1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "jump-threading" 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/IntrinsicInst.h" 17 #include "llvm/LLVMContext.h" 18 #include "llvm/Pass.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LazyValueInfo.h" 21 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 22 #include "llvm/Transforms/Utils/Local.h" 23 #include "llvm/Transforms/Utils/SSAUpdater.h" 24 #include "llvm/Target/TargetData.h" 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 using namespace llvm; 34 35 STATISTIC(NumThreads, "Number of jumps threaded"); 36 STATISTIC(NumFolds, "Number of terminators folded"); 37 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 38 39 static cl::opt<unsigned> 40 Threshold("jump-threading-threshold", 41 cl::desc("Max block size to duplicate for jump threading"), 42 cl::init(6), cl::Hidden); 43 44 // Turn on use of LazyValueInfo. 45 static cl::opt<bool> 46 EnableLVI("enable-jump-threading-lvi", cl::ReallyHidden); 47 48 49 50 namespace { 51 /// This pass performs 'jump threading', which looks at blocks that have 52 /// multiple predecessors and multiple successors. If one or more of the 53 /// predecessors of the block can be proven to always jump to one of the 54 /// successors, we forward the edge from the predecessor to the successor by 55 /// duplicating the contents of this block. 56 /// 57 /// An example of when this can occur is code like this: 58 /// 59 /// if () { ... 60 /// X = 4; 61 /// } 62 /// if (X < 3) { 63 /// 64 /// In this case, the unconditional branch at the end of the first if can be 65 /// revectored to the false side of the second if. 66 /// 67 class JumpThreading : public FunctionPass { 68 TargetData *TD; 69 LazyValueInfo *LVI; 70 #ifdef NDEBUG 71 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 72 #else 73 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 74 #endif 75 public: 76 static char ID; // Pass identification 77 JumpThreading() : FunctionPass(&ID) {} 78 79 bool runOnFunction(Function &F); 80 81 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 82 if (EnableLVI) 83 AU.addRequired<LazyValueInfo>(); 84 } 85 86 void FindLoopHeaders(Function &F); 87 bool ProcessBlock(BasicBlock *BB); 88 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 89 BasicBlock *SuccBB); 90 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 91 BasicBlock *PredBB); 92 93 typedef SmallVectorImpl<std::pair<ConstantInt*, 94 BasicBlock*> > PredValueInfo; 95 96 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 97 PredValueInfo &Result); 98 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB); 99 100 101 bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 102 bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 103 104 bool ProcessJumpOnPHI(PHINode *PN); 105 106 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 107 }; 108 } 109 110 char JumpThreading::ID = 0; 111 static RegisterPass<JumpThreading> 112 X("jump-threading", "Jump Threading"); 113 114 // Public interface to the Jump Threading pass 115 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); } 116 117 /// runOnFunction - Top level algorithm. 118 /// 119 bool JumpThreading::runOnFunction(Function &F) { 120 DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n"); 121 TD = getAnalysisIfAvailable<TargetData>(); 122 LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0; 123 124 FindLoopHeaders(F); 125 126 bool AnotherIteration = true, EverChanged = false; 127 while (AnotherIteration) { 128 AnotherIteration = false; 129 bool Changed = false; 130 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 131 BasicBlock *BB = I; 132 // Thread all of the branches we can over this block. 133 while (ProcessBlock(BB)) 134 Changed = true; 135 136 ++I; 137 138 // If the block is trivially dead, zap it. This eliminates the successor 139 // edges which simplifies the CFG. 140 if (pred_begin(BB) == pred_end(BB) && 141 BB != &BB->getParent()->getEntryBlock()) { 142 DEBUG(errs() << " JT: Deleting dead block '" << BB->getName() 143 << "' with terminator: " << *BB->getTerminator() << '\n'); 144 LoopHeaders.erase(BB); 145 DeleteDeadBlock(BB); 146 Changed = true; 147 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 148 // Can't thread an unconditional jump, but if the block is "almost 149 // empty", we can replace uses of it with uses of the successor and make 150 // this dead. 151 if (BI->isUnconditional() && 152 BB != &BB->getParent()->getEntryBlock()) { 153 BasicBlock::iterator BBI = BB->getFirstNonPHI(); 154 // Ignore dbg intrinsics. 155 while (isa<DbgInfoIntrinsic>(BBI)) 156 ++BBI; 157 // If the terminator is the only non-phi instruction, try to nuke it. 158 if (BBI->isTerminator()) { 159 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 160 // block, we have to make sure it isn't in the LoopHeaders set. We 161 // reinsert afterward in the rare case when the block isn't deleted. 162 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 163 164 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) 165 Changed = true; 166 else if (ErasedFromLoopHeaders) 167 LoopHeaders.insert(BB); 168 } 169 } 170 } 171 } 172 AnotherIteration = Changed; 173 EverChanged |= Changed; 174 } 175 176 LoopHeaders.clear(); 177 return EverChanged; 178 } 179 180 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 181 /// thread across it. 182 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) { 183 /// Ignore PHI nodes, these will be flattened when duplication happens. 184 BasicBlock::const_iterator I = BB->getFirstNonPHI(); 185 186 // FIXME: THREADING will delete values that are just used to compute the 187 // branch, so they shouldn't count against the duplication cost. 188 189 190 // Sum up the cost of each instruction until we get to the terminator. Don't 191 // include the terminator because the copy won't include it. 192 unsigned Size = 0; 193 for (; !isa<TerminatorInst>(I); ++I) { 194 // Debugger intrinsics don't incur code size. 195 if (isa<DbgInfoIntrinsic>(I)) continue; 196 197 // If this is a pointer->pointer bitcast, it is free. 198 if (isa<BitCastInst>(I) && isa<PointerType>(I->getType())) 199 continue; 200 201 // All other instructions count for at least one unit. 202 ++Size; 203 204 // Calls are more expensive. If they are non-intrinsic calls, we model them 205 // as having cost of 4. If they are a non-vector intrinsic, we model them 206 // as having cost of 2 total, and if they are a vector intrinsic, we model 207 // them as having cost 1. 