1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/GlobalsModRef.h" 22 #include "llvm/Analysis/CFG.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LazyValueInfo.h" 29 #include "llvm/Analysis/Loads.h" 30 #include "llvm/Analysis/LoopInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/ValueHandle.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 44 #include "llvm/Transforms/Utils/Local.h" 45 #include "llvm/Transforms/Utils/SSAUpdater.h" 46 #include <algorithm> 47 #include <memory> 48 using namespace llvm; 49 50 #define DEBUG_TYPE "jump-threading" 51 52 STATISTIC(NumThreads, "Number of jumps threaded"); 53 STATISTIC(NumFolds, "Number of terminators folded"); 54 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 55 56 static cl::opt<unsigned> 57 BBDuplicateThreshold("jump-threading-threshold", 58 cl::desc("Max block size to duplicate for jump threading"), 59 cl::init(6), cl::Hidden); 60 61 static cl::opt<unsigned> 62 ImplicationSearchThreshold( 63 "jump-threading-implication-search-threshold", 64 cl::desc("The number of predecessors to search for a stronger " 65 "condition to use to thread over a weaker condition"), 66 cl::init(3), cl::Hidden); 67 68 namespace { 69 // These are at global scope so static functions can use them too. 70 typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo; 71 typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy; 72 73 // This is used to keep track of what kind of constant we're currently hoping 74 // to find. 75 enum ConstantPreference { 76 WantInteger, 77 WantBlockAddress 78 }; 79 80 /// This pass performs 'jump threading', which looks at blocks that have 81 /// multiple predecessors and multiple successors. If one or more of the 82 /// predecessors of the block can be proven to always jump to one of the 83 /// successors, we forward the edge from the predecessor to the successor by 84 /// duplicating the contents of this block. 85 /// 86 /// An example of when this can occur is code like this: 87 /// 88 /// if () { ... 89 /// X = 4; 90 /// } 91 /// if (X < 3) { 92 /// 93 /// In this case, the unconditional branch at the end of the first if can be 94 /// revectored to the false side of the second if. 95 /// 96 class JumpThreading : public FunctionPass { 97 TargetLibraryInfo *TLI; 98 LazyValueInfo *LVI; 99 std::unique_ptr<BlockFrequencyInfo> BFI; 100 std::unique_ptr<BranchProbabilityInfo> BPI; 101 bool HasProfileData; 102 #ifdef NDEBUG 103 SmallPtrSet<const BasicBlock *, 16> LoopHeaders; 104 #else 105 SmallSet<AssertingVH<const BasicBlock>, 16> LoopHeaders; 106 #endif 107 DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet; 108 109 unsigned BBDupThreshold; 110 111 // RAII helper for updating the recursion stack. 112 struct RecursionSetRemover { 113 DenseSet<std::pair<Value*, BasicBlock*> > &TheSet; 114 std::pair<Value*, BasicBlock*> ThePair; 115 116 RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S, 117 std::pair<Value*, BasicBlock*> P) 118 : TheSet(S), ThePair(P) { } 119 120 ~RecursionSetRemover() { 121 TheSet.erase(ThePair); 122 } 123 }; 124 public: 125 static char ID; // Pass identification 126 JumpThreading(int T = -1) : FunctionPass(ID) { 127 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 128 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 129 } 130 131 bool runOnFunction(Function &F) override; 132 133 void getAnalysisUsage(AnalysisUsage &AU) const override { 134 AU.addRequired<LazyValueInfo>(); 135 AU.addPreserved<LazyValueInfo>(); 136 AU.addPreserved<GlobalsAAWrapperPass>(); 137 AU.addRequired<TargetLibraryInfoWrapperPass>(); 138 } 139 140 void releaseMemory() override { 141 BFI.reset(); 142 BPI.reset(); 143 } 144 145 void FindLoopHeaders(Function &F); 146 bool ProcessBlock(BasicBlock *BB); 147 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 148 BasicBlock *SuccBB); 149 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 150 const SmallVectorImpl<BasicBlock *> &PredBBs); 151 152 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 153 PredValueInfo &Result, 154 ConstantPreference Preference, 155 bool &Changed, 156 Instruction *CxtI = nullptr); 157 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 158 ConstantPreference Preference, 159 Instruction *CxtI = nullptr); 160 161 bool ProcessBranchOnPHI(PHINode *PN); 162 bool ProcessBranchOnXOR(BinaryOperator *BO); 163 bool ProcessImpliedCondition(BasicBlock *BB); 164 165 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 166 bool TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB); 167 bool TryToUnfoldSelectInCurrBB(BasicBlock *BB); 168 169 private: 170 BasicBlock *SplitBlockPreds(BasicBlock *BB, ArrayRef<BasicBlock *> Preds, 171 const char *Suffix); 172 void UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, BasicBlock *BB, 173 BasicBlock *NewBB, BasicBlock *SuccBB); 174 }; 175 } 176 177 char JumpThreading::ID = 0; 178 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 179 "Jump Threading", false, false) 180 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo) 181 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 182 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 183 "Jump Threading", false, false) 184 185 // Public interface to the Jump Threading pass 186 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); } 187 188 /// runOnFunction - Top level algorithm. 189 /// 190 bool JumpThreading::runOnFunction(Function &F) { 191 if (skipOptnoneFunction(F)) 192 return false; 193 194 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 195 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 196 LVI = &getAnalysis<LazyValueInfo>(); 197 BFI.reset(); 198 BPI.reset(); 199 // When profile data is available, we need to update edge weights after 200 // successful jump threading, which requires both BPI and BFI being available. 201 HasProfileData = F.getEntryCount().hasValue(); 202 if (HasProfileData) { 203 LoopInfo LI{DominatorTree(F)}; 204 BPI.reset(new BranchProbabilityInfo(F, LI)); 205 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 206 } 207 208 // Remove unreachable blocks from function as they may result in infinite 209 // loop. We do threading if we found something profitable. Jump threading a 210 // branch can create other opportunities. If these opportunities form a cycle 211 // i.e. if any jump threading is undoing previous threading in the path, then 212 // we will loop forever. We take care of this issue by not jump threading for 213 // back edges. This works for normal cases but not for unreachable blocks as 214 // they may have cycle with no back edge. 215 bool EverChanged = false; 216 EverChanged |= removeUnreachableBlocks(F, LVI); 217 218 FindLoopHeaders(F); 219 220 bool Changed; 221 do { 222 Changed = false; 223 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 224 BasicBlock *BB = &*I; 225 // Thread all of the branches we can over this block. 226 while (ProcessBlock(BB)) 227 Changed = true; 228 229 ++I; 230 231 // If the block is trivially dead, zap it. This eliminates the successor 232 // edges which simplifies the CFG. 233 if (pred_empty(BB) && 234 BB != &BB->getParent()->getEntryBlock()) { 235 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 236 << "' with terminator: " << *BB->getTerminator() << '\n'); 237 LoopHeaders.erase(BB); 238 LVI->eraseBlock(BB); 239 DeleteDeadBlock(BB); 240 Changed = true; 241 continue; 242 } 243 244 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 245 246 // Can't thread an unconditional jump, but if the block is "almost 247 // empty", we can replace uses of it with uses of the successor and make 248 // this dead. 249 if (BI && BI->isUnconditional() && 250 BB != &BB->getParent()->getEntryBlock() && 251 // If the terminator is the only non-phi instruction, try to nuke it. 252 BB->getFirstNonPHIOrDbg()->isTerminator()) { 253 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 254 // block, we have to make sure it isn't in the LoopHeaders set. We 255 // reinsert afterward if needed. 256 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 257 BasicBlock *Succ = BI->getSuccessor(0); 258 259 // FIXME: It is always conservatively correct to drop the info 260 // for a block even if it doesn't get erased. This isn't totally 261 // awesome, but it allows us to use AssertingVH to prevent nasty 262 // dangling pointer issues within LazyValueInfo. 263 LVI->eraseBlock(BB); 264 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { 265 Changed = true; 266 // If we deleted BB and BB was the header of a loop, then the 267 // successor is now the header of the loop. 268 BB = Succ; 269 } 270 271 if (ErasedFromLoopHeaders) 272 LoopHeaders.insert(BB); 273 } 274 } 275 EverChanged |= Changed; 276 } while (Changed); 277 278 LoopHeaders.clear(); 279 return EverChanged; 280 } 281 282 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 283 /// thread across it. Stop scanning the block when passing the threshold. 284 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB, 285 unsigned Threshold) { 286 /// Ignore PHI nodes, these will be flattened when duplication happens. 