xref: /llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp (revision 5f037b6439856fa4a8414c00838cfbe5b794b560)
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "jump-threading"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/IntrinsicInst.h"
17 #include "llvm/LLVMContext.h"
18 #include "llvm/Pass.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LazyValueInfo.h"
21 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
22 #include "llvm/Transforms/Utils/Local.h"
23 #include "llvm/Transforms/Utils/SSAUpdater.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 using namespace llvm;
34 
35 STATISTIC(NumThreads, "Number of jumps threaded");
36 STATISTIC(NumFolds,   "Number of terminators folded");
37 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
38 
39 static cl::opt<unsigned>
40 Threshold("jump-threading-threshold",
41           cl::desc("Max block size to duplicate for jump threading"),
42           cl::init(6), cl::Hidden);
43 
44 // Turn on use of LazyValueInfo.
45 static cl::opt<bool>
46 EnableLVI("enable-jump-threading-lvi", cl::ReallyHidden);
47 
48 
49 
50 namespace {
51   /// This pass performs 'jump threading', which looks at blocks that have
52   /// multiple predecessors and multiple successors.  If one or more of the
53   /// predecessors of the block can be proven to always jump to one of the
54   /// successors, we forward the edge from the predecessor to the successor by
55   /// duplicating the contents of this block.
56   ///
57   /// An example of when this can occur is code like this:
58   ///
59   ///   if () { ...
60   ///     X = 4;
61   ///   }
62   ///   if (X < 3) {
63   ///
64   /// In this case, the unconditional branch at the end of the first if can be
65   /// revectored to the false side of the second if.
66   ///
67   class JumpThreading : public FunctionPass {
68     TargetData *TD;
69     LazyValueInfo *LVI;
70 #ifdef NDEBUG
71     SmallPtrSet<BasicBlock*, 16> LoopHeaders;
72 #else
73     SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
74 #endif
75   public:
76     static char ID; // Pass identification
77     JumpThreading() : FunctionPass(&ID) {}
78 
79     bool runOnFunction(Function &F);
80 
81     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
82       if (EnableLVI)
83         AU.addRequired<LazyValueInfo>();
84     }
85 
86     void FindLoopHeaders(Function &F);
87     bool ProcessBlock(BasicBlock *BB);
88     bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
89                     BasicBlock *SuccBB);
90     bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
91                                           BasicBlock *PredBB);
92 
93     typedef SmallVectorImpl<std::pair<ConstantInt*,
94                                       BasicBlock*> > PredValueInfo;
95 
96     bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
97                                          PredValueInfo &Result);
98     bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB);
99 
100 
101     bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
102     bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
103 
104     bool ProcessJumpOnPHI(PHINode *PN);
105 
106     bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
107   };
108 }
109 
110 char JumpThreading::ID = 0;
111 static RegisterPass<JumpThreading>
112 X("jump-threading", "Jump Threading");
113 
114 // Public interface to the Jump Threading pass
115 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
116 
117 /// runOnFunction - Top level algorithm.
118 ///
119 bool JumpThreading::runOnFunction(Function &F) {
120   DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n");
121   TD = getAnalysisIfAvailable<TargetData>();
122   LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0;
123 
124   FindLoopHeaders(F);
125 
126   bool AnotherIteration = true, EverChanged = false;
127   while (AnotherIteration) {
128     AnotherIteration = false;
129     bool Changed = false;
130     for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
131       BasicBlock *BB = I;
132       // Thread all of the branches we can over this block.
133       while (ProcessBlock(BB))
134         Changed = true;
135 
136       ++I;
137 
138       // If the block is trivially dead, zap it.  This eliminates the successor
139       // edges which simplifies the CFG.
140       if (pred_begin(BB) == pred_end(BB) &&
141           BB != &BB->getParent()->getEntryBlock()) {
142         DEBUG(errs() << "  JT: Deleting dead block '" << BB->getName()
143               << "' with terminator: " << *BB->getTerminator() << '\n');
144         LoopHeaders.erase(BB);
145         DeleteDeadBlock(BB);
146         Changed = true;
147       } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
148         // Can't thread an unconditional jump, but if the block is "almost
149         // empty", we can replace uses of it with uses of the successor and make
150         // this dead.
151         if (BI->isUnconditional() &&
152             BB != &BB->getParent()->getEntryBlock()) {
153           BasicBlock::iterator BBI = BB->getFirstNonPHI();
154           // Ignore dbg intrinsics.
155           while (isa<DbgInfoIntrinsic>(BBI))
156             ++BBI;
157           // If the terminator is the only non-phi instruction, try to nuke it.
158           if (BBI->isTerminator()) {
159             // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
160             // block, we have to make sure it isn't in the LoopHeaders set.  We
161             // reinsert afterward in the rare case when the block isn't deleted.
162             bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
163 
164             if (TryToSimplifyUncondBranchFromEmptyBlock(BB))
165               Changed = true;
166             else if (ErasedFromLoopHeaders)
167               LoopHeaders.insert(BB);
168           }
169         }
170       }
171     }
172     AnotherIteration = Changed;
173     EverChanged |= Changed;
174   }
175 
176   LoopHeaders.clear();
177   return EverChanged;
178 }
179 
180 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
181 /// thread across it.
182 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
183   /// Ignore PHI nodes, these will be flattened when duplication happens.
184   BasicBlock::const_iterator I = BB->getFirstNonPHI();
185 
186   // FIXME: THREADING will delete values that are just used to compute the
187   // branch, so they shouldn't count against the duplication cost.
188 
189 
190   // Sum up the cost of each instruction until we get to the terminator.  Don't
191   // include the terminator because the copy won't include it.
192   unsigned Size = 0;
193   for (; !isa<TerminatorInst>(I); ++I) {
194     // Debugger intrinsics don't incur code size.
