1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "jump-threading" 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/IntrinsicInst.h" 17 #include "llvm/LLVMContext.h" 18 #include "llvm/Pass.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LazyValueInfo.h" 21 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 22 #include "llvm/Transforms/Utils/Local.h" 23 #include "llvm/Transforms/Utils/SSAUpdater.h" 24 #include "llvm/Target/TargetData.h" 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 using namespace llvm; 34 35 STATISTIC(NumThreads, "Number of jumps threaded"); 36 STATISTIC(NumFolds, "Number of terminators folded"); 37 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 38 39 static cl::opt<unsigned> 40 Threshold("jump-threading-threshold", 41 cl::desc("Max block size to duplicate for jump threading"), 42 cl::init(6), cl::Hidden); 43 44 // Turn on use of LazyValueInfo. 45 static cl::opt<bool> 46 EnableLVI("enable-jump-threading-lvi", cl::ReallyHidden); 47 48 49 50 namespace { 51 /// This pass performs 'jump threading', which looks at blocks that have 52 /// multiple predecessors and multiple successors. If one or more of the 53 /// predecessors of the block can be proven to always jump to one of the 54 /// successors, we forward the edge from the predecessor to the successor by 55 /// duplicating the contents of this block. 56 /// 57 /// An example of when this can occur is code like this: 58 /// 59 /// if () { ... 60 /// X = 4; 61 /// } 62 /// if (X < 3) { 63 /// 64 /// In this case, the unconditional branch at the end of the first if can be 65 /// revectored to the false side of the second if. 66 /// 67 class JumpThreading : public FunctionPass { 68 TargetData *TD; 69 LazyValueInfo *LVI; 70 #ifdef NDEBUG 71 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 72 #else 73 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 74 #endif 75 public: 76 static char ID; // Pass identification 77 JumpThreading() : FunctionPass(&ID) {} 78 79 bool runOnFunction(Function &F); 80 81 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 82 if (EnableLVI) 83 AU.addRequired<LazyValueInfo>(); 84 } 85 86 void FindLoopHeaders(Function &F); 87 bool ProcessBlock(BasicBlock *BB); 88 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 89 BasicBlock *SuccBB); 90 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 91 BasicBlock *PredBB); 92 93 typedef SmallVectorImpl<std::pair<ConstantInt*, 94 BasicBlock*> > PredValueInfo; 95 96 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 97 PredValueInfo &Result); 98 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB); 99 100 101 bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 102 bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 103 104 bool ProcessJumpOnPHI(PHINode *PN); 105 106 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 107 }; 108 } 109 110 char JumpThreading::ID = 0; 111 static RegisterPass<JumpThreading> 112 X("jump-threading", "Jump Threading"); 113 114 // Public interface to the Jump Threading pass 115 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); } 116 117 /// runOnFunction - Top level algorithm. 118 /// 119 bool JumpThreading::runOnFunction(Function &F) { 120 DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n"); 121 TD = getAnalysisIfAvailable<TargetData>(); 122 LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0; 123 124 FindLoopHeaders(F); 125 126 bool AnotherIteration = true, EverChanged = false; 127 while (AnotherIteration) { 128 AnotherIteration = false; 129 bool Changed = false; 130 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 131 BasicBlock *BB = I; 132 // Thread all of the branches we can over this block. 133 while (ProcessBlock(BB)) 134 Changed = true; 135 136 ++I; 137 138 // If the block is trivially dead, zap it. This eliminates the successor 139 // edges which simplifies the CFG. 140 if (pred_begin(BB) == pred_end(BB) && 141 BB != &BB->getParent()->getEntryBlock()) { 142 DEBUG(errs() << " JT: Deleting dead block '" << BB->getName() 143 << "' with terminator: " << *BB->getTerminator() << '\n'); 144 LoopHeaders.erase(BB); 145 DeleteDeadBlock(BB); 146 Changed = true; 147 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 148 // Can't thread an unconditional jump, but if the block is "almost 149 // empty", we can replace uses of it with uses of the successor and make 150 // this dead. 151 if (BI->isUnconditional() && 152 BB != &BB->getParent()->getEntryBlock()) { 153 BasicBlock::iterator BBI = BB->getFirstNonPHI(); 154 // Ignore dbg intrinsics. 155 while (isa<DbgInfoIntrinsic>(BBI)) 156 ++BBI; 157 // If the terminator is the only non-phi instruction, try to nuke it. 158 if (BBI->isTerminator()) { 159 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 160 // block, we have to make sure it isn't in the LoopHeaders set. We 161 // reinsert afterward in the rare case when the block isn't deleted. 162 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 163 164 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) 165 Changed = true; 166 else if (ErasedFromLoopHeaders) 167 LoopHeaders.insert(BB); 168 } 169 } 170 } 171 } 172 AnotherIteration = Changed; 173 EverChanged |= Changed; 174 } 175 176 LoopHeaders.clear(); 177 return EverChanged; 178 } 179 180 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 181 /// thread across it. 182 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) { 183 /// Ignore PHI nodes, these will be flattened when duplication happens. 184 BasicBlock::const_iterator I = BB->getFirstNonPHI(); 185 186 // FIXME: THREADING will delete values that are just used to compute the 187 // branch, so they shouldn't count against the duplication cost. 188 189 190 // Sum up the cost of each instruction until we get to the terminator. Don't 191 // include the terminator because the copy won't include it. 192 unsigned Size = 0; 193 for (; !isa<TerminatorInst>(I); ++I) { 194 // Debugger intrinsics don't incur code size. 195 if (isa<DbgInfoIntrinsic>(I)) continue; 196 197 // If this is a pointer->pointer bitcast, it is free. 198 if (isa<BitCastInst>(I) && isa<PointerType>(I->getType())) 199 continue; 200 201 // All other instructions count for at least one unit. 202 ++Size; 203 204 // Calls are more expensive. If they are non-intrinsic calls, we model them 205 // as having cost of 4. If they are a non-vector intrinsic, we model them 206 // as having cost of 2 total, and if they are a vector intrinsic, we model 207 // them as having cost 1. 