xref: /llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp (revision 5539f852aeedacd3cfdf757cdbef1290da88f515)
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/GlobalsModRef.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LazyValueInfo.h"
29 #include "llvm/Analysis/Loads.h"
30 #include "llvm/Analysis/LoopInfo.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/ValueHandle.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
44 #include "llvm/Transforms/Utils/Local.h"
45 #include "llvm/Transforms/Utils/SSAUpdater.h"
46 #include <algorithm>
47 #include <memory>
48 using namespace llvm;
49 
50 #define DEBUG_TYPE "jump-threading"
51 
52 STATISTIC(NumThreads, "Number of jumps threaded");
53 STATISTIC(NumFolds,   "Number of terminators folded");
54 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
55 
56 static cl::opt<unsigned>
57 BBDuplicateThreshold("jump-threading-threshold",
58           cl::desc("Max block size to duplicate for jump threading"),
59           cl::init(6), cl::Hidden);
60 
61 static cl::opt<unsigned>
62 ImplicationSearchThreshold(
63   "jump-threading-implication-search-threshold",
64   cl::desc("The number of predecessors to search for a stronger "
65            "condition to use to thread over a weaker condition"),
66   cl::init(3), cl::Hidden);
67 
68 namespace {
69   // These are at global scope so static functions can use them too.
70   typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo;
71   typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy;
72 
73   // This is used to keep track of what kind of constant we're currently hoping
74   // to find.
75   enum ConstantPreference {
76     WantInteger,
77     WantBlockAddress
78   };
79 
80   /// This pass performs 'jump threading', which looks at blocks that have
81   /// multiple predecessors and multiple successors.  If one or more of the
82   /// predecessors of the block can be proven to always jump to one of the
83   /// successors, we forward the edge from the predecessor to the successor by
84   /// duplicating the contents of this block.
85   ///
86   /// An example of when this can occur is code like this:
87   ///
88   ///   if () { ...
89   ///     X = 4;
90   ///   }
91   ///   if (X < 3) {
92   ///
93   /// In this case, the unconditional branch at the end of the first if can be
94   /// revectored to the false side of the second if.
95   ///
96   class JumpThreading : public FunctionPass {
97     TargetLibraryInfo *TLI;
98     LazyValueInfo *LVI;
99     std::unique_ptr<BlockFrequencyInfo> BFI;
100     std::unique_ptr<BranchProbabilityInfo> BPI;
101     bool HasProfileData;
102 #ifdef NDEBUG
103     SmallPtrSet<const BasicBlock *, 16> LoopHeaders;
104 #else
105     SmallSet<AssertingVH<const BasicBlock>, 16> LoopHeaders;
106 #endif
107     DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet;
108 
109     unsigned BBDupThreshold;
110 
111     // RAII helper for updating the recursion stack.
112     struct RecursionSetRemover {
113       DenseSet<std::pair<Value*, BasicBlock*> > &TheSet;
114       std::pair<Value*, BasicBlock*> ThePair;
115 
116       RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S,
117                           std::pair<Value*, BasicBlock*> P)
118         : TheSet(S), ThePair(P) { }
119 
120       ~RecursionSetRemover() {
121         TheSet.erase(ThePair);
122       }
123     };
124   public:
125     static char ID; // Pass identification
126     JumpThreading(int T = -1) : FunctionPass(ID) {
127       BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
128       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
129     }
130 
131     bool runOnFunction(Function &F) override;
132 
133     void getAnalysisUsage(AnalysisUsage &AU) const override {
134       AU.addRequired<LazyValueInfo>();
135       AU.addPreserved<LazyValueInfo>();
136       AU.addPreserved<GlobalsAAWrapperPass>();
137       AU.addRequired<TargetLibraryInfoWrapperPass>();
138     }
139 
140     void releaseMemory() override {
141       BFI.reset();
142       BPI.reset();
143     }
144 
145     void FindLoopHeaders(Function &F);
146     bool ProcessBlock(BasicBlock *BB);
147     bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
148                     BasicBlock *SuccBB);
149     bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
150                                   const SmallVectorImpl<BasicBlock *> &PredBBs);
151 
152     bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
153                                          PredValueInfo &Result,
154                                          ConstantPreference Preference,
155                                          bool &Changed,
156                                          Instruction *CxtI = nullptr);
157     bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
158                                 ConstantPreference Preference,
159                                 Instruction *CxtI = nullptr);
160 
161     bool ProcessBranchOnPHI(PHINode *PN);
162     bool ProcessBranchOnXOR(BinaryOperator *BO);
163     bool ProcessImpliedCondition(BasicBlock *BB);
164 
165     bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
166     bool TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB);
167     bool TryToUnfoldSelectInCurrBB(BasicBlock *BB);
168 
169   private:
170     BasicBlock *SplitBlockPreds(BasicBlock *BB, ArrayRef<BasicBlock *> Preds,
171                                 const char *Suffix);
172     void UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, BasicBlock *BB,
173                                       BasicBlock *NewBB, BasicBlock *SuccBB);
174   };
175 }
176 
177 char JumpThreading::ID = 0;
178 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
179                 "Jump Threading", false, false)
180 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo)
181 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
182 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
183                 "Jump Threading", false, false)
184 
185 // Public interface to the Jump Threading pass
186 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); }
187 
188 /// runOnFunction - Top level algorithm.
189 ///
190 bool JumpThreading::runOnFunction(Function &F) {
191   if (skipOptnoneFunction(F))
192     return false;
193 
194   DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
195   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
196   LVI = &getAnalysis<LazyValueInfo>();
197   BFI.reset();
198   BPI.reset();
199   // When profile data is available, we need to update edge weights after
200   // successful jump threading, which requires both BPI and BFI being available.
201   HasProfileData = F.getEntryCount().hasValue();
202   if (HasProfileData) {
203     LoopInfo LI{DominatorTree(F)};
204     BPI.reset(new BranchProbabilityInfo(F, LI));
205     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
206   }
207 
208   // Remove unreachable blocks from function as they may result in infinite
209   // loop. We do threading if we found something profitable. Jump threading a
210   // branch can create other opportunities. If these opportunities form a cycle
211   // i.e. if any jump threading is undoing previous threading in the path, then
212   // we will loop forever. We take care of this issue by not jump threading for
213   // back edges. This works for normal cases but not for unreachable blocks as
214   // they may have cycle with no back edge.
215   bool EverChanged = false;
216   EverChanged |= removeUnreachableBlocks(F, LVI);
217 
218   FindLoopHeaders(F);
219 
220   bool Changed;
221   do {
222     Changed = false;
223     for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
224       BasicBlock *BB = &*I;
225       // Thread all of the branches we can over this block.
226       while (ProcessBlock(BB))
227         Changed = true;
228 
229       ++I;
230 
231       // If the block is trivially dead, zap it.  This eliminates the successor
232       // edges which simplifies the CFG.
233       if (pred_empty(BB) &&
234           BB != &BB->getParent()->getEntryBlock()) {
235         DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
236               << "' with terminator: " << *BB->getTerminator() << '\n');
237         LoopHeaders.erase(BB);
238         LVI->eraseBlock(BB);
239         DeleteDeadBlock(BB);
240         Changed = true;
241         continue;
242       }
243 
244       BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
245 
246       // Can't thread an unconditional jump, but if the block is "almost
247       // empty", we can replace uses of it with uses of the successor and make
248       // this dead.
249       if (BI && BI->isUnconditional() &&
250           BB != &BB->getParent()->getEntryBlock() &&
251           // If the terminator is the only non-phi instruction, try to nuke it.
252           BB->getFirstNonPHIOrDbg()->isTerminator()) {
253         // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
254         // block, we have to make sure it isn't in the LoopHeaders set.  We
255         // reinsert afterward if needed.
256         bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
257         BasicBlock *Succ = BI->getSuccessor(0);
258 
259         // FIXME: It is always conservatively correct to drop the info
260         // for a block even if it doesn't get erased.  This isn't totally
261         // awesome, but it allows us to use AssertingVH to prevent nasty
262         // dangling pointer issues within LazyValueInfo.
263         LVI->eraseBlock(BB);
264         if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
265           Changed = true;
266           // If we deleted BB and BB was the header of a loop, then the
267           // successor is now the header of the loop.
268           BB = Succ;
269         }
270 
271         if (ErasedFromLoopHeaders)
272           LoopHeaders.insert(BB);
273       }
274     }
275     EverChanged |= Changed;
276   } while (Changed);
277 
278   LoopHeaders.clear();
279   return EverChanged;
280 }
281 
282 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
283 /// thread across it. Stop scanning the block when passing the threshold.