195     if (isa<DbgInfoIntrinsic>(I)) continue;
196 
197     // If this is a pointer->pointer bitcast, it is free.
198     if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
199       continue;
200 
201     // All other instructions count for at least one unit.
202     ++Size;
203 
204     // Calls are more expensive.  If they are non-intrinsic calls, we model them
205     // as having cost of 4.  If they are a non-vector intrinsic, we model them
206     // as having cost of 2 total, and if they are a vector intrinsic, we model
207     // them as having cost 1.
208     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
209       if (!isa<IntrinsicInst>(CI))
210         Size += 3;
211       else if (!isa<VectorType>(CI->getType()))
212         Size += 1;
213     }
214   }
215 
216   // Threading through a switch statement is particularly profitable.  If this
217   // block ends in a switch, decrease its cost to make it more likely to happen.
218   if (isa<SwitchInst>(I))
219     Size = Size > 6 ? Size-6 : 0;
220 
221   return Size;
222 }
223 
224 /// FindLoopHeaders - We do not want jump threading to turn proper loop
225 /// structures into irreducible loops.  Doing this breaks up the loop nesting
226 /// hierarchy and pessimizes later transformations.  To prevent this from
227 /// happening, we first have to find the loop headers.  Here we approximate this
228 /// by finding targets of backedges in the CFG.
229 ///
230 /// Note that there definitely are cases when we want to allow threading of
231 /// edges across a loop header.  For example, threading a jump from outside the
232 /// loop (the preheader) to an exit block of the loop is definitely profitable.
233 /// It is also almost always profitable to thread backedges from within the loop
234 /// to exit blocks, and is often profitable to thread backedges to other blocks
235 /// within the loop (forming a nested loop).  This simple analysis is not rich
236 /// enough to track all of these properties and keep it up-to-date as the CFG
237 /// mutates, so we don't allow any of these transformations.
238 ///
239 void JumpThreading::FindLoopHeaders(Function &F) {
240   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
241   FindFunctionBackedges(F, Edges);
242 
243   for (unsigned i = 0, e = Edges.size(); i != e; ++i)
244     LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
245 }
246 
247 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
248 /// if we can infer that the value is a known ConstantInt in any of our
249 /// predecessors.  If so, return the known list of value and pred BB in the
250 /// result vector.  If a value is known to be undef, it is returned as null.
251 ///
252 /// This returns true if there were any known values.
253 ///
254 bool JumpThreading::
255 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
256   // If V is a constantint, then it is known in all predecessors.
257   if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
258     ConstantInt *CI = dyn_cast<ConstantInt>(V);
259 
260     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
261       Result.push_back(std::make_pair(CI, *PI));
262     return true;
263   }
264 
265   // If V is a non-instruction value, or an instruction in a different block,
266   // then it can't be derived from a PHI.
267   Instruction *I = dyn_cast<Instruction>(V);
268   if (I == 0 || I->getParent() != BB) {
269 
270     // Okay, if this is a live-in value, see if it has a known value at the end
271     // of any of our predecessors.
272     //
273     // FIXME: This should be an edge property, not a block end property.
274     /// TODO: Per PR2563, we could infer value range information about a
275     /// predecessor based on its terminator.
276     //
277     if (LVI) {
278       // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
279       // "I" is a non-local compare-with-a-constant instruction.  This would be
280       // able to handle value inequalities better, for example if the compare is
281       // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
282       // Perhaps getConstantOnEdge should be smart enough to do this?
283 
284       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
285         // If the value is known by LazyValueInfo to be a constant in a
286         // predecessor, use that information to try to thread this block.
287         Constant *PredCst = LVI->getConstantOnEdge(V, *PI, BB);
288         if (PredCst == 0 ||
289             (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst)))
290           continue;
291 
292         Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), *PI));
293       }
294 
295       return !Result.empty();
296     }
297 
298     return false;
299   }
300 
301   /// If I is a PHI node, then we know the incoming values for any constants.
302   if (PHINode *PN = dyn_cast<PHINode>(I)) {
303     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
304       Value *InVal = PN->getIncomingValue(i);
305       if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
306         ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
307         Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
308       }
309     }
310     return !Result.empty();
311   }
312 
313   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
314 
315   // Handle some boolean conditions.
316   if (I->getType()->getPrimitiveSizeInBits() == 1) {
317     // X | true -> true
318     // X & false -> false
319     if (I->getOpcode() == Instruction::Or ||
320         I->getOpcode() == Instruction::And) {
321       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
322       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
323 
324       if (LHSVals.empty() && RHSVals.empty())
325         return false;
326 
327       ConstantInt *InterestingVal;
328       if (I->getOpcode() == Instruction::Or)
329         InterestingVal = ConstantInt::getTrue(I->getContext());
330       else
331         InterestingVal = ConstantInt::getFalse(I->getContext());
332 
333       // Scan for the sentinel.
334       for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
335         if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0)
336           Result.push_back(LHSVals[i]);
337       for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
338         if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0)
339           Result.push_back(RHSVals[i]);
340       return !Result.empty();
341     }
342 
343     // Handle the NOT form of XOR.
344     if (I->getOpcode() == Instruction::Xor &&
345         isa<ConstantInt>(I->getOperand(1)) &&
346         cast<ConstantInt>(I->getOperand(1))->isOne()) {
347       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result);
348       if (Result.empty())
349         return false;
350 
351       // Invert the known values.
352       for (unsigned i = 0, e = Result.size(); i != e; ++i)
353         if (Result[i].first)
354           Result[i].first =
355             cast<ConstantInt>(ConstantExpr::getNot(Result[i].first));
356       return true;
357     }
358   }
359 
360   // Handle compare with phi operand, where the PHI is defined in this block.
361   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
362     PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
363     if (PN && PN->getParent() == BB) {
364       // We can do this simplification if any comparisons fold to true or false.
365       // See if any do.
