = ConstantInt::get(Type::getInt1Ty(BB->getContext()), 1108 !isAnd); 1109 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1110 if (PN->getIncomingValue(i) == PredCst) { 1111 PredNo = i; 1112 break; 1113 } 1114 } 1115 1116 // If no match, bail out. 1117 if (PredNo == ~0U) 1118 return false; 1119 1120 // If so, we can actually do this threading. Merge any common predecessors 1121 // that will act the same. 1122 BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst); 1123 1124 // Next, figure out which successor we are threading to. If this was an AND, 1125 // the constant must be FALSE, and we must be targeting the 'false' block. 1126 // If this is an OR, the constant must be TRUE, and we must be targeting the 1127 // 'true' block. 1128 BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(isAnd); 1129 1130 // Ok, try to thread it! 1131 return ThreadEdge(BB, PredBB, SuccBB); 1132 } 1133 1134 /// ProcessBranchOnCompare - We found a branch on a comparison between a phi 1135 /// node and a value. If we can identify when the comparison is true between 1136 /// the phi inputs and the value, we can fold the compare for that edge and 1137 /// thread through it. 1138 bool JumpThreading::ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB) { 1139 PHINode *PN = cast<PHINode>(Cmp->getOperand(0)); 1140 Value *RHS = Cmp->getOperand(1); 1141 1142 // If the phi isn't in the current block, an incoming edge to this block 1143 // doesn't control the destination. 1144 if (PN->getParent() != BB) 1145 return false; 1146 1147 // We can do this simplification if any comparisons fold to true or false. 1148 // See if any do. 1149 Value *PredVal = 0; 1150 bool TrueDirection = false; 1151 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1152 PredVal = PN->getIncomingValue(i); 1153 1154 Constant *Res = GetResultOfComparison(Cmp->getPredicate(), PredVal, RHS); 1155 if (!Res) { 1156 PredVal = 0; 1157 continue; 1158 } 1159 1160 // If this folded to a constant expr, we can't do anything. 1161 if (ConstantInt *ResC = dyn_cast<ConstantInt>(Res)) { 1162 TrueDirection = ResC->getZExtValue(); 1163 break; 1164 } 1165 // If this folded to undef, just go the false way. 1166 if (isa<UndefValue>(Res)) { 1167 TrueDirection = false; 1168 break; 1169 } 1170 1171 // Otherwise, we can't fold this input. 1172 PredVal = 0; 1173 } 1174 1175 // If no match, bail out. 1176 if (PredVal == 0) 1177 return false; 1178 1179 // If so, we can actually do this threading. Merge any common predecessors 1180 // that will act the same. 1181 BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredVal); 1182 1183 // Next, get our successor. 1184 BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(!TrueDirection); 1185 1186 // Ok, try to thread it! 1187 return ThreadEdge(BB, PredBB, SuccBB); 1188 } 1189 1190 1191 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1192 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1193 /// NewPred using the entries from OldPred (suitably mapped). 1194 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1195 BasicBlock *OldPred, 1196 BasicBlock *NewPred, 1197 DenseMap<Instruction*, Value*> &ValueMap) { 1198 for (BasicBlock::iterator PNI = PHIBB->begin(); 1199 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1200 // Ok, we have a PHI node. Figure out what the incoming value was for the 1201 // DestBlock. 1202 Value *IV = PN->getIncomingValueForBlock(OldPred); 1203 1204 // Remap the value if necessary. 1205 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1206 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1207 if (I != ValueMap.end()) 1208 IV = I->second; 1209 } 1210 1211 PN->addIncoming(IV, NewPred); 1212 } 1213 } 1214 1215 /// ThreadEdge - We have decided that it is safe and profitable to thread an 1216 /// edge from PredBB to SuccBB across BB. Transform the IR to reflect this 1217 /// change. 1218 bool JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, 1219 BasicBlock *SuccBB) { 1220 // If threading to the same block as we come from, we would infinite loop. 1221 if (SuccBB == BB) { 1222 DEBUG(errs() << " Not threading across BB '" << BB->getName() 1223 << "' - would thread to self!\n"); 1224 return false; 1225 } 1226 1227 // If threading this would thread across a loop header, don't thread the edge. 1228 // See the comments above FindLoopHeaders for justifications and caveats. 1229 if (LoopHeaders.count(BB)) { 1230 DEBUG(errs() << " Not threading from '" << PredBB->getName() 1231 << "' across loop header BB '" << BB->getName() 1232 << "' to dest BB '" << SuccBB->getName() 1233 << "' - it might create an irreducible loop!