284 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB,
285                                              unsigned Threshold) {
286   /// Ignore PHI nodes, these will be flattened when duplication happens.
287   BasicBlock::const_iterator I(BB->getFirstNonPHI());
288 
289   // FIXME: THREADING will delete values that are just used to compute the
290   // branch, so they shouldn't count against the duplication cost.
291 
292   unsigned Bonus = 0;
293   const TerminatorInst *BBTerm = BB->getTerminator();
294   // Threading through a switch statement is particularly profitable.  If this
295   // block ends in a switch, decrease its cost to make it more likely to happen.
296   if (isa<SwitchInst>(BBTerm))
297     Bonus = 6;
298 
299   // The same holds for indirect branches, but slightly more so.
300   if (isa<IndirectBrInst>(BBTerm))
301     Bonus = 8;
302 
303   // Bump the threshold up so the early exit from the loop doesn't skip the
304   // terminator-based Size adjustment at the end.
305   Threshold += Bonus;
306 
307   // Sum up the cost of each instruction until we get to the terminator.  Don't
308   // include the terminator because the copy won't include it.
309   unsigned Size = 0;
310   for (; !isa<TerminatorInst>(I); ++I) {
311 
312     // Stop scanning the block if we've reached the threshold.
313     if (Size > Threshold)
314       return Size;
315 
316     // Debugger intrinsics don't incur code size.
317     if (isa<DbgInfoIntrinsic>(I)) continue;
318 
319     // If this is a pointer->pointer bitcast, it is free.
320     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
321       continue;
322 
323     // Bail out if this instruction gives back a token type, it is not possible
324     // to duplicate it if it is used outside this BB.
325     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
326       return ~0U;
327 
328     // All other instructions count for at least one unit.
329     ++Size;
330 
331     // Calls are more expensive.  If they are non-intrinsic calls, we model them
332     // as having cost of 4.  If they are a non-vector intrinsic, we model them
333     // as having cost of 2 total, and if they are a vector intrinsic, we model
334     // them as having cost 1.
335     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
336       if (CI->cannotDuplicate() || CI->isConvergent())
337         // Blocks with NoDuplicate are modelled as having infinite cost, so they
338         // are never duplicated.
339         return ~0U;
340       else if (!isa<IntrinsicInst>(CI))
341         Size += 3;
342       else if (!CI->getType()->isVectorTy())
343         Size += 1;
344     }
345   }
346 
347   return Size > Bonus ? Size - Bonus : 0;
348 }
349 
350 /// FindLoopHeaders - We do not want jump threading to turn proper loop
351 /// structures into irreducible loops.  Doing this breaks up the loop nesting
352 /// hierarchy and pessimizes later transformations.  To prevent this from
353 /// happening, we first have to find the loop headers.  Here we approximate this
354 /// by finding targets of backedges in the CFG.
355 ///
356 /// Note that there definitely are cases when we want to allow threading of
357 /// edges across a loop header.  For example, threading a jump from outside the
358 /// loop (the preheader) to an exit block of the loop is definitely profitable.
359 /// It is also almost always profitable to thread backedges from within the loop
360 /// to exit blocks, and is often profitable to thread backedges to other blocks
361 /// within the loop (forming a nested loop).  This simple analysis is not rich
362 /// enough to track all of these properties and keep it up-to-date as the CFG
363 /// mutates, so we don't allow any of these transformations.
364 ///
365 void JumpThreading::FindLoopHeaders(Function &F) {
366   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
367   FindFunctionBackedges(F, Edges);
368 
369   for (const auto &Edge : Edges)
370     LoopHeaders.insert(Edge.second);
371 }
372 
373 /// getKnownConstant - Helper method to determine if we can thread over a
374 /// terminator with the given value as its condition, and if so what value to
375 /// use for that. What kind of value this is depends on whether we want an
376 /// integer or a block address, but an undef is always accepted.
377 /// Returns null if Val is null or not an appropriate constant.
378 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
379   if (!Val)
380     return nullptr;
381 
382   // Undef is "known" enough.
383   if (UndefValue *U = dyn_cast<UndefValue>(Val))
384     return U;
385 
386   if (Preference == WantBlockAddress)
387     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
388 
389   return dyn_cast<ConstantInt>(Val);
390 }
391 
392 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
393 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
394 /// in any of our predecessors.  If so, return the known list of value and pred
395 /// BB in the result vector.
396 ///
397 /// This returns true if there were any known values.
398 ///
399 bool JumpThreading::ComputeValueKnownInPredecessors(
400     Value *V, BasicBlock *BB, PredValueInfo &Result,
401     ConstantPreference Preference, bool &Changed, Instruction *CxtI) {
402   // This method walks up use-def chains recursively.  Because of this, we could
403   // get into an infinite loop going around loops in the use-def chain.  To
404   // prevent this, keep track of what (value, block) pairs we've already visited
405   // and terminate the search if we loop back to them
406   if (!RecursionSet.insert(std::make_pair(V, BB)).second)
407     return false;
408 
409   // An RAII help to remove this pair from the recursion set once the recursion
410   // stack pops back out again.
411   RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
412 
413   // Simplify the instruction before inferring the value.
414   Instruction *I = dyn_cast<Instruction>(V);
415   if (I && !isa<PHINode>(I))
416     if (auto *NewV = SimplifyInstruction(I, BB->getModule()->getDataLayout())) {
417       I->replaceAllUsesWith(NewV);
418       I->eraseFromParent();
419       V = NewV;
420       Changed = true;
421     }
422 
423   // If V is a constant, then it is known in all predecessors.
424   if (Constant *KC = getKnownConstant(V, Preference)) {
425     for (BasicBlock *Pred : predecessors(BB))
426       Result.push_back(std::make_pair(KC, Pred));
427 
428     return !Result.empty();
429   }
430 
431   // If V is a non-instruction value, or an instruction in a different block,
432   // then it can't be derived from a PHI.
433   I = dyn_cast<Instruction>(V);
434   if (!I || I->getParent() != BB) {
435 
436     // Okay, if this is a live-in value, see if it has a known value at the end
437     // of any of our predecessors.
438     //
439     // FIXME: This should be an edge property, not a block end property.
440     /// TODO: Per PR2563, we could infer value range information about a
441     /// predecessor based on its terminator.
442     //
443     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
444     // "I" is a non-local compare-with-a-constant instruction.  This would be
445     // able to handle value inequalities better, for example if the compare is
446     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
447     // Perhaps getConstantOnEdge should be smart enough to do this?
448 
449     for (BasicBlock *P : predecessors(BB)) {
450       // If the value is known by LazyValueInfo to be a constant in a
451       // predecessor, use that information to try to thread this block.
452       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
453       if (Constant *KC = getKnownConstant(PredCst, Preference))
454         Result.push_back(std::make_pair(KC, P));
455     }
456 
457     return !Result.empty();
458   }
459 
460   /// If I is a PHI node, then we know the incoming values for any constants.
461   if (PHINode *PN = dyn_cast<PHINode>(I)) {
462     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
463       Value *InVal = PN->getIncomingValue(i);
464       if (Constant *KC = getKnownConstant(InVal, Preference)) {
465         Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
466       } else {
467         Constant *CI = LVI->getConstantOnEdge(InVal,
468                                               PN->getIncomingBlock(i),
469                                               BB, CxtI);
470         if (Constant *KC = getKnownConstant(CI, Preference))
471           Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
472       }
473     }
474 
475     return !Result.empty();
476   }
477 
478   PredValueInfoTy LHSVals, RHSVals;
479 
480   // Handle some boolean conditions.
481   if (I->getType()->getPrimitiveSizeInBits() == 1) {
482     assert(Preference == WantInteger && "One-bit non-integer type?");
483     // X | true -> true
484     // X & false -> false
485     if (I->getOpcode() == Instruction::Or ||
486         I->getOpcode() == Instruction::And) {
487       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
488                                       WantInteger, Changed, CxtI);
489       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
490                                       WantInteger, Changed, CxtI);
491 
492       if (LHSVals.empty() && RHSVals.empty())
493         return false;
494 
495       ConstantInt *InterestingVal;
496       if (I->getOpcode() == Instruction::Or)
497         InterestingVal = ConstantInt::getTrue(I->getContext());
498       else
499         InterestingVal = ConstantInt::getFalse(I->getContext());
500 
501       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
502 
503       // Scan for the sentinel.  If we find an undef, force it to the
504       // interesting value: x|undef -> true and x&undef -> false.