208 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 209 if (!isa<IntrinsicInst>(CI)) 210 Size += 3; 211 else if (!isa<VectorType>(CI->getType())) 212 Size += 1; 213 } 214 } 215 216 // Threading through a switch statement is particularly profitable. If this 217 // block ends in a switch, decrease its cost to make it more likely to happen. 218 if (isa<SwitchInst>(I)) 219 Size = Size > 6 ? Size-6 : 0; 220 221 return Size; 222 } 223 224 /// FindLoopHeaders - We do not want jump threading to turn proper loop 225 /// structures into irreducible loops. Doing this breaks up the loop nesting 226 /// hierarchy and pessimizes later transformations. To prevent this from 227 /// happening, we first have to find the loop headers. Here we approximate this 228 /// by finding targets of backedges in the CFG. 229 /// 230 /// Note that there definitely are cases when we want to allow threading of 231 /// edges across a loop header. For example, threading a jump from outside the 232 /// loop (the preheader) to an exit block of the loop is definitely profitable. 233 /// It is also almost always profitable to thread backedges from within the loop 234 /// to exit blocks, and is often profitable to thread backedges to other blocks 235 /// within the loop (forming a nested loop). This simple analysis is not rich 236 /// enough to track all of these properties and keep it up-to-date as the CFG 237 /// mutates, so we don't allow any of these transformations. 238 /// 239 void JumpThreading::FindLoopHeaders(Function &F) { 240 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 241 FindFunctionBackedges(F, Edges); 242 243 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 244 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 245 } 246 247 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 248 /// if we can infer that the value is a known ConstantInt in any of our 249 /// predecessors. If so, return the known list of value and pred BB in the 250 /// result vector. If a value is known to be undef, it is returned as null. 251 /// 252 /// This returns true if there were any known values. 253 /// 254 bool JumpThreading:: 255 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){ 256 // If V is a constantint, then it is known in all predecessors. 257 if (isa<ConstantInt>(V) || isa<UndefValue>(V)) { 258 ConstantInt *CI = dyn_cast<ConstantInt>(V); 259 260 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 261 Result.push_back(std::make_pair(CI, *PI)); 262 return true; 263 } 264 265 // If V is a non-instruction value, or an instruction in a different block, 266 // then it can't be derived from a PHI. 267 Instruction *I = dyn_cast<Instruction>(V); 268 if (I == 0 || I->getParent() != BB) { 269 270 // Okay, if this is a live-in value, see if it has a known value at the end 271 // of any of our predecessors. 272 // 273 // FIXME: This should be an edge property, not a block end property. 274 /// TODO: Per PR2563, we could infer value range information about a 275 /// predecessor based on its terminator. 276 // 277 if (LVI) { 278 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 279 // "I" is a non-local compare-with-a-constant instruction. This would be 280 // able to handle value inequalities better, for example if the compare is 281 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 282 // Perhaps getConstantOnEdge should be smart enough to do this? 283 284 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 285 // If the value is known by LazyValueInfo to be a constant in a 286 // predecessor, use that information to try to thread this block. 287 Constant *PredCst = LVI->getConstantOnEdge(V, *PI, BB); 288 if (PredCst == 0 || 289 (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst))) 290 continue; 291 292 Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), *PI)); 293 } 294 295 return !Result.empty(); 296 } 297 298 return false; 299 } 300 301 /// If I is a PHI node, then we know the incoming values for any constants. 302 if (PHINode *PN = dyn_cast<PHINode>(I)) { 303 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 304 Value *InVal = PN->getIncomingValue(i); 305 if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) { 306 ConstantInt *CI = dyn_cast<ConstantInt>(InVal); 307 Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i))); 308 } 309 } 310 return !Result.empty(); 311 } 312 313 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals; 314 315 // Handle some boolean conditions. 316 if (I->getType()->getPrimitiveSizeInBits() == 1) { 317 // X | true -> true 318 // X & false -> false 319 if (I->getOpcode() == Instruction::Or || 320 I->getOpcode() == Instruction::And) { 321 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals); 322 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals); 323 324 if (LHSVals.empty() && RHSVals.empty()) 325 return false; 326 327 ConstantInt *InterestingVal; 328 if (I->getOpcode() == Instruction::Or) 329 InterestingVal = ConstantInt::getTrue(I->getContext()); 330 else 331 InterestingVal = ConstantInt::getFalse(I->getContext()); 332 333 // Scan for the sentinel. 334 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 335 if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) 336 Result.push_back(LHSVals[i]); 337 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 338 if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) 339 Result.push_back(RHSVals[i]); 340 return !Result.empty(); 341 } 342 343 // Handle the NOT form of XOR. 344 if (I->getOpcode() == Instruction::Xor && 345 isa<ConstantInt>(I->getOperand(1)) && 346 cast<ConstantInt>(I->getOperand(1))->isOne()) { 347 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result); 348 if (Result.empty()) 349 return false; 350 351 // Invert the known values. 352 for (unsigned i = 0, e = Result.size(); i != e; ++i) 353 if (Result[i].first) 354 Result[i].first = 355 cast<ConstantInt>(ConstantExpr::getNot(Result[i].first)); 356 return true; 357 } 358 } 359 360 // Handle compare with phi operand, where the PHI is defined in this block. 361 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 362 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 363 if (PN && PN->getParent() == BB) { 364 // We can do this simplification if any comparisons fold to true or false. 