287 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 288 289 // FIXME: THREADING will delete values that are just used to compute the 290 // branch, so they shouldn't count against the duplication cost. 291 292 unsigned Bonus = 0; 293 const TerminatorInst *BBTerm = BB->getTerminator(); 294 // Threading through a switch statement is particularly profitable. If this 295 // block ends in a switch, decrease its cost to make it more likely to happen. 296 if (isa<SwitchInst>(BBTerm)) 297 Bonus = 6; 298 299 // The same holds for indirect branches, but slightly more so. 300 if (isa<IndirectBrInst>(BBTerm)) 301 Bonus = 8; 302 303 // Bump the threshold up so the early exit from the loop doesn't skip the 304 // terminator-based Size adjustment at the end. 305 Threshold += Bonus; 306 307 // Sum up the cost of each instruction until we get to the terminator. Don't 308 // include the terminator because the copy won't include it. 309 unsigned Size = 0; 310 for (; !isa<TerminatorInst>(I); ++I) { 311 312 // Stop scanning the block if we've reached the threshold. 313 if (Size > Threshold) 314 return Size; 315 316 // Debugger intrinsics don't incur code size. 317 if (isa<DbgInfoIntrinsic>(I)) continue; 318 319 // If this is a pointer->pointer bitcast, it is free. 320 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 321 continue; 322 323 // Bail out if this instruction gives back a token type, it is not possible 324 // to duplicate it if it is used outside this BB. 325 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 326 return ~0U; 327 328 // All other instructions count for at least one unit. 329 ++Size; 330 331 // Calls are more expensive. If they are non-intrinsic calls, we model them 332 // as having cost of 4. If they are a non-vector intrinsic, we model them 333 // as having cost of 2 total, and if they are a vector intrinsic, we model 334 // them as having cost 1. 335 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 336 if (CI->cannotDuplicate() || CI->isConvergent()) 337 // Blocks with NoDuplicate are modelled as having infinite cost, so they 338 // are never duplicated. 339 return ~0U; 340 else if (!isa<IntrinsicInst>(CI)) 341 Size += 3; 342 else if (!CI->getType()->isVectorTy()) 343 Size += 1; 344 } 345 } 346 347 return Size > Bonus ? Size - Bonus : 0; 348 } 349 350 /// FindLoopHeaders - We do not want jump threading to turn proper loop 351 /// structures into irreducible loops. Doing this breaks up the loop nesting 352 /// hierarchy and pessimizes later transformations. To prevent this from 353 /// happening, we first have to find the loop headers. Here we approximate this 354 /// by finding targets of backedges in the CFG. 355 /// 356 /// Note that there definitely are cases when we want to allow threading of 357 /// edges across a loop header. For example, threading a jump from outside the 358 /// loop (the preheader) to an exit block of the loop is definitely profitable. 359 /// It is also almost always profitable to thread backedges from within the loop 360 /// to exit blocks, and is often profitable to thread backedges to other blocks 361 /// within the loop (forming a nested loop). This simple analysis is not rich 362 /// enough to track all of these properties and keep it up-to-date as the CFG 363 /// mutates, so we don't allow any of these transformations. 364 /// 365 void JumpThreading::FindLoopHeaders(Function &F) { 366 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 367 FindFunctionBackedges(F, Edges); 368 369 for (const auto &Edge : Edges) 370 LoopHeaders.insert(Edge.second); 371 } 372 373 /// getKnownConstant - Helper method to determine if we can thread over a 374 /// terminator with the given value as its condition, and if so what value to 375 /// use for that. What kind of value this is depends on whether we want an 376 /// integer or a block address, but an undef is always accepted. 377 /// Returns null if Val is null or not an appropriate constant. 378 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 379 if (!Val) 380 return nullptr; 381 382 // Undef is "known" enough. 383 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 384 return U; 385 386 if (Preference == WantBlockAddress) 387 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 388 389 return dyn_cast<ConstantInt>(Val); 390 } 391 392 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 393 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 394 /// in any of our predecessors. If so, return the known list of value and pred 395 /// BB in the result vector. 396 /// 397 /// This returns true if there were any known values. 398 /// 399 bool JumpThreading::ComputeValueKnownInPredecessors( 400 Value *V, BasicBlock *BB, PredValueInfo &Result, 401 ConstantPreference Preference, bool &Changed, Instruction *CxtI) { 402 // This method walks up use-def chains recursively. Because of this, we could 403 // get into an infinite loop going around loops in the use-def chain. To 404 // prevent this, keep track of what (value, block) pairs we've already visited 405 // and terminate the search if we loop back to them 406 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 407 return false; 408 409 // An RAII help to remove this pair from the recursion set once the recursion 410 // stack pops back out again. 411 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 412 413 // Simplify the instruction before inferring the value. 414 Instruction *I = dyn_cast<Instruction>(V); 415 if (I && !isa<PHINode>(I)) 416 if (auto *NewV = SimplifyInstruction(I, BB->getModule()->getDataLayout())) { 417 I->replaceAllUsesWith(NewV); 418 I->eraseFromParent(); 419 V = NewV; 420 Changed = true; 421 } 422 423 // If V is a constant, then it is known in all predecessors. 424 if (Constant *KC = getKnownConstant(V, Preference)) { 425 for (BasicBlock *Pred : predecessors(BB)) 426 Result.push_back(std::make_pair(KC, Pred)); 427 428 return !Result.empty(); 429 } 430 431 // If V is a non-instruction value, or an instruction in a different block, 432 // then it can't be derived from a PHI. 433 I = dyn_cast<Instruction>(V); 434 if (!I || I->getParent() != BB) { 435 436 // Okay, if this is a live-in value, see if it has a known value at the end 437 // of any of our predecessors. 438 // 439 // FIXME: This should be an edge property, not a block end property. 440 /// TODO: Per PR2563, we could infer value range information about a 441 /// predecessor based on its terminator. 442 // 443 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 444 // "I" is a non-local compare-with-a-constant instruction. This would be 445 // able to handle value inequalities better, for example if the compare is 446 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 447 // Perhaps getConstantOnEdge should be smart enough to do this? 448 449 for (BasicBlock *P : predecessors(BB)) { 450 // If the value is known by LazyValueInfo to be a constant in a 451 // predecessor, use that information to try to thread this block. 452 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 453 if (Constant *KC = getKnownConstant(PredCst, Preference)) 454 Result.push_back(std::make_pair(KC, P)); 455 } 456 457 return !Result.empty(); 458 } 459 460 /// If I is a PHI node, then we know the incoming values for any constants. 461 if (PHINode *PN = dyn_cast<PHINode>(I)) { 462 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 463 Value *InVal = PN->getIncomingValue(i); 464 if (Constant *KC = getKnownConstant(InVal, Preference)) { 465 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 466 } else { 467 Constant *CI = LVI->getConstantOnEdge(InVal, 468 PN->getIncomingBlock(i), 469 BB, CxtI); 470 if (Constant *KC = getKnownConstant(CI, Preference)) 471 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 472 } 473 } 474 475 return !Result.empty(); 476 } 477 478 PredValueInfoTy LHSVals, RHSVals; 479 480 // Handle some boolean conditions. 481 if (I->getType()->getPrimitiveSizeInBits() == 1) { 482 assert(Preference == WantInteger && "One-bit non-integer type?"); 483 // X | true -> true 484 // X & false -> false 485 if (I->getOpcode() == Instruction::Or || 486 I->getOpcode() == Instruction::And) { 487 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 488 WantInteger, Changed, CxtI); 489 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 490 WantInteger, Changed, CxtI); 491 492 if (LHSVals.empty() && RHSVals.empty()) 493 return false; 494 495 ConstantInt *InterestingVal; 496 if (I->getOpcode() == Instruction::Or) 497 InterestingVal = ConstantInt::getTrue(I->getContext()); 498 else 499 InterestingVal = ConstantInt::getFalse(I->getContext()); 500 501 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 502 503 // Scan for the sentinel. If we find an undef, force it to the 504 // interesting value: x|undef -> true and x&undef -> false. 505 for (const auto &LHSVal : LHSVals) 506 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 507 Result.emplace_back(InterestingVal, LHSVal.second); 508 LHSKnownBBs.insert(LHSVal.second); 509 } 510 for (const auto &RHSVal : RHSVals) 511 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 512 // If we already inferred a value for this block on the LHS, don't 513 // re-add it. 514 if (!LHSKnownBBs.count(RHSVal.second)) 515 Result.emplace_back(InterestingVal, RHSVal.second); 516 } 517 518 return !Result.empty(); 519 } 520 521 // Handle the NOT form of XOR. 522 if (I->getOpcode() == Instruction::Xor && 523 isa<ConstantInt>(I->getOperand(1)) && 524 cast<ConstantInt>(I->getOperand(1))->isOne()) { 525 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, WantInteger, 526 Changed, CxtI); 527 if (Result.empty()) 528 return false; 529 530 // Invert the known values. 