505       for (const auto &LHSVal : LHSVals)
506         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
507           Result.emplace_back(InterestingVal, LHSVal.second);
508           LHSKnownBBs.insert(LHSVal.second);
509         }
510       for (const auto &RHSVal : RHSVals)
511         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
512           // If we already inferred a value for this block on the LHS, don't
513           // re-add it.
514           if (!LHSKnownBBs.count(RHSVal.second))
515             Result.emplace_back(InterestingVal, RHSVal.second);
516         }
517 
518       return !Result.empty();
519     }
520 
521     // Handle the NOT form of XOR.
522     if (I->getOpcode() == Instruction::Xor &&
523         isa<ConstantInt>(I->getOperand(1)) &&
524         cast<ConstantInt>(I->getOperand(1))->isOne()) {
525       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, WantInteger,
526                                       Changed, CxtI);
527       if (Result.empty())
528         return false;
529 
530       // Invert the known values.
531       for (auto &R : Result)
532         R.first = ConstantExpr::getNot(R.first);
533 
534       return true;
535     }
536 
537   // Try to simplify some other binary operator values.
538   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
539     assert(Preference != WantBlockAddress
540             && "A binary operator creating a block address?");
541     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
542       PredValueInfoTy LHSVals;
543       ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
544                                       WantInteger, Changed, CxtI);
545 
546       // Try to use constant folding to simplify the binary operator.
547       for (const auto &LHSVal : LHSVals) {
548         Constant *V = LHSVal.first;
549         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
550 
551         if (Constant *KC = getKnownConstant(Folded, WantInteger))
552           Result.push_back(std::make_pair(KC, LHSVal.second));
553       }
554     }
555 
556     return !Result.empty();
557   }
558 
559   // Handle compare with phi operand, where the PHI is defined in this block.
560   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
561     assert(Preference == WantInteger && "Compares only produce integers");
562     PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
563     if (PN && PN->getParent() == BB) {
564       const DataLayout &DL = PN->getModule()->getDataLayout();
565       // We can do this simplification if any comparisons fold to true or false.
566       // See if any do.
567       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
568         BasicBlock *PredBB = PN->getIncomingBlock(i);
569         Value *LHS = PN->getIncomingValue(i);
570         Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
571 
572         Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL);
573         if (!Res) {
574           if (!isa<Constant>(RHS))
575             continue;
576 
577           LazyValueInfo::Tristate
578             ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
579                                            cast<Constant>(RHS), PredBB, BB,
580                                            CxtI ? CxtI : Cmp);
581           if (ResT == LazyValueInfo::Unknown)
582             continue;
583           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
584         }
585 
586         if (Constant *KC = getKnownConstant(Res, WantInteger))
587           Result.push_back(std::make_pair(KC, PredBB));
588       }
589 
590       return !Result.empty();
591     }
592 
593     // If comparing a live-in value against a constant, see if we know the
594     // live-in value on any predecessors.
595     if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
596       if (!isa<Instruction>(Cmp->getOperand(0)) ||
597           cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
598         Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
599 
600         for (BasicBlock *P : predecessors(BB)) {
601           // If the value is known by LazyValueInfo to be a constant in a
602           // predecessor, use that information to try to thread this block.
603           LazyValueInfo::Tristate Res =
604             LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
605                                     RHSCst, P, BB, CxtI ? CxtI : Cmp);
606           if (Res == LazyValueInfo::Unknown)
607             continue;
608 
609           Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
610           Result.push_back(std::make_pair(ResC, P));
611         }
612 
613         return !Result.empty();
614       }
615 
616       // Try to find a constant value for the LHS of a comparison,
617       // and evaluate it statically if we can.
618       if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
619         PredValueInfoTy LHSVals;
620         ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
621                                         WantInteger, Changed, CxtI);
622 
623         for (const auto &LHSVal : LHSVals) {
624           Constant *V = LHSVal.first;
625           Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
626                                                       V, CmpConst);
627           if (Constant *KC = getKnownConstant(Folded, WantInteger))
628             Result.push_back(std::make_pair(KC, LHSVal.second));
629         }
630 
631         return !Result.empty();
632       }
633     }
634   }
635 
636   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
637     // Handle select instructions where at least one operand is a known constant
638     // and we can figure out the condition value for any predecessor block.
639     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
640     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
641     PredValueInfoTy Conds;
642     if ((TrueVal || FalseVal) &&
643         ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
644                                         WantInteger, Changed, CxtI)) {
645       for (auto &C : Conds) {
646         Constant *Cond = C.first;
647 
648         // Figure out what value to use for the condition.
649         bool KnownCond;
650         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
651           // A known boolean.
652           KnownCond = CI->isOne();
653         } else {
654           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
655           // Either operand will do, so be sure to pick the one that's a known
656           // constant.
657           // FIXME: Do this more cleverly if both values are known constants?
658           KnownCond = (TrueVal != nullptr);
659         }
660 
661         // See if the select has a known constant value for this predecessor.
662         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
663           Result.push_back(std::make_pair(Val, C.second));
664       }
665 
666       return !Result.empty();
667     }
668   }
669 
670   // If all else fails, see if LVI can figure out a constant value for us.
671   Constant *CI = LVI->getConstant(V, BB, CxtI);
672   if (Constant *KC = getKnownConstant(CI, Preference)) {
673     for (BasicBlock *Pred : predecessors(BB))
674       Result.push_back(std::make_pair(KC, Pred));
675   }
676 
677   return !Result.empty();
678 }
679 
680 
681 
682 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
683 /// in an undefined jump, decide which block is best to revector to.
684 ///
685 /// Since we can pick an arbitrary destination, we pick the successor with the
686 /// fewest predecessors.  This should reduce the in-degree of the others.
687 ///
688 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
689   TerminatorInst *BBTerm = BB->getTerminator();
690   unsigned MinSucc = 0;
691   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
692   // Compute the successor with the minimum number of predecessors.
693   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
694   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
695     TestBB = BBTerm->getSuccessor(i);
696     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
697     if (NumPreds < MinNumPreds) {
698       MinSucc = i;
699       MinNumPreds = NumPreds;
700     }
701   }
702 
703   return MinSucc;
704 }
705 
706 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
707   if (!BB->hasAddressTaken()) return false;
708 
709   // If the block has its address taken, it may be a tree of dead constants
710   // hanging off of it.  These shouldn't keep the block alive.
711   BlockAddress *BA = BlockAddress::get(BB);
712   BA->removeDeadConstantUsers();
713   return !BA->use_empty();
714 }
715 
716 /// ProcessBlock - If there are any predecessors whose control can be threaded
717 /// through to a successor, transform them now.
718 bool JumpThreading::ProcessBlock(BasicBlock *BB) {
719   // If the block is trivially dead, just return and let the caller nuke it.
720   // This simplifies other transformations.
721   if (pred_empty(BB) &&
722       BB != &BB->getParent()->getEntryBlock())
723     return false;
724 
725   // If this block has a single predecessor, and if that pred has a single
726   // successor, merge the blocks.  This encourages recursive jump threading
727   // because now the condition in this block can be threaded through
728   // predecessors of our predecessor block.
729   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
730     const TerminatorInst *TI = SinglePred->getTerminator();
731     if (!TI->isExceptional() && TI->getNumSuccessors() == 1 &&
732         SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
733       // If SinglePred was a loop header, BB becomes one.
734       if (LoopHeaders.erase(SinglePred))
735         LoopHeaders.insert(BB);
736 
737       LVI->eraseBlock(SinglePred);
738       MergeBasicBlockIntoOnlyPred(BB);
739 
740       return true;
741     }
742   }
743 
744   if (TryToUnfoldSelectInCurrBB(BB))
745     return true;
746 
747   // What kind of constant we're looking for.
748   ConstantPreference Preference = WantInteger;
749 
750   // Look to see if the terminator is a conditional branch, switch or indirect
751   // branch, if not we can't thread it.
752   Value *Condition;
753   Instruction *Terminator = BB->getTerminator();
754   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
755     // Can't thread an unconditional jump.
756     if (BI->isUnconditional()) return false;
757     Condition = BI->getCondition();
758   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
759     Condition = SI->getCondition();
760   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
761     // Can't thread indirect branch with no successors.
762     if (IB->getNumSuccessors() == 0) return false;
763     Condition = IB->getAddress()->stripPointerCasts();
764     Preference = WantBlockAddress;
765   } else {
766     return false; // Must be an invoke.
