xref: /llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp (revision 5f6b8b2bcb32d6da3d6d7a1c6daf2af8ad0de62b)
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "jump-threading"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/IntrinsicInst.h"
17 #include "llvm/LLVMContext.h"
18 #include "llvm/Pass.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LazyValueInfo.h"
21 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
22 #include "llvm/Transforms/Utils/Local.h"
23 #include "llvm/Transforms/Utils/SSAUpdater.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 using namespace llvm;
34 
35 STATISTIC(NumThreads, "Number of jumps threaded");
36 STATISTIC(NumFolds,   "Number of terminators folded");
37 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
38 
39 static cl::opt<unsigned>
40 Threshold("jump-threading-threshold",
41           cl::desc("Max block size to duplicate for jump threading"),
42           cl::init(6), cl::Hidden);
43 
44 // Turn on use of LazyValueInfo.
45 static cl::opt<bool>
46 EnableLVI("enable-jump-threading-lvi", cl::ReallyHidden);
47 
48 
49 
50 namespace {
51   /// This pass performs 'jump threading', which looks at blocks that have
52   /// multiple predecessors and multiple successors.  If one or more of the
53   /// predecessors of the block can be proven to always jump to one of the
54   /// successors, we forward the edge from the predecessor to the successor by
55   /// duplicating the contents of this block.
56   ///
57   /// An example of when this can occur is code like this:
58   ///
59   ///   if () { ...
60   ///     X = 4;
61   ///   }
62   ///   if (X < 3) {
63   ///
64   /// In this case, the unconditional branch at the end of the first if can be
65   /// revectored to the false side of the second if.
66   ///
67   class JumpThreading : public FunctionPass {
68     TargetData *TD;
69     LazyValueInfo *LVI;
70 #ifdef NDEBUG
71     SmallPtrSet<BasicBlock*, 16> LoopHeaders;
72 #else
73     SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
74 #endif
75   public:
76     static char ID; // Pass identification
77     JumpThreading() : FunctionPass(&ID) {}
78 
79     bool runOnFunction(Function &F);
80 
81     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
82       if (EnableLVI)
83         AU.addRequired<LazyValueInfo>();
84     }
85 
86     void FindLoopHeaders(Function &F);
87     bool ProcessBlock(BasicBlock *BB);
88     bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
89                     BasicBlock *SuccBB);
90     bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
91                                           BasicBlock *PredBB);
92 
93     typedef SmallVectorImpl<std::pair<ConstantInt*,
94                                       BasicBlock*> > PredValueInfo;
95 
96     bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
97                                          PredValueInfo &Result);
98     bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB);
99 
100 
101     bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
102     bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
103 
104     bool ProcessJumpOnPHI(PHINode *PN);
105 
106     bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
107   };
108 }
109 
110 char JumpThreading::ID = 0;
111 static RegisterPass<JumpThreading>
112 X("jump-threading", "Jump Threading");
113 
114 // Public interface to the Jump Threading pass
115 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
116 
117 /// runOnFunction - Top level algorithm.
118 ///
119 bool JumpThreading::runOnFunction(Function &F) {
120   DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n");
121   TD = getAnalysisIfAvailable<TargetData>();
122   LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0;
123 
124   FindLoopHeaders(F);
125 
126   bool AnotherIteration = true, EverChanged = false;
127   while (AnotherIteration) {
128     AnotherIteration = false;
129     bool Changed = false;
130     for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
131       BasicBlock *BB = I;
132       // Thread all of the branches we can over this block.
133       while (ProcessBlock(BB))
134         Changed = true;
135 
136       ++I;
137 
138       // If the block is trivially dead, zap it.  This eliminates the successor
139       // edges which simplifies the CFG.
140       if (pred_begin(BB) == pred_end(BB) &&
141           BB != &BB->getParent()->getEntryBlock()) {
142         DEBUG(errs() << "  JT: Deleting dead block '" << BB->getName()
143               << "' with terminator: " << *BB->getTerminator() << '\n');
144         LoopHeaders.erase(BB);
145         DeleteDeadBlock(BB);
146         Changed = true;
147       } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
148         // Can't thread an unconditional jump, but if the block is "almost
149         // empty", we can replace uses of it with uses of the successor and make
150         // this dead.
151         if (BI->isUnconditional() &&
152             BB != &BB->getParent()->getEntryBlock()) {
153           BasicBlock::iterator BBI = BB->getFirstNonPHI();
154           // Ignore dbg intrinsics.
155           while (isa<DbgInfoIntrinsic>(BBI))
156             ++BBI;
157           // If the terminator is the only non-phi instruction, try to nuke it.
158           if (BBI->isTerminator()) {
159             // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
160             // block, we have to make sure it isn't in the LoopHeaders set.  We
161             // reinsert afterward in the rare case when the block isn't deleted.
162             bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
163 
164             if (TryToSimplifyUncondBranchFromEmptyBlock(BB))
165               Changed = true;
166             else if (ErasedFromLoopHeaders)
167               LoopHeaders.insert(BB);
168           }
169         }
170       }
171     }
172     AnotherIteration = Changed;
173     EverChanged |= Changed;
174   }
175 
176   LoopHeaders.clear();
177   return EverChanged;
178 }
179 
180 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
181 /// thread across it.
182 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
183   /// Ignore PHI nodes, these will be flattened when duplication happens.
184   BasicBlock::const_iterator I = BB->getFirstNonPHI();
185 
186   // FIXME: THREADING will delete values that are just used to compute the
187   // branch, so they shouldn't count against the duplication cost.
188 
189 
190   // Sum up the cost of each instruction until we get to the terminator.  Don't
191   // include the terminator because the copy won't include it.
192   unsigned Size = 0;
193   for (; !isa<TerminatorInst>(I); ++I) {
194     // Debugger intrinsics don't incur code size.