365 // See if any do. 366 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 367 BasicBlock *PredBB = PN->getIncomingBlock(i); 368 Value *LHS = PN->getIncomingValue(i); 369 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 370 371 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD); 372 if (Res == 0) { 373 if (!LVI || !isa<Constant>(RHS)) 374 continue; 375 376 LazyValueInfo::Tristate 377 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 378 cast<Constant>(RHS), PredBB, BB); 379 if (ResT == LazyValueInfo::Unknown) 380 continue; 381 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 382 } 383 384 if (isa<UndefValue>(Res)) 385 Result.push_back(std::make_pair((ConstantInt*)0, PredBB)); 386 else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res)) 387 Result.push_back(std::make_pair(CI, PredBB)); 388 } 389 390 return !Result.empty(); 391 } 392 393 394 // If comparing a live-in value against a constant, see if we know the 395 // live-in value on any predecessors. 396 if (LVI && isa<Constant>(Cmp->getOperand(1)) && 397 Cmp->getType()->isInteger() && // Not vector compare. 398 (!isa<Instruction>(Cmp->getOperand(0)) || 399 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB)) { 400 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 401 402 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 403 // If the value is known by LazyValueInfo to be a constant in a 404 // predecessor, use that information to try to thread this block. 405 LazyValueInfo::Tristate 406 Res = LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 407 RHSCst, *PI, BB); 408 if (Res == LazyValueInfo::Unknown) 409 continue; 410 411 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 412 Result.push_back(std::make_pair(cast<ConstantInt>(ResC), *PI)); 413 } 414 415 return !Result.empty(); 416 } 417 } 418 return false; 419 } 420 421 422 423 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 424 /// in an undefined jump, decide which block is best to revector to. 425 /// 426 /// Since we can pick an arbitrary destination, we pick the successor with the 427 /// fewest predecessors. This should reduce the in-degree of the others. 428 /// 429 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 430 TerminatorInst *BBTerm = BB->getTerminator(); 431 unsigned MinSucc = 0; 432 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 433 // Compute the successor with the minimum number of predecessors. 434 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 435 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 436 TestBB = BBTerm->getSuccessor(i); 437 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 438 if (NumPreds < MinNumPreds) 439 MinSucc = i; 440 } 441 442 return MinSucc; 443 } 444 445 /// ProcessBlock - If there are any predecessors whose control can be threaded 446 /// through to a successor, transform them now. 447 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 448 // If this block has a single predecessor, and if that pred has a single 449 // successor, merge the blocks. This encourages recursive jump threading 450 // because now the condition in this block can be threaded through 451 // predecessors of our predecessor block. 452 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 453 if (SinglePred->getTerminator()->getNumSuccessors() == 1 && 454 SinglePred != BB) { 455 // If SinglePred was a loop header, BB becomes one. 456 if (LoopHeaders.erase(SinglePred)) 457 LoopHeaders.insert(BB); 458 459 // Remember if SinglePred was the entry block of the function. If so, we 460 // will need to move BB back to the entry position. 461 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 462 MergeBasicBlockIntoOnlyPred(BB); 463 464 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 465 BB->moveBefore(&BB->getParent()->getEntryBlock()); 466 return true; 467 } 468 } 469 470 // Look to see if the terminator is a branch of switch, if not we can't thread 471 // it. 472 Value *Condition; 473 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 474 // Can't thread an unconditional jump. 475 if (BI->isUnconditional()) return false; 476 Condition = BI->getCondition(); 477 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 478 Condition = SI->getCondition(); 479 else 480 return false; // Must be an invoke. 481 482 // If the terminator of this block is branching on a constant, simplify the 483 // terminator to an unconditional branch. This can occur due to threading in 484 // other blocks. 485 if (isa<ConstantInt>(Condition)) { 486 DEBUG(errs() << " In block '" << BB->getName() 487 << "' folding terminator: " << *BB->getTerminator() << '\n'); 488 ++NumFolds; 489 ConstantFoldTerminator(BB); 490 return true; 491 } 492 493 // If the terminator is branching on an undef, we can pick any of the 494 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 495 if (isa<UndefValue>(Condition)) { 496 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 497 498 // Fold the branch/switch. 499 TerminatorInst *BBTerm = BB->getTerminator(); 500 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 501 if (i == BestSucc) continue; 502 RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD); 503 } 504 505 DEBUG(errs() << " In block '" << BB->getName() 506 << "' folding undef terminator: " << *BBTerm << '\n'); 507 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 508 BBTerm->eraseFromParent(); 509 return true; 510 } 511 512 Instruction *CondInst = dyn_cast<Instruction>(Condition); 513 514 // If the condition is an instruction defined in another block, see if a 515 // predecessor has the same condition: 516 // br COND, BBX, BBY 517 // BBX: 518 // br COND, BBZ, BBW 519 if (!LVI && 520 !Condition->hasOneUse() && // Multiple uses. 521 (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition. 522 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 523 if (isa<BranchInst>(BB->getTerminator())) { 524 for (; PI != E; ++PI) 525 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 526 if (PBI->isConditional() && PBI->getCondition() == Condition && 527 ProcessBranchOnDuplicateCond(*PI, BB)) 528 return true; 529 } else { 530 assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator"); 531 for (; PI != E; ++PI) 532 if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator())) 533 if (PSI->getCondition() == Condition && 534 ProcessSwitchOnDuplicateCond(*PI, BB)) 535 return true; 536 } 537 } 538 539 // All the rest of our checks depend on the condition being an instruction. 540 if (CondInst == 0) { 541 // FIXME: Unify this with code below. 