767   }
768 
769   // Run constant folding to see if we can reduce the condition to a simple
770   // constant.
771   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
772     Value *SimpleVal =
773         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
774     if (SimpleVal) {
775       I->replaceAllUsesWith(SimpleVal);
776       I->eraseFromParent();
777       Condition = SimpleVal;
778     }
779   }
780 
781   // If the terminator is branching on an undef, we can pick any of the
782   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
783   if (isa<UndefValue>(Condition)) {
784     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
785 
786     // Fold the branch/switch.
787     TerminatorInst *BBTerm = BB->getTerminator();
788     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
789       if (i == BestSucc) continue;
790       BBTerm->getSuccessor(i)->removePredecessor(BB, true);
791     }
792 
793     DEBUG(dbgs() << "  In block '" << BB->getName()
794           << "' folding undef terminator: " << *BBTerm << '\n');
795     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
796     BBTerm->eraseFromParent();
797     return true;
798   }
799 
800   // If the terminator of this block is branching on a constant, simplify the
801   // terminator to an unconditional branch.  This can occur due to threading in
802   // other blocks.
803   if (getKnownConstant(Condition, Preference)) {
804     DEBUG(dbgs() << "  In block '" << BB->getName()
805           << "' folding terminator: " << *BB->getTerminator() << '\n');
806     ++NumFolds;
807     ConstantFoldTerminator(BB, true);
808     return true;
809   }
810 
811   Instruction *CondInst = dyn_cast<Instruction>(Condition);
812 
813   // All the rest of our checks depend on the condition being an instruction.
814   if (!CondInst) {
815     // FIXME: Unify this with code below.
816     if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
817       return true;
818     return false;
819   }
820 
821 
822   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
823     // If we're branching on a conditional, LVI might be able to determine
824     // it's value at the branch instruction.  We only handle comparisons
825     // against a constant at this time.
826     // TODO: This should be extended to handle switches as well.
827     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
828     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
829     if (CondBr && CondConst && CondBr->isConditional()) {
830       LazyValueInfo::Tristate Ret =
831         LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
832                             CondConst, CondBr);
833       if (Ret != LazyValueInfo::Unknown) {
834         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
835         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
836         CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
837         BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
838         CondBr->eraseFromParent();
839         if (CondCmp->use_empty())
840           CondCmp->eraseFromParent();
841         else if (CondCmp->getParent() == BB) {
842           // If the fact we just learned is true for all uses of the
843           // condition, replace it with a constant value
844           auto *CI = Ret == LazyValueInfo::True ?
845             ConstantInt::getTrue(CondCmp->getType()) :
846             ConstantInt::getFalse(CondCmp->getType());
847           CondCmp->replaceAllUsesWith(CI);
848           CondCmp->eraseFromParent();
849         }
850         return true;
851       }
852     }
853 
854     if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB))
855       return true;
856   }
857 
858   // Check for some cases that are worth simplifying.  Right now we want to look
859   // for loads that are used by a switch or by the condition for the branch.  If
860   // we see one, check to see if it's partially redundant.  If so, insert a PHI
861   // which can then be used to thread the values.
862   //
863   Value *SimplifyValue = CondInst;
864   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
865     if (isa<Constant>(CondCmp->getOperand(1)))
866       SimplifyValue = CondCmp->getOperand(0);
867 
868   // TODO: There are other places where load PRE would be profitable, such as
869   // more complex comparisons.
870   if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
871     if (SimplifyPartiallyRedundantLoad(LI))
872       return true;
873 
874 
875   // Handle a variety of cases where we are branching on something derived from
876   // a PHI node in the current block.  If we can prove that any predecessors
877   // compute a predictable value based on a PHI node, thread those predecessors.
878   //
879   if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
880     return true;
881 
882   // If this is an otherwise-unfoldable branch on a phi node in the current
883   // block, see if we can simplify.
884   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
885     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
886       return ProcessBranchOnPHI(PN);
887 
888 
889   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
890   if (CondInst->getOpcode() == Instruction::Xor &&
891       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
892     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
893 
894   // Search for a stronger dominating condition that can be used to simplify a
895   // conditional branch leaving BB.
896   if (ProcessImpliedCondition(BB))
897     return true;
898 
899   return false;
900 }
901 
902 bool JumpThreading::ProcessImpliedCondition(BasicBlock *BB) {
903   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
904   if (!BI || !BI->isConditional())
905     return false;
906 
907   Value *Cond = BI->getCondition();
908   BasicBlock *CurrentBB = BB;
909   BasicBlock *CurrentPred = BB->getSinglePredecessor();
910   unsigned Iter = 0;
911 
912   auto &DL = BB->getModule()->getDataLayout();
913 
914   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
915     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
916     if (!PBI || !PBI->isConditional() || PBI->getSuccessor(0) != CurrentBB)
917       return false;
918 
919     if (isImpliedCondition(PBI->getCondition(), Cond, DL)) {
920       BI->getSuccessor(1)->removePredecessor(BB);
921       BranchInst::Create(BI->getSuccessor(0), BI);
922       BI->eraseFromParent();
923       return true;
924     }
925     CurrentBB = CurrentPred;
926     CurrentPred = CurrentBB->getSinglePredecessor();
927   }
928 
929   return false;
930 }
931 
932 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
933 /// load instruction, eliminate it by replacing it with a PHI node.  This is an
934 /// important optimization that encourages jump threading, and needs to be run
935 /// interlaced with other jump threading tasks.
936 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
937   // Don't hack volatile/atomic loads.
938   if (!LI->isSimple()) return false;
939 
940   // If the load is defined in a block with exactly one predecessor, it can't be
941   // partially redundant.
942   BasicBlock *LoadBB = LI->getParent();
943   if (LoadBB->getSinglePredecessor())
944     return false;
945 
946   // If the load is defined in an EH pad, it can't be partially redundant,
947   // because the edges between the invoke and the EH pad cannot have other
948   // instructions between them.
949   if (LoadBB->isEHPad())
950     return false;
951 
952   Value *LoadedPtr = LI->getOperand(0);
953 
954   // If the loaded operand is defined in the LoadBB, it can't be available.
955   // TODO: Could do simple PHI translation, that would be fun :)
956   if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
957     if (PtrOp->getParent() == LoadBB)
958       return false;
959 
960   // Scan a few instructions up from the load, to see if it is obviously live at
961   // the entry to its block.
962   BasicBlock::iterator BBIt(LI);
963 
964   if (Value *AvailableVal =
965         FindAvailableLoadedValue(LI, LoadBB, BBIt, DefMaxInstsToScan)) {
966     // If the value of the load is locally available within the block, just use
967     // it.  This frequently occurs for reg2mem'd allocas.
968     //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
969 
970     // If the returned value is the load itself, replace with an undef. This can
971     // only happen in dead loops.
972     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
973     if (AvailableVal->getType() != LI->getType())
974       AvailableVal =
975           CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI);
976     LI->replaceAllUsesWith(AvailableVal);
977     LI->eraseFromParent();
978     return true;
979   }
980 
981   // Otherwise, if we scanned the whole block and got to the top of the block,
982   // we know the block is locally transparent to the load.  If not, something
983   // might clobber its value.
984   if (BBIt != LoadBB->begin())
985     return false;
986 
987   // If all of the loads and stores that feed the value have the same AA tags,
988   // then we can propagate them onto any newly inserted loads.
989   AAMDNodes AATags;
990   LI->getAAMetadata(AATags);
991 
992   SmallPtrSet<BasicBlock*, 8> PredsScanned;
993   typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
994   AvailablePredsTy AvailablePreds;
995   BasicBlock *OneUnavailablePred = nullptr;
996 
997   // If we got here, the loaded value is transparent through to the start of the
998   // block.  Check to see if it is available in any of the predecessor blocks.
999   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1000     // If we already scanned this predecessor, skip it.
1001     if (!PredsScanned.insert(PredBB).second)
1002       continue;
1003 
1004     // Scan the predecessor to see if the value is available in the pred.
1005     BBIt = PredBB->end();
1006     AAMDNodes ThisAATags;
1007     Value *PredAvailable = FindAvailableLoadedValue(LI, PredBB, BBIt,
1008                                                     DefMaxInstsToScan,
1009                                                     nullptr, &ThisAATags);
1010     if (!PredAvailable) {
1011       OneUnavailablePred = PredBB;
1012       continue;
1013     }
1014 
1015     // If AA tags disagree or are not present, forget about them.
