1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/GlobalsModRef.h" 22 #include "llvm/Analysis/CFG.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LazyValueInfo.h" 29 #include "llvm/Analysis/Loads.h" 30 #include "llvm/Analysis/LoopInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/ValueHandle.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 44 #include "llvm/Transforms/Utils/Local.h" 45 #include "llvm/Transforms/Utils/SSAUpdater.h" 46 #include <algorithm> 47 #include <memory> 48 using namespace llvm; 49 50 #define DEBUG_TYPE "jump-threading" 51 52 STATISTIC(NumThreads, "Number of jumps threaded"); 53 STATISTIC(NumFolds, "Number of terminators folded"); 54 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 55 56 static cl::opt<unsigned> 57 BBDuplicateThreshold("jump-threading-threshold", 58 cl::desc("Max block size to duplicate for jump threading"), 59 cl::init(6), cl::Hidden); 60 61 static cl::opt<unsigned> 62 ImplicationSearchThreshold( 63 "jump-threading-implication-search-threshold", 64 cl::desc("The number of predecessors to search for a stronger " 65 "condition to use to thread over a weaker condition"), 66 cl::init(3), cl::Hidden); 67 68 namespace { 69 // These are at global scope so static functions can use them too. 70 typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo; 71 typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy; 72 73 // This is used to keep track of what kind of constant we're currently hoping 74 // to find. 75 enum ConstantPreference { 76 WantInteger, 77 WantBlockAddress 78 }; 79 80 /// This pass performs 'jump threading', which looks at blocks that have 81 /// multiple predecessors and multiple successors. If one or more of the 82 /// predecessors of the block can be proven to always jump to one of the 83 /// successors, we forward the edge from the predecessor to the successor by 84 /// duplicating the contents of this block. 85 /// 86 /// An example of when this can occur is code like this: 87 /// 88 /// if () { ... 89 /// X = 4; 90 /// } 91 /// if (X < 3) { 92 /// 93 /// In this case, the unconditional branch at the end of the first if can be 94 /// revectored to the false side of the second if. 95 /// 96 class JumpThreading : public FunctionPass { 97 TargetLibraryInfo *TLI; 98 LazyValueInfo *LVI; 99 std::unique_ptr<BlockFrequencyInfo> BFI; 100 std::unique_ptr<BranchProbabilityInfo> BPI; 101 bool HasProfileData; 102 #ifdef NDEBUG 103 SmallPtrSet<const BasicBlock *, 16> LoopHeaders; 104 #else 105 SmallSet<AssertingVH<const BasicBlock>, 16> LoopHeaders; 106 #endif 107 DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet; 108 109 unsigned BBDupThreshold; 110 111 // RAII helper for updating the recursion stack. 112 struct RecursionSetRemover { 113 DenseSet<std::pair<Value*, BasicBlock*> > &TheSet; 114 std::pair<Value*, BasicBlock*> ThePair; 115 116 RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S, 117 std::pair<Value*, BasicBlock*> P) 118 : TheSet(S), ThePair(P) { } 119 120 ~RecursionSetRemover() { 121 TheSet.erase(ThePair); 122 } 123 }; 124 public: 125 static char ID; // Pass identification 126 JumpThreading(int T = -1) : FunctionPass(ID) { 127 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 128 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 129 } 130 131 bool runOnFunction(Function &F) override; 132 133 void getAnalysisUsage(AnalysisUsage &AU) const override { 134 AU.addRequired<LazyValueInfo>(); 135 AU.addPreserved<LazyValueInfo>(); 136 AU.addPreserved<GlobalsAAWrapperPass>(); 137 AU.addRequired<TargetLibraryInfoWrapperPass>(); 138 } 139 140 void releaseMemory() override { 141 BFI.reset(); 142 BPI.reset(); 143 } 144 145 void FindLoopHeaders(Function &F); 146 bool ProcessBlock(BasicBlock *BB); 147 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 148 BasicBlock *SuccBB); 149 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 150 const SmallVectorImpl<BasicBlock *> &PredBBs); 151 152 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 153 PredValueInfo &Result, 154 ConstantPreference Preference, 155 Instruction *CxtI = nullptr); 156 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 157 ConstantPreference Preference, 158 Instruction *CxtI = nullptr); 159 160 bool ProcessBranchOnPHI(PHINode *PN); 161 bool ProcessBranchOnXOR(BinaryOperator *BO); 162 bool ProcessImpliedCondition(BasicBlock *BB); 163 164 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 165 bool TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB); 166 bool TryToUnfoldSelectInCurrBB(BasicBlock *BB); 167 168 private: 169 BasicBlock *SplitBlockPreds(BasicBlock *BB, ArrayRef<BasicBlock *> Preds, 170 const char *Suffix); 171 void UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, BasicBlock *BB, 172 BasicBlock *NewBB, BasicBlock *SuccBB); 173 }; 174 } 175 176 char JumpThreading::ID = 0; 177 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 178 "Jump Threading", false, false) 179 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo) 180 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 181 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 182 "Jump Threading", false, false) 183 184 // Public interface to the Jump Threading pass 185 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); } 186 187 /// runOnFunction - Top level algorithm. 