542 if (LVI && ProcessThreadableEdges(Condition, BB)) 543 return true; 544 return false; 545 } 546 547 548 // See if this is a phi node in the current block. 549 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 550 if (PN->getParent() == BB) 551 return ProcessJumpOnPHI(PN); 552 553 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 554 if (!LVI && 555 (!isa<PHINode>(CondCmp->getOperand(0)) || 556 cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) { 557 // If we have a comparison, loop over the predecessors to see if there is 558 // a condition with a lexically identical value. 559 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 560 for (; PI != E; ++PI) 561 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 562 if (PBI->isConditional() && *PI != BB) { 563 if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) { 564 if (CI->getOperand(0) == CondCmp->getOperand(0) && 565 CI->getOperand(1) == CondCmp->getOperand(1) && 566 CI->getPredicate() == CondCmp->getPredicate()) { 567 // TODO: Could handle things like (x != 4) --> (x == 17) 568 if (ProcessBranchOnDuplicateCond(*PI, BB)) 569 return true; 570 } 571 } 572 } 573 } 574 } 575 576 // Check for some cases that are worth simplifying. Right now we want to look 577 // for loads that are used by a switch or by the condition for the branch. If 578 // we see one, check to see if it's partially redundant. If so, insert a PHI 579 // which can then be used to thread the values. 580 // 581 // This is particularly important because reg2mem inserts loads and stores all 582 // over the place, and this blocks jump threading if we don't zap them. 583 Value *SimplifyValue = CondInst; 584 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 585 if (isa<Constant>(CondCmp->getOperand(1))) 586 SimplifyValue = CondCmp->getOperand(0); 587 588 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 589 if (SimplifyPartiallyRedundantLoad(LI)) 590 return true; 591 592 593 // Handle a variety of cases where we are branching on something derived from 594 // a PHI node in the current block. If we can prove that any predecessors 595 // compute a predictable value based on a PHI node, thread those predecessors. 596 // 597 if (ProcessThreadableEdges(CondInst, BB)) 598 return true; 599 600 601 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 602 // "(X == 4)" thread through this block. 603 604 return false; 605 } 606 607 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that 608 /// block that jump on exactly the same condition. This means that we almost 609 /// always know the direction of the edge in the DESTBB: 610 /// PREDBB: 611 /// br COND, DESTBB, BBY 612 /// DESTBB: 613 /// br COND, BBZ, BBW 614 /// 615 /// If DESTBB has multiple predecessors, we can't just constant fold the branch 616 /// in DESTBB, we have to thread over it. 617 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB, 618 BasicBlock *BB) { 619 BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator()); 620 621 // If both successors of PredBB go to DESTBB, we don't know anything. We can 622 // fold the branch to an unconditional one, which allows other recursive 623 // simplifications. 624 bool BranchDir; 625 if (PredBI->getSuccessor(1) != BB) 626 BranchDir = true; 627 else if (PredBI->getSuccessor(0) != BB) 628 BranchDir = false; 629 else { 630 DEBUG(errs() << " In block '" << PredBB->getName() 631 << "' folding terminator: " << *PredBB->getTerminator() << '\n'); 632 ++NumFolds; 633 ConstantFoldTerminator(PredBB); 634 return true; 635 } 636 637 BranchInst *DestBI = cast<BranchInst>(BB->getTerminator()); 638 639 // If the dest block has one predecessor, just fix the branch condition to a 640 // constant and fold it. 641 if (BB->getSinglePredecessor()) { 642 DEBUG(errs() << " In block '" << BB->getName() 643 << "' folding condition to '" << BranchDir << "': " 644 << *BB->getTerminator() << '\n'); 645 ++NumFolds; 646 Value *OldCond = DestBI->getCondition(); 647 DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 648 BranchDir)); 649 ConstantFoldTerminator(BB); 650 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 651 return true; 652 } 653 654 655 // Next, figure out which successor we are threading to. 656 BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir); 657 658 SmallVector<BasicBlock*, 2> Preds; 659 Preds.push_back(PredBB); 660 661 // Ok, try to thread it! 662 return ThreadEdge(BB, Preds, SuccBB); 663 } 664 665 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that 666 /// block that switch on exactly the same condition. This means that we almost 667 /// always know the direction of the edge in the DESTBB: 668 /// PREDBB: 669 /// switch COND [... DESTBB, BBY ... ] 670 /// DESTBB: 671 /// switch COND [... BBZ, BBW ] 672 /// 673 /// Optimizing switches like this is very important, because simplifycfg builds 674 /// switches out of repeated 'if' conditions. 675 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, 676 BasicBlock *DestBB) { 677 // Can't thread edge to self. 678 if (PredBB == DestBB) 679 return false; 680 681 SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator()); 682 SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator()); 683 684 // There are a variety of optimizations that we can potentially do on these 685 // blocks: we order them from most to least preferable. 686 687 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB 688 // directly to their destination. This does not introduce *any* code size 689 // growth. Skip debug info first. 690 BasicBlock::iterator BBI = DestBB->begin(); 691 while (isa<DbgInfoIntrinsic>(BBI)) 692 BBI++; 693 694 // FIXME: Thread if it just contains a PHI. 695 if (isa<SwitchInst>(BBI)) { 696 bool MadeChange = false; 697 // Ignore the default edge for now. 698 for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) { 699 ConstantInt *DestVal = DestSI->getCaseValue(i); 700 BasicBlock *DestSucc = DestSI->getSuccessor(i); 701 702 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if 703 // PredSI has an explicit case for it. If so, forward. If it is covered 704 // by the default case, we can't update PredSI. 705 unsigned PredCase = PredSI->findCaseValue(DestVal); 706 if (PredCase == 0) continue; 707 708 // If PredSI doesn't go to DestBB on this value, then it won't reach the 709 // case on this condition. 710 if (PredSI->getSuccessor(PredCase) != DestBB && 711 DestSI->getSuccessor(i) != DestBB) 712 continue; 713 714 // Otherwise, we're safe to make the change. Make sure that the edge from 715 // DestSI to DestSucc is not critical and has no PHI nodes. 