208 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 209 if (!isa<IntrinsicInst>(CI)) 210 Size += 3; 211 else if (!isa<VectorType>(CI->getType())) 212 Size += 1; 213 } 214 } 215 216 // Threading through a switch statement is particularly profitable. If this 217 // block ends in a switch, decrease its cost to make it more likely to happen. 218 if (isa<SwitchInst>(I)) 219 Size = Size > 6 ? Size-6 : 0; 220 221 return Size; 222 } 223 224 /// FindLoopHeaders - We do not want jump threading to turn proper loop 225 /// structures into irreducible loops. Doing this breaks up the loop nesting 226 /// hierarchy and pessimizes later transformations. To prevent this from 227 /// happening, we first have to find the loop headers. Here we approximate this 228 /// by finding targets of backedges in the CFG. 229 /// 230 /// Note that there definitely are cases when we want to allow threading of 231 /// edges across a loop header. For example, threading a jump from outside the 232 /// loop (the preheader) to an exit block of the loop is definitely profitable. 233 /// It is also almost always profitable to thread backedges from within the loop 234 /// to exit blocks, and is often profitable to thread backedges to other blocks 235 /// within the loop (forming a nested loop). This simple analysis is not rich 236 /// enough to track all of these properties and keep it up-to-date as the CFG 237 /// mutates, so we don't allow any of these transformations. 238 /// 239 void JumpThreading::FindLoopHeaders(Function &F) { 240 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 241 FindFunctionBackedges(F, Edges); 242 243 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 244 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 245 } 246 247 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 248 /// if we can infer that the value is a known ConstantInt in any of our 249 /// predecessors. If so, return the known list of value and pred BB in the 250 /// result vector. If a value is known to be undef, it is returned as null. 251 /// 252 /// This returns true if there were any known values. 253 /// 254 bool JumpThreading:: 255 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){ 256 // If V is a constantint, then it is known in all predecessors. 257 if (isa<ConstantInt>(V) || isa<UndefValue>(V)) { 258 ConstantInt *CI = dyn_cast<ConstantInt>(V); 259 260 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 261 Result.push_back(std::make_pair(CI, *PI)); 262 return true; 263 } 264 265 // If V is a non-instruction value, or an instruction in a different block, 266 // then it can't be derived from a PHI. 267 Instruction *I = dyn_cast<Instruction>(V); 268 if (I == 0 || I->getParent() != BB) { 269 270 // Okay, if this is a live-in value, see if it has a known value at the end 271 // of any of our predecessors. 272 // 273 // FIXME: This should be an edge property, not a block end property. 274 /// TODO: Per PR2563, we could infer value range information about a 275 /// predecessor based on its terminator. 276 // 277 if (LVI) { 278 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 279 // "I" is a non-local compare-with-a-constant instruction. This would be 280 // able to handle value inequalities better, for example if the compare is 281 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 282 // Perhaps getConstantOnEdge should be smart enough to do this? 283 284 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 285 // If the value is known by LazyValueInfo to be a constant in a 286 // predecessor, use that information to try to thread this block. 287 Constant *PredCst = LVI->getConstantOnEdge(V, *PI, BB); 288 if (PredCst == 0 || 289 (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst))) 290 continue; 291 292 Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), *PI)); 293 } 294 295 return !Result.empty(); 296 } 297 298 return false; 299 } 300 301 /// If I is a PHI node, then we know the incoming values for any constants. 302 if (PHINode *PN = dyn_cast<PHINode>(I)) { 303 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 304 Value *InVal = PN->getIncomingValue(i); 305 if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) { 306 ConstantInt *CI = dyn_cast<ConstantInt>(InVal); 307 Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i))); 308 } 309 } 310 return !Result.empty(); 311 } 312 313 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals; 314 315 // Handle some boolean conditions. 316 if (I->getType()->getPrimitiveSizeInBits() == 1) { 317 // X | true -> true 318 // X & false -> false 319 if (I->getOpcode() == Instruction::Or || 320 I->getOpcode() == Instruction::And) { 321 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals); 322 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals); 323 324 if (LHSVals.empty() && RHSVals.empty()) 325 return false; 326 327 ConstantInt *InterestingVal; 328 if (I->getOpcode() == Instruction::Or) 329 InterestingVal = ConstantInt::getTrue(I->getContext()); 330 else 331 InterestingVal = ConstantInt::getFalse(I->getContext()); 332 333 // Scan for the sentinel. 334 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 335 if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) 336 Result.push_back(LHSVals[i]); 337 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 338 if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) 339 Result.push_back(RHSVals[i]); 340 return !Result.empty(); 341 } 342 343 // Handle the NOT form of XOR. 344 if (I->getOpcode() == Instruction::Xor && 345 isa<ConstantInt>(I->getOperand(1)) && 346 cast<ConstantInt>(I->getOperand(1))->isOne()) { 347 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result); 348 if (Result.empty()) 349 return false; 350 351 // Invert the known values. 352 for (unsigned i = 0, e = Result.size(); i != e; ++i) 353 Result[i].first = 354 cast<ConstantInt>(ConstantExpr::getNot(Result[i].first)); 355 return true; 356 } 357 } 358 359 // Handle compare with phi operand, where the PHI is defined in this block. 360 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 361 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 362 if (PN && PN->getParent() == BB) { 363 // We can do this simplification if any comparisons fold to true or false. 