195     if (isa<DbgInfoIntrinsic>(I)) continue;
196 
197     // If this is a pointer->pointer bitcast, it is free.
198     if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
199       continue;
200 
201     // All other instructions count for at least one unit.
202     ++Size;
203 
204     // Calls are more expensive.  If they are non-intrinsic calls, we model them
205     // as having cost of 4.  If they are a non-vector intrinsic, we model them
206     // as having cost of 2 total, and if they are a vector intrinsic, we model
207     // them as having cost 1.
208     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
209       if (!isa<IntrinsicInst>(CI))
210         Size += 3;
211       else if (!isa<VectorType>(CI->getType()))
212         Size += 1;
213     }
214   }
215 
216   // Threading through a switch statement is particularly profitable.  If this
217   // block ends in a switch, decrease its cost to make it more likely to happen.
218   if (isa<SwitchInst>(I))
219     Size = Size > 6 ? Size-6 : 0;
220 
221   return Size;
222 }
223 
224 /// FindLoopHeaders - We do not want jump threading to turn proper loop
225 /// structures into irreducible loops.  Doing this breaks up the loop nesting
226 /// hierarchy and pessimizes later transformations.  To prevent this from
227 /// happening, we first have to find the loop headers.  Here we approximate this
228 /// by finding targets of backedges in the CFG.
229 ///
230 /// Note that there definitely are cases when we want to allow threading of
231 /// edges across a loop header.  For example, threading a jump from outside the
232 /// loop (the preheader) to an exit block of the loop is definitely profitable.
233 /// It is also almost always profitable to thread backedges from within the loop
234 /// to exit blocks, and is often profitable to thread backedges to other blocks
235 /// within the loop (forming a nested loop).  This simple analysis is not rich
236 /// enough to track all of these properties and keep it up-to-date as the CFG
237 /// mutates, so we don't allow any of these transformations.
238 ///
239 void JumpThreading::FindLoopHeaders(Function &F) {
240   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
241   FindFunctionBackedges(F, Edges);
242 
243   for (unsigned i = 0, e = Edges.size(); i != e; ++i)
244     LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
245 }
246 
247 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
248 /// if we can infer that the value is a known ConstantInt in any of our
249 /// predecessors.  If so, return the known list of value and pred BB in the
250 /// result vector.  If a value is known to be undef, it is returned as null.
251 ///
252 /// This returns true if there were any known values.
253 ///
254 bool JumpThreading::
255 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
256   // If V is a constantint, then it is known in all predecessors.
257   if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
258     ConstantInt *CI = dyn_cast<ConstantInt>(V);
259 
260     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
261       Result.push_back(std::make_pair(CI, *PI));
262     return true;
263   }
264 
265   // If V is a non-instruction value, or an instruction in a different block,
266   // then it can't be derived from a PHI.
267   Instruction *I = dyn_cast<Instruction>(V);
268   if (I == 0 || I->getParent() != BB) {
269 
270     // Okay, if this is a live-in value, see if it has a known value at the end
271     // of any of our predecessors.
272     //
273     // FIXME: This should be an edge property, not a block end property.
274     /// TODO: Per PR2563, we could infer value range information about a
275     /// predecessor based on its terminator.
276     //
277     if (LVI) {
278       // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
279       // "I" is a non-local compare-with-a-constant instruction.  This would be
280       // able to handle value inequalities better, for example if the compare is
281       // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
282       // Perhaps getConstantOnEdge should be smart enough to do this?
283 
284       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
285         // If the value is known by LazyValueInfo to be a constant in a
286         // predecessor, use that information to try to thread this block.
287         Constant *PredCst = LVI->getConstantOnEdge(V, *PI, BB);
288         if (PredCst == 0 ||
289             (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst)))
290           continue;
291 
292         Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), *PI));
293       }
294 
295       return !Result.empty();
296     }
297 
298     return false;
299   }
300 
301   /// If I is a PHI node, then we know the incoming values for any constants.
302   if (PHINode *PN = dyn_cast<PHINode>(I)) {
303     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
304       Value *InVal = PN->getIncomingValue(i);
305       if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
306         ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
307         Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
308       }
309     }
310     return !Result.empty();
311   }
312 
313   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
314 
315   // Handle some boolean conditions.
316   if (I->getType()->getPrimitiveSizeInBits() == 1) {
317     // X | true -> true
318     // X & false -> false
319     if (I->getOpcode() == Instruction::Or ||
320         I->getOpcode() == Instruction::And) {
321       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
322       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
323 
324       if (LHSVals.empty() && RHSVals.empty())
325         return false;
326 
327       ConstantInt *InterestingVal;
328       if (I->getOpcode() == Instruction::Or)
329         InterestingVal = ConstantInt::getTrue(I->getContext());
330       else
331         InterestingVal = ConstantInt::getFalse(I->getContext());
332 
333       // Scan for the sentinel.
334       for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
335         if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0)
336           Result.push_back(LHSVals[i]);
337       for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
338         if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0)
339           Result.push_back(RHSVals[i]);
340       return !Result.empty();
341     }
342 
343     // Handle the NOT form of XOR.
344     if (I->getOpcode() == Instruction::Xor &&
345         isa<ConstantInt>(I->getOperand(1)) &&
346         cast<ConstantInt>(I->getOperand(1))->isOne()) {
347       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result);
348       if (Result.empty())
349         return false;
350 
351       // Invert the known values.
352       for (unsigned i = 0, e = Result.size(); i != e; ++i)
353         Result[i].first =
354           cast<ConstantInt>(ConstantExpr::getNot(Result[i].first));
355       return true;
356     }
357   }
358 
359   // Handle compare with phi operand, where the PHI is defined in this block.
360   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
361     PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
362     if (PN && PN->getParent() == BB) {
363       // We can do this simplification if any comparisons fold to true or false.
364       // See if any do.