366       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
367         BasicBlock *PredBB = PN->getIncomingBlock(i);
368         Value *LHS = PN->getIncomingValue(i);
369         Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
370 
371         Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
372         if (Res == 0) {
373           if (!LVI || !isa<Constant>(RHS))
374             continue;
375 
376           LazyValueInfo::Tristate
377             ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
378                                            cast<Constant>(RHS), PredBB, BB);
379           if (ResT == LazyValueInfo::Unknown)
380             continue;
381           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
382         }
383 
384         if (isa<UndefValue>(Res))
385           Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
386         else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
387           Result.push_back(std::make_pair(CI, PredBB));
388       }
389 
390       return !Result.empty();
391     }
392 
393 
394     // If comparing a live-in value against a constant, see if we know the
395     // live-in value on any predecessors.
396     if (LVI && isa<Constant>(Cmp->getOperand(1)) &&
397         Cmp->getType()->isInteger() && // Not vector compare.
398         (!isa<Instruction>(Cmp->getOperand(0)) ||
399          cast<Instruction>(Cmp->getOperand(0))->getParent() != BB)) {
400       Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
401 
402       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
403         // If the value is known by LazyValueInfo to be a constant in a
404         // predecessor, use that information to try to thread this block.
405         LazyValueInfo::Tristate
406           Res = LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
407                                         RHSCst, *PI, BB);
408         if (Res == LazyValueInfo::Unknown)
409           continue;
410 
411         Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
412         Result.push_back(std::make_pair(cast<ConstantInt>(ResC), *PI));
413       }
414 
415       return !Result.empty();
416     }
417   }
418   return false;
419 }
420 
421 
422 
423 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
424 /// in an undefined jump, decide which block is best to revector to.
425 ///
426 /// Since we can pick an arbitrary destination, we pick the successor with the
427 /// fewest predecessors.  This should reduce the in-degree of the others.
428 ///
429 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
430   TerminatorInst *BBTerm = BB->getTerminator();
431   unsigned MinSucc = 0;
432   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
433   // Compute the successor with the minimum number of predecessors.
434   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
435   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
436     TestBB = BBTerm->getSuccessor(i);
437     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
438     if (NumPreds < MinNumPreds)
439       MinSucc = i;
440   }
441 
442   return MinSucc;
443 }
444 
445 /// ProcessBlock - If there are any predecessors whose control can be threaded
446 /// through to a successor, transform them now.
447 bool JumpThreading::ProcessBlock(BasicBlock *BB) {
448   // If this block has a single predecessor, and if that pred has a single
449   // successor, merge the blocks.  This encourages recursive jump threading
450   // because now the condition in this block can be threaded through
451   // predecessors of our predecessor block.
452   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
453     if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
454         SinglePred != BB) {
455       // If SinglePred was a loop header, BB becomes one.
456       if (LoopHeaders.erase(SinglePred))
457         LoopHeaders.insert(BB);
458 
459       // Remember if SinglePred was the entry block of the function.  If so, we
460       // will need to move BB back to the entry position.
461       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
462       MergeBasicBlockIntoOnlyPred(BB);
463 
464       if (isEntry && BB != &BB->getParent()->getEntryBlock())
465         BB->moveBefore(&BB->getParent()->getEntryBlock());
466       return true;
467     }
468   }
469 
470   // Look to see if the terminator is a branch of switch, if not we can't thread
471   // it.
472   Value *Condition;
473   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
474     // Can't thread an unconditional jump.
475     if (BI->isUnconditional()) return false;
476     Condition = BI->getCondition();
477   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
478     Condition = SI->getCondition();
479   else
480     return false; // Must be an invoke.
481 
482   // If the terminator of this block is branching on a constant, simplify the
483   // terminator to an unconditional branch.  This can occur due to threading in
484   // other blocks.
485   if (isa<ConstantInt>(Condition)) {
486     DEBUG(errs() << "  In block '" << BB->getName()
487           << "' folding terminator: " << *BB->getTerminator() << '\n');
488     ++NumFolds;
489     ConstantFoldTerminator(BB);
490     return true;
491   }
492 
493   // If the terminator is branching on an undef, we can pick any of the
494   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
495   if (isa<UndefValue>(Condition)) {
496     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
497 
498     // Fold the branch/switch.
499     TerminatorInst *BBTerm = BB->getTerminator();
500     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
501       if (i == BestSucc) continue;
502       RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
503     }
504 
505     DEBUG(errs() << "  In block '" << BB->getName()
506           << "' folding undef terminator: " << *BBTerm << '\n');
507     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
508     BBTerm->eraseFromParent();
509     return true;
510   }
511 
512   Instruction *CondInst = dyn_cast<Instruction>(Condition);
513 
514   // If the condition is an instruction defined in another block, see if a
515   // predecessor has the same condition:
516   //     br COND, BBX, BBY
517   //  BBX:
518   //     br COND, BBZ, BBW
519   if (!LVI &&
520       !Condition->hasOneUse() && // Multiple uses.
521       (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
522     pred_iterator PI = pred_begin(BB), E = pred_end(BB);
523     if (isa<BranchInst>(BB->getTerminator())) {
524       for (; PI != E; ++PI)
525         if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
526           if (PBI->isConditional() && PBI->getCondition() == Condition &&
527               ProcessBranchOnDuplicateCond(*PI, BB))
528             return true;
529     } else {
530       assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
531       for (; PI != E; ++PI)
532         if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
533           if (PSI->getCondition() == Condition &&
534               ProcessSwitchOnDuplicateCond(*PI, BB))
535             return true;
536     }
537   }
538 
539   // All the rest of our checks depend on the condition being an instruction.
540   if (CondInst == 0) {
541     // FIXME: Unify this with code below.
542     if (LVI && ProcessThreadableEdges(Condition, BB))
543       return true;
544     return false;
545   }
546 
547 
548   // See if this is a phi node in the current block.