364 // See if any do. 365 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 366 BasicBlock *PredBB = PN->getIncomingBlock(i); 367 Value *LHS = PN->getIncomingValue(i); 368 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 369 370 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD); 371 if (Res == 0) { 372 if (!LVI || !isa<Constant>(RHS)) 373 continue; 374 375 LazyValueInfo::Tristate 376 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 377 cast<Constant>(RHS), PredBB, BB); 378 if (ResT == LazyValueInfo::Unknown) 379 continue; 380 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 381 } 382 383 if (isa<UndefValue>(Res)) 384 Result.push_back(std::make_pair((ConstantInt*)0, PredBB)); 385 else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res)) 386 Result.push_back(std::make_pair(CI, PredBB)); 387 } 388 389 return !Result.empty(); 390 } 391 392 393 // If comparing a live-in value against a constant, see if we know the 394 // live-in value on any predecessors. 395 if (LVI && isa<Constant>(Cmp->getOperand(1)) && 396 Cmp->getType()->isInteger() && // Not vector compare. 397 (!isa<Instruction>(Cmp->getOperand(0)) || 398 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB)) { 399 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 400 401 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 402 // If the value is known by LazyValueInfo to be a constant in a 403 // predecessor, use that information to try to thread this block. 404 LazyValueInfo::Tristate 405 Res = LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 406 RHSCst, *PI, BB); 407 if (Res == LazyValueInfo::Unknown) 408 continue; 409 410 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 411 Result.push_back(std::make_pair(cast<ConstantInt>(ResC), *PI)); 412 } 413 414 return !Result.empty(); 415 } 416 } 417 return false; 418 } 419 420 421 422 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 423 /// in an undefined jump, decide which block is best to revector to. 424 /// 425 /// Since we can pick an arbitrary destination, we pick the successor with the 426 /// fewest predecessors. This should reduce the in-degree of the others. 427 /// 428 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 429 TerminatorInst *BBTerm = BB->getTerminator(); 430 unsigned MinSucc = 0; 431 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 432 // Compute the successor with the minimum number of predecessors. 433 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 434 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 435 TestBB = BBTerm->getSuccessor(i); 436 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 437 if (NumPreds < MinNumPreds) 438 MinSucc = i; 439 } 440 441 return MinSucc; 442 } 443 444 /// ProcessBlock - If there are any predecessors whose control can be threaded 445 /// through to a successor, transform them now. 446 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 447 // If this block has a single predecessor, and if that pred has a single 448 // successor, merge the blocks. This encourages recursive jump threading 449 // because now the condition in this block can be threaded through 450 // predecessors of our predecessor block. 451 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 452 if (SinglePred->getTerminator()->getNumSuccessors() == 1 && 453 SinglePred != BB) { 454 // If SinglePred was a loop header, BB becomes one. 455 if (LoopHeaders.erase(SinglePred)) 456 LoopHeaders.insert(BB); 457 458 // Remember if SinglePred was the entry block of the function. If so, we 459 // will need to move BB back to the entry position. 460 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 461 MergeBasicBlockIntoOnlyPred(BB); 462 463 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 464 BB->moveBefore(&BB->getParent()->getEntryBlock()); 465 return true; 466 } 467 } 468 469 // Look to see if the terminator is a branch of switch, if not we can't thread 470 // it. 471 Value *Condition; 472 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 473 // Can't thread an unconditional jump. 474 if (BI->isUnconditional()) return false; 475 Condition = BI->getCondition(); 476 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 477 Condition = SI->getCondition(); 478 else 479 return false; // Must be an invoke. 480 481 // If the terminator of this block is branching on a constant, simplify the 482 // terminator to an unconditional branch. This can occur due to threading in 483 // other blocks. 484 if (isa<ConstantInt>(Condition)) { 485 DEBUG(errs() << " In block '" << BB->getName() 486 << "' folding terminator: " << *BB->getTerminator() << '\n'); 487 ++NumFolds; 488 ConstantFoldTerminator(BB); 489 return true; 490 } 491 492 // If the terminator is branching on an undef, we can pick any of the 493 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 494 if (isa<UndefValue>(Condition)) { 495 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 496 497 // Fold the branch/switch. 498 TerminatorInst *BBTerm = BB->getTerminator(); 499 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 500 if (i == BestSucc) continue; 501 RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD); 502 } 503 504 DEBUG(errs() << " In block '" << BB->getName() 505 << "' folding undef terminator: " << *BBTerm << '\n'); 506 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 507 BBTerm->eraseFromParent(); 508 return true; 509 } 510 511 Instruction *CondInst = dyn_cast<Instruction>(Condition); 512 513 // If the condition is an instruction defined in another block, see if a 514 // predecessor has the same condition: 515 // br COND, BBX, BBY 516 // BBX: 517 // br COND, BBZ, BBW 518 if (!LVI && 519 !Condition->hasOneUse() && // Multiple uses. 520 (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition. 521 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 522 if (isa<BranchInst>(BB->getTerminator())) { 523 for (; PI != E; ++PI) 524 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 525 if (PBI->isConditional() && PBI->getCondition() == Condition && 526 ProcessBranchOnDuplicateCond(*PI, BB)) 527 return true; 528 } else { 529 assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator"); 530 for (; PI != E; ++PI) 531 if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator())) 532 if (PSI->getCondition() == Condition && 533 ProcessSwitchOnDuplicateCond(*PI, BB)) 534 return true; 535 } 536 } 537 538 // All the rest of our checks depend on the condition being an instruction. 539 if (CondInst == 0) { 540 // FIXME: Unify this with code below. 541 if (LVI && ProcessThreadableEdges(Condition, BB)) 542 return true; 543 return false; 544 } 545 546 547 // See if this is a phi node in the current block. 