365       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
366         BasicBlock *PredBB = PN->getIncomingBlock(i);
367         Value *LHS = PN->getIncomingValue(i);
368         Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
369 
370         Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
371         if (Res == 0) {
372           if (!LVI || !isa<Constant>(RHS))
373             continue;
374 
375           LazyValueInfo::Tristate
376             ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
377                                            cast<Constant>(RHS), PredBB, BB);
378           if (ResT == LazyValueInfo::Unknown)
379             continue;
380           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
381         }
382 
383         if (isa<UndefValue>(Res))
384           Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
385         else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
386           Result.push_back(std::make_pair(CI, PredBB));
387       }
388 
389       return !Result.empty();
390     }
391 
392 
393     // If comparing a live-in value against a constant, see if we know the
394     // live-in value on any predecessors.
395     if (LVI && isa<Constant>(Cmp->getOperand(1)) &&
396         Cmp->getType()->isInteger() && // Not vector compare.
397         (!isa<Instruction>(Cmp->getOperand(0)) ||
398          cast<Instruction>(Cmp->getOperand(0))->getParent() != BB)) {
399       Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
400 
401       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
402         // If the value is known by LazyValueInfo to be a constant in a
403         // predecessor, use that information to try to thread this block.
404         LazyValueInfo::Tristate
405           Res = LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
406                                         RHSCst, *PI, BB);
407         if (Res == LazyValueInfo::Unknown)
408           continue;
409 
410         Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
411         Result.push_back(std::make_pair(cast<ConstantInt>(ResC), *PI));
412       }
413 
414       return !Result.empty();
415     }
416   }
417   return false;
418 }
419 
420 
421 
422 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
423 /// in an undefined jump, decide which block is best to revector to.
424 ///
425 /// Since we can pick an arbitrary destination, we pick the successor with the
426 /// fewest predecessors.  This should reduce the in-degree of the others.
427 ///
428 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
429   TerminatorInst *BBTerm = BB->getTerminator();
430   unsigned MinSucc = 0;
431   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
432   // Compute the successor with the minimum number of predecessors.
433   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
434   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
435     TestBB = BBTerm->getSuccessor(i);
436     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
437     if (NumPreds < MinNumPreds)
438       MinSucc = i;
439   }
440 
441   return MinSucc;
442 }
443 
444 /// ProcessBlock - If there are any predecessors whose control can be threaded
445 /// through to a successor, transform them now.
446 bool JumpThreading::ProcessBlock(BasicBlock *BB) {
447   // If this block has a single predecessor, and if that pred has a single
448   // successor, merge the blocks.  This encourages recursive jump threading
449   // because now the condition in this block can be threaded through
450   // predecessors of our predecessor block.
451   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
452     if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
453         SinglePred != BB) {
454       // If SinglePred was a loop header, BB becomes one.
455       if (LoopHeaders.erase(SinglePred))
456         LoopHeaders.insert(BB);
457 
458       // Remember if SinglePred was the entry block of the function.  If so, we
459       // will need to move BB back to the entry position.
460       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
461       MergeBasicBlockIntoOnlyPred(BB);
462 
463       if (isEntry && BB != &BB->getParent()->getEntryBlock())
464         BB->moveBefore(&BB->getParent()->getEntryBlock());
465       return true;
466     }
467   }
468 
469   // Look to see if the terminator is a branch of switch, if not we can't thread
470   // it.
471   Value *Condition;
472   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
473     // Can't thread an unconditional jump.
474     if (BI->isUnconditional()) return false;
475     Condition = BI->getCondition();
476   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
477     Condition = SI->getCondition();
478   else
479     return false; // Must be an invoke.
480 
481   // If the terminator of this block is branching on a constant, simplify the
482   // terminator to an unconditional branch.  This can occur due to threading in
483   // other blocks.
484   if (isa<ConstantInt>(Condition)) {
485     DEBUG(errs() << "  In block '" << BB->getName()
486           << "' folding terminator: " << *BB->getTerminator() << '\n');
487     ++NumFolds;
488     ConstantFoldTerminator(BB);
489     return true;
490   }
491 
492   // If the terminator is branching on an undef, we can pick any of the
493   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
494   if (isa<UndefValue>(Condition)) {
495     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
496 
497     // Fold the branch/switch.
498     TerminatorInst *BBTerm = BB->getTerminator();
499     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
500       if (i == BestSucc) continue;
501       RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
502     }
503 
504     DEBUG(errs() << "  In block '" << BB->getName()
505           << "' folding undef terminator: " << *BBTerm << '\n');
506     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
507     BBTerm->eraseFromParent();
508     return true;
509   }
510 
511   Instruction *CondInst = dyn_cast<Instruction>(Condition);
512 
513   // If the condition is an instruction defined in another block, see if a
514   // predecessor has the same condition:
515   //     br COND, BBX, BBY
516   //  BBX:
517   //     br COND, BBZ, BBW
518   if (!LVI &&
519       !Condition->hasOneUse() && // Multiple uses.
520       (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
521     pred_iterator PI = pred_begin(BB), E = pred_end(BB);
522     if (isa<BranchInst>(BB->getTerminator())) {
523       for (; PI != E; ++PI)
524         if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
525           if (PBI->isConditional() && PBI->getCondition() == Condition &&
526               ProcessBranchOnDuplicateCond(*PI, BB))
527             return true;
528     } else {
529       assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
530       for (; PI != E; ++PI)
531         if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
532           if (PSI->getCondition() == Condition &&
533               ProcessSwitchOnDuplicateCond(*PI, BB))
534             return true;
535     }
536   }
537 
538   // All the rest of our checks depend on the condition being an instruction.
539   if (CondInst == 0) {
540     // FIXME: Unify this with code below.
541     if (LVI && ProcessThreadableEdges(Condition, BB))
542       return true;
543     return false;
544   }
545 
546 
547   // See if this is a phi node in the current block.