188 /// 189 bool JumpThreading::runOnFunction(Function &F) { 190 if (skipOptnoneFunction(F)) 191 return false; 192 193 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 194 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 195 LVI = &getAnalysis<LazyValueInfo>(); 196 BFI.reset(); 197 BPI.reset(); 198 // When profile data is available, we need to update edge weights after 199 // successful jump threading, which requires both BPI and BFI being available. 200 HasProfileData = F.getEntryCount().hasValue(); 201 if (HasProfileData) { 202 LoopInfo LI{DominatorTree(F)}; 203 BPI.reset(new BranchProbabilityInfo(F, LI)); 204 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 205 } 206 207 // Remove unreachable blocks from function as they may result in infinite 208 // loop. We do threading if we found something profitable. Jump threading a 209 // branch can create other opportunities. If these opportunities form a cycle 210 // i.e. if any jump threading is undoing previous threading in the path, then 211 // we will loop forever. We take care of this issue by not jump threading for 212 // back edges. This works for normal cases but not for unreachable blocks as 213 // they may have cycle with no back edge. 214 removeUnreachableBlocks(F); 215 216 FindLoopHeaders(F); 217 218 bool Changed, EverChanged = false; 219 do { 220 Changed = false; 221 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 222 BasicBlock *BB = &*I; 223 // Thread all of the branches we can over this block. 224 while (ProcessBlock(BB)) 225 Changed = true; 226 227 ++I; 228 229 // If the block is trivially dead, zap it. This eliminates the successor 230 // edges which simplifies the CFG. 231 if (pred_empty(BB) && 232 BB != &BB->getParent()->getEntryBlock()) { 233 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 234 << "' with terminator: " << *BB->getTerminator() << '\n'); 235 LoopHeaders.erase(BB); 236 LVI->eraseBlock(BB); 237 DeleteDeadBlock(BB); 238 Changed = true; 239 continue; 240 } 241 242 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 243 244 // Can't thread an unconditional jump, but if the block is "almost 245 // empty", we can replace uses of it with uses of the successor and make 246 // this dead. 247 if (BI && BI->isUnconditional() && 248 BB != &BB->getParent()->getEntryBlock() && 249 // If the terminator is the only non-phi instruction, try to nuke it. 250 BB->getFirstNonPHIOrDbg()->isTerminator()) { 251 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 252 // block, we have to make sure it isn't in the LoopHeaders set. We 253 // reinsert afterward if needed. 254 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 255 BasicBlock *Succ = BI->getSuccessor(0); 256 257 // FIXME: It is always conservatively correct to drop the info 258 // for a block even if it doesn't get erased. This isn't totally 259 // awesome, but it allows us to use AssertingVH to prevent nasty 260 // dangling pointer issues within LazyValueInfo. 261 LVI->eraseBlock(BB); 262 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { 263 Changed = true; 264 // If we deleted BB and BB was the header of a loop, then the 265 // successor is now the header of the loop. 266 BB = Succ; 267 } 268 269 if (ErasedFromLoopHeaders) 270 LoopHeaders.insert(BB); 271 } 272 } 273 EverChanged |= Changed; 274 } while (Changed); 275 276 LoopHeaders.clear(); 277 return EverChanged; 278 } 279 280 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 281 /// thread across it. Stop scanning the block when passing the threshold. 282 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB, 283 unsigned Threshold) { 284 /// Ignore PHI nodes, these will be flattened when duplication happens. 285 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 286 287 // FIXME: THREADING will delete values that are just used to compute the 288 // branch, so they shouldn't count against the duplication cost. 289 290 unsigned Bonus = 0; 291 const TerminatorInst *BBTerm = BB->getTerminator(); 292 // Threading through a switch statement is particularly profitable. If this 293 // block ends in a switch, decrease its cost to make it more likely to happen. 