548 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 549 if (PN->getParent() == BB) 550 return ProcessJumpOnPHI(PN); 551 552 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 553 if (!LVI && 554 (!isa<PHINode>(CondCmp->getOperand(0)) || 555 cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) { 556 // If we have a comparison, loop over the predecessors to see if there is 557 // a condition with a lexically identical value. 558 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 559 for (; PI != E; ++PI) 560 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 561 if (PBI->isConditional() && *PI != BB) { 562 if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) { 563 if (CI->getOperand(0) == CondCmp->getOperand(0) && 564 CI->getOperand(1) == CondCmp->getOperand(1) && 565 CI->getPredicate() == CondCmp->getPredicate()) { 566 // TODO: Could handle things like (x != 4) --> (x == 17) 567 if (ProcessBranchOnDuplicateCond(*PI, BB)) 568 return true; 569 } 570 } 571 } 572 } 573 } 574 575 // Check for some cases that are worth simplifying. Right now we want to look 576 // for loads that are used by a switch or by the condition for the branch. If 577 // we see one, check to see if it's partially redundant. If so, insert a PHI 578 // which can then be used to thread the values. 579 // 580 // This is particularly important because reg2mem inserts loads and stores all 581 // over the place, and this blocks jump threading if we don't zap them. 582 Value *SimplifyValue = CondInst; 583 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 584 if (isa<Constant>(CondCmp->getOperand(1))) 585 SimplifyValue = CondCmp->getOperand(0); 586 587 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 588 if (SimplifyPartiallyRedundantLoad(LI)) 589 return true; 590 591 592 // Handle a variety of cases where we are branching on something derived from 593 // a PHI node in the current block. If we can prove that any predecessors 594 // compute a predictable value based on a PHI node, thread those predecessors. 595 // 596 if (ProcessThreadableEdges(CondInst, BB)) 597 return true; 598 599 600 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 601 // "(X == 4)" thread through this block. 602 603 return false; 604 } 605 606 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that 607 /// block that jump on exactly the same condition. This means that we almost 608 /// always know the direction of the edge in the DESTBB: 609 /// PREDBB: 610 /// br COND, DESTBB, BBY 611 /// DESTBB: 612 /// br COND, BBZ, BBW 613 /// 614 /// If DESTBB has multiple predecessors, we can't just constant fold the branch 615 /// in DESTBB, we have to thread over it. 616 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB, 617 BasicBlock *BB) { 618 BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator()); 619 620 // If both successors of PredBB go to DESTBB, we don't know anything. We can 621 // fold the branch to an unconditional one, which allows other recursive 622 // simplifications. 623 bool BranchDir; 624 if (PredBI->getSuccessor(1) != BB) 625 BranchDir = true; 626 else if (PredBI->getSuccessor(0) != BB) 627 BranchDir = false; 628 else { 629 DEBUG(errs() << " In block '" << PredBB->getName() 630 << "' folding terminator: " << *PredBB->getTerminator() << '\n'); 631 ++NumFolds; 632 ConstantFoldTerminator(PredBB); 633 return true; 634 } 635 636 BranchInst *DestBI = cast<BranchInst>(BB->getTerminator()); 637 638 // If the dest block has one predecessor, just fix the branch condition to a 639 // constant and fold it. 640 if (BB->getSinglePredecessor()) { 641 DEBUG(errs() << " In block '" << BB->getName() 642 << "' folding condition to '" << BranchDir << "': " 643 << *BB->getTerminator() << '\n'); 644 ++NumFolds; 645 Value *OldCond = DestBI->getCondition(); 646 DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 647 BranchDir)); 648 ConstantFoldTerminator(BB); 649 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 650 return true; 651 } 652 653 654 // Next, figure out which successor we are threading to. 655 BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir); 656 657 SmallVector<BasicBlock*, 2> Preds; 658 Preds.push_back(PredBB); 659 660 // Ok, try to thread it! 661 return ThreadEdge(BB, Preds, SuccBB); 662 } 663 664 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that 665 /// block that switch on exactly the same condition. This means that we almost 666 /// always know the direction of the edge in the DESTBB: 667 /// PREDBB: 668 /// switch COND [... DESTBB, BBY ... ] 669 /// DESTBB: 670 /// switch COND [... BBZ, BBW ] 671 /// 672 /// Optimizing switches like this is very important, because simplifycfg builds 673 /// switches out of repeated 'if' conditions. 674 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, 675 BasicBlock *DestBB) { 676 // Can't thread edge to self. 677 if (PredBB == DestBB) 678 return false; 679 680 SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator()); 681 SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator()); 682 683 // There are a variety of optimizations that we can potentially do on these 684 // blocks: we order them from most to least preferable. 685 686 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB 687 // directly to their destination. This does not introduce *any* code size 688 // growth. Skip debug info first. 689 BasicBlock::iterator BBI = DestBB->begin(); 690 while (isa<DbgInfoIntrinsic>(BBI)) 691 BBI++; 692 693 // FIXME: Thread if it just contains a PHI. 694 if (isa<SwitchInst>(BBI)) { 695 bool MadeChange = false; 696 // Ignore the default edge for now. 697 for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) { 698 ConstantInt *DestVal = DestSI->getCaseValue(i); 699 BasicBlock *DestSucc = DestSI->getSuccessor(i); 700 701 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if 702 // PredSI has an explicit case for it. If so, forward. If it is covered 703 // by the default case, we can't update PredSI. 704 unsigned PredCase = PredSI->findCaseValue(DestVal); 705 if (PredCase == 0) continue; 706 707 // If PredSI doesn't go to DestBB on this value, then it won't reach the 708 // case on this condition. 709 if (PredSI->getSuccessor(PredCase) != DestBB && 710 DestSI->getSuccessor(i) != DestBB) 711 continue; 712 713 // Otherwise, we're safe to make the change. Make sure that the edge from 714 // DestSI to DestSucc is not critical and has no PHI nodes. 