531 for (auto &R : Result) 532 R.first = ConstantExpr::getNot(R.first); 533 534 return true; 535 } 536 537 // Try to simplify some other binary operator values. 538 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 539 assert(Preference != WantBlockAddress 540 && "A binary operator creating a block address?"); 541 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 542 PredValueInfoTy LHSVals; 543 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 544 WantInteger, Changed, CxtI); 545 546 // Try to use constant folding to simplify the binary operator. 547 for (const auto &LHSVal : LHSVals) { 548 Constant *V = LHSVal.first; 549 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 550 551 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 552 Result.push_back(std::make_pair(KC, LHSVal.second)); 553 } 554 } 555 556 return !Result.empty(); 557 } 558 559 // Handle compare with phi operand, where the PHI is defined in this block. 560 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 561 assert(Preference == WantInteger && "Compares only produce integers"); 562 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 563 if (PN && PN->getParent() == BB) { 564 const DataLayout &DL = PN->getModule()->getDataLayout(); 565 // We can do this simplification if any comparisons fold to true or false. 566 // See if any do. 567 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 568 BasicBlock *PredBB = PN->getIncomingBlock(i); 569 Value *LHS = PN->getIncomingValue(i); 570 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 571 572 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL); 573 if (!Res) { 574 if (!isa<Constant>(RHS)) 575 continue; 576 577 LazyValueInfo::Tristate 578 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 579 cast<Constant>(RHS), PredBB, BB, 580 CxtI ? CxtI : Cmp); 581 if (ResT == LazyValueInfo::Unknown) 582 continue; 583 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 584 } 585 586 if (Constant *KC = getKnownConstant(Res, WantInteger)) 587 Result.push_back(std::make_pair(KC, PredBB)); 588 } 589 590 return !Result.empty(); 591 } 592 593 // If comparing a live-in value against a constant, see if we know the 594 // live-in value on any predecessors. 595 if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) { 596 if (!isa<Instruction>(Cmp->getOperand(0)) || 597 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) { 598 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 599 600 for (BasicBlock *P : predecessors(BB)) { 601 // If the value is known by LazyValueInfo to be a constant in a 602 // predecessor, use that information to try to thread this block. 603 LazyValueInfo::Tristate Res = 604 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 605 RHSCst, P, BB, CxtI ? CxtI : Cmp); 606 if (Res == LazyValueInfo::Unknown) 607 continue; 608 609 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 610 Result.push_back(std::make_pair(ResC, P)); 611 } 612 613 return !Result.empty(); 614 } 615 616 // Try to find a constant value for the LHS of a comparison, 617 // and evaluate it statically if we can. 618 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) { 619 PredValueInfoTy LHSVals; 620 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 621 WantInteger, Changed, CxtI); 622 623 for (const auto &LHSVal : LHSVals) { 624 Constant *V = LHSVal.first; 625 Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(), 626 V, CmpConst); 627 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 628 Result.push_back(std::make_pair(KC, LHSVal.second)); 629 } 630 631 return !Result.empty(); 632 } 633 } 634 } 635 636 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 637 // Handle select instructions where at least one operand is a known constant 638 // and we can figure out the condition value for any predecessor block. 639 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 640 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 641 PredValueInfoTy Conds; 642 if ((TrueVal || FalseVal) && 643 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 644 WantInteger, Changed, CxtI)) { 645 for (auto &C : Conds) { 646 Constant *Cond = C.first; 647 648 // Figure out what value to use for the condition. 649 bool KnownCond; 650 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 651 // A known boolean. 652 KnownCond = CI->isOne(); 653 } else { 654 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 655 // Either operand will do, so be sure to pick the one that's a known 656 // constant. 657 // FIXME: Do this more cleverly if both values are known constants? 658 KnownCond = (TrueVal != nullptr); 659 } 660 661 // See if the select has a known constant value for this predecessor. 662 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 663 Result.push_back(std::make_pair(Val, C.second)); 664 } 665 666 return !Result.empty(); 667 } 668 } 669 670 // If all else fails, see if LVI can figure out a constant value for us. 671 Constant *CI = LVI->getConstant(V, BB, CxtI); 672 if (Constant *KC = getKnownConstant(CI, Preference)) { 673 for (BasicBlock *Pred : predecessors(BB)) 674 Result.push_back(std::make_pair(KC, Pred)); 675 } 676 677 return !Result.empty(); 678 } 679 680 681 682 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 683 /// in an undefined jump, decide which block is best to revector to. 684 /// 685 /// Since we can pick an arbitrary destination, we pick the successor with the 686 /// fewest predecessors. This should reduce the in-degree of the others. 687 /// 688 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 689 TerminatorInst *BBTerm = BB->getTerminator(); 690 unsigned MinSucc = 0; 691 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 692 // Compute the successor with the minimum number of predecessors. 693 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 694 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 695 TestBB = BBTerm->getSuccessor(i); 696 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 697 if (NumPreds < MinNumPreds) { 698 MinSucc = i; 699 MinNumPreds = NumPreds; 700 } 701 } 702 703 return MinSucc; 704 } 705 706 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 707 if (!BB->hasAddressTaken()) return false; 708 709 // If the block has its address taken, it may be a tree of dead constants 710 // hanging off of it. These shouldn't keep the block alive. 711 BlockAddress *BA = BlockAddress::get(BB); 712 BA->removeDeadConstantUsers(); 713 return !BA->use_empty(); 714 } 715 716 /// ProcessBlock - If there are any predecessors whose control can be threaded 717 /// through to a successor, transform them now. 718 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 719 // If the block is trivially dead, just return and let the caller nuke it. 720 // This simplifies other transformations. 721 if (pred_empty(BB) && 722 BB != &BB->getParent()->getEntryBlock()) 723 return false; 724 725 // If this block has a single predecessor, and if that pred has a single 726 // successor, merge the blocks. This encourages recursive jump threading 727 // because now the condition in this block can be threaded through 728 // predecessors of our predecessor block. 729 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 730 const TerminatorInst *TI = SinglePred->getTerminator(); 731 if (!TI->isExceptional() && TI->getNumSuccessors() == 1 && 732 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 733 // If SinglePred was a loop header, BB becomes one. 734 if (LoopHeaders.erase(SinglePred)) 735 LoopHeaders.insert(BB); 736 737 LVI->eraseBlock(SinglePred); 738 MergeBasicBlockIntoOnlyPred(BB); 739 740 return true; 741 } 742 } 743 744 if (TryToUnfoldSelectInCurrBB(BB)) 745 return true; 746 747 // What kind of constant we're looking for. 748 ConstantPreference Preference = WantInteger; 749 750 // Look to see if the terminator is a conditional branch, switch or indirect 751 // branch, if not we can't thread it. 752 Value *Condition; 753 Instruction *Terminator = BB->getTerminator(); 754 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 755 // Can't thread an unconditional jump. 756 if (BI->isUnconditional()) return false; 757 Condition = BI->getCondition(); 758 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 759 Condition = SI->getCondition(); 760 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 761 // Can't thread indirect branch with no successors. 762 if (IB->getNumSuccessors() == 0) return false; 763 Condition = IB->getAddress()->stripPointerCasts(); 764 Preference = WantBlockAddress; 765 } else { 766 return false; // Must be an invoke. 767 } 768 769 // Run constant folding to see if we can reduce the condition to a simple 770 // constant. 