549   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
550     if (PN->getParent() == BB)
551       return ProcessJumpOnPHI(PN);
552 
553   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
554     if (!LVI &&
555         (!isa<PHINode>(CondCmp->getOperand(0)) ||
556          cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) {
557       // If we have a comparison, loop over the predecessors to see if there is
558       // a condition with a lexically identical value.
559       pred_iterator PI = pred_begin(BB), E = pred_end(BB);
560       for (; PI != E; ++PI)
561         if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
562           if (PBI->isConditional() && *PI != BB) {
563             if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
564               if (CI->getOperand(0) == CondCmp->getOperand(0) &&
565                   CI->getOperand(1) == CondCmp->getOperand(1) &&
566                   CI->getPredicate() == CondCmp->getPredicate()) {
567                 // TODO: Could handle things like (x != 4) --> (x == 17)
568                 if (ProcessBranchOnDuplicateCond(*PI, BB))
569                   return true;
570               }
571             }
572           }
573     }
574   }
575 
576   // Check for some cases that are worth simplifying.  Right now we want to look
577   // for loads that are used by a switch or by the condition for the branch.  If
578   // we see one, check to see if it's partially redundant.  If so, insert a PHI
579   // which can then be used to thread the values.
580   //
581   // This is particularly important because reg2mem inserts loads and stores all
582   // over the place, and this blocks jump threading if we don't zap them.
583   Value *SimplifyValue = CondInst;
584   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
585     if (isa<Constant>(CondCmp->getOperand(1)))
586       SimplifyValue = CondCmp->getOperand(0);
587 
588   if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
589     if (SimplifyPartiallyRedundantLoad(LI))
590       return true;
591 
592 
593   // Handle a variety of cases where we are branching on something derived from
594   // a PHI node in the current block.  If we can prove that any predecessors
595   // compute a predictable value based on a PHI node, thread those predecessors.
596   //
597   if (ProcessThreadableEdges(CondInst, BB))
598     return true;
599 
600 
601   // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
602   // "(X == 4)" thread through this block.
603 
604   return false;
605 }
606 
607 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
608 /// block that jump on exactly the same condition.  This means that we almost
609 /// always know the direction of the edge in the DESTBB:
610 ///  PREDBB:
611 ///     br COND, DESTBB, BBY
612 ///  DESTBB:
613 ///     br COND, BBZ, BBW
614 ///
615 /// If DESTBB has multiple predecessors, we can't just constant fold the branch
616 /// in DESTBB, we have to thread over it.
617 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
618                                                  BasicBlock *BB) {
619   BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
620 
621   // If both successors of PredBB go to DESTBB, we don't know anything.  We can
622   // fold the branch to an unconditional one, which allows other recursive
623   // simplifications.
624   bool BranchDir;
625   if (PredBI->getSuccessor(1) != BB)
626     BranchDir = true;
627   else if (PredBI->getSuccessor(0) != BB)
628     BranchDir = false;
629   else {
630     DEBUG(errs() << "  In block '" << PredBB->getName()
631           << "' folding terminator: " << *PredBB->getTerminator() << '\n');
632     ++NumFolds;
633     ConstantFoldTerminator(PredBB);
634     return true;
635   }
636 
637   BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
638 
639   // If the dest block has one predecessor, just fix the branch condition to a
640   // constant and fold it.
641   if (BB->getSinglePredecessor()) {
642     DEBUG(errs() << "  In block '" << BB->getName()
643           << "' folding condition to '" << BranchDir << "': "
644           << *BB->getTerminator() << '\n');
645     ++NumFolds;
646     Value *OldCond = DestBI->getCondition();
647     DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
648                                           BranchDir));
649     ConstantFoldTerminator(BB);
650     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
651     return true;
652   }
653 
654 
655   // Next, figure out which successor we are threading to.
656   BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
657 
658   SmallVector<BasicBlock*, 2> Preds;
659   Preds.push_back(PredBB);
660 
661   // Ok, try to thread it!
662   return ThreadEdge(BB, Preds, SuccBB);
663 }
664 
665 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
666 /// block that switch on exactly the same condition.  This means that we almost
667 /// always know the direction of the edge in the DESTBB:
668 ///  PREDBB:
669 ///     switch COND [... DESTBB, BBY ... ]
670 ///  DESTBB:
671 ///     switch COND [... BBZ, BBW ]
672 ///
673 /// Optimizing switches like this is very important, because simplifycfg builds
674 /// switches out of repeated 'if' conditions.
675 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
676                                                  BasicBlock *DestBB) {
677   // Can't thread edge to self.
678   if (PredBB == DestBB)
679     return false;
680 
681   SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
682   SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
683 
684   // There are a variety of optimizations that we can potentially do on these
685   // blocks: we order them from most to least preferable.
686 
687   // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
688   // directly to their destination.  This does not introduce *any* code size
689   // growth.  Skip debug info first.
690   BasicBlock::iterator BBI = DestBB->begin();
691   while (isa<DbgInfoIntrinsic>(BBI))
692     BBI++;
693 
694   // FIXME: Thread if it just contains a PHI.
695   if (isa<SwitchInst>(BBI)) {
696     bool MadeChange = false;
697     // Ignore the default edge for now.
698     for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
699       ConstantInt *DestVal = DestSI->getCaseValue(i);
700       BasicBlock *DestSucc = DestSI->getSuccessor(i);
701 
702       // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
703       // PredSI has an explicit case for it.  If so, forward.  If it is covered
704       // by the default case, we can't update PredSI.
705       unsigned PredCase = PredSI->findCaseValue(DestVal);
706       if (PredCase == 0) continue;
707 
708       // If PredSI doesn't go to DestBB on this value, then it won't reach the
709       // case on this condition.
710       if (PredSI->getSuccessor(PredCase) != DestBB &&
711           DestSI->getSuccessor(i) != DestBB)
712         continue;
713 
714       // Otherwise, we're safe to make the change.  Make sure that the edge from
715       // DestSI to DestSucc is not critical and has no PHI nodes.