716 DEBUG(errs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI); 717 DEBUG(errs() << "THROUGH: " << *DestSI); 718 719 // If the destination has PHI nodes, just split the edge for updating 720 // simplicity. 721 if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){ 722 SplitCriticalEdge(DestSI, i, this); 723 DestSucc = DestSI->getSuccessor(i); 724 } 725 FoldSingleEntryPHINodes(DestSucc); 726 PredSI->setSuccessor(PredCase, DestSucc); 727 MadeChange = true; 728 } 729 730 if (MadeChange) 731 return true; 732 } 733 734 return false; 735 } 736 737 738 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 739 /// load instruction, eliminate it by replacing it with a PHI node. This is an 740 /// important optimization that encourages jump threading, and needs to be run 741 /// interlaced with other jump threading tasks. 742 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 743 // Don't hack volatile loads. 744 if (LI->isVolatile()) return false; 745 746 // If the load is defined in a block with exactly one predecessor, it can't be 747 // partially redundant. 748 BasicBlock *LoadBB = LI->getParent(); 749 if (LoadBB->getSinglePredecessor()) 750 return false; 751 752 Value *LoadedPtr = LI->getOperand(0); 753 754 // If the loaded operand is defined in the LoadBB, it can't be available. 755 // FIXME: Could do PHI translation, that would be fun :) 756 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 757 if (PtrOp->getParent() == LoadBB) 758 return false; 759 760 // Scan a few instructions up from the load, to see if it is obviously live at 761 // the entry to its block. 762 BasicBlock::iterator BBIt = LI; 763 764 if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB, 765 BBIt, 6)) { 766 // If the value if the load is locally available within the block, just use 767 // it. This frequently occurs for reg2mem'd allocas. 768 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 769 770 // If the returned value is the load itself, replace with an undef. This can 771 // only happen in dead loops. 772 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 773 LI->replaceAllUsesWith(AvailableVal); 774 LI->eraseFromParent(); 775 return true; 776 } 777 778 // Otherwise, if we scanned the whole block and got to the top of the block, 779 // we know the block is locally transparent to the load. If not, something 780 // might clobber its value. 781 if (BBIt != LoadBB->begin()) 782 return false; 783 784 785 SmallPtrSet<BasicBlock*, 8> PredsScanned; 786 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 787 AvailablePredsTy AvailablePreds; 788 BasicBlock *OneUnavailablePred = 0; 789 790 // If we got here, the loaded value is transparent through to the start of the 791 // block. Check to see if it is available in any of the predecessor blocks. 792 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 793 PI != PE; ++PI) { 794 BasicBlock *PredBB = *PI; 795 796 // If we already scanned this predecessor, skip it. 797 if (!PredsScanned.insert(PredBB)) 798 continue; 799 800 // Scan the predecessor to see if the value is available in the pred. 801 BBIt = PredBB->end(); 802 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6); 803 if (!PredAvailable) { 804 OneUnavailablePred = PredBB; 805 continue; 806 } 807 808 // If so, this load is partially redundant. Remember this info so that we 809 // can create a PHI node. 810 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 811 } 812 813 // If the loaded value isn't available in any predecessor, it isn't partially 814 // redundant. 815 if (AvailablePreds.empty()) return false; 816 817 // Okay, the loaded value is available in at least one (and maybe all!) 818 // predecessors. If the value is unavailable in more than one unique 819 // predecessor, we want to insert a merge block for those common predecessors. 820 // This ensures that we only have to insert one reload, thus not increasing 821 // code size. 822 BasicBlock *UnavailablePred = 0; 823 824 // If there is exactly one predecessor where the value is unavailable, the 825 // already computed 'OneUnavailablePred' block is it. If it ends in an 826 // unconditional branch, we know that it isn't a critical edge. 827 if (PredsScanned.size() == AvailablePreds.size()+1 && 828 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 829 UnavailablePred = OneUnavailablePred; 830 } else if (PredsScanned.size() != AvailablePreds.size()) { 831 // Otherwise, we had multiple unavailable predecessors or we had a critical 832 // edge from the one. 833 SmallVector<BasicBlock*, 8> PredsToSplit; 834 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 835 836 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 837 AvailablePredSet.insert(AvailablePreds[i].first); 838 839 // Add all the unavailable predecessors to the PredsToSplit list. 840 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 841 PI != PE; ++PI) 842 if (!AvailablePredSet.count(*PI)) 843 PredsToSplit.push_back(*PI); 844 845 // Split them out to their own block. 846 UnavailablePred = 847 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(), 848 "thread-split", this); 849 } 850 851 // If the value isn't available in all predecessors, then there will be 852 // exactly one where it isn't available. Insert a load on that edge and add 853 // it to the AvailablePreds list. 854 if (UnavailablePred) { 855 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 856 "Can't handle critical edge here!"); 857 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", 858 UnavailablePred->getTerminator()); 859 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 860 } 861 862 // Now we know that each predecessor of this block has a value in 863 // AvailablePreds, sort them for efficient access as we're walking the preds. 864 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 865 866 // Create a PHI node at the start of the block for the PRE'd load value. 