294 if (isa<SwitchInst>(BBTerm)) 295 Bonus = 6; 296 297 // The same holds for indirect branches, but slightly more so. 298 if (isa<IndirectBrInst>(BBTerm)) 299 Bonus = 8; 300 301 // Bump the threshold up so the early exit from the loop doesn't skip the 302 // terminator-based Size adjustment at the end. 303 Threshold += Bonus; 304 305 // Sum up the cost of each instruction until we get to the terminator. Don't 306 // include the terminator because the copy won't include it. 307 unsigned Size = 0; 308 for (; !isa<TerminatorInst>(I); ++I) { 309 310 // Stop scanning the block if we've reached the threshold. 311 if (Size > Threshold) 312 return Size; 313 314 // Debugger intrinsics don't incur code size. 315 if (isa<DbgInfoIntrinsic>(I)) continue; 316 317 // If this is a pointer->pointer bitcast, it is free. 318 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 319 continue; 320 321 // Bail out if this instruction gives back a token type, it is not possible 322 // to duplicate it if it is used outside this BB. 323 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 324 return ~0U; 325 326 // All other instructions count for at least one unit. 327 ++Size; 328 329 // Calls are more expensive. If they are non-intrinsic calls, we model them 330 // as having cost of 4. If they are a non-vector intrinsic, we model them 331 // as having cost of 2 total, and if they are a vector intrinsic, we model 332 // them as having cost 1. 333 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 334 if (CI->cannotDuplicate() || CI->isConvergent()) 335 // Blocks with NoDuplicate are modelled as having infinite cost, so they 336 // are never duplicated. 337 return ~0U; 338 else if (!isa<IntrinsicInst>(CI)) 339 Size += 3; 340 else if (!CI->getType()->isVectorTy()) 341 Size += 1; 342 } 343 } 344 345 return Size > Bonus ? Size - Bonus : 0; 346 } 347 348 /// FindLoopHeaders - We do not want jump threading to turn proper loop 349 /// structures into irreducible loops. Doing this breaks up the loop nesting 350 /// hierarchy and pessimizes later transformations. To prevent this from 351 /// happening, we first have to find the loop headers. Here we approximate this 352 /// by finding targets of backedges in the CFG. 353 /// 354 /// Note that there definitely are cases when we want to allow threading of 355 /// edges across a loop header. For example, threading a jump from outside the 356 /// loop (the preheader) to an exit block of the loop is definitely profitable. 357 /// It is also almost always profitable to thread backedges from within the loop 358 /// to exit blocks, and is often profitable to thread backedges to other blocks 359 /// within the loop (forming a nested loop). This simple analysis is not rich 360 /// enough to track all of these properties and keep it up-to-date as the CFG 361 /// mutates, so we don't allow any of these transformations. 362 /// 363 void JumpThreading::FindLoopHeaders(Function &F) { 364 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 365 FindFunctionBackedges(F, Edges); 366 367 for (const auto &Edge : Edges) 368 LoopHeaders.insert(Edge.second); 369 } 370 371 /// getKnownConstant - Helper method to determine if we can thread over a 372 /// terminator with the given value as its condition, and if so what value to 373 /// use for that. What kind of value this is depends on whether we want an 374 /// integer or a block address, but an undef is always accepted. 375 /// Returns null if Val is null or not an appropriate constant. 376 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 377 if (!Val) 378 return nullptr; 379 380 // Undef is "known" enough. 381 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 382 return U; 383 384 if (Preference == WantBlockAddress) 385 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 386 387 return dyn_cast<ConstantInt>(Val); 388 } 389 390 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 391 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 392 /// in any of our predecessors. If so, return the known list of value and pred 393 /// BB in the result vector. 394 /// 395 /// This returns true if there were any known values. 396 /// 397 bool JumpThreading:: 398 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result, 399 ConstantPreference Preference, 400 Instruction *CxtI) { 401 // This method walks up use-def chains recursively. Because of this, we could 402 // get into an infinite loop going around loops in the use-def chain. To 403 // prevent this, keep track of what (value, block) pairs we've already visited 404 // and terminate the search if we loop back to them 405 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 406 return false; 407 408 // An RAII help to remove this pair from the recursion set once the recursion 409 // stack pops back out again. 