1016     if (AATags != ThisAATags) AATags = AAMDNodes();
1017 
1018     // If so, this load is partially redundant.  Remember this info so that we
1019     // can create a PHI node.
1020     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
1021   }
1022 
1023   // If the loaded value isn't available in any predecessor, it isn't partially
1024   // redundant.
1025   if (AvailablePreds.empty()) return false;
1026 
1027   // Okay, the loaded value is available in at least one (and maybe all!)
1028   // predecessors.  If the value is unavailable in more than one unique
1029   // predecessor, we want to insert a merge block for those common predecessors.
1030   // This ensures that we only have to insert one reload, thus not increasing
1031   // code size.
1032   BasicBlock *UnavailablePred = nullptr;
1033 
1034   // If there is exactly one predecessor where the value is unavailable, the
1035   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1036   // unconditional branch, we know that it isn't a critical edge.
1037   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1038       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1039     UnavailablePred = OneUnavailablePred;
1040   } else if (PredsScanned.size() != AvailablePreds.size()) {
1041     // Otherwise, we had multiple unavailable predecessors or we had a critical
1042     // edge from the one.
1043     SmallVector<BasicBlock*, 8> PredsToSplit;
1044     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1045 
1046     for (const auto &AvailablePred : AvailablePreds)
1047       AvailablePredSet.insert(AvailablePred.first);
1048 
1049     // Add all the unavailable predecessors to the PredsToSplit list.
1050     for (BasicBlock *P : predecessors(LoadBB)) {
1051       // If the predecessor is an indirect goto, we can't split the edge.
1052       if (isa<IndirectBrInst>(P->getTerminator()))
1053         return false;
1054 
1055       if (!AvailablePredSet.count(P))
1056         PredsToSplit.push_back(P);
1057     }
1058 
1059     // Split them out to their own block.
1060     UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1061   }
1062 
1063   // If the value isn't available in all predecessors, then there will be
1064   // exactly one where it isn't available.  Insert a load on that edge and add
1065   // it to the AvailablePreds list.
1066   if (UnavailablePred) {
1067     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1068            "Can't handle critical edge here!");
1069     LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
1070                                  LI->getAlignment(),
1071                                  UnavailablePred->getTerminator());
1072     NewVal->setDebugLoc(LI->getDebugLoc());
1073     if (AATags)
1074       NewVal->setAAMetadata(AATags);
1075 
1076     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
1077   }
1078 
1079   // Now we know that each predecessor of this block has a value in
1080   // AvailablePreds, sort them for efficient access as we're walking the preds.
1081   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1082 
1083   // Create a PHI node at the start of the block for the PRE'd load value.
1084   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1085   PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "",
1086                                 &LoadBB->front());
1087   PN->takeName(LI);
1088   PN->setDebugLoc(LI->getDebugLoc());
1089 
1090   // Insert new entries into the PHI for each predecessor.  A single block may
1091   // have multiple entries here.
1092   for (pred_iterator PI = PB; PI != PE; ++PI) {
1093     BasicBlock *P = *PI;
1094     AvailablePredsTy::iterator I =
1095       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
1096                        std::make_pair(P, (Value*)nullptr));
1097 
1098     assert(I != AvailablePreds.end() && I->first == P &&
1099            "Didn't find entry for predecessor!");
1100 
1101     // If we have an available predecessor but it requires casting, insert the
1102     // cast in the predecessor and use the cast. Note that we have to update the
1103     // AvailablePreds vector as we go so that all of the PHI entries for this
1104     // predecessor use the same bitcast.
1105     Value *&PredV = I->second;
1106     if (PredV->getType() != LI->getType())
1107       PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "",
1108                                                P->getTerminator());
1109 
1110     PN->addIncoming(PredV, I->first);
1111   }
1112 
1113   //cerr << "PRE: " << *LI << *PN << "\n";
1114 
1115   LI->replaceAllUsesWith(PN);
1116   LI->eraseFromParent();
1117 
1118   return true;
1119 }
1120 
1121 /// FindMostPopularDest - The specified list contains multiple possible
1122 /// threadable destinations.  Pick the one that occurs the most frequently in
1123 /// the list.
1124 static BasicBlock *
1125 FindMostPopularDest(BasicBlock *BB,
1126                     const SmallVectorImpl<std::pair<BasicBlock*,
1127                                   BasicBlock*> > &PredToDestList) {
1128   assert(!PredToDestList.empty());
1129 
1130   // Determine popularity.  If there are multiple possible destinations, we
1131   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1132   // blocks with known and real destinations to threading undef.  We'll handle
1133   // them later if interesting.
1134   DenseMap<BasicBlock*, unsigned> DestPopularity;
1135   for (const auto &PredToDest : PredToDestList)
1136     if (PredToDest.second)
1137       DestPopularity[PredToDest.second]++;
1138 
1139   // Find the most popular dest.
1140   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1141   BasicBlock *MostPopularDest = DPI->first;
1142   unsigned Popularity = DPI->second;
1143   SmallVector<BasicBlock*, 4> SamePopularity;
1144 
1145   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1146     // If the popularity of this entry isn't higher than the popularity we've
1147     // seen so far, ignore it.
1148     if (DPI->second < Popularity)
1149       ; // ignore.
1150     else if (DPI->second == Popularity) {
1151       // If it is the same as what we've seen so far, keep track of it.
1152       SamePopularity.push_back(DPI->first);
1153     } else {
1154       // If it is more popular, remember it.
1155       SamePopularity.clear();
1156       MostPopularDest = DPI->first;
1157       Popularity = DPI->second;
1158     }
1159   }
1160 
1161   // Okay, now we know the most popular destination.  If there is more than one
1162   // destination, we need to determine one.  This is arbitrary, but we need
1163   // to make a deterministic decision.  Pick the first one that appears in the
1164   // successor list.
1165   if (!SamePopularity.empty()) {
1166     SamePopularity.push_back(MostPopularDest);
1167     TerminatorInst *TI = BB->getTerminator();
1168     for (unsigned i = 0; ; ++i) {
1169       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1170 
1171       if (std::find(SamePopularity.begin(), SamePopularity.end(),
1172                     TI->getSuccessor(i)) == SamePopularity.end())
1173         continue;
1174 
1175       MostPopularDest = TI->getSuccessor(i);
1176       break;
1177     }
1178   }
1179 
1180   // Okay, we have finally picked the most popular destination.
1181   return MostPopularDest;
1182 }
1183 
1184 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1185                                            ConstantPreference Preference,
1186                                            Instruction *CxtI) {
1187   // If threading this would thread across a loop header, don't even try to
1188   // thread the edge.
1189   if (LoopHeaders.count(BB))
1190     return false;
1191 
1192   PredValueInfoTy PredValues;
1193   bool Changed = false;
1194   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference,
1195                                        Changed, CxtI))
1196     return Changed;
1197 
1198   assert(!PredValues.empty() &&
1199          "ComputeValueKnownInPredecessors returned true with no values");
1200 
1201   DEBUG(dbgs() << "IN BB: " << *BB;
1202         for (const auto &PredValue : PredValues) {
1203           dbgs() << "  BB '" << BB->getName() << "': FOUND condition = "
1204             << *PredValue.first
1205             << " for pred '" << PredValue.second->getName() << "'.\n";
1206         });
1207 
1208   // Decide what we want to thread through.  Convert our list of known values to
1209   // a list of known destinations for each pred.  This also discards duplicate
1210   // predecessors and keeps track of the undefined inputs (which are represented
1211   // as a null dest in the PredToDestList).
1212   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1213   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1214 
1215   BasicBlock *OnlyDest = nullptr;
1216   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1217 
1218   for (const auto &PredValue : PredValues) {
1219     BasicBlock *Pred = PredValue.second;
1220     if (!SeenPreds.insert(Pred).second)
1221       continue;  // Duplicate predecessor entry.
1222 
1223     // If the predecessor ends with an indirect goto, we can't change its
1224     // destination.
1225     if (isa<IndirectBrInst>(Pred->getTerminator()))
1226       continue;
1227 
1228     Constant *Val = PredValue.first;
1229 
1230     BasicBlock *DestBB;
1231     if (isa<UndefValue>(Val))
1232       DestBB = nullptr;
1233     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1234       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1235     else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1236       DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor();
1237     } else {
1238       assert(isa<IndirectBrInst>(BB->getTerminator())
1239               && "Unexpected terminator");
1240       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1241     }
1242 
1243     // If we have exactly one destination, remember it for efficiency below.