867 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin()); 868 PN->takeName(LI); 869 870 // Insert new entries into the PHI for each predecessor. A single block may 871 // have multiple entries here. 872 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E; 873 ++PI) { 874 AvailablePredsTy::iterator I = 875 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 876 std::make_pair(*PI, (Value*)0)); 877 878 assert(I != AvailablePreds.end() && I->first == *PI && 879 "Didn't find entry for predecessor!"); 880 881 PN->addIncoming(I->second, I->first); 882 } 883 884 //cerr << "PRE: " << *LI << *PN << "\n"; 885 886 LI->replaceAllUsesWith(PN); 887 LI->eraseFromParent(); 888 889 return true; 890 } 891 892 /// FindMostPopularDest - The specified list contains multiple possible 893 /// threadable destinations. Pick the one that occurs the most frequently in 894 /// the list. 895 static BasicBlock * 896 FindMostPopularDest(BasicBlock *BB, 897 const SmallVectorImpl<std::pair<BasicBlock*, 898 BasicBlock*> > &PredToDestList) { 899 assert(!PredToDestList.empty()); 900 901 // Determine popularity. If there are multiple possible destinations, we 902 // explicitly choose to ignore 'undef' destinations. We prefer to thread 903 // blocks with known and real destinations to threading undef. We'll handle 904 // them later if interesting. 905 DenseMap<BasicBlock*, unsigned> DestPopularity; 906 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 907 if (PredToDestList[i].second) 908 DestPopularity[PredToDestList[i].second]++; 909 910 // Find the most popular dest. 911 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 912 BasicBlock *MostPopularDest = DPI->first; 913 unsigned Popularity = DPI->second; 914 SmallVector<BasicBlock*, 4> SamePopularity; 915 916 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 917 // If the popularity of this entry isn't higher than the popularity we've 918 // seen so far, ignore it. 919 if (DPI->second < Popularity) 920 ; // ignore. 921 else if (DPI->second == Popularity) { 922 // If it is the same as what we've seen so far, keep track of it. 923 SamePopularity.push_back(DPI->first); 924 } else { 925 // If it is more popular, remember it. 926 SamePopularity.clear(); 927 MostPopularDest = DPI->first; 928 Popularity = DPI->second; 929 } 930 } 931 932 // Okay, now we know the most popular destination. If there is more than 933 // destination, we need to determine one. This is arbitrary, but we need 934 // to make a deterministic decision. Pick the first one that appears in the 935 // successor list. 936 if (!SamePopularity.empty()) { 937 SamePopularity.push_back(MostPopularDest); 938 TerminatorInst *TI = BB->getTerminator(); 939 for (unsigned i = 0; ; ++i) { 940 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 941 942 if (std::find(SamePopularity.begin(), SamePopularity.end(), 943 TI->getSuccessor(i)) == SamePopularity.end()) 944 continue; 945 946 MostPopularDest = TI->getSuccessor(i); 947 break; 948 } 949 } 950 951 // Okay, we have finally picked the most popular destination. 952 return MostPopularDest; 953 } 954 955 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) { 956 // If threading this would thread across a loop header, don't even try to 957 // thread the edge. 958 if (LoopHeaders.count(BB)) 959 return false; 960 961 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues; 962 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues)) 963 return false; 964 assert(!PredValues.empty() && 965 "ComputeValueKnownInPredecessors returned true with no values"); 966 967 DEBUG(errs() << "IN BB: " << *BB; 968 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 969 errs() << " BB '" << BB->getName() << "': FOUND condition = "; 970 if (PredValues[i].first) 971 errs() << *PredValues[i].first; 972 else 973 errs() << "UNDEF"; 974 errs() << " for pred '" << PredValues[i].second->getName() 975 << "'.\n"; 976 }); 977 978 // Decide what we want to thread through. Convert our list of known values to 979 // a list of known destinations for each pred. This also discards duplicate 980 // predecessors and keeps track of the undefined inputs (which are represented 981 // as a null dest in the PredToDestList). 982 SmallPtrSet<BasicBlock*, 16> SeenPreds; 983 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 984 985 BasicBlock *OnlyDest = 0; 986 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 987 988 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 989 BasicBlock *Pred = PredValues[i].second; 990 if (!SeenPreds.insert(Pred)) 991 continue; // Duplicate predecessor entry. 992 993 // If the predecessor ends with an indirect goto, we can't change its 994 // destination. 995 if (isa<IndirectBrInst>(Pred->getTerminator())) 996 continue; 997 998 ConstantInt *Val = PredValues[i].first; 999 1000 BasicBlock *DestBB; 1001 if (Val == 0) // Undef. 1002 DestBB = 0; 1003 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1004 DestBB = BI->getSuccessor(Val->isZero()); 1005 else { 1006 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator()); 1007 DestBB = SI->getSuccessor(SI->findCaseValue(Val)); 1008 } 1009 1010 // If we have exactly one destination, remember it for efficiency below. 1011 if (i == 0) 1012 OnlyDest = DestBB; 1013 else if (OnlyDest != DestBB) 1014 OnlyDest = MultipleDestSentinel; 1015 1016 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1017 } 1018 1019 // If all edges were unthreadable, we fail. 1020 if (PredToDestList.empty()) 1021 return false; 1022 1023 // Determine which is the most common successor. If we have many inputs and 1024 // this block is a switch, we want to start by threading the batch that goes 1025 // to the most popular destination first. If we only know about one 1026 // threadable destination (the common case) we can avoid this. 1027 BasicBlock *MostPopularDest = OnlyDest; 1028 1029 if (MostPopularDest == MultipleDestSentinel) 1030 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1031 1032 // Now that we know what the most popular destination is, factor all 1033 // predecessors that will jump to it into a single predecessor. 1034 SmallVector<BasicBlock*, 16> PredsToFactor; 1035 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1036 if (PredToDestList[i].second == MostPopularDest) { 1037 BasicBlock *Pred = PredToDestList[i].first; 1038 1039 // This predecessor may be a switch or something else that has multiple 1040 // edges to the block. Factor each of these edges by listing them 1041 // according to # occurrences in PredsToFactor. 