410 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 411 412 // If V is a constant, then it is known in all predecessors. 413 if (Constant *KC = getKnownConstant(V, Preference)) { 414 for (BasicBlock *Pred : predecessors(BB)) 415 Result.push_back(std::make_pair(KC, Pred)); 416 417 return true; 418 } 419 420 // If V is a non-instruction value, or an instruction in a different block, 421 // then it can't be derived from a PHI. 422 Instruction *I = dyn_cast<Instruction>(V); 423 if (!I || I->getParent() != BB) { 424 425 // Okay, if this is a live-in value, see if it has a known value at the end 426 // of any of our predecessors. 427 // 428 // FIXME: This should be an edge property, not a block end property. 429 /// TODO: Per PR2563, we could infer value range information about a 430 /// predecessor based on its terminator. 431 // 432 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 433 // "I" is a non-local compare-with-a-constant instruction. This would be 434 // able to handle value inequalities better, for example if the compare is 435 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 436 // Perhaps getConstantOnEdge should be smart enough to do this? 437 438 for (BasicBlock *P : predecessors(BB)) { 439 // If the value is known by LazyValueInfo to be a constant in a 440 // predecessor, use that information to try to thread this block. 441 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 442 if (Constant *KC = getKnownConstant(PredCst, Preference)) 443 Result.push_back(std::make_pair(KC, P)); 444 } 445 446 return !Result.empty(); 447 } 448 449 /// If I is a PHI node, then we know the incoming values for any constants. 450 if (PHINode *PN = dyn_cast<PHINode>(I)) { 451 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 452 Value *InVal = PN->getIncomingValue(i); 453 if (Constant *KC = getKnownConstant(InVal, Preference)) { 454 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 455 } else { 456 Constant *CI = LVI->getConstantOnEdge(InVal, 457 PN->getIncomingBlock(i), 458 BB, CxtI); 459 if (Constant *KC = getKnownConstant(CI, Preference)) 460 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 461 } 462 } 463 464 return !Result.empty(); 465 } 466 467 PredValueInfoTy LHSVals, RHSVals; 468 469 // Handle some boolean conditions. 470 if (I->getType()->getPrimitiveSizeInBits() == 1) { 471 assert(Preference == WantInteger && "One-bit non-integer type?"); 472 // X | true -> true 473 // X & false -> false 474 if (I->getOpcode() == Instruction::Or || 475 I->getOpcode() == Instruction::And) { 476 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 477 WantInteger, CxtI); 478 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 479 WantInteger, CxtI); 480 481 if (LHSVals.empty() && RHSVals.empty()) 482 return false; 483 484 ConstantInt *InterestingVal; 485 if (I->getOpcode() == Instruction::Or) 486 InterestingVal = ConstantInt::getTrue(I->getContext()); 487 else 488 InterestingVal = ConstantInt::getFalse(I->getContext()); 489 490 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 491 492 // Scan for the sentinel. If we find an undef, force it to the 493 // interesting value: x|undef -> true and x&undef -> false. 494 for (const auto &LHSVal : LHSVals) 495 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 496 Result.emplace_back(InterestingVal, LHSVal.second); 497 LHSKnownBBs.insert(LHSVal.second); 498 } 499 for (const auto &RHSVal : RHSVals) 500 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 501 // If we already inferred a value for this block on the LHS, don't 502 // re-add it. 503 if (!LHSKnownBBs.count(RHSVal.second)) 504 Result.emplace_back(InterestingVal, RHSVal.second); 505 } 506 507 return !Result.empty(); 508 } 509 510 // Handle the NOT form of XOR. 511 if (I->getOpcode() == Instruction::Xor && 512 isa<ConstantInt>(I->getOperand(1)) && 513 cast<ConstantInt>(I->getOperand(1))->isOne()) { 514 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 515 WantInteger, CxtI); 516 if (Result.empty()) 517 return false; 518 519 // Invert the known values. 520 for (auto &R : Result) 521 R.first = ConstantExpr::getNot(R.first); 522 523 return true; 524 } 525 526 // Try to simplify some other binary operator values. 527 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 528 assert(Preference != WantBlockAddress 529 && "A binary operator creating a block address?"); 530 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 531 PredValueInfoTy LHSVals; 532 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 533 WantInteger, CxtI); 534 535 // Try to use constant folding to simplify the binary operator. 