771 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 772 Value *SimpleVal = 773 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 774 if (SimpleVal) { 775 I->replaceAllUsesWith(SimpleVal); 776 I->eraseFromParent(); 777 Condition = SimpleVal; 778 } 779 } 780 781 // If the terminator is branching on an undef, we can pick any of the 782 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 783 if (isa<UndefValue>(Condition)) { 784 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 785 786 // Fold the branch/switch. 787 TerminatorInst *BBTerm = BB->getTerminator(); 788 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 789 if (i == BestSucc) continue; 790 BBTerm->getSuccessor(i)->removePredecessor(BB, true); 791 } 792 793 DEBUG(dbgs() << " In block '" << BB->getName() 794 << "' folding undef terminator: " << *BBTerm << '\n'); 795 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 796 BBTerm->eraseFromParent(); 797 return true; 798 } 799 800 // If the terminator of this block is branching on a constant, simplify the 801 // terminator to an unconditional branch. This can occur due to threading in 802 // other blocks. 803 if (getKnownConstant(Condition, Preference)) { 804 DEBUG(dbgs() << " In block '" << BB->getName() 805 << "' folding terminator: " << *BB->getTerminator() << '\n'); 806 ++NumFolds; 807 ConstantFoldTerminator(BB, true); 808 return true; 809 } 810 811 Instruction *CondInst = dyn_cast<Instruction>(Condition); 812 813 // All the rest of our checks depend on the condition being an instruction. 814 if (!CondInst) { 815 // FIXME: Unify this with code below. 816 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 817 return true; 818 return false; 819 } 820 821 822 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 823 // If we're branching on a conditional, LVI might be able to determine 824 // it's value at the branch instruction. We only handle comparisons 825 // against a constant at this time. 826 // TODO: This should be extended to handle switches as well. 827 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 828 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 829 if (CondBr && CondConst && CondBr->isConditional()) { 830 LazyValueInfo::Tristate Ret = 831 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 832 CondConst, CondBr); 833 if (Ret != LazyValueInfo::Unknown) { 834 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 835 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 836 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 837 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 838 CondBr->eraseFromParent(); 839 if (CondCmp->use_empty()) 840 CondCmp->eraseFromParent(); 841 else if (CondCmp->getParent() == BB) { 842 // If the fact we just learned is true for all uses of the 843 // condition, replace it with a constant value 844 auto *CI = Ret == LazyValueInfo::True ? 845 ConstantInt::getTrue(CondCmp->getType()) : 846 ConstantInt::getFalse(CondCmp->getType()); 847 CondCmp->replaceAllUsesWith(CI); 848 CondCmp->eraseFromParent(); 849 } 850 return true; 851 } 852 } 853 854 if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB)) 855 return true; 856 } 857 858 // Check for some cases that are worth simplifying. Right now we want to look 859 // for loads that are used by a switch or by the condition for the branch. If 860 // we see one, check to see if it's partially redundant. If so, insert a PHI 861 // which can then be used to thread the values. 862 // 863 Value *SimplifyValue = CondInst; 864 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 865 if (isa<Constant>(CondCmp->getOperand(1))) 866 SimplifyValue = CondCmp->getOperand(0); 867 868 // TODO: There are other places where load PRE would be profitable, such as 869 // more complex comparisons. 870 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 871 if (SimplifyPartiallyRedundantLoad(LI)) 872 return true; 873 874 875 // Handle a variety of cases where we are branching on something derived from 876 // a PHI node in the current block. If we can prove that any predecessors 877 // compute a predictable value based on a PHI node, thread those predecessors. 878 // 879 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 880 return true; 881 882 // If this is an otherwise-unfoldable branch on a phi node in the current 883 // block, see if we can simplify. 884 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 885 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 886 return ProcessBranchOnPHI(PN); 887 888 889 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 890 if (CondInst->getOpcode() == Instruction::Xor && 891 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 892 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 893 894 // Search for a stronger dominating condition that can be used to simplify a 895 // conditional branch leaving BB. 896 if (ProcessImpliedCondition(BB)) 897 return true; 898 899 return false; 900 } 901 902 bool JumpThreading::ProcessImpliedCondition(BasicBlock *BB) { 903 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 904 if (!BI || !BI->isConditional()) 905 return false; 906 907 Value *Cond = BI->getCondition(); 908 BasicBlock *CurrentBB = BB; 909 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 910 unsigned Iter = 0; 911 912 auto &DL = BB->getModule()->getDataLayout(); 913 914 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 915 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 916 if (!PBI || !PBI->isConditional() || PBI->getSuccessor(0) != CurrentBB) 917 return false; 918 919 if (isImpliedCondition(PBI->getCondition(), Cond, DL)) { 920 BI->getSuccessor(1)->removePredecessor(BB); 921 BranchInst::Create(BI->getSuccessor(0), BI); 922 BI->eraseFromParent(); 923 return true; 924 } 925 CurrentBB = CurrentPred; 926 CurrentPred = CurrentBB->getSinglePredecessor(); 927 } 928 929 return false; 930 } 931 932 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 933 /// load instruction, eliminate it by replacing it with a PHI node. This is an 934 /// important optimization that encourages jump threading, and needs to be run 935 /// interlaced with other jump threading tasks. 936 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 937 // Don't hack volatile/atomic loads. 938 if (!LI->isSimple()) return false; 939 940 // If the load is defined in a block with exactly one predecessor, it can't be 941 // partially redundant. 942 BasicBlock *LoadBB = LI->getParent(); 943 if (LoadBB->getSinglePredecessor()) 944 return false; 945 946 // If the load is defined in an EH pad, it can't be partially redundant, 947 // because the edges between the invoke and the EH pad cannot have other 948 // instructions between them. 949 if (LoadBB->isEHPad()) 950 return false; 951 952 Value *LoadedPtr = LI->getOperand(0); 953 954 // If the loaded operand is defined in the LoadBB, it can't be available. 955 // TODO: Could do simple PHI translation, that would be fun :) 956 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 957 if (PtrOp->getParent() == LoadBB) 958 return false; 959 960 // Scan a few instructions up from the load, to see if it is obviously live at 961 // the entry to its block. 962 BasicBlock::iterator BBIt(LI); 963 964 if (Value *AvailableVal = 965 FindAvailableLoadedValue(LI, LoadBB, BBIt, DefMaxInstsToScan)) { 966 // If the value of the load is locally available within the block, just use 967 // it. This frequently occurs for reg2mem'd allocas. 968 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 969 970 // If the returned value is the load itself, replace with an undef. This can 971 // only happen in dead loops. 972 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 973 if (AvailableVal->getType() != LI->getType()) 974 AvailableVal = 975 CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI); 976 LI->replaceAllUsesWith(AvailableVal); 977 LI->eraseFromParent(); 978 return true; 979 } 980 981 // Otherwise, if we scanned the whole block and got to the top of the block, 982 // we know the block is locally transparent to the load. If not, something 983 // might clobber its value. 984 if (BBIt != LoadBB->begin()) 985 return false; 986 987 // If all of the loads and stores that feed the value have the same AA tags, 988 // then we can propagate them onto any newly inserted loads. 989 AAMDNodes AATags; 990 LI->getAAMetadata(AATags); 991 992 SmallPtrSet<BasicBlock*, 8> PredsScanned; 993 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 994 AvailablePredsTy AvailablePreds; 995 BasicBlock *OneUnavailablePred = nullptr; 996 997 // If we got here, the loaded value is transparent through to the start of the 998 // block. Check to see if it is available in any of the predecessor blocks. 999 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1000 // If we already scanned this predecessor, skip it. 1001 if (!PredsScanned.insert(PredBB).second) 1002 continue; 1003 1004 // Scan the predecessor to see if the value is available in the pred. 1005 BBIt = PredBB->end(); 1006 AAMDNodes ThisAATags; 1007 Value *PredAvailable = FindAvailableLoadedValue(LI, PredBB, BBIt, 1008 DefMaxInstsToScan, 1009 nullptr, &ThisAATags); 1010 if (!PredAvailable) { 1011 OneUnavailablePred = PredBB; 1012 continue; 1013 } 1014 1015 // If AA tags disagree or are not present, forget about them. 1016 if (AATags != ThisAATags) AATags = AAMDNodes(); 1017 1018 // If so, this load is partially redundant. Remember this info so that we 1019 // can create a PHI node. 1020 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 1021 } 1022 1023 // If the loaded value isn't available in any predecessor, it isn't partially 1024 // redundant. 