716       DEBUG(errs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
717       DEBUG(errs() << "THROUGH: " << *DestSI);
718 
719       // If the destination has PHI nodes, just split the edge for updating
720       // simplicity.
721       if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
722         SplitCriticalEdge(DestSI, i, this);
723         DestSucc = DestSI->getSuccessor(i);
724       }
725       FoldSingleEntryPHINodes(DestSucc);
726       PredSI->setSuccessor(PredCase, DestSucc);
727       MadeChange = true;
728     }
729 
730     if (MadeChange)
731       return true;
732   }
733 
734   return false;
735 }
736 
737 
738 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
739 /// load instruction, eliminate it by replacing it with a PHI node.  This is an
740 /// important optimization that encourages jump threading, and needs to be run
741 /// interlaced with other jump threading tasks.
742 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
743   // Don't hack volatile loads.
744   if (LI->isVolatile()) return false;
745 
746   // If the load is defined in a block with exactly one predecessor, it can't be
747   // partially redundant.
748   BasicBlock *LoadBB = LI->getParent();
749   if (LoadBB->getSinglePredecessor())
750     return false;
751 
752   Value *LoadedPtr = LI->getOperand(0);
753 
754   // If the loaded operand is defined in the LoadBB, it can't be available.
755   // FIXME: Could do PHI translation, that would be fun :)
756   if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
757     if (PtrOp->getParent() == LoadBB)
758       return false;
759 
760   // Scan a few instructions up from the load, to see if it is obviously live at
761   // the entry to its block.
762   BasicBlock::iterator BBIt = LI;
763 
764   if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB,
765                                                      BBIt, 6)) {
766     // If the value if the load is locally available within the block, just use
767     // it.  This frequently occurs for reg2mem'd allocas.
768     //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
769 
770     // If the returned value is the load itself, replace with an undef. This can
771     // only happen in dead loops.
772     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
773     LI->replaceAllUsesWith(AvailableVal);
774     LI->eraseFromParent();
775     return true;
776   }
777 
778   // Otherwise, if we scanned the whole block and got to the top of the block,
779   // we know the block is locally transparent to the load.  If not, something
780   // might clobber its value.
781   if (BBIt != LoadBB->begin())
782     return false;
783 
784 
785   SmallPtrSet<BasicBlock*, 8> PredsScanned;
786   typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
787   AvailablePredsTy AvailablePreds;
788   BasicBlock *OneUnavailablePred = 0;
789 
790   // If we got here, the loaded value is transparent through to the start of the
791   // block.  Check to see if it is available in any of the predecessor blocks.
792   for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
793        PI != PE; ++PI) {
794     BasicBlock *PredBB = *PI;
795 
796     // If we already scanned this predecessor, skip it.
797     if (!PredsScanned.insert(PredBB))
798       continue;
799 
800     // Scan the predecessor to see if the value is available in the pred.
801     BBIt = PredBB->end();
802     Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
803     if (!PredAvailable) {
804       OneUnavailablePred = PredBB;
805       continue;
806     }
807 
808     // If so, this load is partially redundant.  Remember this info so that we
809     // can create a PHI node.
810     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
811   }
812 
813   // If the loaded value isn't available in any predecessor, it isn't partially
814   // redundant.
815   if (AvailablePreds.empty()) return false;
816 
817   // Okay, the loaded value is available in at least one (and maybe all!)
818   // predecessors.  If the value is unavailable in more than one unique
819   // predecessor, we want to insert a merge block for those common predecessors.
820   // This ensures that we only have to insert one reload, thus not increasing
821   // code size.
822   BasicBlock *UnavailablePred = 0;
823 
824   // If there is exactly one predecessor where the value is unavailable, the
825   // already computed 'OneUnavailablePred' block is it.  If it ends in an
826   // unconditional branch, we know that it isn't a critical edge.
827   if (PredsScanned.size() == AvailablePreds.size()+1 &&
828       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
829     UnavailablePred = OneUnavailablePred;
830   } else if (PredsScanned.size() != AvailablePreds.size()) {
831     // Otherwise, we had multiple unavailable predecessors or we had a critical
832     // edge from the one.
833     SmallVector<BasicBlock*, 8> PredsToSplit;
834     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
835 
836     for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
837       AvailablePredSet.insert(AvailablePreds[i].first);
838 
839     // Add all the unavailable predecessors to the PredsToSplit list.
840     for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
841          PI != PE; ++PI)
842       if (!AvailablePredSet.count(*PI))
843         PredsToSplit.push_back(*PI);
844 
845     // Split them out to their own block.
846     UnavailablePred =
847       SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
848                              "thread-split", this);
849   }
850 
851   // If the value isn't available in all predecessors, then there will be
852   // exactly one where it isn't available.  Insert a load on that edge and add
853   // it to the AvailablePreds list.
854   if (UnavailablePred) {
855     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
856            "Can't handle critical edge here!");
857     Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr",
858                                  UnavailablePred->getTerminator());
859     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
860   }
861 
862   // Now we know that each predecessor of this block has a value in
863   // AvailablePreds, sort them for efficient access as we're walking the preds.
864   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
865 
866   // Create a PHI node at the start of the block for the PRE'd load value.
867   PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
868   PN->takeName(LI);
869 
870   // Insert new entries into the PHI for each predecessor.  A single block may
871   // have multiple entries here.
872   for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
873        ++PI) {
874     AvailablePredsTy::iterator I =
875       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
876                        std::make_pair(*PI, (Value*)0));
877 
878     assert(I != AvailablePreds.end() && I->first == *PI &&
879            "Didn't find entry for predecessor!");
880 
881     PN->addIncoming(I->second, I->first);
882   }
883 
884   //cerr << "PRE: " << *LI << *PN << "\n";
885 
886   LI->replaceAllUsesWith(PN);
887   LI->eraseFromParent();
888 
889   return true;
890 }
891 
892 /// FindMostPopularDest - The specified list contains multiple possible
893 /// threadable destinations.  Pick the one that occurs the most frequently in
894 /// the list.