1244     if (PredToDestList.empty())
1245       OnlyDest = DestBB;
1246     else if (OnlyDest != DestBB)
1247       OnlyDest = MultipleDestSentinel;
1248 
1249     PredToDestList.push_back(std::make_pair(Pred, DestBB));
1250   }
1251 
1252   // If all edges were unthreadable, we fail.
1253   if (PredToDestList.empty())
1254     return Changed;
1255 
1256   // Determine which is the most common successor.  If we have many inputs and
1257   // this block is a switch, we want to start by threading the batch that goes
1258   // to the most popular destination first.  If we only know about one
1259   // threadable destination (the common case) we can avoid this.
1260   BasicBlock *MostPopularDest = OnlyDest;
1261 
1262   if (MostPopularDest == MultipleDestSentinel)
1263     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1264 
1265   // Now that we know what the most popular destination is, factor all
1266   // predecessors that will jump to it into a single predecessor.
1267   SmallVector<BasicBlock*, 16> PredsToFactor;
1268   for (const auto &PredToDest : PredToDestList)
1269     if (PredToDest.second == MostPopularDest) {
1270       BasicBlock *Pred = PredToDest.first;
1271 
1272       // This predecessor may be a switch or something else that has multiple
1273       // edges to the block.  Factor each of these edges by listing them
1274       // according to # occurrences in PredsToFactor.
1275       for (BasicBlock *Succ : successors(Pred))
1276         if (Succ == BB)
1277           PredsToFactor.push_back(Pred);
1278     }
1279 
1280   // If the threadable edges are branching on an undefined value, we get to pick
1281   // the destination that these predecessors should get to.
1282   if (!MostPopularDest)
1283     MostPopularDest = BB->getTerminator()->
1284                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1285 
1286   // Ok, try to thread it!
1287   Changed |= ThreadEdge(BB, PredsToFactor, MostPopularDest);
1288   return Changed;
1289 }
1290 
1291 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1292 /// a PHI node in the current block.  See if there are any simplifications we
1293 /// can do based on inputs to the phi node.
1294 ///
1295 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
1296   BasicBlock *BB = PN->getParent();
1297 
1298   // TODO: We could make use of this to do it once for blocks with common PHI
1299   // values.
1300   SmallVector<BasicBlock*, 1> PredBBs;
1301   PredBBs.resize(1);
1302 
1303   // If any of the predecessor blocks end in an unconditional branch, we can
1304   // *duplicate* the conditional branch into that block in order to further
1305   // encourage jump threading and to eliminate cases where we have branch on a
1306   // phi of an icmp (branch on icmp is much better).
1307   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1308     BasicBlock *PredBB = PN->getIncomingBlock(i);
1309     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1310       if (PredBr->isUnconditional()) {
1311         PredBBs[0] = PredBB;
1312         // Try to duplicate BB into PredBB.
1313         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1314           return true;
1315       }
1316   }
1317 
1318   return false;
1319 }
1320 
1321 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1322 /// a xor instruction in the current block.  See if there are any
1323 /// simplifications we can do based on inputs to the xor.
1324 ///
1325 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
1326   BasicBlock *BB = BO->getParent();
1327 
1328   // If either the LHS or RHS of the xor is a constant, don't do this
1329   // optimization.
1330   if (isa<ConstantInt>(BO->getOperand(0)) ||
1331       isa<ConstantInt>(BO->getOperand(1)))
1332     return false;
1333 
1334   // If the first instruction in BB isn't a phi, we won't be able to infer
1335   // anything special about any particular predecessor.
1336   if (!isa<PHINode>(BB->front()))
1337     return false;
1338 
1339   // If we have a xor as the branch input to this block, and we know that the
1340   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1341   // the condition into the predecessor and fix that value to true, saving some
1342   // logical ops on that path and encouraging other paths to simplify.
1343   //
1344   // This copies something like this:
1345   //
1346   //  BB:
1347   //    %X = phi i1 [1],  [%X']
1348   //    %Y = icmp eq i32 %A, %B
1349   //    %Z = xor i1 %X, %Y
1350   //    br i1 %Z, ...
1351   //
1352   // Into:
1353   //  BB':
1354   //    %Y = icmp ne i32 %A, %B
1355   //    br i1 %Y, ...
1356 
1357   PredValueInfoTy XorOpValues;
1358   bool isLHS = true;
1359   bool Changed = false;
1360   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1361                                        WantInteger, Changed, BO)) {
1362     assert(XorOpValues.empty());
1363     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1364                                          WantInteger, Changed, BO))
1365       return Changed;
1366     isLHS = false;
1367   }
1368 
1369   assert(!XorOpValues.empty() &&
1370          "ComputeValueKnownInPredecessors returned true with no values");
1371 
1372   // Scan the information to see which is most popular: true or false.  The
1373   // predecessors can be of the set true, false, or undef.
1374   unsigned NumTrue = 0, NumFalse = 0;
1375   for (const auto &XorOpValue : XorOpValues) {
1376     if (isa<UndefValue>(XorOpValue.first))
1377       // Ignore undefs for the count.
1378       continue;
1379     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1380       ++NumFalse;
1381     else
1382       ++NumTrue;
1383   }
1384 
1385   // Determine which value to split on, true, false, or undef if neither.
1386   ConstantInt *SplitVal = nullptr;
1387   if (NumTrue > NumFalse)
1388     SplitVal = ConstantInt::getTrue(BB->getContext());
1389   else if (NumTrue != 0 || NumFalse != 0)
1390     SplitVal = ConstantInt::getFalse(BB->getContext());
1391 
1392   // Collect all of the blocks that this can be folded into so that we can
1393   // factor this once and clone it once.
1394   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1395   for (const auto &XorOpValue : XorOpValues) {
1396     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1397       continue;
1398 
1399     BlocksToFoldInto.push_back(XorOpValue.second);
1400   }
1401 
1402   // If we inferred a value for all of the predecessors, then duplication won't
1403   // help us.  However, we can just replace the LHS or RHS with the constant.
1404   if (BlocksToFoldInto.size() ==
1405       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1406     if (!SplitVal) {
1407       // If all preds provide undef, just nuke the xor, because it is undef too.
1408       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1409       BO->eraseFromParent();
1410     } else if (SplitVal->isZero()) {
1411       // If all preds provide 0, replace the xor with the other input.
1412       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1413       BO->eraseFromParent();
1414     } else {
1415       // If all preds provide 1, set the computed value to 1.
1416       BO->setOperand(!isLHS, SplitVal);
1417     }
1418 
1419     return true;
1420   }
1421 
1422   // Try to duplicate BB into PredBB.
1423   Changed |= DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1424   return Changed;
1425 }
1426 
1427 
1428 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1429 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1430 /// NewPred using the entries from OldPred (suitably mapped).
1431 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1432                                             BasicBlock *OldPred,
1433                                             BasicBlock *NewPred,
1434                                      DenseMap<Instruction*, Value*> &ValueMap) {
1435   for (BasicBlock::iterator PNI = PHIBB->begin();
1436        PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1437     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1438     // DestBlock.
1439     Value *IV = PN->getIncomingValueForBlock(OldPred);
1440 
1441     // Remap the value if necessary.
1442     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1443       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1444       if (I != ValueMap.end())
1445         IV = I->second;
1446     }
1447 
1448     PN->addIncoming(IV, NewPred);
1449   }
1450 }
1451 
1452 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1453 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1454 /// across BB.  Transform the IR to reflect this change.
1455 bool JumpThreading::ThreadEdge(BasicBlock *BB,
1456                                const SmallVectorImpl<BasicBlock*> &PredBBs,
1457                                BasicBlock *SuccBB) {
1458   // If threading to the same block as we come from, we would infinite loop.
1459   if (SuccBB == BB) {
1460     DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1461           << "' - would thread to self!\n");
1462     return false;
1463   }
1464 
1465   // If threading this would thread across a loop header, don't thread the edge.
1466   // See the comments above FindLoopHeaders for justifications and caveats.
1467   if (LoopHeaders.count(BB)) {
1468     DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
1469           << "' to dest BB '" << SuccBB->getName()
1470           << "' - it might create an irreducible loop!\n");
1471     return false;
1472   }
1473 
1474   unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, BBDupThreshold);
1475   if (JumpThreadCost > BBDupThreshold) {
1476     DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1477           << "' - Cost is too high: " << JumpThreadCost << "\n");
1478     return false;
1479   }
1480 
1481   // And finally, do it!  Start by factoring the predecessors if needed.