1025 if (AvailablePreds.empty()) return false; 1026 1027 // Okay, the loaded value is available in at least one (and maybe all!) 1028 // predecessors. If the value is unavailable in more than one unique 1029 // predecessor, we want to insert a merge block for those common predecessors. 1030 // This ensures that we only have to insert one reload, thus not increasing 1031 // code size. 1032 BasicBlock *UnavailablePred = nullptr; 1033 1034 // If there is exactly one predecessor where the value is unavailable, the 1035 // already computed 'OneUnavailablePred' block is it. If it ends in an 1036 // unconditional branch, we know that it isn't a critical edge. 1037 if (PredsScanned.size() == AvailablePreds.size()+1 && 1038 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1039 UnavailablePred = OneUnavailablePred; 1040 } else if (PredsScanned.size() != AvailablePreds.size()) { 1041 // Otherwise, we had multiple unavailable predecessors or we had a critical 1042 // edge from the one. 1043 SmallVector<BasicBlock*, 8> PredsToSplit; 1044 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1045 1046 for (const auto &AvailablePred : AvailablePreds) 1047 AvailablePredSet.insert(AvailablePred.first); 1048 1049 // Add all the unavailable predecessors to the PredsToSplit list. 1050 for (BasicBlock *P : predecessors(LoadBB)) { 1051 // If the predecessor is an indirect goto, we can't split the edge. 1052 if (isa<IndirectBrInst>(P->getTerminator())) 1053 return false; 1054 1055 if (!AvailablePredSet.count(P)) 1056 PredsToSplit.push_back(P); 1057 } 1058 1059 // Split them out to their own block. 1060 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1061 } 1062 1063 // If the value isn't available in all predecessors, then there will be 1064 // exactly one where it isn't available. Insert a load on that edge and add 1065 // it to the AvailablePreds list. 1066 if (UnavailablePred) { 1067 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1068 "Can't handle critical edge here!"); 1069 LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, 1070 LI->getAlignment(), 1071 UnavailablePred->getTerminator()); 1072 NewVal->setDebugLoc(LI->getDebugLoc()); 1073 if (AATags) 1074 NewVal->setAAMetadata(AATags); 1075 1076 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1077 } 1078 1079 // Now we know that each predecessor of this block has a value in 1080 // AvailablePreds, sort them for efficient access as we're walking the preds. 1081 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1082 1083 // Create a PHI node at the start of the block for the PRE'd load value. 1084 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1085 PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "", 1086 &LoadBB->front()); 1087 PN->takeName(LI); 1088 PN->setDebugLoc(LI->getDebugLoc()); 1089 1090 // Insert new entries into the PHI for each predecessor. A single block may 1091 // have multiple entries here. 1092 for (pred_iterator PI = PB; PI != PE; ++PI) { 1093 BasicBlock *P = *PI; 1094 AvailablePredsTy::iterator I = 1095 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1096 std::make_pair(P, (Value*)nullptr)); 1097 1098 assert(I != AvailablePreds.end() && I->first == P && 1099 "Didn't find entry for predecessor!"); 1100 1101 // If we have an available predecessor but it requires casting, insert the 1102 // cast in the predecessor and use the cast. Note that we have to update the 1103 // AvailablePreds vector as we go so that all of the PHI entries for this 1104 // predecessor use the same bitcast. 1105 Value *&PredV = I->second; 1106 if (PredV->getType() != LI->getType()) 1107 PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "", 1108 P->getTerminator()); 1109 1110 PN->addIncoming(PredV, I->first); 1111 } 1112 1113 //cerr << "PRE: " << *LI << *PN << "\n"; 1114 1115 LI->replaceAllUsesWith(PN); 1116 LI->eraseFromParent(); 1117 1118 return true; 1119 } 1120 1121 /// FindMostPopularDest - The specified list contains multiple possible 1122 /// threadable destinations. Pick the one that occurs the most frequently in 1123 /// the list. 1124 static BasicBlock * 1125 FindMostPopularDest(BasicBlock *BB, 1126 const SmallVectorImpl<std::pair<BasicBlock*, 1127 BasicBlock*> > &PredToDestList) { 1128 assert(!PredToDestList.empty()); 1129 1130 // Determine popularity. If there are multiple possible destinations, we 1131 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1132 // blocks with known and real destinations to threading undef. We'll handle 1133 // them later if interesting. 1134 DenseMap<BasicBlock*, unsigned> DestPopularity; 1135 for (const auto &PredToDest : PredToDestList) 1136 if (PredToDest.second) 1137 DestPopularity[PredToDest.second]++; 1138 1139 // Find the most popular dest. 1140 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1141 BasicBlock *MostPopularDest = DPI->first; 1142 unsigned Popularity = DPI->second; 1143 SmallVector<BasicBlock*, 4> SamePopularity; 1144 1145 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1146 // If the popularity of this entry isn't higher than the popularity we've 1147 // seen so far, ignore it. 1148 if (DPI->second < Popularity) 1149 ; // ignore. 1150 else if (DPI->second == Popularity) { 1151 // If it is the same as what we've seen so far, keep track of it. 1152 SamePopularity.push_back(DPI->first); 1153 } else { 1154 // If it is more popular, remember it. 1155 SamePopularity.clear(); 1156 MostPopularDest = DPI->first; 1157 Popularity = DPI->second; 1158 } 1159 } 1160 1161 // Okay, now we know the most popular destination. If there is more than one 1162 // destination, we need to determine one. This is arbitrary, but we need 1163 // to make a deterministic decision. Pick the first one that appears in the 1164 // successor list. 1165 if (!SamePopularity.empty()) { 1166 SamePopularity.push_back(MostPopularDest); 1167 TerminatorInst *TI = BB->getTerminator(); 1168 for (unsigned i = 0; ; ++i) { 1169 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1170 1171 if (std::find(SamePopularity.begin(), SamePopularity.end(), 1172 TI->getSuccessor(i)) == SamePopularity.end()) 1173 continue; 1174 1175 MostPopularDest = TI->getSuccessor(i); 1176 break; 1177 } 1178 } 1179 1180 // Okay, we have finally picked the most popular destination. 1181 return MostPopularDest; 1182 } 1183 1184 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1185 ConstantPreference Preference, 1186 Instruction *CxtI) { 1187 // If threading this would thread across a loop header, don't even try to 1188 // thread the edge. 1189 if (LoopHeaders.count(BB)) 1190 return false; 1191 1192 PredValueInfoTy PredValues; 1193 bool Changed = false; 1194 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, 1195 Changed, CxtI)) 1196 return Changed; 1197 1198 assert(!PredValues.empty() && 1199 "ComputeValueKnownInPredecessors returned true with no values"); 1200 1201 DEBUG(dbgs() << "IN BB: " << *BB; 1202 for (const auto &PredValue : PredValues) { 1203 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1204 << *PredValue.first 1205 << " for pred '" << PredValue.second->getName() << "'.\n"; 1206 }); 1207 1208 // Decide what we want to thread through. Convert our list of known values to 1209 // a list of known destinations for each pred. This also discards duplicate 1210 // predecessors and keeps track of the undefined inputs (which are represented 1211 // as a null dest in the PredToDestList). 1212 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1213 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1214 1215 BasicBlock *OnlyDest = nullptr; 1216 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1217 1218 for (const auto &PredValue : PredValues) { 1219 BasicBlock *Pred = PredValue.second; 1220 if (!SeenPreds.insert(Pred).second) 1221 continue; // Duplicate predecessor entry. 1222 1223 // If the predecessor ends with an indirect goto, we can't change its 1224 // destination. 1225 if (isa<IndirectBrInst>(Pred->getTerminator())) 1226 continue; 1227 1228 Constant *Val = PredValue.first; 1229 1230 BasicBlock *DestBB; 1231 if (isa<UndefValue>(Val)) 1232 DestBB = nullptr; 1233 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1234 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1235 else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1236 DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor(); 1237 } else { 1238 assert(isa<IndirectBrInst>(BB->getTerminator()) 1239 && "Unexpected terminator"); 1240 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1241 } 1242 1243 // If we have exactly one destination, remember it for efficiency below. 