895 static BasicBlock *
896 FindMostPopularDest(BasicBlock *BB,
897                     const SmallVectorImpl<std::pair<BasicBlock*,
898                                   BasicBlock*> > &PredToDestList) {
899   assert(!PredToDestList.empty());
900 
901   // Determine popularity.  If there are multiple possible destinations, we
902   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
903   // blocks with known and real destinations to threading undef.  We'll handle
904   // them later if interesting.
905   DenseMap<BasicBlock*, unsigned> DestPopularity;
906   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
907     if (PredToDestList[i].second)
908       DestPopularity[PredToDestList[i].second]++;
909 
910   // Find the most popular dest.
911   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
912   BasicBlock *MostPopularDest = DPI->first;
913   unsigned Popularity = DPI->second;
914   SmallVector<BasicBlock*, 4> SamePopularity;
915 
916   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
917     // If the popularity of this entry isn't higher than the popularity we've
918     // seen so far, ignore it.
919     if (DPI->second < Popularity)
920       ; // ignore.
921     else if (DPI->second == Popularity) {
922       // If it is the same as what we've seen so far, keep track of it.
923       SamePopularity.push_back(DPI->first);
924     } else {
925       // If it is more popular, remember it.
926       SamePopularity.clear();
927       MostPopularDest = DPI->first;
928       Popularity = DPI->second;
929     }
930   }
931 
932   // Okay, now we know the most popular destination.  If there is more than
933   // destination, we need to determine one.  This is arbitrary, but we need
934   // to make a deterministic decision.  Pick the first one that appears in the
935   // successor list.
936   if (!SamePopularity.empty()) {
937     SamePopularity.push_back(MostPopularDest);
938     TerminatorInst *TI = BB->getTerminator();
939     for (unsigned i = 0; ; ++i) {
940       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
941 
942       if (std::find(SamePopularity.begin(), SamePopularity.end(),
943                     TI->getSuccessor(i)) == SamePopularity.end())
944         continue;
945 
946       MostPopularDest = TI->getSuccessor(i);
947       break;
948     }
949   }
950 
951   // Okay, we have finally picked the most popular destination.
952   return MostPopularDest;
953 }
954 
955 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) {
956   // If threading this would thread across a loop header, don't even try to
957   // thread the edge.
958   if (LoopHeaders.count(BB))
959     return false;
960 
961   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
962   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues))
963     return false;
964   assert(!PredValues.empty() &&
965          "ComputeValueKnownInPredecessors returned true with no values");
966 
967   DEBUG(errs() << "IN BB: " << *BB;
968         for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
969           errs() << "  BB '" << BB->getName() << "': FOUND condition = ";
970           if (PredValues[i].first)
971             errs() << *PredValues[i].first;
972           else
973             errs() << "UNDEF";
974           errs() << " for pred '" << PredValues[i].second->getName()
975           << "'.\n";
976         });
977 
978   // Decide what we want to thread through.  Convert our list of known values to
979   // a list of known destinations for each pred.  This also discards duplicate
980   // predecessors and keeps track of the undefined inputs (which are represented
981   // as a null dest in the PredToDestList).
982   SmallPtrSet<BasicBlock*, 16> SeenPreds;
983   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
984 
985   BasicBlock *OnlyDest = 0;
986   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
987 
988   for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
989     BasicBlock *Pred = PredValues[i].second;
990     if (!SeenPreds.insert(Pred))
991       continue;  // Duplicate predecessor entry.
992 
993     // If the predecessor ends with an indirect goto, we can't change its
994     // destination.
995     if (isa<IndirectBrInst>(Pred->getTerminator()))
996       continue;
997 
998     ConstantInt *Val = PredValues[i].first;
999 
1000     BasicBlock *DestBB;
1001     if (Val == 0)      // Undef.
1002       DestBB = 0;
1003     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1004       DestBB = BI->getSuccessor(Val->isZero());
1005     else {
1006       SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
1007       DestBB = SI->getSuccessor(SI->findCaseValue(Val));
1008     }
1009 
1010     // If we have exactly one destination, remember it for efficiency below.
1011     if (i == 0)
1012       OnlyDest = DestBB;
1013     else if (OnlyDest != DestBB)
1014       OnlyDest = MultipleDestSentinel;
1015 
1016     PredToDestList.push_back(std::make_pair(Pred, DestBB));
1017   }
1018 
1019   // If all edges were unthreadable, we fail.
1020   if (PredToDestList.empty())
1021     return false;
1022 
1023   // Determine which is the most common successor.  If we have many inputs and
1024   // this block is a switch, we want to start by threading the batch that goes
1025   // to the most popular destination first.  If we only know about one
1026   // threadable destination (the common case) we can avoid this.
1027   BasicBlock *MostPopularDest = OnlyDest;
1028 
1029   if (MostPopularDest == MultipleDestSentinel)
1030     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1031 
1032   // Now that we know what the most popular destination is, factor all
1033   // predecessors that will jump to it into a single predecessor.
1034   SmallVector<BasicBlock*, 16> PredsToFactor;
1035   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1036     if (PredToDestList[i].second == MostPopularDest) {
1037       BasicBlock *Pred = PredToDestList[i].first;
1038 
1039       // This predecessor may be a switch or something else that has multiple
1040       // edges to the block.  Factor each of these edges by listing them
1041       // according to # occurrences in PredsToFactor.
1042       TerminatorInst *PredTI = Pred->getTerminator();
1043       for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1044         if (PredTI->getSuccessor(i) == BB)
1045           PredsToFactor.push_back(Pred);
1046     }
1047 
1048   // If the threadable edges are branching on an undefined value, we get to pick
1049   // the destination that these predecessors should get to.