536 for (const auto &LHSVal : LHSVals) { 537 Constant *V = LHSVal.first; 538 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 539 540 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 541 Result.push_back(std::make_pair(KC, LHSVal.second)); 542 } 543 } 544 545 return !Result.empty(); 546 } 547 548 // Handle compare with phi operand, where the PHI is defined in this block. 549 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 550 assert(Preference == WantInteger && "Compares only produce integers"); 551 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 552 if (PN && PN->getParent() == BB) { 553 const DataLayout &DL = PN->getModule()->getDataLayout(); 554 // We can do this simplification if any comparisons fold to true or false. 555 // See if any do. 556 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 557 BasicBlock *PredBB = PN->getIncomingBlock(i); 558 Value *LHS = PN->getIncomingValue(i); 559 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 560 561 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL); 562 if (!Res) { 563 if (!isa<Constant>(RHS)) 564 continue; 565 566 LazyValueInfo::Tristate 567 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 568 cast<Constant>(RHS), PredBB, BB, 569 CxtI ? CxtI : Cmp); 570 if (ResT == LazyValueInfo::Unknown) 571 continue; 572 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 573 } 574 575 if (Constant *KC = getKnownConstant(Res, WantInteger)) 576 Result.push_back(std::make_pair(KC, PredBB)); 577 } 578 579 return !Result.empty(); 580 } 581 582 // If comparing a live-in value against a constant, see if we know the 583 // live-in value on any predecessors. 584 if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) { 585 if (!isa<Instruction>(Cmp->getOperand(0)) || 586 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) { 587 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 588 589 for (BasicBlock *P : predecessors(BB)) { 590 // If the value is known by LazyValueInfo to be a constant in a 591 // predecessor, use that information to try to thread this block. 592 LazyValueInfo::Tristate Res = 593 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 594 RHSCst, P, BB, CxtI ? CxtI : Cmp); 595 if (Res == LazyValueInfo::Unknown) 596 continue; 597 598 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 599 Result.push_back(std::make_pair(ResC, P)); 600 } 601 602 return !Result.empty(); 603 } 604 605 // Try to find a constant value for the LHS of a comparison, 606 // and evaluate it statically if we can. 607 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) { 608 PredValueInfoTy LHSVals; 609 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 610 WantInteger, CxtI); 611 612 for (const auto &LHSVal : LHSVals) { 613 Constant *V = LHSVal.first; 614 Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(), 615 V, CmpConst); 616 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 617 Result.push_back(std::make_pair(KC, LHSVal.second)); 618 } 619 620 return !Result.empty(); 621 } 622 } 623 } 624 625 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 626 // Handle select instructions where at least one operand is a known constant 627 // and we can figure out the condition value for any predecessor block. 628 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 629 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 630 PredValueInfoTy Conds; 631 if ((TrueVal || FalseVal) && 632 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 633 WantInteger, CxtI)) { 634 for (auto &C : Conds) { 635 Constant *Cond = C.first; 636 637 // Figure out what value to use for the condition. 638 bool KnownCond; 639 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 640 // A known boolean. 641 KnownCond = CI->isOne(); 642 } else { 643 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 644 // Either operand will do, so be sure to pick the one that's a known 645 // constant. 646 // FIXME: Do this more cleverly if both values are known constants? 647 KnownCond = (TrueVal != nullptr); 648 } 649 650 // See if the select has a known constant value for this predecessor. 651 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 652 Result.push_back(std::make_pair(Val, C.second)); 653 } 654 655 return !Result.empty(); 656 } 657 } 658 659 // If all else fails, see if LVI can figure out a constant value for us. 660 Constant *CI = LVI->getConstant(V, BB, CxtI); 661 if (Constant *KC = getKnownConstant(CI, Preference)) { 662 for (BasicBlock *Pred : predecessors(BB)) 663 Result.push_back(std::make_pair(KC, Pred)); 664 } 665 666 return !Result.empty(); 667 } 668 669 670 671 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 672 /// in an undefined jump, decide which block is best to revector to. 673 /// 674 /// Since we can pick an arbitrary destination, we pick the successor with the 675 /// fewest predecessors. This should reduce the in-degree of the others. 