715 DEBUG(errs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI); 716 DEBUG(errs() << "THROUGH: " << *DestSI); 717 718 // If the destination has PHI nodes, just split the edge for updating 719 // simplicity. 720 if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){ 721 SplitCriticalEdge(DestSI, i, this); 722 DestSucc = DestSI->getSuccessor(i); 723 } 724 FoldSingleEntryPHINodes(DestSucc); 725 PredSI->setSuccessor(PredCase, DestSucc); 726 MadeChange = true; 727 } 728 729 if (MadeChange) 730 return true; 731 } 732 733 return false; 734 } 735 736 737 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 738 /// load instruction, eliminate it by replacing it with a PHI node. This is an 739 /// important optimization that encourages jump threading, and needs to be run 740 /// interlaced with other jump threading tasks. 741 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 742 // Don't hack volatile loads. 743 if (LI->isVolatile()) return false; 744 745 // If the load is defined in a block with exactly one predecessor, it can't be 746 // partially redundant. 747 BasicBlock *LoadBB = LI->getParent(); 748 if (LoadBB->getSinglePredecessor()) 749 return false; 750 751 Value *LoadedPtr = LI->getOperand(0); 752 753 // If the loaded operand is defined in the LoadBB, it can't be available. 754 // FIXME: Could do PHI translation, that would be fun :) 755 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 756 if (PtrOp->getParent() == LoadBB) 757 return false; 758 759 // Scan a few instructions up from the load, to see if it is obviously live at 760 // the entry to its block. 761 BasicBlock::iterator BBIt = LI; 762 763 if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB, 764 BBIt, 6)) { 765 // If the value if the load is locally available within the block, just use 766 // it. This frequently occurs for reg2mem'd allocas. 767 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 768 769 // If the returned value is the load itself, replace with an undef. This can 770 // only happen in dead loops. 771 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 772 LI->replaceAllUsesWith(AvailableVal); 773 LI->eraseFromParent(); 774 return true; 775 } 776 777 // Otherwise, if we scanned the whole block and got to the top of the block, 778 // we know the block is locally transparent to the load. If not, something 779 // might clobber its value. 780 if (BBIt != LoadBB->begin()) 781 return false; 782 783 784 SmallPtrSet<BasicBlock*, 8> PredsScanned; 785 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 786 AvailablePredsTy AvailablePreds; 787 BasicBlock *OneUnavailablePred = 0; 788 789 // If we got here, the loaded value is transparent through to the start of the 790 // block. Check to see if it is available in any of the predecessor blocks. 791 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 792 PI != PE; ++PI) { 793 BasicBlock *PredBB = *PI; 794 795 // If we already scanned this predecessor, skip it. 796 if (!PredsScanned.insert(PredBB)) 797 continue; 798 799 // Scan the predecessor to see if the value is available in the pred. 800 BBIt = PredBB->end(); 801 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6); 802 if (!PredAvailable) { 803 OneUnavailablePred = PredBB; 804 continue; 805 } 806 807 // If so, this load is partially redundant. Remember this info so that we 808 // can create a PHI node. 809 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 810 } 811 812 // If the loaded value isn't available in any predecessor, it isn't partially 813 // redundant. 814 if (AvailablePreds.empty()) return false; 815 816 // Okay, the loaded value is available in at least one (and maybe all!) 817 // predecessors. If the value is unavailable in more than one unique 818 // predecessor, we want to insert a merge block for those common predecessors. 819 // This ensures that we only have to insert one reload, thus not increasing 820 // code size. 821 BasicBlock *UnavailablePred = 0; 822 823 // If there is exactly one predecessor where the value is unavailable, the 824 // already computed 'OneUnavailablePred' block is it. If it ends in an 825 // unconditional branch, we know that it isn't a critical edge. 826 if (PredsScanned.size() == AvailablePreds.size()+1 && 827 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 828 UnavailablePred = OneUnavailablePred; 829 } else if (PredsScanned.size() != AvailablePreds.size()) { 830 // Otherwise, we had multiple unavailable predecessors or we had a critical 831 // edge from the one. 832 SmallVector<BasicBlock*, 8> PredsToSplit; 833 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 834 835 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 836 AvailablePredSet.insert(AvailablePreds[i].first); 837 838 // Add all the unavailable predecessors to the PredsToSplit list. 839 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 840 PI != PE; ++PI) 841 if (!AvailablePredSet.count(*PI)) 842 PredsToSplit.push_back(*PI); 843 844 // Split them out to their own block. 845 UnavailablePred = 846 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(), 847 "thread-split", this); 848 } 849 850 // If the value isn't available in all predecessors, then there will be 851 // exactly one where it isn't available. Insert a load on that edge and add 852 // it to the AvailablePreds list. 853 if (UnavailablePred) { 854 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 855 "Can't handle critical edge here!"); 856 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", 857 UnavailablePred->getTerminator()); 858 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 859 } 860 861 // Now we know that each predecessor of this block has a value in 862 // AvailablePreds, sort them for efficient access as we're walking the preds. 863 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 864 865 // Create a PHI node at the start of the block for the PRE'd load value. 