\n"); 1234 return false; 1235 } 1236 1237 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB); 1238 if (JumpThreadCost > Threshold) { 1239 DEBUG(errs() << " Not threading BB '" << BB->getName() 1240 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1241 return false; 1242 } 1243 1244 // And finally, do it! 1245 DEBUG(errs() << " Threading edge from '" << PredBB->getName() << "' to '" 1246 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1247 << ", across block:\n " 1248 << *BB << "\n"); 1249 1250 // We are going to have to map operands from the original BB block to the new 1251 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1252 // account for entry from PredBB. 1253 DenseMap<Instruction*, Value*> ValueMapping; 1254 1255 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1256 BB->getName()+".thread", 1257 BB->getParent(), BB); 1258 NewBB->moveAfter(PredBB); 1259 1260 BasicBlock::iterator BI = BB->begin(); 1261 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1262 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1263 1264 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1265 // mapping and using it to remap operands in the cloned instructions. 1266 for (; !isa<TerminatorInst>(BI); ++BI) { 1267 Instruction *New = BI->clone(); 1268 New->setName(BI->getName()); 1269 NewBB->getInstList().push_back(New); 1270 ValueMapping[BI] = New; 1271 1272 // Remap operands to patch up intra-block references. 1273 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1274 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1275 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1276 if (I != ValueMapping.end()) 1277 New->setOperand(i, I->second); 1278 } 1279 } 1280 1281 // We didn't copy the terminator from BB over to NewBB, because there is now 1282 // an unconditional jump to SuccBB. Insert the unconditional jump. 1283 BranchInst::Create(SuccBB, NewBB); 1284 1285 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1286 // PHI nodes for NewBB now. 1287 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1288 1289 // If there were values defined in BB that are used outside the block, then we 1290 // now have to update all uses of the value to use either the original value, 1291 // the cloned value, or some PHI derived value. This can require arbitrary 1292 // PHI insertion, of which we are prepared to do, clean these up now. 1293 SSAUpdater SSAUpdate; 1294 SmallVector<Use*, 16> UsesToRename; 1295 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1296 // Scan all uses of this instruction to see if it is used outside of its 1297 // block, and if so, record them in UsesToRename. 1298 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1299 ++UI) { 1300 Instruction *User = cast<Instruction>(*UI); 1301 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1302 if (UserPN->getIncomingBlock(UI) == BB) 1303 continue; 1304 } else if (User->getParent() == BB) 1305 continue; 1306 1307 UsesToRename.push_back(&UI.getUse()); 1308 } 1309 1310 // If there are no uses outside the block, we're done with this instruction. 1311 if (UsesToRename.empty()) 1312 continue; 1313 1314 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1315 1316 // We found a use of I outside of BB. Rename all uses of I that are outside 1317 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1318 // with the two values we know. 1319 SSAUpdate.Initialize(I); 1320 SSAUpdate.AddAvailableValue(BB, I); 1321 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); 1322 1323 while (!UsesToRename.empty()) 1324 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1325 DEBUG(errs() << "\n"); 1326 } 1327 1328 1329 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1330 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1331 // us to simplify any PHI nodes in BB. 1332 TerminatorInst *PredTerm = PredBB->getTerminator(); 1333 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1334 if (PredTerm->getSuccessor(i) == BB) { 1335 BB->removePredecessor(PredBB); 1336 PredTerm->setSuccessor(i, NewBB); 1337 } 1338 1339 // At this point, the IR is fully up to date and consistent. Do a quick scan 1340 // over the new instructions and zap any that are constants or dead. This 1341 // frequently happens because of phi translation. 1342 BI = NewBB->begin(); 1343 for (BasicBlock::iterator E = NewBB->end(); BI != E; ) { 1344 Instruction *Inst = BI++; 1345 if (Constant *C = ConstantFoldInstruction(Inst, TD)) { 1346 Inst->replaceAllUsesWith(C); 1347 Inst->eraseFromParent(); 1348 continue; 1349 } 1350 1351 RecursivelyDeleteTriviallyDeadInstructions(Inst); 1352 } 1353 1354 // Threaded an edge! 1355 ++NumThreads; 1356 return true; 1357 } 1358 1359 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1360 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1361 /// If we can duplicate the contents of BB up into PredBB do so now, this 1362 /// improves the odds that the branch will be on an analyzable instruction like 1363 /// a compare. 