1244 if (PredToDestList.empty()) 1245 OnlyDest = DestBB; 1246 else if (OnlyDest != DestBB) 1247 OnlyDest = MultipleDestSentinel; 1248 1249 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1250 } 1251 1252 // If all edges were unthreadable, we fail. 1253 if (PredToDestList.empty()) 1254 return Changed; 1255 1256 // Determine which is the most common successor. If we have many inputs and 1257 // this block is a switch, we want to start by threading the batch that goes 1258 // to the most popular destination first. If we only know about one 1259 // threadable destination (the common case) we can avoid this. 1260 BasicBlock *MostPopularDest = OnlyDest; 1261 1262 if (MostPopularDest == MultipleDestSentinel) 1263 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1264 1265 // Now that we know what the most popular destination is, factor all 1266 // predecessors that will jump to it into a single predecessor. 1267 SmallVector<BasicBlock*, 16> PredsToFactor; 1268 for (const auto &PredToDest : PredToDestList) 1269 if (PredToDest.second == MostPopularDest) { 1270 BasicBlock *Pred = PredToDest.first; 1271 1272 // This predecessor may be a switch or something else that has multiple 1273 // edges to the block. Factor each of these edges by listing them 1274 // according to # occurrences in PredsToFactor. 1275 for (BasicBlock *Succ : successors(Pred)) 1276 if (Succ == BB) 1277 PredsToFactor.push_back(Pred); 1278 } 1279 1280 // If the threadable edges are branching on an undefined value, we get to pick 1281 // the destination that these predecessors should get to. 1282 if (!MostPopularDest) 1283 MostPopularDest = BB->getTerminator()-> 1284 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1285 1286 // Ok, try to thread it! 1287 Changed |= ThreadEdge(BB, PredsToFactor, MostPopularDest); 1288 return Changed; 1289 } 1290 1291 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1292 /// a PHI node in the current block. See if there are any simplifications we 1293 /// can do based on inputs to the phi node. 1294 /// 1295 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) { 1296 BasicBlock *BB = PN->getParent(); 1297 1298 // TODO: We could make use of this to do it once for blocks with common PHI 1299 // values. 1300 SmallVector<BasicBlock*, 1> PredBBs; 1301 PredBBs.resize(1); 1302 1303 // If any of the predecessor blocks end in an unconditional branch, we can 1304 // *duplicate* the conditional branch into that block in order to further 1305 // encourage jump threading and to eliminate cases where we have branch on a 1306 // phi of an icmp (branch on icmp is much better). 1307 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1308 BasicBlock *PredBB = PN->getIncomingBlock(i); 1309 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1310 if (PredBr->isUnconditional()) { 1311 PredBBs[0] = PredBB; 1312 // Try to duplicate BB into PredBB. 1313 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1314 return true; 1315 } 1316 } 1317 1318 return false; 1319 } 1320 1321 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1322 /// a xor instruction in the current block. See if there are any 1323 /// simplifications we can do based on inputs to the xor. 1324 /// 1325 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) { 1326 BasicBlock *BB = BO->getParent(); 1327 1328 // If either the LHS or RHS of the xor is a constant, don't do this 1329 // optimization. 1330 if (isa<ConstantInt>(BO->getOperand(0)) || 1331 isa<ConstantInt>(BO->getOperand(1))) 1332 return false; 1333 1334 // If the first instruction in BB isn't a phi, we won't be able to infer 1335 // anything special about any particular predecessor. 1336 if (!isa<PHINode>(BB->front())) 1337 return false; 1338 1339 // If we have a xor as the branch input to this block, and we know that the 1340 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1341 // the condition into the predecessor and fix that value to true, saving some 1342 // logical ops on that path and encouraging other paths to simplify. 1343 // 1344 // This copies something like this: 1345 // 1346 // BB: 1347 // %X = phi i1 [1], [%X'] 1348 // %Y = icmp eq i32 %A, %B 1349 // %Z = xor i1 %X, %Y 1350 // br i1 %Z, ... 1351 // 1352 // Into: 1353 // BB': 1354 // %Y = icmp ne i32 %A, %B 1355 // br i1 %Y, ... 1356 1357 PredValueInfoTy XorOpValues; 1358 bool isLHS = true; 1359 bool Changed = false; 1360 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1361 WantInteger, Changed, BO)) { 1362 assert(XorOpValues.empty()); 1363 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1364 WantInteger, Changed, BO)) 1365 return Changed; 1366 isLHS = false; 1367 } 1368 1369 assert(!XorOpValues.empty() && 1370 "ComputeValueKnownInPredecessors returned true with no values"); 1371 1372 // Scan the information to see which is most popular: true or false. The 1373 // predecessors can be of the set true, false, or undef. 1374 unsigned NumTrue = 0, NumFalse = 0; 1375 for (const auto &XorOpValue : XorOpValues) { 1376 if (isa<UndefValue>(XorOpValue.first)) 1377 // Ignore undefs for the count. 1378 continue; 1379 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1380 ++NumFalse; 1381 else 1382 ++NumTrue; 1383 } 1384 1385 // Determine which value to split on, true, false, or undef if neither. 1386 ConstantInt *SplitVal = nullptr; 1387 if (NumTrue > NumFalse) 1388 SplitVal = ConstantInt::getTrue(BB->getContext()); 1389 else if (NumTrue != 0 || NumFalse != 0) 1390 SplitVal = ConstantInt::getFalse(BB->getContext()); 1391 1392 // Collect all of the blocks that this can be folded into so that we can 1393 // factor this once and clone it once. 1394 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1395 for (const auto &XorOpValue : XorOpValues) { 1396 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1397 continue; 1398 1399 BlocksToFoldInto.push_back(XorOpValue.second); 1400 } 1401 1402 // If we inferred a value for all of the predecessors, then duplication won't 1403 // help us. However, we can just replace the LHS or RHS with the constant. 1404 if (BlocksToFoldInto.size() == 1405 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1406 if (!SplitVal) { 1407 // If all preds provide undef, just nuke the xor, because it is undef too. 1408 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1409 BO->eraseFromParent(); 1410 } else if (SplitVal->isZero()) { 1411 // If all preds provide 0, replace the xor with the other input. 1412 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1413 BO->eraseFromParent(); 1414 } else { 1415 // If all preds provide 1, set the computed value to 1. 1416 BO->setOperand(!isLHS, SplitVal); 1417 } 1418 1419 return true; 1420 } 1421 1422 // Try to duplicate BB into PredBB. 1423 Changed |= DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1424 return Changed; 1425 } 1426 1427 1428 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1429 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1430 /// NewPred using the entries from OldPred (suitably mapped). 1431 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1432 BasicBlock *OldPred, 1433 BasicBlock *NewPred, 1434 DenseMap<Instruction*, Value*> &ValueMap) { 1435 for (BasicBlock::iterator PNI = PHIBB->begin(); 1436 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1437 // Ok, we have a PHI node. Figure out what the incoming value was for the 1438 // DestBlock. 1439 Value *IV = PN->getIncomingValueForBlock(OldPred); 1440 1441 // Remap the value if necessary. 1442 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1443 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1444 if (I != ValueMap.end()) 1445 IV = I->second; 1446 } 1447 1448 PN->addIncoming(IV, NewPred); 1449 } 1450 } 1451 1452 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1453 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1454 /// across BB. Transform the IR to reflect this change. 1455 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1456 const SmallVectorImpl<BasicBlock*> &PredBBs, 1457 BasicBlock *SuccBB) { 1458 // If threading to the same block as we come from, we would infinite loop. 1459 if (SuccBB == BB) { 1460 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1461 << "' - would thread to self!\n"); 1462 return false; 1463 } 1464 1465 // If threading this would thread across a loop header, don't thread the edge. 1466 // See the comments above FindLoopHeaders for justifications and caveats. 1467 if (LoopHeaders.count(BB)) { 1468 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1469 << "' to dest BB '" << SuccBB->getName() 1470 << "' - it might create an irreducible loop!\n"); 1471 return false; 1472 } 1473 1474 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, BBDupThreshold); 1475 if (JumpThreadCost > BBDupThreshold) { 1476 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1477 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1478 return false; 1479 } 1480 1481 // And finally, do it! Start by factoring the predecessors if needed. 1482 BasicBlock *PredBB; 1483 if (PredBBs.size() == 1) 1484 PredBB = PredBBs[0]; 1485 else { 1486 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1487 << " common predecessors.