676 /// 677 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 678 TerminatorInst *BBTerm = BB->getTerminator(); 679 unsigned MinSucc = 0; 680 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 681 // Compute the successor with the minimum number of predecessors. 682 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 683 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 684 TestBB = BBTerm->getSuccessor(i); 685 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 686 if (NumPreds < MinNumPreds) { 687 MinSucc = i; 688 MinNumPreds = NumPreds; 689 } 690 } 691 692 return MinSucc; 693 } 694 695 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 696 if (!BB->hasAddressTaken()) return false; 697 698 // If the block has its address taken, it may be a tree of dead constants 699 // hanging off of it. These shouldn't keep the block alive. 700 BlockAddress *BA = BlockAddress::get(BB); 701 BA->removeDeadConstantUsers(); 702 return !BA->use_empty(); 703 } 704 705 /// ProcessBlock - If there are any predecessors whose control can be threaded 706 /// through to a successor, transform them now. 707 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 708 // If the block is trivially dead, just return and let the caller nuke it. 709 // This simplifies other transformations. 710 if (pred_empty(BB) && 711 BB != &BB->getParent()->getEntryBlock()) 712 return false; 713 714 // If this block has a single predecessor, and if that pred has a single 715 // successor, merge the blocks. This encourages recursive jump threading 716 // because now the condition in this block can be threaded through 717 // predecessors of our predecessor block. 718 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 719 const TerminatorInst *TI = SinglePred->getTerminator(); 720 if (!TI->isExceptional() && TI->getNumSuccessors() == 1 && 721 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 722 // If SinglePred was a loop header, BB becomes one. 723 if (LoopHeaders.erase(SinglePred)) 724 LoopHeaders.insert(BB); 725 726 LVI->eraseBlock(SinglePred); 727 MergeBasicBlockIntoOnlyPred(BB); 728 729 return true; 730 } 731 } 732 733 if (TryToUnfoldSelectInCurrBB(BB)) 734 return true; 735 736 // What kind of constant we're looking for. 737 ConstantPreference Preference = WantInteger; 738 739 // Look to see if the terminator is a conditional branch, switch or indirect 740 // branch, if not we can't thread it. 741 Value *Condition; 742 Instruction *Terminator = BB->getTerminator(); 743 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 744 // Can't thread an unconditional jump. 745 if (BI->isUnconditional()) return false; 746 Condition = BI->getCondition(); 747 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 748 Condition = SI->getCondition(); 749 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 750 // Can't thread indirect branch with no successors. 751 if (IB->getNumSuccessors() == 0) return false; 752 Condition = IB->getAddress()->stripPointerCasts(); 753 Preference = WantBlockAddress; 754 } else { 755 return false; // Must be an invoke. 756 } 757 758 // Run constant folding to see if we can reduce the condition to a simple 759 // constant. 760 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 761 Value *SimpleVal = 762 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 763 if (SimpleVal) { 764 I->replaceAllUsesWith(SimpleVal); 765 I->eraseFromParent(); 766 Condition = SimpleVal; 767 } 768 } 769 770 // If the terminator is branching on an undef, we can pick any of the 771 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 772 if (isa<UndefValue>(Condition)) { 773 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 774 775 // Fold the branch/switch. 776 TerminatorInst *BBTerm = BB->getTerminator(); 777 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 778 if (i == BestSucc) continue; 779 BBTerm->getSuccessor(i)->removePredecessor(BB, true); 780 } 781 782 DEBUG(dbgs() << " In block '" << BB->getName() 783 << "' folding undef terminator: " << *BBTerm << '\n'); 784 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 785 BBTerm->eraseFromParent(); 786 return true; 787 } 788 789 // If the terminator of this block is branching on a constant, simplify the 790 // terminator to an unconditional branch. This can occur due to threading in 791 // other blocks. 