1482   BasicBlock *PredBB;
1483   if (PredBBs.size() == 1)
1484     PredBB = PredBBs[0];
1485   else {
1486     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1487           << " common predecessors.\n");
1488     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1489   }
1490 
1491   // And finally, do it!
1492   DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1493         << SuccBB->getName() << "' with cost: " << JumpThreadCost
1494         << ", across block:\n    "
1495         << *BB << "\n");
1496 
1497   LVI->threadEdge(PredBB, BB, SuccBB);
1498 
1499   // We are going to have to map operands from the original BB block to the new
1500   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1501   // account for entry from PredBB.
1502   DenseMap<Instruction*, Value*> ValueMapping;
1503 
1504   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1505                                          BB->getName()+".thread",
1506                                          BB->getParent(), BB);
1507   NewBB->moveAfter(PredBB);
1508 
1509   // Set the block frequency of NewBB.
1510   if (HasProfileData) {
1511     auto NewBBFreq =
1512         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
1513     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
1514   }
1515 
1516   BasicBlock::iterator BI = BB->begin();
1517   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1518     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1519 
1520   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1521   // mapping and using it to remap operands in the cloned instructions.
1522   for (; !isa<TerminatorInst>(BI); ++BI) {
1523     Instruction *New = BI->clone();
1524     New->setName(BI->getName());
1525     NewBB->getInstList().push_back(New);
1526     ValueMapping[&*BI] = New;
1527 
1528     // Remap operands to patch up intra-block references.
1529     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1530       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1531         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1532         if (I != ValueMapping.end())
1533           New->setOperand(i, I->second);
1534       }
1535   }
1536 
1537   // We didn't copy the terminator from BB over to NewBB, because there is now
1538   // an unconditional jump to SuccBB.  Insert the unconditional jump.
1539   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
1540   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
1541 
1542   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1543   // PHI nodes for NewBB now.
1544   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1545 
1546   // If there were values defined in BB that are used outside the block, then we
1547   // now have to update all uses of the value to use either the original value,
1548   // the cloned value, or some PHI derived value.  This can require arbitrary
1549   // PHI insertion, of which we are prepared to do, clean these up now.
1550   SSAUpdater SSAUpdate;
1551   SmallVector<Use*, 16> UsesToRename;
1552   for (Instruction &I : *BB) {
1553     // Scan all uses of this instruction to see if it is used outside of its
1554     // block, and if so, record them in UsesToRename.
1555     for (Use &U : I.uses()) {
1556       Instruction *User = cast<Instruction>(U.getUser());
1557       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1558         if (UserPN->getIncomingBlock(U) == BB)
1559           continue;
1560       } else if (User->getParent() == BB)
1561         continue;
1562 
1563       UsesToRename.push_back(&U);
1564     }
1565 
1566     // If there are no uses outside the block, we're done with this instruction.
1567     if (UsesToRename.empty())
1568       continue;
1569 
1570     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
1571 
1572     // We found a use of I outside of BB.  Rename all uses of I that are outside
1573     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1574     // with the two values we know.
1575     SSAUpdate.Initialize(I.getType(), I.getName());
1576     SSAUpdate.AddAvailableValue(BB, &I);
1577     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
1578 
1579     while (!UsesToRename.empty())
1580       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1581     DEBUG(dbgs() << "\n");
1582   }
1583 
1584 
1585   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1586   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1587   // us to simplify any PHI nodes in BB.
1588   TerminatorInst *PredTerm = PredBB->getTerminator();
1589   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1590     if (PredTerm->getSuccessor(i) == BB) {
1591       BB->removePredecessor(PredBB, true);
1592       PredTerm->setSuccessor(i, NewBB);
1593     }
1594 
1595   // At this point, the IR is fully up to date and consistent.  Do a quick scan
1596   // over the new instructions and zap any that are constants or dead.  This
1597   // frequently happens because of phi translation.
1598   SimplifyInstructionsInBlock(NewBB, TLI);
1599 
1600   // Update the edge weight from BB to SuccBB, which should be less than before.
1601   UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
1602 
1603   // Threaded an edge!
1604   ++NumThreads;
1605   return true;
1606 }
1607 
1608 /// Create a new basic block that will be the predecessor of BB and successor of
1609 /// all blocks in Preds. When profile data is availble, update the frequency of
1610 /// this new block.
1611 BasicBlock *JumpThreading::SplitBlockPreds(BasicBlock *BB,
1612                                            ArrayRef<BasicBlock *> Preds,
1613                                            const char *Suffix) {
1614   // Collect the frequencies of all predecessors of BB, which will be used to
1615   // update the edge weight on BB->SuccBB.
1616   BlockFrequency PredBBFreq(0);
1617   if (HasProfileData)
1618     for (auto Pred : Preds)
1619       PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB);
1620 
1621   BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix);
1622 
1623   // Set the block frequency of the newly created PredBB, which is the sum of
1624   // frequencies of Preds.
1625   if (HasProfileData)
1626     BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency());
1627   return PredBB;
1628 }
1629 
1630 /// Update the block frequency of BB and branch weight and the metadata on the
1631 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
1632 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
1633 void JumpThreading::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
1634                                                  BasicBlock *BB,
1635                                                  BasicBlock *NewBB,
1636                                                  BasicBlock *SuccBB) {
1637   if (!HasProfileData)
1638     return;
1639 
1640   assert(BFI && BPI && "BFI & BPI should have been created here");
1641 
1642   // As the edge from PredBB to BB is deleted, we have to update the block
1643   // frequency of BB.
1644   auto BBOrigFreq = BFI->getBlockFreq(BB);
1645   auto NewBBFreq = BFI->getBlockFreq(NewBB);
1646   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
1647   auto BBNewFreq = BBOrigFreq - NewBBFreq;
1648   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
1649 
1650   // Collect updated outgoing edges' frequencies from BB and use them to update
1651   // edge probabilities.
1652   SmallVector<uint64_t, 4> BBSuccFreq;
1653   for (BasicBlock *Succ : successors(BB)) {
1654     auto SuccFreq = (Succ == SuccBB)
1655                         ? BB2SuccBBFreq - NewBBFreq
1656                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
1657     BBSuccFreq.push_back(SuccFreq.getFrequency());
1658   }
1659 
1660   uint64_t MaxBBSuccFreq =
1661       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
1662 
1663   SmallVector<BranchProbability, 4> BBSuccProbs;
1664   if (MaxBBSuccFreq == 0)
1665     BBSuccProbs.assign(BBSuccFreq.size(),
1666                        {1, static_cast<unsigned>(BBSuccFreq.size())});
1667   else {
1668     for (uint64_t Freq : BBSuccFreq)
1669       BBSuccProbs.push_back(
1670           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
1671     // Normalize edge probabilities so that they sum up to one.
1672     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
1673                                               BBSuccProbs.end());
1674   }
1675 
1676   // Update edge probabilities in BPI.
1677   for (int I = 0, E = BBSuccProbs.size(); I < E; I++)
1678     BPI->setEdgeProbability(BB, I, BBSuccProbs[I]);
1679 
1680   if (BBSuccProbs.size() >= 2) {
1681     SmallVector<uint32_t, 4> Weights;
1682     for (auto Prob : BBSuccProbs)
1683       Weights.push_back(Prob.getNumerator());
1684 
1685     auto TI = BB->getTerminator();
1686     TI->setMetadata(
1687         LLVMContext::MD_prof,
1688         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
1689   }
1690 }
1691 
1692 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1693 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1694 /// If we can duplicate the contents of BB up into PredBB do so now, this
1695 /// improves the odds that the branch will be on an analyzable instruction like
1696 /// a compare.
1697 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1698                                  const SmallVectorImpl<BasicBlock *> &PredBBs) {
1699   assert(!PredBBs.empty() && "Can't handle an empty set");
1700 
1701   // If BB is a loop header, then duplicating this block outside the loop would
1702   // cause us to transform this into an irreducible loop, don't do this.
1703   // See the comments above FindLoopHeaders for justifications and caveats.
1704   if (LoopHeaders.count(BB)) {
1705     DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
1706           << "' into predecessor block '" << PredBBs[0]->getName()
1707           << "' - it might create an irreducible loop!\n");
1708     return false;
1709   }
1710 
1711   unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, BBDupThreshold);
1712   if (DuplicationCost > BBDupThreshold) {
1713     DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
1714           << "' - Cost is too high: " << DuplicationCost << "\n");
1715     return false;
1716   }
1717 
1718   // And finally, do it!  Start by factoring the predecessors if needed.