866 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin()); 867 PN->takeName(LI); 868 869 // Insert new entries into the PHI for each predecessor. A single block may 870 // have multiple entries here. 871 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E; 872 ++PI) { 873 AvailablePredsTy::iterator I = 874 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 875 std::make_pair(*PI, (Value*)0)); 876 877 assert(I != AvailablePreds.end() && I->first == *PI && 878 "Didn't find entry for predecessor!"); 879 880 PN->addIncoming(I->second, I->first); 881 } 882 883 //cerr << "PRE: " << *LI << *PN << "\n"; 884 885 LI->replaceAllUsesWith(PN); 886 LI->eraseFromParent(); 887 888 return true; 889 } 890 891 /// FindMostPopularDest - The specified list contains multiple possible 892 /// threadable destinations. Pick the one that occurs the most frequently in 893 /// the list. 894 static BasicBlock * 895 FindMostPopularDest(BasicBlock *BB, 896 const SmallVectorImpl<std::pair<BasicBlock*, 897 BasicBlock*> > &PredToDestList) { 898 assert(!PredToDestList.empty()); 899 900 // Determine popularity. If there are multiple possible destinations, we 901 // explicitly choose to ignore 'undef' destinations. We prefer to thread 902 // blocks with known and real destinations to threading undef. We'll handle 903 // them later if interesting. 904 DenseMap<BasicBlock*, unsigned> DestPopularity; 905 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 906 if (PredToDestList[i].second) 907 DestPopularity[PredToDestList[i].second]++; 908 909 // Find the most popular dest. 910 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 911 BasicBlock *MostPopularDest = DPI->first; 912 unsigned Popularity = DPI->second; 913 SmallVector<BasicBlock*, 4> SamePopularity; 914 915 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 916 // If the popularity of this entry isn't higher than the popularity we've 917 // seen so far, ignore it. 918 if (DPI->second < Popularity) 919 ; // ignore. 920 else if (DPI->second == Popularity) { 921 // If it is the same as what we've seen so far, keep track of it. 922 SamePopularity.push_back(DPI->first); 923 } else { 924 // If it is more popular, remember it. 925 SamePopularity.clear(); 926 MostPopularDest = DPI->first; 927 Popularity = DPI->second; 928 } 929 } 930 931 // Okay, now we know the most popular destination. If there is more than 932 // destination, we need to determine one. This is arbitrary, but we need 933 // to make a deterministic decision. Pick the first one that appears in the 934 // successor list. 935 if (!SamePopularity.empty()) { 936 SamePopularity.push_back(MostPopularDest); 937 TerminatorInst *TI = BB->getTerminator(); 938 for (unsigned i = 0; ; ++i) { 939 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 940 941 if (std::find(SamePopularity.begin(), SamePopularity.end(), 942 TI->getSuccessor(i)) == SamePopularity.end()) 943 continue; 944 945 MostPopularDest = TI->getSuccessor(i); 946 break; 947 } 948 } 949 950 // Okay, we have finally picked the most popular destination. 951 return MostPopularDest; 952 } 953 954 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) { 955 // If threading this would thread across a loop header, don't even try to 956 // thread the edge. 957 if (LoopHeaders.count(BB)) 958 return false; 959 960 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues; 961 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues)) 962 return false; 963 assert(!PredValues.empty() && 964 "ComputeValueKnownInPredecessors returned true with no values"); 965 966 DEBUG(errs() << "IN BB: " << *BB; 967 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 968 errs() << " BB '" << BB->getName() << "': FOUND condition = "; 969 if (PredValues[i].first) 970 errs() << *PredValues[i].first; 971 else 972 errs() << "UNDEF"; 973 errs() << " for pred '" << PredValues[i].second->getName() 974 << "'.\n"; 975 }); 976 977 // Decide what we want to thread through. Convert our list of known values to 978 // a list of known destinations for each pred. This also discards duplicate 979 // predecessors and keeps track of the undefined inputs (which are represented 980 // as a null dest in the PredToDestList). 981 SmallPtrSet<BasicBlock*, 16> SeenPreds; 982 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 983 984 BasicBlock *OnlyDest = 0; 985 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 986 987 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 988 BasicBlock *Pred = PredValues[i].second; 989 if (!SeenPreds.insert(Pred)) 990 continue; // Duplicate predecessor entry. 991 992 // If the predecessor ends with an indirect goto, we can't change its 993 // destination. 994 if (isa<IndirectBrInst>(Pred->getTerminator())) 995 continue; 996 997 ConstantInt *Val = PredValues[i].first; 998 999 BasicBlock *DestBB; 1000 if (Val == 0) // Undef. 1001 DestBB = 0; 1002 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1003 DestBB = BI->getSuccessor(Val->isZero()); 1004 else { 1005 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator()); 1006 DestBB = SI->getSuccessor(SI->findCaseValue(Val)); 1007 } 1008 1009 // If we have exactly one destination, remember it for efficiency below. 1010 if (i == 0) 1011 OnlyDest = DestBB; 1012 else if (OnlyDest != DestBB) 1013 OnlyDest = MultipleDestSentinel; 1014 1015 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1016 } 1017 1018 // If all edges were unthreadable, we fail. 1019 if (PredToDestList.empty()) 1020 return false; 1021 1022 // Determine which is the most common successor. If we have many inputs and 1023 // this block is a switch, we want to start by threading the batch that goes 1024 // to the most popular destination first. If we only know about one 1025 // threadable destination (the common case) we can avoid this. 1026 BasicBlock *MostPopularDest = OnlyDest; 1027 1028 if (MostPopularDest == MultipleDestSentinel) 1029 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1030 1031 // Now that we know what the most popular destination is, factor all 1032 // predecessors that will jump to it into a single predecessor. 1033 SmallVector<BasicBlock*, 16> PredsToFactor; 1034 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1035 if (PredToDestList[i].second == MostPopularDest) { 1036 BasicBlock *Pred = PredToDestList[i].first; 1037 1038 // This predecessor may be a switch or something else that has multiple 1039 // edges to the block. Factor each of these edges by listing them 1040 // according to # occurrences in PredsToFactor. 