1050   if (MostPopularDest == 0)
1051     MostPopularDest = BB->getTerminator()->
1052                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1053 
1054   // Ok, try to thread it!
1055   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1056 }
1057 
1058 /// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
1059 /// the current block.  See if there are any simplifications we can do based on
1060 /// inputs to the phi node.
1061 ///
1062 bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
1063   BasicBlock *BB = PN->getParent();
1064 
1065   // If any of the predecessor blocks end in an unconditional branch, we can
1066   // *duplicate* the jump into that block in order to further encourage jump
1067   // threading and to eliminate cases where we have branch on a phi of an icmp
1068   // (branch on icmp is much better).
1069 
1070   // We don't want to do this tranformation for switches, because we don't
1071   // really want to duplicate a switch.
1072   if (isa<SwitchInst>(BB->getTerminator()))
1073     return false;
1074 
1075   // Look for unconditional branch predecessors.
1076   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1077     BasicBlock *PredBB = PN->getIncomingBlock(i);
1078     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1079       if (PredBr->isUnconditional() &&
1080           // Try to duplicate BB into PredBB.
1081           DuplicateCondBranchOnPHIIntoPred(BB, PredBB))
1082         return true;
1083   }
1084 
1085   return false;
1086 }
1087 
1088 
1089 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1090 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1091 /// NewPred using the entries from OldPred (suitably mapped).
1092 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1093                                             BasicBlock *OldPred,
1094                                             BasicBlock *NewPred,
1095                                      DenseMap<Instruction*, Value*> &ValueMap) {
1096   for (BasicBlock::iterator PNI = PHIBB->begin();
1097        PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1098     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1099     // DestBlock.
1100     Value *IV = PN->getIncomingValueForBlock(OldPred);
1101 
1102     // Remap the value if necessary.
1103     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1104       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1105       if (I != ValueMap.end())
1106         IV = I->second;
1107     }
1108 
1109     PN->addIncoming(IV, NewPred);
1110   }
1111 }
1112 
1113 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1114 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1115 /// across BB.  Transform the IR to reflect this change.
1116 bool JumpThreading::ThreadEdge(BasicBlock *BB,
1117                                const SmallVectorImpl<BasicBlock*> &PredBBs,
1118                                BasicBlock *SuccBB) {
1119   // If threading to the same block as we come from, we would infinite loop.
1120   if (SuccBB == BB) {
1121     DEBUG(errs() << "  Not threading across BB '" << BB->getName()
1122           << "' - would thread to self!\n");
1123     return false;
1124   }
1125 
1126   // If threading this would thread across a loop header, don't thread the edge.
1127   // See the comments above FindLoopHeaders for justifications and caveats.
1128   if (LoopHeaders.count(BB)) {
1129     DEBUG(errs() << "  Not threading across loop header BB '" << BB->getName()
1130           << "' to dest BB '" << SuccBB->getName()
1131           << "' - it might create an irreducible loop!\n");
1132     return false;
1133   }
1134 
1135   unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1136   if (JumpThreadCost > Threshold) {
1137     DEBUG(errs() << "  Not threading BB '" << BB->getName()
1138           << "' - Cost is too high: " << JumpThreadCost << "\n");
1139     return false;
1140   }
1141 
1142   // And finally, do it!  Start by factoring the predecessors is needed.
1143   BasicBlock *PredBB;
1144   if (PredBBs.size() == 1)
1145     PredBB = PredBBs[0];
1146   else {
1147     DEBUG(errs() << "  Factoring out " << PredBBs.size()
1148           << " common predecessors.\n");
1149     PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1150                                     ".thr_comm", this);
1151   }
1152 
1153   // And finally, do it!
1154   DEBUG(errs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1155         << SuccBB->getName() << "' with cost: " << JumpThreadCost
1156         << ", across block:\n    "
1157         << *BB << "\n");
1158 
1159   // We are going to have to map operands from the original BB block to the new
1160   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1161   // account for entry from PredBB.
1162   DenseMap<Instruction*, Value*> ValueMapping;
1163 
1164   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1165                                          BB->getName()+".thread",
1166                                          BB->getParent(), BB);
1167   NewBB->moveAfter(PredBB);
1168 
1169   BasicBlock::iterator BI = BB->begin();
1170   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1171     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1172 
1173   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1174   // mapping and using it to remap operands in the cloned instructions.
1175   for (; !isa<TerminatorInst>(BI); ++BI) {
1176     Instruction *New = BI->clone();
1177     New->setName(BI->getName());
1178     NewBB->getInstList().push_back(New);
1179     ValueMapping[BI] = New;
1180 
1181     // Remap operands to patch up intra-block references.
1182     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1183       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1184         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1185         if (I != ValueMapping.end())
1186           New->setOperand(i, I->second);
1187       }
1188   }
1189 
1190   // We didn't copy the terminator from BB over to NewBB, because there is now
1191   // an unconditional jump to SuccBB.  Insert the unconditional jump.
1192   BranchInst::Create(SuccBB, NewBB);
1193 
1194   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1195   // PHI nodes for NewBB now.
1196   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1197 
1198   // If there were values defined in BB that are used outside the block, then we
1199   // now have to update all uses of the value to use either the original value,
1200   // the cloned value, or some PHI derived value.  This can require arbitrary
1201   // PHI insertion, of which we are prepared to do, clean these up now.
1202   SSAUpdater SSAUpdate;
1203   SmallVector<Use*, 16> UsesToRename;
1204   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1205     // Scan all uses of this instruction to see if it is used outside of its
1206     // block, and if so, record them in UsesToRename.