1719   BasicBlock *PredBB;
1720   if (PredBBs.size() == 1)
1721     PredBB = PredBBs[0];
1722   else {
1723     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1724           << " common predecessors.\n");
1725     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1726   }
1727 
1728   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1729   // of PredBB.
1730   DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1731         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1732         << DuplicationCost << " block is:" << *BB << "\n");
1733 
1734   // Unless PredBB ends with an unconditional branch, split the edge so that we
1735   // can just clone the bits from BB into the end of the new PredBB.
1736   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1737 
1738   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
1739     PredBB = SplitEdge(PredBB, BB);
1740     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1741   }
1742 
1743   // We are going to have to map operands from the original BB block into the
1744   // PredBB block.  Evaluate PHI nodes in BB.
1745   DenseMap<Instruction*, Value*> ValueMapping;
1746 
1747   BasicBlock::iterator BI = BB->begin();
1748   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1749     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1750   // Clone the non-phi instructions of BB into PredBB, keeping track of the
1751   // mapping and using it to remap operands in the cloned instructions.
1752   for (; BI != BB->end(); ++BI) {
1753     Instruction *New = BI->clone();
1754 
1755     // Remap operands to patch up intra-block references.
1756     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1757       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1758         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1759         if (I != ValueMapping.end())
1760           New->setOperand(i, I->second);
1761       }
1762 
1763     // If this instruction can be simplified after the operands are updated,
1764     // just use the simplified value instead.  This frequently happens due to
1765     // phi translation.
1766     if (Value *IV =
1767             SimplifyInstruction(New, BB->getModule()->getDataLayout())) {
1768       delete New;
1769       ValueMapping[&*BI] = IV;
1770     } else {
1771       // Otherwise, insert the new instruction into the block.
1772       New->setName(BI->getName());
1773       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
1774       ValueMapping[&*BI] = New;
1775     }
1776   }
1777 
1778   // Check to see if the targets of the branch had PHI nodes. If so, we need to
1779   // add entries to the PHI nodes for branch from PredBB now.
1780   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1781   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1782                                   ValueMapping);
1783   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1784                                   ValueMapping);
1785 
1786   // If there were values defined in BB that are used outside the block, then we
1787   // now have to update all uses of the value to use either the original value,
1788   // the cloned value, or some PHI derived value.  This can require arbitrary
1789   // PHI insertion, of which we are prepared to do, clean these up now.
1790   SSAUpdater SSAUpdate;
1791   SmallVector<Use*, 16> UsesToRename;
1792   for (Instruction &I : *BB) {
1793     // Scan all uses of this instruction to see if it is used outside of its
1794     // block, and if so, record them in UsesToRename.
1795     for (Use &U : I.uses()) {
1796       Instruction *User = cast<Instruction>(U.getUser());
1797       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1798         if (UserPN->getIncomingBlock(U) == BB)
1799           continue;
1800       } else if (User->getParent() == BB)
1801         continue;
1802 
1803       UsesToRename.push_back(&U);
1804     }
1805 
1806     // If there are no uses outside the block, we're done with this instruction.
1807     if (UsesToRename.empty())
1808       continue;
1809 
1810     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
1811 
1812     // We found a use of I outside of BB.  Rename all uses of I that are outside
1813     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1814     // with the two values we know.
1815     SSAUpdate.Initialize(I.getType(), I.getName());
1816     SSAUpdate.AddAvailableValue(BB, &I);
1817     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]);
1818 
1819     while (!UsesToRename.empty())
1820       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1821     DEBUG(dbgs() << "\n");
1822   }
1823 
1824   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1825   // that we nuked.
1826   BB->removePredecessor(PredBB, true);
1827 
1828   // Remove the unconditional branch at the end of the PredBB block.
1829   OldPredBranch->eraseFromParent();
1830 
1831   ++NumDupes;
1832   return true;
1833 }
1834 
1835 /// TryToUnfoldSelect - Look for blocks of the form
1836 /// bb1:
1837 ///   %a = select
1838 ///   br bb
1839 ///
1840 /// bb2:
1841 ///   %p = phi [%a, %bb] ...
1842 ///   %c = icmp %p
1843 ///   br i1 %c
1844 ///
1845 /// And expand the select into a branch structure if one of its arms allows %c
1846 /// to be folded. This later enables threading from bb1 over bb2.
1847 bool JumpThreading::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
1848   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1849   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
1850   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
1851 
1852   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
1853       CondLHS->getParent() != BB)
1854     return false;
1855 
1856   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
1857     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
1858     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
1859 
1860     // Look if one of the incoming values is a select in the corresponding
1861     // predecessor.
1862     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
1863       continue;
1864 
1865     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
1866     if (!PredTerm || !PredTerm->isUnconditional())
1867       continue;
1868 
1869     // Now check if one of the select values would allow us to constant fold the
1870     // terminator in BB. We don't do the transform if both sides fold, those
1871     // cases will be threaded in any case.
1872     LazyValueInfo::Tristate LHSFolds =
1873         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
1874                                 CondRHS, Pred, BB, CondCmp);
1875     LazyValueInfo::Tristate RHSFolds =
1876         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
1877                                 CondRHS, Pred, BB, CondCmp);
1878     if ((LHSFolds != LazyValueInfo::Unknown ||
1879          RHSFolds != LazyValueInfo::Unknown) &&
1880         LHSFolds != RHSFolds) {
1881       // Expand the select.
1882       //
1883       // Pred --
1884       //  |    v
1885       //  |  NewBB
1886       //  |    |
1887       //  |-----
1888       //  v
1889       // BB
1890       BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
1891                                              BB->getParent(), BB);
1892       // Move the unconditional branch to NewBB.
1893       PredTerm->removeFromParent();
1894       NewBB->getInstList().insert(NewBB->end(), PredTerm);
1895       // Create a conditional branch and update PHI nodes.
1896       BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
1897       CondLHS->setIncomingValue(I, SI->getFalseValue());
1898       CondLHS->addIncoming(SI->getTrueValue(), NewBB);
1899       // The select is now dead.
1900       SI->eraseFromParent();
1901 
1902       // Update any other PHI nodes in BB.
1903       for (BasicBlock::iterator BI = BB->begin();
1904            PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
1905         if (Phi != CondLHS)
1906           Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
1907       return true;
1908     }
1909   }
1910   return false;
1911 }
1912 
1913 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select in the same BB of the form
1914 /// bb:
1915 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
1916 ///   %s = select p, trueval, falseval
1917 ///
1918 /// And expand the select into a branch structure. This later enables
1919 /// jump-threading over bb in this pass.
1920 ///
1921 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
1922 /// select if the associated PHI has at least one constant.  If the unfolded
1923 /// select is not jump-threaded, it will be folded again in the later
1924 /// optimizations.
1925 bool JumpThreading::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
1926   // If threading this would thread across a loop header, don't thread the edge.
1927   // See the comments above FindLoopHeaders for justifications and caveats.
1928   if (LoopHeaders.count(BB))
1929     return false;
1930 
1931   // Look for a Phi/Select pair in the same basic block.  The Phi feeds the
1932   // condition of the Select and at least one of the incoming values is a
1933   // constant.
1934   for (BasicBlock::iterator BI = BB->begin();
1935        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
1936     unsigned NumPHIValues = PN->getNumIncomingValues();
1937     if (NumPHIValues == 0 || !PN->hasOneUse())
1938       continue;
1939 
1940     SelectInst *SI = dyn_cast<SelectInst>(PN->user_back());
1941     if (!SI || SI->getParent() != BB)
1942       continue;
1943 
1944     Value *Cond = SI->getCondition();
1945     if (!Cond || Cond != PN || !Cond->getType()->isIntegerTy(1))
1946       continue;
1947 
1948     bool HasConst = false;
1949     for (unsigned i = 0; i != NumPHIValues; ++i) {
1950       if (PN->getIncomingBlock(i) == BB)
1951         return false;
1952       if (isa<ConstantInt>(PN->getIncomingValue(i)))
1953         HasConst = true;
1954     }
1955 
1956     if (HasConst) {
1957       // Expand the select.
1958       TerminatorInst *Term =
1959           SplitBlockAndInsertIfThen(SI->getCondition(), SI, false);
1960       PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
1961       NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
1962       NewPN->addIncoming(SI->getFalseValue(), BB);
1963       SI->replaceAllUsesWith(NewPN);
1964       SI->eraseFromParent();
1965       return true;
1966     }
1967   }
1968 
1969   return false;
1970 }
1971