1041 TerminatorInst *PredTI = Pred->getTerminator(); 1042 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 1043 if (PredTI->getSuccessor(i) == BB) 1044 PredsToFactor.push_back(Pred); 1045 } 1046 1047 // If the threadable edges are branching on an undefined value, we get to pick 1048 // the destination that these predecessors should get to. 1049 if (MostPopularDest == 0) 1050 MostPopularDest = BB->getTerminator()-> 1051 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1052 1053 // Ok, try to thread it! 1054 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1055 } 1056 1057 /// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in 1058 /// the current block. See if there are any simplifications we can do based on 1059 /// inputs to the phi node. 1060 /// 1061 bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) { 1062 BasicBlock *BB = PN->getParent(); 1063 1064 // If any of the predecessor blocks end in an unconditional branch, we can 1065 // *duplicate* the jump into that block in order to further encourage jump 1066 // threading and to eliminate cases where we have branch on a phi of an icmp 1067 // (branch on icmp is much better). 1068 1069 // We don't want to do this tranformation for switches, because we don't 1070 // really want to duplicate a switch. 1071 if (isa<SwitchInst>(BB->getTerminator())) 1072 return false; 1073 1074 // Look for unconditional branch predecessors. 1075 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1076 BasicBlock *PredBB = PN->getIncomingBlock(i); 1077 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1078 if (PredBr->isUnconditional() && 1079 // Try to duplicate BB into PredBB. 1080 DuplicateCondBranchOnPHIIntoPred(BB, PredBB)) 1081 return true; 1082 } 1083 1084 return false; 1085 } 1086 1087 1088 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1089 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1090 /// NewPred using the entries from OldPred (suitably mapped). 1091 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1092 BasicBlock *OldPred, 1093 BasicBlock *NewPred, 1094 DenseMap<Instruction*, Value*> &ValueMap) { 1095 for (BasicBlock::iterator PNI = PHIBB->begin(); 1096 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1097 // Ok, we have a PHI node. Figure out what the incoming value was for the 1098 // DestBlock. 1099 Value *IV = PN->getIncomingValueForBlock(OldPred); 1100 1101 // Remap the value if necessary. 1102 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1103 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1104 if (I != ValueMap.end()) 1105 IV = I->second; 1106 } 1107 1108 PN->addIncoming(IV, NewPred); 1109 } 1110 } 1111 1112 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1113 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1114 /// across BB. Transform the IR to reflect this change. 1115 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1116 const SmallVectorImpl<BasicBlock*> &PredBBs, 1117 BasicBlock *SuccBB) { 1118 // If threading to the same block as we come from, we would infinite loop. 1119 if (SuccBB == BB) { 1120 DEBUG(errs() << " Not threading across BB '" << BB->getName() 1121 << "' - would thread to self!\n"); 1122 return false; 1123 } 1124 1125 // If threading this would thread across a loop header, don't thread the edge. 1126 // See the comments above FindLoopHeaders for justifications and caveats. 1127 if (LoopHeaders.count(BB)) { 1128 DEBUG(errs() << " Not threading across loop header BB '" << BB->getName() 1129 << "' to dest BB '" << SuccBB->getName() 1130 << "' - it might create an irreducible loop!\n"); 1131 return false; 1132 } 1133 1134 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB); 1135 if (JumpThreadCost > Threshold) { 1136 DEBUG(errs() << " Not threading BB '" << BB->getName() 1137 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1138 return false; 1139 } 1140 1141 // And finally, do it! Start by factoring the predecessors is needed. 1142 BasicBlock *PredBB; 1143 if (PredBBs.size() == 1) 1144 PredBB = PredBBs[0]; 1145 else { 1146 DEBUG(errs() << " Factoring out " << PredBBs.size() 1147 << " common predecessors.\n"); 1148 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), 1149 ".thr_comm", this); 1150 } 1151 1152 // And finally, do it! 1153 DEBUG(errs() << " Threading edge from '" << PredBB->getName() << "' to '" 1154 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1155 << ", across block:\n " 1156 << *BB << "\n"); 1157 1158 // We are going to have to map operands from the original BB block to the new 1159 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1160 // account for entry from PredBB. 1161 DenseMap<Instruction*, Value*> ValueMapping; 1162 1163 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1164 BB->getName()+".thread", 1165 BB->getParent(), BB); 1166 NewBB->moveAfter(PredBB); 1167 1168 BasicBlock::iterator BI = BB->begin(); 1169 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1170 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1171 1172 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1173 // mapping and using it to remap operands in the cloned instructions. 1174 for (; !isa<TerminatorInst>(BI); ++BI) { 1175 Instruction *New = BI->clone(); 1176 New->setName(BI->getName()); 1177 NewBB->getInstList().push_back(New); 1178 ValueMapping[BI] = New; 1179 1180 // Remap operands to patch up intra-block references. 1181 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1182 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1183 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1184 if (I != ValueMapping.end()) 1185 New->setOperand(i, I->second); 1186 } 1187 } 1188 1189 // We didn't copy the terminator from BB over to NewBB, because there is now 1190 // an unconditional jump to SuccBB. Insert the unconditional jump. 1191 BranchInst::Create(SuccBB, NewBB); 1192 1193 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1194 // PHI nodes for NewBB now. 1195 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1196 1197 // If there were values defined in BB that are used outside the block, then we 1198 // now have to update all uses of the value to use either the original value, 1199 // the cloned value, or some PHI derived value. This can require arbitrary 1200 // PHI insertion, of which we are prepared to do, clean these up now. 1201 SSAUpdater SSAUpdate; 1202 SmallVector<Use*, 16> UsesToRename; 1203 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1204 // Scan all uses of this instruction to see if it is used outside of its 1205 // block, and if so, record them in UsesToRename. 1206 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1207 ++UI) { 1208 Instruction *User = cast<Instruction>(*UI); 1209 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1210 if (UserPN->getIncomingBlock(UI) == BB) 1211 continue; 1212 } else if (User->getParent() == BB) 1213 continue; 1214 1215 UsesToRename.push_back(&UI.getUse()); 1216 } 1217 1218 // If there are no uses outside the block, we're done with this instruction. 