1364 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1365 BasicBlock *PredBB) { 1366 // If BB is a loop header, then duplicating this block outside the loop would 1367 // cause us to transform this into an irreducible loop, don't do this. 1368 // See the comments above FindLoopHeaders for justifications and caveats. 1369 if (LoopHeaders.count(BB)) { 1370 DEBUG(errs() << " Not duplicating loop header '" << BB->getName() 1371 << "' into predecessor block '" << PredBB->getName() 1372 << "' - it might create an irreducible loop!\n"); 1373 return false; 1374 } 1375 1376 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB); 1377 if (DuplicationCost > Threshold) { 1378 DEBUG(errs() << " Not duplicating BB '" << BB->getName() 1379 << "' - Cost is too high: " << DuplicationCost << "\n"); 1380 return false; 1381 } 1382 1383 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1384 // of PredBB. 1385 DEBUG(errs() << " Duplicating block '" << BB->getName() << "' into end of '" 1386 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1387 << DuplicationCost << " block is:" << *BB << "\n"); 1388 1389 // We are going to have to map operands from the original BB block into the 1390 // PredBB block. Evaluate PHI nodes in BB. 1391 DenseMap<Instruction*, Value*> ValueMapping; 1392 1393 BasicBlock::iterator BI = BB->begin(); 1394 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1395 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1396 1397 BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1398 1399 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1400 // mapping and using it to remap operands in the cloned instructions. 1401 for (; BI != BB->end(); ++BI) { 1402 Instruction *New = BI->clone(); 1403 New->setName(BI->getName()); 1404 PredBB->getInstList().insert(OldPredBranch, New); 1405 ValueMapping[BI] = New; 1406 1407 // Remap operands to patch up intra-block references. 1408 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1409 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1410 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1411 if (I != ValueMapping.end()) 1412 New->setOperand(i, I->second); 1413 } 1414 } 1415 1416 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1417 // add entries to the PHI nodes for branch from PredBB now. 1418 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1419 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1420 ValueMapping); 1421 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1422 ValueMapping); 1423 1424 // If there were values defined in BB that are used outside the block, then we 1425 // now have to update all uses of the value to use either the original value, 1426 // the cloned value, or some PHI derived value. This can require arbitrary 1427 // PHI insertion, of which we are prepared to do, clean these up now. 1428 SSAUpdater SSAUpdate; 1429 SmallVector<Use*, 16> UsesToRename; 1430 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1431 // Scan all uses of this instruction to see if it is used outside of its 1432 // block, and if so, record them in UsesToRename. 1433 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1434 ++UI) { 1435 Instruction *User = cast<Instruction>(*UI); 1436 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1437 if (UserPN->getIncomingBlock(UI) == BB) 1438 continue; 1439 } else if (User->getParent() == BB) 1440 continue; 1441 1442 UsesToRename.push_back(&UI.getUse()); 1443 } 1444 1445 // If there are no uses outside the block, we're done with this instruction. 1446 if (UsesToRename.empty()) 1447 continue; 1448 1449 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1450 1451 // We found a use of I outside of BB. Rename all uses of I that are outside 1452 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1453 // with the two values we know. 1454 SSAUpdate.Initialize(I); 1455 SSAUpdate.AddAvailableValue(BB, I); 1456 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); 1457 1458 while (!UsesToRename.empty()) 1459 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1460 DEBUG(errs() << "\n"); 1461 } 1462 1463 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1464 // that we nuked. 1465 BB->removePredecessor(PredBB); 1466 1467 // Remove the unconditional branch at the end of the PredBB block. 1468 OldPredBranch->eraseFromParent(); 1469 1470 ++NumDupes; 1471 return true; 1472 } 1473 1474 1475