\n"); 1488 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1489 } 1490 1491 // And finally, do it! 1492 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1493 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1494 << ", across block:\n " 1495 << *BB << "\n"); 1496 1497 LVI->threadEdge(PredBB, BB, SuccBB); 1498 1499 // We are going to have to map operands from the original BB block to the new 1500 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1501 // account for entry from PredBB. 1502 DenseMap<Instruction*, Value*> ValueMapping; 1503 1504 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1505 BB->getName()+".thread", 1506 BB->getParent(), BB); 1507 NewBB->moveAfter(PredBB); 1508 1509 // Set the block frequency of NewBB. 1510 if (HasProfileData) { 1511 auto NewBBFreq = 1512 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 1513 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 1514 } 1515 1516 BasicBlock::iterator BI = BB->begin(); 1517 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1518 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1519 1520 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1521 // mapping and using it to remap operands in the cloned instructions. 1522 for (; !isa<TerminatorInst>(BI); ++BI) { 1523 Instruction *New = BI->clone(); 1524 New->setName(BI->getName()); 1525 NewBB->getInstList().push_back(New); 1526 ValueMapping[&*BI] = New; 1527 1528 // Remap operands to patch up intra-block references. 1529 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1530 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1531 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1532 if (I != ValueMapping.end()) 1533 New->setOperand(i, I->second); 1534 } 1535 } 1536 1537 // We didn't copy the terminator from BB over to NewBB, because there is now 1538 // an unconditional jump to SuccBB. Insert the unconditional jump. 1539 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 1540 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1541 1542 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1543 // PHI nodes for NewBB now. 1544 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1545 1546 // If there were values defined in BB that are used outside the block, then we 1547 // now have to update all uses of the value to use either the original value, 1548 // the cloned value, or some PHI derived value. This can require arbitrary 1549 // PHI insertion, of which we are prepared to do, clean these up now. 1550 SSAUpdater SSAUpdate; 1551 SmallVector<Use*, 16> UsesToRename; 1552 for (Instruction &I : *BB) { 1553 // Scan all uses of this instruction to see if it is used outside of its 1554 // block, and if so, record them in UsesToRename. 1555 for (Use &U : I.uses()) { 1556 Instruction *User = cast<Instruction>(U.getUser()); 1557 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1558 if (UserPN->getIncomingBlock(U) == BB) 1559 continue; 1560 } else if (User->getParent() == BB) 1561 continue; 1562 1563 UsesToRename.push_back(&U); 1564 } 1565 1566 // If there are no uses outside the block, we're done with this instruction. 1567 if (UsesToRename.empty()) 1568 continue; 1569 1570 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 1571 1572 // We found a use of I outside of BB. Rename all uses of I that are outside 1573 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1574 // with the two values we know. 1575 SSAUpdate.Initialize(I.getType(), I.getName()); 1576 SSAUpdate.AddAvailableValue(BB, &I); 1577 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 1578 1579 while (!UsesToRename.empty()) 1580 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1581 DEBUG(dbgs() << "\n"); 1582 } 1583 1584 1585 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1586 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1587 // us to simplify any PHI nodes in BB. 1588 TerminatorInst *PredTerm = PredBB->getTerminator(); 1589 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1590 if (PredTerm->getSuccessor(i) == BB) { 1591 BB->removePredecessor(PredBB, true); 1592 PredTerm->setSuccessor(i, NewBB); 1593 } 1594 1595 // At this point, the IR is fully up to date and consistent. Do a quick scan 1596 // over the new instructions and zap any that are constants or dead. This 1597 // frequently happens because of phi translation. 1598 SimplifyInstructionsInBlock(NewBB, TLI); 1599 1600 // Update the edge weight from BB to SuccBB, which should be less than before. 1601 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 1602 1603 // Threaded an edge! 1604 ++NumThreads; 1605 return true; 1606 } 1607 1608 /// Create a new basic block that will be the predecessor of BB and successor of 1609 /// all blocks in Preds. When profile data is availble, update the frequency of 1610 /// this new block. 1611 BasicBlock *JumpThreading::SplitBlockPreds(BasicBlock *BB, 1612 ArrayRef<BasicBlock *> Preds, 1613 const char *Suffix) { 1614 // Collect the frequencies of all predecessors of BB, which will be used to 1615 // update the edge weight on BB->SuccBB. 1616 BlockFrequency PredBBFreq(0); 1617 if (HasProfileData) 1618 for (auto Pred : Preds) 1619 PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB); 1620 1621 BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix); 1622 1623 // Set the block frequency of the newly created PredBB, which is the sum of 1624 // frequencies of Preds. 1625 if (HasProfileData) 1626 BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency()); 1627 return PredBB; 1628 } 1629 1630 /// Update the block frequency of BB and branch weight and the metadata on the 1631 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 1632 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 1633 void JumpThreading::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 1634 BasicBlock *BB, 1635 BasicBlock *NewBB, 1636 BasicBlock *SuccBB) { 1637 if (!HasProfileData) 1638 return; 1639 1640 assert(BFI && BPI && "BFI & BPI should have been created here"); 1641 1642 // As the edge from PredBB to BB is deleted, we have to update the block 1643 // frequency of BB. 1644 auto BBOrigFreq = BFI->getBlockFreq(BB); 1645 auto NewBBFreq = BFI->getBlockFreq(NewBB); 1646 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 1647 auto BBNewFreq = BBOrigFreq - NewBBFreq; 1648 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 1649 1650 // Collect updated outgoing edges' frequencies from BB and use them to update 1651 // edge probabilities. 1652 SmallVector<uint64_t, 4> BBSuccFreq; 1653 for (BasicBlock *Succ : successors(BB)) { 1654 auto SuccFreq = (Succ == SuccBB) 1655 ? BB2SuccBBFreq - NewBBFreq 1656 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 1657 BBSuccFreq.push_back(SuccFreq.getFrequency()); 1658 } 1659 1660 uint64_t MaxBBSuccFreq = 1661 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 1662 1663 SmallVector<BranchProbability, 4> BBSuccProbs; 1664 if (MaxBBSuccFreq == 0) 1665 BBSuccProbs.assign(BBSuccFreq.size(), 1666 {1, static_cast<unsigned>(BBSuccFreq.size())}); 1667 else { 1668 for (uint64_t Freq : BBSuccFreq) 1669 BBSuccProbs.push_back( 1670 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 1671 // Normalize edge probabilities so that they sum up to one. 1672 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 1673 BBSuccProbs.end()); 1674 } 1675 1676 // Update edge probabilities in BPI. 1677 for (int I = 0, E = BBSuccProbs.size(); I < E; I++) 1678 BPI->setEdgeProbability(BB, I, BBSuccProbs[I]); 1679 1680 if (BBSuccProbs.size() >= 2) { 1681 SmallVector<uint32_t, 4> Weights; 1682 for (auto Prob : BBSuccProbs) 1683 Weights.push_back(Prob.getNumerator()); 1684 1685 auto TI = BB->getTerminator(); 1686 TI->setMetadata( 1687 LLVMContext::MD_prof, 1688 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 1689 } 1690 } 1691 1692 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1693 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1694 /// If we can duplicate the contents of BB up into PredBB do so now, this 1695 /// improves the odds that the branch will be on an analyzable instruction like 1696 /// a compare. 1697 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1698 const SmallVectorImpl<BasicBlock *> &PredBBs) { 1699 assert(!PredBBs.empty() && "Can't handle an empty set"); 1700 1701 // If BB is a loop header, then duplicating this block outside the loop would 1702 // cause us to transform this into an irreducible loop, don't do this. 1703 // See the comments above FindLoopHeaders for justifications and caveats. 1704 if (LoopHeaders.count(BB)) { 1705 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1706 << "' into predecessor block '" << PredBBs[0]->getName() 1707 << "' - it might create an irreducible loop!\n"); 1708 return false; 1709 } 1710 1711 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, BBDupThreshold); 1712 if (DuplicationCost > BBDupThreshold) { 1713 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1714 << "' - Cost is too high: " << DuplicationCost << "\n"); 1715 return false; 1716 } 1717 1718 // And finally, do it! Start by factoring the predecessors if needed. 1719 BasicBlock *PredBB; 1720 if (PredBBs.size() == 1) 1721 PredBB = PredBBs[0]; 1722 else { 1723 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1724 << " common predecessors.\n"); 1725 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1726 } 1727 1728 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1729 // of PredBB. 