548   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
549     if (PN->getParent() == BB)
550       return ProcessJumpOnPHI(PN);
551 
552   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
553     if (!LVI &&
554         (!isa<PHINode>(CondCmp->getOperand(0)) ||
555          cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) {
556       // If we have a comparison, loop over the predecessors to see if there is
557       // a condition with a lexically identical value.
558       pred_iterator PI = pred_begin(BB), E = pred_end(BB);
559       for (; PI != E; ++PI)
560         if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
561           if (PBI->isConditional() && *PI != BB) {
562             if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
563               if (CI->getOperand(0) == CondCmp->getOperand(0) &&
564                   CI->getOperand(1) == CondCmp->getOperand(1) &&
565                   CI->getPredicate() == CondCmp->getPredicate()) {
566                 // TODO: Could handle things like (x != 4) --> (x == 17)
567                 if (ProcessBranchOnDuplicateCond(*PI, BB))
568                   return true;
569               }
570             }
571           }
572     }
573   }
574 
575   // Check for some cases that are worth simplifying.  Right now we want to look
576   // for loads that are used by a switch or by the condition for the branch.  If
577   // we see one, check to see if it's partially redundant.  If so, insert a PHI
578   // which can then be used to thread the values.
579   //
580   // This is particularly important because reg2mem inserts loads and stores all
581   // over the place, and this blocks jump threading if we don't zap them.
582   Value *SimplifyValue = CondInst;
583   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
584     if (isa<Constant>(CondCmp->getOperand(1)))
585       SimplifyValue = CondCmp->getOperand(0);
586 
587   if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
588     if (SimplifyPartiallyRedundantLoad(LI))
589       return true;
590 
591 
592   // Handle a variety of cases where we are branching on something derived from
593   // a PHI node in the current block.  If we can prove that any predecessors
594   // compute a predictable value based on a PHI node, thread those predecessors.
595   //
596   if (ProcessThreadableEdges(CondInst, BB))
597     return true;
598 
599 
600   // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
601   // "(X == 4)" thread through this block.
602 
603   return false;
604 }
605 
606 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
607 /// block that jump on exactly the same condition.  This means that we almost
608 /// always know the direction of the edge in the DESTBB:
609 ///  PREDBB:
610 ///     br COND, DESTBB, BBY
611 ///  DESTBB:
612 ///     br COND, BBZ, BBW
613 ///
614 /// If DESTBB has multiple predecessors, we can't just constant fold the branch
615 /// in DESTBB, we have to thread over it.
616 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
617                                                  BasicBlock *BB) {
618   BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
619 
620   // If both successors of PredBB go to DESTBB, we don't know anything.  We can
621   // fold the branch to an unconditional one, which allows other recursive
622   // simplifications.
623   bool BranchDir;
624   if (PredBI->getSuccessor(1) != BB)
625     BranchDir = true;
626   else if (PredBI->getSuccessor(0) != BB)
627     BranchDir = false;
628   else {
629     DEBUG(errs() << "  In block '" << PredBB->getName()
630           << "' folding terminator: " << *PredBB->getTerminator() << '\n');
631     ++NumFolds;
632     ConstantFoldTerminator(PredBB);
633     return true;
634   }
635 
636   BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
637 
638   // If the dest block has one predecessor, just fix the branch condition to a
639   // constant and fold it.
640   if (BB->getSinglePredecessor()) {
641     DEBUG(errs() << "  In block '" << BB->getName()
642           << "' folding condition to '" << BranchDir << "': "
643           << *BB->getTerminator() << '\n');
644     ++NumFolds;
645     Value *OldCond = DestBI->getCondition();
646     DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
647                                           BranchDir));
648     ConstantFoldTerminator(BB);
649     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
650     return true;
651   }
652 
653 
654   // Next, figure out which successor we are threading to.
655   BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
656 
657   SmallVector<BasicBlock*, 2> Preds;
658   Preds.push_back(PredBB);
659 
660   // Ok, try to thread it!
661   return ThreadEdge(BB, Preds, SuccBB);
662 }
663 
664 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
665 /// block that switch on exactly the same condition.  This means that we almost
666 /// always know the direction of the edge in the DESTBB:
667 ///  PREDBB:
668 ///     switch COND [... DESTBB, BBY ... ]
669 ///  DESTBB:
670 ///     switch COND [... BBZ, BBW ]
671 ///
672 /// Optimizing switches like this is very important, because simplifycfg builds
673 /// switches out of repeated 'if' conditions.
674 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
675                                                  BasicBlock *DestBB) {
676   // Can't thread edge to self.
677   if (PredBB == DestBB)
678     return false;
679 
680   SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
681   SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
682 
683   // There are a variety of optimizations that we can potentially do on these
684   // blocks: we order them from most to least preferable.
685 
686   // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
687   // directly to their destination.  This does not introduce *any* code size
688   // growth.  Skip debug info first.
689   BasicBlock::iterator BBI = DestBB->begin();
690   while (isa<DbgInfoIntrinsic>(BBI))
691     BBI++;
692 
693   // FIXME: Thread if it just contains a PHI.
694   if (isa<SwitchInst>(BBI)) {
695     bool MadeChange = false;
696     // Ignore the default edge for now.
697     for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
698       ConstantInt *DestVal = DestSI->getCaseValue(i);
699       BasicBlock *DestSucc = DestSI->getSuccessor(i);
700 
701       // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
702       // PredSI has an explicit case for it.  If so, forward.  If it is covered
703       // by the default case, we can't update PredSI.
704       unsigned PredCase = PredSI->findCaseValue(DestVal);
705       if (PredCase == 0) continue;
706 
707       // If PredSI doesn't go to DestBB on this value, then it won't reach the
708       // case on this condition.
709       if (PredSI->getSuccessor(PredCase) != DestBB &&
710           DestSI->getSuccessor(i) != DestBB)
711         continue;
712 
713       // Otherwise, we're safe to make the change.  Make sure that the edge from
714       // DestSI to DestSucc is not critical and has no PHI nodes.