1207     for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1208          ++UI) {
1209       Instruction *User = cast<Instruction>(*UI);
1210       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1211         if (UserPN->getIncomingBlock(UI) == BB)
1212           continue;
1213       } else if (User->getParent() == BB)
1214         continue;
1215 
1216       UsesToRename.push_back(&UI.getUse());
1217     }
1218 
1219     // If there are no uses outside the block, we're done with this instruction.
1220     if (UsesToRename.empty())
1221       continue;
1222 
1223     DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1224 
1225     // We found a use of I outside of BB.  Rename all uses of I that are outside
1226     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1227     // with the two values we know.
1228     SSAUpdate.Initialize(I);
1229     SSAUpdate.AddAvailableValue(BB, I);
1230     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1231 
1232     while (!UsesToRename.empty())
1233       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1234     DEBUG(errs() << "\n");
1235   }
1236 
1237 
1238   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1239   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1240   // us to simplify any PHI nodes in BB.
1241   TerminatorInst *PredTerm = PredBB->getTerminator();
1242   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1243     if (PredTerm->getSuccessor(i) == BB) {
1244       RemovePredecessorAndSimplify(BB, PredBB, TD);
1245       PredTerm->setSuccessor(i, NewBB);
1246     }
1247 
1248   // At this point, the IR is fully up to date and consistent.  Do a quick scan
1249   // over the new instructions and zap any that are constants or dead.  This
1250   // frequently happens because of phi translation.
1251   BI = NewBB->begin();
1252   for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
1253     Instruction *Inst = BI++;
1254 
1255     if (Value *V = SimplifyInstruction(Inst, TD)) {
1256       WeakVH BIHandle(BI);
1257       ReplaceAndSimplifyAllUses(Inst, V, TD);
1258       if (BIHandle == 0)
1259         BI = NewBB->begin();
1260       continue;
1261     }
1262 
1263     RecursivelyDeleteTriviallyDeadInstructions(Inst);
1264   }
1265 
1266   // Threaded an edge!
1267   ++NumThreads;
1268   return true;
1269 }
1270 
1271 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1272 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1273 /// If we can duplicate the contents of BB up into PredBB do so now, this
1274 /// improves the odds that the branch will be on an analyzable instruction like
1275 /// a compare.
1276 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1277                                                      BasicBlock *PredBB) {
1278   // If BB is a loop header, then duplicating this block outside the loop would
1279   // cause us to transform this into an irreducible loop, don't do this.
1280   // See the comments above FindLoopHeaders for justifications and caveats.
1281   if (LoopHeaders.count(BB)) {
1282     DEBUG(errs() << "  Not duplicating loop header '" << BB->getName()
1283           << "' into predecessor block '" << PredBB->getName()
1284           << "' - it might create an irreducible loop!\n");
1285     return false;
1286   }
1287 
1288   unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1289   if (DuplicationCost > Threshold) {
1290     DEBUG(errs() << "  Not duplicating BB '" << BB->getName()
1291           << "' - Cost is too high: " << DuplicationCost << "\n");
1292     return false;
1293   }
1294 
1295   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1296   // of PredBB.
1297   DEBUG(errs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1298         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1299         << DuplicationCost << " block is:" << *BB << "\n");
1300 
1301   // We are going to have to map operands from the original BB block into the
1302   // PredBB block.  Evaluate PHI nodes in BB.
1303   DenseMap<Instruction*, Value*> ValueMapping;
1304 
1305   BasicBlock::iterator BI = BB->begin();
1306   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1307     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1308 
1309   BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1310 
1311   // Clone the non-phi instructions of BB into PredBB, keeping track of the
1312   // mapping and using it to remap operands in the cloned instructions.
1313   for (; BI != BB->end(); ++BI) {
1314     Instruction *New = BI->clone();
1315     New->setName(BI->getName());
1316     PredBB->getInstList().insert(OldPredBranch, New);
1317     ValueMapping[BI] = New;
1318 
1319     // Remap operands to patch up intra-block references.
1320     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1321       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1322         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1323         if (I != ValueMapping.end())
1324           New->setOperand(i, I->second);
1325       }
1326   }
1327 
1328   // Check to see if the targets of the branch had PHI nodes. If so, we need to
1329   // add entries to the PHI nodes for branch from PredBB now.
1330   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1331   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1332                                   ValueMapping);
1333   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1334                                   ValueMapping);
1335 
1336   // If there were values defined in BB that are used outside the block, then we
1337   // now have to update all uses of the value to use either the original value,
1338   // the cloned value, or some PHI derived value.  This can require arbitrary
1339   // PHI insertion, of which we are prepared to do, clean these up now.
1340   SSAUpdater SSAUpdate;
1341   SmallVector<Use*, 16> UsesToRename;
1342   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1343     // Scan all uses of this instruction to see if it is used outside of its
1344     // block, and if so, record them in UsesToRename.
1345     for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1346          ++UI) {
1347       Instruction *User = cast<Instruction>(*UI);
1348       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1349         if (UserPN->getIncomingBlock(UI) == BB)
1350           continue;
1351       } else if (User->getParent() == BB)
1352         continue;
1353 
1354       UsesToRename.push_back(&UI.getUse());
1355     }
1356 
1357     // If there are no uses outside the block, we're done with this instruction.
1358     if (UsesToRename.empty())
1359       continue;
1360 
1361     DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1362 
1363     // We found a use of I outside of BB.  Rename all uses of I that are outside
1364     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1365     // with the two values we know.
1366     SSAUpdate.Initialize(I);
1367     SSAUpdate.AddAvailableValue(BB, I);
1368     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1369 
1370     while (!UsesToRename.empty())
1371       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1372     DEBUG(errs() << "\n");
1373   }
1374 
1375   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1376   // that we nuked.
1377   RemovePredecessorAndSimplify(BB, PredBB, TD);
1378 
1379   // Remove the unconditional branch at the end of the PredBB block.
1380   OldPredBranch->eraseFromParent();
1381 
1382   ++NumDupes;
1383   return true;
1384 }
1385 
1386 
1387