1730 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1731 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1732 << DuplicationCost << " block is:" << *BB << "\n"); 1733 1734 // Unless PredBB ends with an unconditional branch, split the edge so that we 1735 // can just clone the bits from BB into the end of the new PredBB. 1736 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 1737 1738 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 1739 PredBB = SplitEdge(PredBB, BB); 1740 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1741 } 1742 1743 // We are going to have to map operands from the original BB block into the 1744 // PredBB block. Evaluate PHI nodes in BB. 1745 DenseMap<Instruction*, Value*> ValueMapping; 1746 1747 BasicBlock::iterator BI = BB->begin(); 1748 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1749 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1750 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1751 // mapping and using it to remap operands in the cloned instructions. 1752 for (; BI != BB->end(); ++BI) { 1753 Instruction *New = BI->clone(); 1754 1755 // Remap operands to patch up intra-block references. 1756 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1757 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1758 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1759 if (I != ValueMapping.end()) 1760 New->setOperand(i, I->second); 1761 } 1762 1763 // If this instruction can be simplified after the operands are updated, 1764 // just use the simplified value instead. This frequently happens due to 1765 // phi translation. 1766 if (Value *IV = 1767 SimplifyInstruction(New, BB->getModule()->getDataLayout())) { 1768 delete New; 1769 ValueMapping[&*BI] = IV; 1770 } else { 1771 // Otherwise, insert the new instruction into the block. 1772 New->setName(BI->getName()); 1773 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 1774 ValueMapping[&*BI] = New; 1775 } 1776 } 1777 1778 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1779 // add entries to the PHI nodes for branch from PredBB now. 1780 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1781 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1782 ValueMapping); 1783 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1784 ValueMapping); 1785 1786 // If there were values defined in BB that are used outside the block, then we 1787 // now have to update all uses of the value to use either the original value, 1788 // the cloned value, or some PHI derived value. This can require arbitrary 1789 // PHI insertion, of which we are prepared to do, clean these up now. 1790 SSAUpdater SSAUpdate; 1791 SmallVector<Use*, 16> UsesToRename; 1792 for (Instruction &I : *BB) { 1793 // Scan all uses of this instruction to see if it is used outside of its 1794 // block, and if so, record them in UsesToRename. 1795 for (Use &U : I.uses()) { 1796 Instruction *User = cast<Instruction>(U.getUser()); 1797 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1798 if (UserPN->getIncomingBlock(U) == BB) 1799 continue; 1800 } else if (User->getParent() == BB) 1801 continue; 1802 1803 UsesToRename.push_back(&U); 1804 } 1805 1806 // If there are no uses outside the block, we're done with this instruction. 1807 if (UsesToRename.empty()) 1808 continue; 1809 1810 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 1811 1812 // We found a use of I outside of BB. Rename all uses of I that are outside 1813 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1814 // with the two values we know. 1815 SSAUpdate.Initialize(I.getType(), I.getName()); 1816 SSAUpdate.AddAvailableValue(BB, &I); 1817 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]); 1818 1819 while (!UsesToRename.empty()) 1820 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1821 DEBUG(dbgs() << "\n"); 1822 } 1823 1824 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1825 // that we nuked. 1826 BB->removePredecessor(PredBB, true); 1827 1828 // Remove the unconditional branch at the end of the PredBB block. 1829 OldPredBranch->eraseFromParent(); 1830 1831 ++NumDupes; 1832 return true; 1833 } 1834 1835 /// TryToUnfoldSelect - Look for blocks of the form 1836 /// bb1: 1837 /// %a = select 1838 /// br bb 1839 /// 1840 /// bb2: 1841 /// %p = phi [%a, %bb] ... 1842 /// %c = icmp %p 1843 /// br i1 %c 1844 /// 1845 /// And expand the select into a branch structure if one of its arms allows %c 1846 /// to be folded. This later enables threading from bb1 over bb2. 1847 bool JumpThreading::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 1848 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1849 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 1850 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 1851 1852 if (!CondBr || !CondBr->isConditional() || !CondLHS || 1853 CondLHS->getParent() != BB) 1854 return false; 1855 1856 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 1857 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 1858 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 1859 1860 // Look if one of the incoming values is a select in the corresponding 1861 // predecessor. 1862 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 1863 continue; 1864 1865 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 1866 if (!PredTerm || !PredTerm->isUnconditional()) 1867 continue; 1868 1869 // Now check if one of the select values would allow us to constant fold the 1870 // terminator in BB. We don't do the transform if both sides fold, those 1871 // cases will be threaded in any case. 1872 LazyValueInfo::Tristate LHSFolds = 1873 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 1874 CondRHS, Pred, BB, CondCmp); 1875 LazyValueInfo::Tristate RHSFolds = 1876 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 1877 CondRHS, Pred, BB, CondCmp); 1878 if ((LHSFolds != LazyValueInfo::Unknown || 1879 RHSFolds != LazyValueInfo::Unknown) && 1880 LHSFolds != RHSFolds) { 1881 // Expand the select. 1882 // 1883 // Pred -- 1884 // | v 1885 // | NewBB 1886 // | | 1887 // |----- 1888 // v 1889 // BB 1890 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 1891 BB->getParent(), BB); 1892 // Move the unconditional branch to NewBB. 1893 PredTerm->removeFromParent(); 1894 NewBB->getInstList().insert(NewBB->end(), PredTerm); 1895 // Create a conditional branch and update PHI nodes. 1896 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 1897 CondLHS->setIncomingValue(I, SI->getFalseValue()); 1898 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 1899 // The select is now dead. 1900 SI->eraseFromParent(); 1901 1902 // Update any other PHI nodes in BB. 1903 for (BasicBlock::iterator BI = BB->begin(); 1904 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 1905 if (Phi != CondLHS) 1906 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 1907 return true; 1908 } 1909 } 1910 return false; 1911 } 1912 1913 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select in the same BB of the form 1914 /// bb: 1915 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 1916 /// %s = select p, trueval, falseval 1917 /// 1918 /// And expand the select into a branch structure. This later enables 1919 /// jump-threading over bb in this pass. 1920 /// 1921 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 1922 /// select if the associated PHI has at least one constant. If the unfolded 1923 /// select is not jump-threaded, it will be folded again in the later 1924 /// optimizations. 1925 bool JumpThreading::TryToUnfoldSelectInCurrBB(BasicBlock *BB) { 1926 // If threading this would thread across a loop header, don't thread the edge. 1927 // See the comments above FindLoopHeaders for justifications and caveats. 1928 if (LoopHeaders.count(BB)) 1929 return false; 1930 1931 // Look for a Phi/Select pair in the same basic block. The Phi feeds the 1932 // condition of the Select and at least one of the incoming values is a 1933 // constant. 1934 for (BasicBlock::iterator BI = BB->begin(); 1935 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 1936 unsigned NumPHIValues = PN->getNumIncomingValues(); 1937 if (NumPHIValues == 0 || !PN->hasOneUse()) 1938 continue; 1939 1940 SelectInst *SI = dyn_cast<SelectInst>(PN->user_back()); 1941 if (!SI || SI->getParent() != BB) 1942 continue; 1943 1944 Value *Cond = SI->getCondition(); 1945 if (!Cond || Cond != PN || !Cond->getType()->isIntegerTy(1)) 1946 continue; 1947 1948 bool HasConst = false; 1949 for (unsigned i = 0; i != NumPHIValues; ++i) { 1950 if (PN->getIncomingBlock(i) == BB) 1951 return false; 1952 if (isa<ConstantInt>(PN->getIncomingValue(i))) 1953 HasConst = true; 1954 } 1955 1956 if (HasConst) { 1957 // Expand the select. 1958 TerminatorInst *Term = 1959 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false); 1960 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 1961 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 1962 NewPN->addIncoming(SI->getFalseValue(), BB); 1963 SI->replaceAllUsesWith(NewPN); 1964 SI->eraseFromParent(); 1965 return true; 1966 } 1967 } 1968 1969 return false; 1970 } 1971