715       DEBUG(errs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
716       DEBUG(errs() << "THROUGH: " << *DestSI);
717 
718       // If the destination has PHI nodes, just split the edge for updating
719       // simplicity.
720       if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
721         SplitCriticalEdge(DestSI, i, this);
722         DestSucc = DestSI->getSuccessor(i);
723       }
724       FoldSingleEntryPHINodes(DestSucc);
725       PredSI->setSuccessor(PredCase, DestSucc);
726       MadeChange = true;
727     }
728 
729     if (MadeChange)
730       return true;
731   }
732 
733   return false;
734 }
735 
736 
737 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
738 /// load instruction, eliminate it by replacing it with a PHI node.  This is an
739 /// important optimization that encourages jump threading, and needs to be run
740 /// interlaced with other jump threading tasks.
741 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
742   // Don't hack volatile loads.
743   if (LI->isVolatile()) return false;
744 
745   // If the load is defined in a block with exactly one predecessor, it can't be
746   // partially redundant.
747   BasicBlock *LoadBB = LI->getParent();
748   if (LoadBB->getSinglePredecessor())
749     return false;
750 
751   Value *LoadedPtr = LI->getOperand(0);
752 
753   // If the loaded operand is defined in the LoadBB, it can't be available.
754   // FIXME: Could do PHI translation, that would be fun :)
755   if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
756     if (PtrOp->getParent() == LoadBB)
757       return false;
758 
759   // Scan a few instructions up from the load, to see if it is obviously live at
760   // the entry to its block.
761   BasicBlock::iterator BBIt = LI;
762 
763   if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB,
764                                                      BBIt, 6)) {
765     // If the value if the load is locally available within the block, just use
766     // it.  This frequently occurs for reg2mem'd allocas.
767     //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
768 
769     // If the returned value is the load itself, replace with an undef. This can
770     // only happen in dead loops.
771     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
772     LI->replaceAllUsesWith(AvailableVal);
773     LI->eraseFromParent();
774     return true;
775   }
776 
777   // Otherwise, if we scanned the whole block and got to the top of the block,
778   // we know the block is locally transparent to the load.  If not, something
779   // might clobber its value.
780   if (BBIt != LoadBB->begin())
781     return false;
782 
783 
784   SmallPtrSet<BasicBlock*, 8> PredsScanned;
785   typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
786   AvailablePredsTy AvailablePreds;
787   BasicBlock *OneUnavailablePred = 0;
788 
789   // If we got here, the loaded value is transparent through to the start of the
790   // block.  Check to see if it is available in any of the predecessor blocks.
791   for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
792        PI != PE; ++PI) {
793     BasicBlock *PredBB = *PI;
794 
795     // If we already scanned this predecessor, skip it.
796     if (!PredsScanned.insert(PredBB))
797       continue;
798 
799     // Scan the predecessor to see if the value is available in the pred.
800     BBIt = PredBB->end();
801     Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
802     if (!PredAvailable) {
803       OneUnavailablePred = PredBB;
804       continue;
805     }
806 
807     // If so, this load is partially redundant.  Remember this info so that we
808     // can create a PHI node.
809     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
810   }
811 
812   // If the loaded value isn't available in any predecessor, it isn't partially
813   // redundant.
814   if (AvailablePreds.empty()) return false;
815 
816   // Okay, the loaded value is available in at least one (and maybe all!)
817   // predecessors.  If the value is unavailable in more than one unique
818   // predecessor, we want to insert a merge block for those common predecessors.
819   // This ensures that we only have to insert one reload, thus not increasing
820   // code size.
821   BasicBlock *UnavailablePred = 0;
822 
823   // If there is exactly one predecessor where the value is unavailable, the
824   // already computed 'OneUnavailablePred' block is it.  If it ends in an
825   // unconditional branch, we know that it isn't a critical edge.
826   if (PredsScanned.size() == AvailablePreds.size()+1 &&
827       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
828     UnavailablePred = OneUnavailablePred;
829   } else if (PredsScanned.size() != AvailablePreds.size()) {
830     // Otherwise, we had multiple unavailable predecessors or we had a critical
831     // edge from the one.
832     SmallVector<BasicBlock*, 8> PredsToSplit;
833     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
834 
835     for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
836       AvailablePredSet.insert(AvailablePreds[i].first);
837 
838     // Add all the unavailable predecessors to the PredsToSplit list.
839     for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
840          PI != PE; ++PI)
841       if (!AvailablePredSet.count(*PI))
842         PredsToSplit.push_back(*PI);
843 
844     // Split them out to their own block.
845     UnavailablePred =
846       SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
847                              "thread-split", this);
848   }
849 
850   // If the value isn't available in all predecessors, then there will be
851   // exactly one where it isn't available.  Insert a load on that edge and add
852   // it to the AvailablePreds list.
853   if (UnavailablePred) {
854     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
855            "Can't handle critical edge here!");
856     Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr",
857                                  UnavailablePred->getTerminator());
858     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
859   }
860 
861   // Now we know that each predecessor of this block has a value in
862   // AvailablePreds, sort them for efficient access as we're walking the preds.
863   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
864 
865   // Create a PHI node at the start of the block for the PRE'd load value.
866   PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
867   PN->takeName(LI);
868 
869   // Insert new entries into the PHI for each predecessor.  A single block may
870   // have multiple entries here.
871   for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
872        ++PI) {
873     AvailablePredsTy::iterator I =
874       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
875                        std::make_pair(*PI, (Value*)0));
876 
877     assert(I != AvailablePreds.end() && I->first == *PI &&
878            "Didn't find entry for predecessor!");
879 
880     PN->addIncoming(I->second, I->first);
881   }
882 
883   //cerr << "PRE: " << *LI << *PN << "\n";
884 
885   LI->replaceAllUsesWith(PN);
886   LI->eraseFromParent();
887 
888   return true;
889 }
890 
891 /// FindMostPopularDest - The specified list contains multiple possible
892 /// threadable destinations.  Pick the one that occurs the most frequently in
893 /// the list.