1042 TerminatorInst *PredTI = Pred->getTerminator(); 1043 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 1044 if (PredTI->getSuccessor(i) == BB) 1045 PredsToFactor.push_back(Pred); 1046 } 1047 1048 // If the threadable edges are branching on an undefined value, we get to pick 1049 // the destination that these predecessors should get to. 1050 if (MostPopularDest == 0) 1051 MostPopularDest = BB->getTerminator()-> 1052 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1053 1054 // Ok, try to thread it! 1055 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1056 } 1057 1058 /// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in 1059 /// the current block. See if there are any simplifications we can do based on 1060 /// inputs to the phi node. 1061 /// 1062 bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) { 1063 BasicBlock *BB = PN->getParent(); 1064 1065 // If any of the predecessor blocks end in an unconditional branch, we can 1066 // *duplicate* the jump into that block in order to further encourage jump 1067 // threading and to eliminate cases where we have branch on a phi of an icmp 1068 // (branch on icmp is much better). 1069 1070 // We don't want to do this tranformation for switches, because we don't 1071 // really want to duplicate a switch. 1072 if (isa<SwitchInst>(BB->getTerminator())) 1073 return false; 1074 1075 // Look for unconditional branch predecessors. 1076 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1077 BasicBlock *PredBB = PN->getIncomingBlock(i); 1078 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1079 if (PredBr->isUnconditional() && 1080 // Try to duplicate BB into PredBB. 1081 DuplicateCondBranchOnPHIIntoPred(BB, PredBB)) 1082 return true; 1083 } 1084 1085 return false; 1086 } 1087 1088 1089 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1090 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1091 /// NewPred using the entries from OldPred (suitably mapped). 1092 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1093 BasicBlock *OldPred, 1094 BasicBlock *NewPred, 1095 DenseMap<Instruction*, Value*> &ValueMap) { 1096 for (BasicBlock::iterator PNI = PHIBB->begin(); 1097 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1098 // Ok, we have a PHI node. Figure out what the incoming value was for the 1099 // DestBlock. 1100 Value *IV = PN->getIncomingValueForBlock(OldPred); 1101 1102 // Remap the value if necessary. 1103 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1104 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1105 if (I != ValueMap.end()) 1106 IV = I->second; 1107 } 1108 1109 PN->addIncoming(IV, NewPred); 1110 } 1111 } 1112 1113 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1114 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1115 /// across BB. Transform the IR to reflect this change. 1116 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1117 const SmallVectorImpl<BasicBlock*> &PredBBs, 1118 BasicBlock *SuccBB) { 1119 // If threading to the same block as we come from, we would infinite loop. 1120 if (SuccBB == BB) { 1121 DEBUG(errs() << " Not threading across BB '" << BB->getName() 1122 << "' - would thread to self!\n"); 1123 return false; 1124 } 1125 1126 // If threading this would thread across a loop header, don't thread the edge. 1127 // See the comments above FindLoopHeaders for justifications and caveats. 1128 if (LoopHeaders.count(BB)) { 1129 DEBUG(errs() << " Not threading across loop header BB '" << BB->getName() 1130 << "' to dest BB '" << SuccBB->getName() 1131 << "' - it might create an irreducible loop!\n"); 1132 return false; 1133 } 1134 1135 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB); 1136 if (JumpThreadCost > Threshold) { 1137 DEBUG(errs() << " Not threading BB '" << BB->getName() 1138 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1139 return false; 1140 } 1141 1142 // And finally, do it! Start by factoring the predecessors is needed. 1143 BasicBlock *PredBB; 1144 if (PredBBs.size() == 1) 1145 PredBB = PredBBs[0]; 1146 else { 1147 DEBUG(errs() << " Factoring out " << PredBBs.size() 1148 << " common predecessors.\n"); 1149 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), 1150 ".thr_comm", this); 1151 } 1152 1153 // And finally, do it! 1154 DEBUG(errs() << " Threading edge from '" << PredBB->getName() << "' to '" 1155 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1156 << ", across block:\n " 1157 << *BB << "\n"); 1158 1159 // We are going to have to map operands from the original BB block to the new 1160 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1161 // account for entry from PredBB. 1162 DenseMap<Instruction*, Value*> ValueMapping; 1163 1164 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1165 BB->getName()+".thread", 1166 BB->getParent(), BB); 1167 NewBB->moveAfter(PredBB); 1168 1169 BasicBlock::iterator BI = BB->begin(); 1170 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1171 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1172 1173 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1174 // mapping and using it to remap operands in the cloned instructions. 1175 for (; !isa<TerminatorInst>(BI); ++BI) { 1176 Instruction *New = BI->clone(); 1177 New->setName(BI->getName()); 1178 NewBB->getInstList().push_back(New); 1179 ValueMapping[BI] = New; 1180 1181 // Remap operands to patch up intra-block references. 1182 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1183 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1184 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1185 if (I != ValueMapping.end()) 1186 New->setOperand(i, I->second); 1187 } 1188 } 1189 1190 // We didn't copy the terminator from BB over to NewBB, because there is now 1191 // an unconditional jump to SuccBB. Insert the unconditional jump. 1192 BranchInst::Create(SuccBB, NewBB); 1193 1194 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1195 // PHI nodes for NewBB now. 1196 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1197 1198 // If there were values defined in BB that are used outside the block, then we 1199 // now have to update all uses of the value to use either the original value, 1200 // the cloned value, or some PHI derived value. This can require arbitrary 1201 // PHI insertion, of which we are prepared to do, clean these up now. 1202 SSAUpdater SSAUpdate; 1203 SmallVector<Use*, 16> UsesToRename; 1204 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1205 // Scan all uses of this instruction to see if it is used outside of its 1206 // block, and if so, record them in UsesToRename. 1207 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1208 ++UI) { 1209 Instruction *User = cast<Instruction>(*UI); 1210 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1211 if (UserPN->getIncomingBlock(UI) == BB) 1212 continue; 1213 } else if (User->getParent() == BB) 1214 continue; 1215 1216 UsesToRename.push_back(&UI.getUse()); 1217 } 1218 1219 // If there are no uses outside the block, we're done with this instruction. 