1219 if (UsesToRename.empty()) 1220 continue; 1221 1222 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1223 1224 // We found a use of I outside of BB. Rename all uses of I that are outside 1225 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1226 // with the two values we know. 1227 SSAUpdate.Initialize(I); 1228 SSAUpdate.AddAvailableValue(BB, I); 1229 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); 1230 1231 while (!UsesToRename.empty()) 1232 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1233 DEBUG(errs() << "\n"); 1234 } 1235 1236 1237 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1238 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1239 // us to simplify any PHI nodes in BB. 1240 TerminatorInst *PredTerm = PredBB->getTerminator(); 1241 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1242 if (PredTerm->getSuccessor(i) == BB) { 1243 RemovePredecessorAndSimplify(BB, PredBB, TD); 1244 PredTerm->setSuccessor(i, NewBB); 1245 } 1246 1247 // At this point, the IR is fully up to date and consistent. Do a quick scan 1248 // over the new instructions and zap any that are constants or dead. This 1249 // frequently happens because of phi translation. 1250 BI = NewBB->begin(); 1251 for (BasicBlock::iterator E = NewBB->end(); BI != E; ) { 1252 Instruction *Inst = BI++; 1253 1254 if (Value *V = SimplifyInstruction(Inst, TD)) { 1255 WeakVH BIHandle(BI); 1256 ReplaceAndSimplifyAllUses(Inst, V, TD); 1257 if (BIHandle == 0) 1258 BI = NewBB->begin(); 1259 continue; 1260 } 1261 1262 RecursivelyDeleteTriviallyDeadInstructions(Inst); 1263 } 1264 1265 // Threaded an edge! 1266 ++NumThreads; 1267 return true; 1268 } 1269 1270 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1271 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1272 /// If we can duplicate the contents of BB up into PredBB do so now, this 1273 /// improves the odds that the branch will be on an analyzable instruction like 1274 /// a compare. 1275 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1276 BasicBlock *PredBB) { 1277 // If BB is a loop header, then duplicating this block outside the loop would 1278 // cause us to transform this into an irreducible loop, don't do this. 1279 // See the comments above FindLoopHeaders for justifications and caveats. 1280 if (LoopHeaders.count(BB)) { 1281 DEBUG(errs() << " Not duplicating loop header '" << BB->getName() 1282 << "' into predecessor block '" << PredBB->getName() 1283 << "' - it might create an irreducible loop!\n"); 1284 return false; 1285 } 1286 1287 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB); 1288 if (DuplicationCost > Threshold) { 1289 DEBUG(errs() << " Not duplicating BB '" << BB->getName() 1290 << "' - Cost is too high: " << DuplicationCost << "\n"); 1291 return false; 1292 } 1293 1294 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1295 // of PredBB. 1296 DEBUG(errs() << " Duplicating block '" << BB->getName() << "' into end of '" 1297 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1298 << DuplicationCost << " block is:" << *BB << "\n"); 1299 1300 // We are going to have to map operands from the original BB block into the 1301 // PredBB block. Evaluate PHI nodes in BB. 1302 DenseMap<Instruction*, Value*> ValueMapping; 1303 1304 BasicBlock::iterator BI = BB->begin(); 1305 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1306 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1307 1308 BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1309 1310 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1311 // mapping and using it to remap operands in the cloned instructions. 1312 for (; BI != BB->end(); ++BI) { 1313 Instruction *New = BI->clone(); 1314 New->setName(BI->getName()); 1315 PredBB->getInstList().insert(OldPredBranch, New); 1316 ValueMapping[BI] = New; 1317 1318 // Remap operands to patch up intra-block references. 1319 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1320 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1321 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1322 if (I != ValueMapping.end()) 1323 New->setOperand(i, I->second); 1324 } 1325 } 1326 1327 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1328 // add entries to the PHI nodes for branch from PredBB now. 1329 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1330 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1331 ValueMapping); 1332 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1333 ValueMapping); 1334 1335 // If there were values defined in BB that are used outside the block, then we 1336 // now have to update all uses of the value to use either the original value, 1337 // the cloned value, or some PHI derived value. This can require arbitrary 1338 // PHI insertion, of which we are prepared to do, clean these up now. 1339 SSAUpdater SSAUpdate; 1340 SmallVector<Use*, 16> UsesToRename; 1341 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1342 // Scan all uses of this instruction to see if it is used outside of its 1343 // block, and if so, record them in UsesToRename. 1344 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1345 ++UI) { 1346 Instruction *User = cast<Instruction>(*UI); 1347 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1348 if (UserPN->getIncomingBlock(UI) == BB) 1349 continue; 1350 } else if (User->getParent() == BB) 1351 continue; 1352 1353 UsesToRename.push_back(&UI.getUse()); 1354 } 1355 1356 // If there are no uses outside the block, we're done with this instruction. 1357 if (UsesToRename.empty()) 1358 continue; 1359 1360 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1361 1362 // We found a use of I outside of BB. Rename all uses of I that are outside 1363 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1364 // with the two values we know. 1365 SSAUpdate.Initialize(I); 1366 SSAUpdate.AddAvailableValue(BB, I); 1367 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); 1368 1369 while (!UsesToRename.empty()) 1370 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1371 DEBUG(errs() << "\n"); 1372 } 1373 1374 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1375 // that we nuked. 1376 RemovePredecessorAndSimplify(BB, PredBB, TD); 1377 1378 // Remove the unconditional branch at the end of the PredBB block. 1379 OldPredBranch->eraseFromParent(); 1380 1381 ++NumDupes; 1382 return true; 1383 } 1384 1385 1386