894 static BasicBlock *
895 FindMostPopularDest(BasicBlock *BB,
896                     const SmallVectorImpl<std::pair<BasicBlock*,
897                                   BasicBlock*> > &PredToDestList) {
898   assert(!PredToDestList.empty());
899 
900   // Determine popularity.  If there are multiple possible destinations, we
901   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
902   // blocks with known and real destinations to threading undef.  We'll handle
903   // them later if interesting.
904   DenseMap<BasicBlock*, unsigned> DestPopularity;
905   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
906     if (PredToDestList[i].second)
907       DestPopularity[PredToDestList[i].second]++;
908 
909   // Find the most popular dest.
910   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
911   BasicBlock *MostPopularDest = DPI->first;
912   unsigned Popularity = DPI->second;
913   SmallVector<BasicBlock*, 4> SamePopularity;
914 
915   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
916     // If the popularity of this entry isn't higher than the popularity we've
917     // seen so far, ignore it.
918     if (DPI->second < Popularity)
919       ; // ignore.
920     else if (DPI->second == Popularity) {
921       // If it is the same as what we've seen so far, keep track of it.
922       SamePopularity.push_back(DPI->first);
923     } else {
924       // If it is more popular, remember it.
925       SamePopularity.clear();
926       MostPopularDest = DPI->first;
927       Popularity = DPI->second;
928     }
929   }
930 
931   // Okay, now we know the most popular destination.  If there is more than
932   // destination, we need to determine one.  This is arbitrary, but we need
933   // to make a deterministic decision.  Pick the first one that appears in the
934   // successor list.
935   if (!SamePopularity.empty()) {
936     SamePopularity.push_back(MostPopularDest);
937     TerminatorInst *TI = BB->getTerminator();
938     for (unsigned i = 0; ; ++i) {
939       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
940 
941       if (std::find(SamePopularity.begin(), SamePopularity.end(),
942                     TI->getSuccessor(i)) == SamePopularity.end())
943         continue;
944 
945       MostPopularDest = TI->getSuccessor(i);
946       break;
947     }
948   }
949 
950   // Okay, we have finally picked the most popular destination.
951   return MostPopularDest;
952 }
953 
954 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) {
955   // If threading this would thread across a loop header, don't even try to
956   // thread the edge.
957   if (LoopHeaders.count(BB))
958     return false;
959 
960   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
961   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues))
962     return false;
963   assert(!PredValues.empty() &&
964          "ComputeValueKnownInPredecessors returned true with no values");
965 
966   DEBUG(errs() << "IN BB: " << *BB;
967         for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
968           errs() << "  BB '" << BB->getName() << "': FOUND condition = ";
969           if (PredValues[i].first)
970             errs() << *PredValues[i].first;
971           else
972             errs() << "UNDEF";
973           errs() << " for pred '" << PredValues[i].second->getName()
974           << "'.\n";
975         });
976 
977   // Decide what we want to thread through.  Convert our list of known values to
978   // a list of known destinations for each pred.  This also discards duplicate
979   // predecessors and keeps track of the undefined inputs (which are represented
980   // as a null dest in the PredToDestList).
981   SmallPtrSet<BasicBlock*, 16> SeenPreds;
982   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
983 
984   BasicBlock *OnlyDest = 0;
985   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
986 
987   for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
988     BasicBlock *Pred = PredValues[i].second;
989     if (!SeenPreds.insert(Pred))
990       continue;  // Duplicate predecessor entry.
991 
992     // If the predecessor ends with an indirect goto, we can't change its
993     // destination.
994     if (isa<IndirectBrInst>(Pred->getTerminator()))
995       continue;
996 
997     ConstantInt *Val = PredValues[i].first;
998 
999     BasicBlock *DestBB;
1000     if (Val == 0)      // Undef.
1001       DestBB = 0;
1002     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1003       DestBB = BI->getSuccessor(Val->isZero());
1004     else {
1005       SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
1006       DestBB = SI->getSuccessor(SI->findCaseValue(Val));
1007     }
1008 
1009     // If we have exactly one destination, remember it for efficiency below.
1010     if (i == 0)
1011       OnlyDest = DestBB;
1012     else if (OnlyDest != DestBB)
1013       OnlyDest = MultipleDestSentinel;
1014 
1015     PredToDestList.push_back(std::make_pair(Pred, DestBB));
1016   }
1017 
1018   // If all edges were unthreadable, we fail.
1019   if (PredToDestList.empty())
1020     return false;
1021 
1022   // Determine which is the most common successor.  If we have many inputs and
1023   // this block is a switch, we want to start by threading the batch that goes
1024   // to the most popular destination first.  If we only know about one
1025   // threadable destination (the common case) we can avoid this.
1026   BasicBlock *MostPopularDest = OnlyDest;
1027 
1028   if (MostPopularDest == MultipleDestSentinel)
1029     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1030 
1031   // Now that we know what the most popular destination is, factor all
1032   // predecessors that will jump to it into a single predecessor.
1033   SmallVector<BasicBlock*, 16> PredsToFactor;
1034   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1035     if (PredToDestList[i].second == MostPopularDest) {
1036       BasicBlock *Pred = PredToDestList[i].first;
1037 
1038       // This predecessor may be a switch or something else that has multiple
1039       // edges to the block.  Factor each of these edges by listing them
1040       // according to # occurrences in PredsToFactor.
1041       TerminatorInst *PredTI = Pred->getTerminator();
1042       for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1043         if (PredTI->getSuccessor(i) == BB)
1044           PredsToFactor.push_back(Pred);
1045     }
1046 
1047   // If the threadable edges are branching on an undefined value, we get to pick
1048   // the destination that these predecessors should get to.