1220 if (UsesToRename.empty()) 1221 continue; 1222 1223 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1224 1225 // We found a use of I outside of BB. Rename all uses of I that are outside 1226 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1227 // with the two values we know. 1228 SSAUpdate.Initialize(I); 1229 SSAUpdate.AddAvailableValue(BB, I); 1230 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); 1231 1232 while (!UsesToRename.empty()) 1233 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1234 DEBUG(errs() << "\n"); 1235 } 1236 1237 1238 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1239 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1240 // us to simplify any PHI nodes in BB. 1241 TerminatorInst *PredTerm = PredBB->getTerminator(); 1242 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1243 if (PredTerm->getSuccessor(i) == BB) { 1244 RemovePredecessorAndSimplify(BB, PredBB, TD); 1245 PredTerm->setSuccessor(i, NewBB); 1246 } 1247 1248 // At this point, the IR is fully up to date and consistent. Do a quick scan 1249 // over the new instructions and zap any that are constants or dead. This 1250 // frequently happens because of phi translation. 1251 BI = NewBB->begin(); 1252 for (BasicBlock::iterator E = NewBB->end(); BI != E; ) { 1253 Instruction *Inst = BI++; 1254 1255 if (Value *V = SimplifyInstruction(Inst, TD)) { 1256 WeakVH BIHandle(BI); 1257 ReplaceAndSimplifyAllUses(Inst, V, TD); 1258 if (BIHandle == 0) 1259 BI = NewBB->begin(); 1260 continue; 1261 } 1262 1263 RecursivelyDeleteTriviallyDeadInstructions(Inst); 1264 } 1265 1266 // Threaded an edge! 1267 ++NumThreads; 1268 return true; 1269 } 1270 1271 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1272 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1273 /// If we can duplicate the contents of BB up into PredBB do so now, this 1274 /// improves the odds that the branch will be on an analyzable instruction like 1275 /// a compare. 1276 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1277 BasicBlock *PredBB) { 1278 // If BB is a loop header, then duplicating this block outside the loop would 1279 // cause us to transform this into an irreducible loop, don't do this. 1280 // See the comments above FindLoopHeaders for justifications and caveats. 1281 if (LoopHeaders.count(BB)) { 1282 DEBUG(errs() << " Not duplicating loop header '" << BB->getName() 1283 << "' into predecessor block '" << PredBB->getName() 1284 << "' - it might create an irreducible loop!\n"); 1285 return false; 1286 } 1287 1288 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB); 1289 if (DuplicationCost > Threshold) { 1290 DEBUG(errs() << " Not duplicating BB '" << BB->getName() 1291 << "' - Cost is too high: " << DuplicationCost << "\n"); 1292 return false; 1293 } 1294 1295 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1296 // of PredBB. 1297 DEBUG(errs() << " Duplicating block '" << BB->getName() << "' into end of '" 1298 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1299 << DuplicationCost << " block is:" << *BB << "\n"); 1300 1301 // We are going to have to map operands from the original BB block into the 1302 // PredBB block. Evaluate PHI nodes in BB. 1303 DenseMap<Instruction*, Value*> ValueMapping; 1304 1305 BasicBlock::iterator BI = BB->begin(); 1306 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1307 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1308 1309 BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1310 1311 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1312 // mapping and using it to remap operands in the cloned instructions. 1313 for (; BI != BB->end(); ++BI) { 1314 Instruction *New = BI->clone(); 1315 New->setName(BI->getName()); 1316 PredBB->getInstList().insert(OldPredBranch, New); 1317 ValueMapping[BI] = New; 1318 1319 // Remap operands to patch up intra-block references. 1320 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1321 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1322 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1323 if (I != ValueMapping.end()) 1324 New->setOperand(i, I->second); 1325 } 1326 } 1327 1328 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1329 // add entries to the PHI nodes for branch from PredBB now. 1330 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1331 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1332 ValueMapping); 1333 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1334 ValueMapping); 1335 1336 // If there were values defined in BB that are used outside the block, then we 1337 // now have to update all uses of the value to use either the original value, 1338 // the cloned value, or some PHI derived value. This can require arbitrary 1339 // PHI insertion, of which we are prepared to do, clean these up now. 1340 SSAUpdater SSAUpdate; 1341 SmallVector<Use*, 16> UsesToRename; 1342 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1343 // Scan all uses of this instruction to see if it is used outside of its 1344 // block, and if so, record them in UsesToRename. 1345 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1346 ++UI) { 1347 Instruction *User = cast<Instruction>(*UI); 1348 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1349 if (UserPN->getIncomingBlock(UI) == BB) 1350 continue; 1351 } else if (User->getParent() == BB) 1352 continue; 1353 1354 UsesToRename.push_back(&UI.getUse()); 1355 } 1356 1357 // If there are no uses outside the block, we're done with this instruction. 1358 if (UsesToRename.empty()) 1359 continue; 1360 1361 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1362 1363 // We found a use of I outside of BB. Rename all uses of I that are outside 1364 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1365 // with the two values we know. 1366 SSAUpdate.Initialize(I); 1367 SSAUpdate.AddAvailableValue(BB, I); 1368 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); 1369 1370 while (!UsesToRename.empty()) 1371 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1372 DEBUG(errs() << "\n"); 1373 } 1374 1375 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1376 // that we nuked. 1377 RemovePredecessorAndSimplify(BB, PredBB, TD); 1378 1379 // Remove the unconditional branch at the end of the PredBB block. 1380 OldPredBranch->eraseFromParent(); 1381 1382 ++NumDupes; 1383 return true; 1384 } 1385 1386 1387