1049   if (MostPopularDest == 0)
1050     MostPopularDest = BB->getTerminator()->
1051                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1052 
1053   // Ok, try to thread it!
1054   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1055 }
1056 
1057 /// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
1058 /// the current block.  See if there are any simplifications we can do based on
1059 /// inputs to the phi node.
1060 ///
1061 bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
1062   BasicBlock *BB = PN->getParent();
1063 
1064   // If any of the predecessor blocks end in an unconditional branch, we can
1065   // *duplicate* the jump into that block in order to further encourage jump
1066   // threading and to eliminate cases where we have branch on a phi of an icmp
1067   // (branch on icmp is much better).
1068 
1069   // We don't want to do this tranformation for switches, because we don't
1070   // really want to duplicate a switch.
1071   if (isa<SwitchInst>(BB->getTerminator()))
1072     return false;
1073 
1074   // Look for unconditional branch predecessors.
1075   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1076     BasicBlock *PredBB = PN->getIncomingBlock(i);
1077     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1078       if (PredBr->isUnconditional() &&
1079           // Try to duplicate BB into PredBB.
1080           DuplicateCondBranchOnPHIIntoPred(BB, PredBB))
1081         return true;
1082   }
1083 
1084   return false;
1085 }
1086 
1087 
1088 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1089 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1090 /// NewPred using the entries from OldPred (suitably mapped).
1091 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1092                                             BasicBlock *OldPred,
1093                                             BasicBlock *NewPred,
1094                                      DenseMap<Instruction*, Value*> &ValueMap) {
1095   for (BasicBlock::iterator PNI = PHIBB->begin();
1096        PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1097     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1098     // DestBlock.
1099     Value *IV = PN->getIncomingValueForBlock(OldPred);
1100 
1101     // Remap the value if necessary.
1102     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1103       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1104       if (I != ValueMap.end())
1105         IV = I->second;
1106     }
1107 
1108     PN->addIncoming(IV, NewPred);
1109   }
1110 }
1111 
1112 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1113 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1114 /// across BB.  Transform the IR to reflect this change.
1115 bool JumpThreading::ThreadEdge(BasicBlock *BB,
1116                                const SmallVectorImpl<BasicBlock*> &PredBBs,
1117                                BasicBlock *SuccBB) {
1118   // If threading to the same block as we come from, we would infinite loop.
1119   if (SuccBB == BB) {
1120     DEBUG(errs() << "  Not threading across BB '" << BB->getName()
1121           << "' - would thread to self!\n");
1122     return false;
1123   }
1124 
1125   // If threading this would thread across a loop header, don't thread the edge.
1126   // See the comments above FindLoopHeaders for justifications and caveats.
1127   if (LoopHeaders.count(BB)) {
1128     DEBUG(errs() << "  Not threading across loop header BB '" << BB->getName()
1129           << "' to dest BB '" << SuccBB->getName()
1130           << "' - it might create an irreducible loop!\n");
1131     return false;
1132   }
1133 
1134   unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1135   if (JumpThreadCost > Threshold) {
1136     DEBUG(errs() << "  Not threading BB '" << BB->getName()
1137           << "' - Cost is too high: " << JumpThreadCost << "\n");
1138     return false;
1139   }
1140 
1141   // And finally, do it!  Start by factoring the predecessors is needed.
1142   BasicBlock *PredBB;
1143   if (PredBBs.size() == 1)
1144     PredBB = PredBBs[0];
1145   else {
1146     DEBUG(errs() << "  Factoring out " << PredBBs.size()
1147           << " common predecessors.\n");
1148     PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1149                                     ".thr_comm", this);
1150   }
1151 
1152   // And finally, do it!
1153   DEBUG(errs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1154         << SuccBB->getName() << "' with cost: " << JumpThreadCost
1155         << ", across block:\n    "
1156         << *BB << "\n");
1157 
1158   // We are going to have to map operands from the original BB block to the new
1159   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1160   // account for entry from PredBB.
1161   DenseMap<Instruction*, Value*> ValueMapping;
1162 
1163   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1164                                          BB->getName()+".thread",
1165                                          BB->getParent(), BB);
1166   NewBB->moveAfter(PredBB);
1167 
1168   BasicBlock::iterator BI = BB->begin();
1169   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1170     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1171 
1172   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1173   // mapping and using it to remap operands in the cloned instructions.
1174   for (; !isa<TerminatorInst>(BI); ++BI) {
1175     Instruction *New = BI->clone();
1176     New->setName(BI->getName());
1177     NewBB->getInstList().push_back(New);
1178     ValueMapping[BI] = New;
1179 
1180     // Remap operands to patch up intra-block references.
1181     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1182       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1183         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1184         if (I != ValueMapping.end())
1185           New->setOperand(i, I->second);
1186       }
1187   }
1188 
1189   // We didn't copy the terminator from BB over to NewBB, because there is now
1190   // an unconditional jump to SuccBB.  Insert the unconditional jump.
1191   BranchInst::Create(SuccBB, NewBB);
1192 
1193   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1194   // PHI nodes for NewBB now.
1195   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1196 
1197   // If there were values defined in BB that are used outside the block, then we
1198   // now have to update all uses of the value to use either the original value,
1199   // the cloned value, or some PHI derived value.  This can require arbitrary
1200   // PHI insertion, of which we are prepared to do, clean these up now.
1201   SSAUpdater SSAUpdate;
1202   SmallVector<Use*, 16> UsesToRename;
1203   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1204     // Scan all uses of this instruction to see if it is used outside of its
1205     // block, and if so, record them in UsesToRename.
1206     for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1207          ++UI) {
1208       Instruction *User = cast<Instruction>(*UI);
1209       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1210         if (UserPN->getIncomingBlock(UI) == BB)
1211           continue;
1212       } else if (User->getParent() == BB)
1213         continue;
1214 
1215       UsesToRename.push_back(&UI.getUse());
1216     }
1217 
1218     // If there are no uses outside the block, we're done with this instruction.
1219     if (UsesToRename.empty())
1220       continue;
1221 
1222     DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1223 
1224     // We found a use of I outside of BB.  Rename all uses of I that are outside
1225     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1226     // with the two values we know.
1227     SSAUpdate.Initialize(I);
1228     SSAUpdate.AddAvailableValue(BB, I);
1229     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1230 
1231     while (!UsesToRename.empty())
1232       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1233     DEBUG(errs() << "\n");
1234   }
1235 
1236 
1237   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1238   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1239   // us to simplify any PHI nodes in BB.
1240   TerminatorInst *PredTerm = PredBB->getTerminator();
1241   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1242     if (PredTerm->getSuccessor(i) == BB) {
1243       RemovePredecessorAndSimplify(BB, PredBB, TD);
1244       PredTerm->setSuccessor(i, NewBB);
1245     }
1246 
1247   // At this point, the IR is fully up to date and consistent.  Do a quick scan
1248   // over the new instructions and zap any that are constants or dead.  This
1249   // frequently happens because of phi translation.
1250   BI = NewBB->begin();
1251   for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
1252     Instruction *Inst = BI++;
1253 
1254     if (Value *V = SimplifyInstruction(Inst, TD)) {
1255       WeakVH BIHandle(BI);
1256       ReplaceAndSimplifyAllUses(Inst, V, TD);
1257       if (BIHandle == 0)
1258         BI = NewBB->begin();
1259       continue;
1260     }
1261 
1262     RecursivelyDeleteTriviallyDeadInstructions(Inst);
1263   }
1264 
1265   // Threaded an edge!
1266   ++NumThreads;
1267   return true;
1268 }
1269 
1270 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1271 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1272 /// If we can duplicate the contents of BB up into PredBB do so now, this
1273 /// improves the odds that the branch will be on an analyzable instruction like
1274 /// a compare.
1275 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1276                                                      BasicBlock *PredBB) {
1277   // If BB is a loop header, then duplicating this block outside the loop would
1278   // cause us to transform this into an irreducible loop, don't do this.
1279   // See the comments above FindLoopHeaders for justifications and caveats.
1280   if (LoopHeaders.count(BB)) {
1281     DEBUG(errs() << "  Not duplicating loop header '" << BB->getName()
1282           << "' into predecessor block '" << PredBB->getName()
1283           << "' - it might create an irreducible loop!\n");
1284     return false;
1285   }
1286 
1287   unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1288   if (DuplicationCost > Threshold) {
1289     DEBUG(errs() << "  Not duplicating BB '" << BB->getName()
1290           << "' - Cost is too high: " << DuplicationCost << "\n");
1291     return false;
1292   }
1293 
1294   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1295   // of PredBB.
1296   DEBUG(errs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1297         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1298         << DuplicationCost << " block is:" << *BB << "\n");
1299 
1300   // We are going to have to map operands from the original BB block into the
1301   // PredBB block.  Evaluate PHI nodes in BB.
1302   DenseMap<Instruction*, Value*> ValueMapping;
1303 
1304   BasicBlock::iterator BI = BB->begin();
1305   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1306     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1307 
1308   BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1309 
1310   // Clone the non-phi instructions of BB into PredBB, keeping track of the
1311   // mapping and using it to remap operands in the cloned instructions.
1312   for (; BI != BB->end(); ++BI) {
1313     Instruction *New = BI->clone();
1314     New->setName(BI->getName());
1315     PredBB->getInstList().insert(OldPredBranch, New);
1316     ValueMapping[BI] = New;
1317 
1318     // Remap operands to patch up intra-block references.
1319     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1320       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1321         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1322         if (I != ValueMapping.end())
1323           New->setOperand(i, I->second);
1324       }
1325   }
1326 
1327   // Check to see if the targets of the branch had PHI nodes. If so, we need to
1328   // add entries to the PHI nodes for branch from PredBB now.
1329   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1330   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1331                                   ValueMapping);
1332   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1333                                   ValueMapping);
1334 
1335   // If there were values defined in BB that are used outside the block, then we
1336   // now have to update all uses of the value to use either the original value,
1337   // the cloned value, or some PHI derived value.  This can require arbitrary
1338   // PHI insertion, of which we are prepared to do, clean these up now.
1339   SSAUpdater SSAUpdate;
1340   SmallVector<Use*, 16> UsesToRename;
1341   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1342     // Scan all uses of this instruction to see if it is used outside of its
1343     // block, and if so, record them in UsesToRename.
1344     for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1345          ++UI) {
1346       Instruction *User = cast<Instruction>(*UI);
1347       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1348         if (UserPN->getIncomingBlock(UI) == BB)
1349           continue;
1350       } else if (User->getParent() == BB)
1351         continue;
1352 
1353       UsesToRename.push_back(&UI.getUse());
1354     }
1355 
1356     // If there are no uses outside the block, we're done with this instruction.
1357     if (UsesToRename.empty())
1358       continue;
1359 
1360     DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1361 
1362     // We found a use of I outside of BB.  Rename all uses of I that are outside
1363     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1364     // with the two values we know.
1365     SSAUpdate.Initialize(I);
1366     SSAUpdate.AddAvailableValue(BB, I);
1367     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1368 
1369     while (!UsesToRename.empty())
1370       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1371     DEBUG(errs() << "\n");
1372   }
1373 
1374   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1375   // that we nuked.
1376   RemovePredecessorAndSimplify(BB, PredBB, TD);
1377 
1378   // Remove the unconditional branch at the end of the PredBB block.
1379   OldPredBranch->eraseFromParent();
1380 
1381   ++NumDupes;
1382   return true;
1383 }
1384 
1385 
1386