792 if (getKnownConstant(Condition, Preference)) { 793 DEBUG(dbgs() << " In block '" << BB->getName() 794 << "' folding terminator: " << *BB->getTerminator() << '\n'); 795 ++NumFolds; 796 ConstantFoldTerminator(BB, true); 797 return true; 798 } 799 800 Instruction *CondInst = dyn_cast<Instruction>(Condition); 801 802 // All the rest of our checks depend on the condition being an instruction. 803 if (!CondInst) { 804 // FIXME: Unify this with code below. 805 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 806 return true; 807 return false; 808 } 809 810 811 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 812 // If we're branching on a conditional, LVI might be able to determine 813 // it's value at the branch instruction. We only handle comparisons 814 // against a constant at this time. 815 // TODO: This should be extended to handle switches as well. 816 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 817 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 818 if (CondBr && CondConst && CondBr->isConditional()) { 819 LazyValueInfo::Tristate Ret = 820 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 821 CondConst, CondBr); 822 if (Ret != LazyValueInfo::Unknown) { 823 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 824 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 825 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 826 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 827 CondBr->eraseFromParent(); 828 if (CondCmp->use_empty()) 829 CondCmp->eraseFromParent(); 830 else if (CondCmp->getParent() == BB) { 831 // If the fact we just learned is true for all uses of the 832 // condition, replace it with a constant value 833 auto *CI = Ret == LazyValueInfo::True ? 834 ConstantInt::getTrue(CondCmp->getType()) : 835 ConstantInt::getFalse(CondCmp->getType()); 836 CondCmp->replaceAllUsesWith(CI); 837 CondCmp->eraseFromParent(); 838 } 839 return true; 840 } 841 } 842 843 if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB)) 844 return true; 845 } 846 847 // Check for some cases that are worth simplifying. Right now we want to look 848 // for loads that are used by a switch or by the condition for the branch. If 849 // we see one, check to see if it's partially redundant. If so, insert a PHI 850 // which can then be used to thread the values. 851 // 852 Value *SimplifyValue = CondInst; 853 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 854 if (isa<Constant>(CondCmp->getOperand(1))) 855 SimplifyValue = CondCmp->getOperand(0); 856 857 // TODO: There are other places where load PRE would be profitable, such as 858 // more complex comparisons. 859 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 860 if (SimplifyPartiallyRedundantLoad(LI)) 861 return true; 862 863 864 // Handle a variety of cases where we are branching on something derived from 865 // a PHI node in the current block. If we can prove that any predecessors 866 // compute a predictable value based on a PHI node, thread those predecessors. 867 // 868 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 869 return true; 870 871 // If this is an otherwise-unfoldable branch on a phi node in the current 872 // block, see if we can simplify. 873 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 874 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 875 return ProcessBranchOnPHI(PN); 876 877 878 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 879 if (CondInst->getOpcode() == Instruction::Xor && 880 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 881 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 882 883 // Search for a stronger dominating condition that can be used to simplify a 884 // conditional branch leaving BB. 885 if (ProcessImpliedCondition(BB)) 886 return true; 887 888 return false; 889 } 890 891 bool JumpThreading::ProcessImpliedCondition(BasicBlock *BB) { 892 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 893 if (!BI || !BI->isConditional()) 894 return false; 895 896 Value *Cond = BI->getCondition(); 897 BasicBlock *CurrentBB = BB; 898 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 899 unsigned Iter = 0; 900 901 auto &DL = BB->getModule()->getDataLayout(); 902 903 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 904 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 905 if (!PBI || !PBI->isConditional() || PBI->getSuccessor(0) != CurrentBB) 906 return false; 907 908 if (isImpliedCondition(PBI->getCondition(), Cond, DL)) { 909 BI->getSuccessor(1)->removePredecessor(BB); 910 BranchInst::Create(BI->getSuccessor(0), BI); 911 BI->eraseFromParent(); 912 return true; 913 } 914 CurrentBB = CurrentPred; 915 CurrentPred = CurrentBB->getSinglePredecessor(); 916 } 917 918 return false; 919 } 920 921 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 922 /// load instruction, eliminate it by replacing it with a PHI node. This is an 923 /// important optimization that encourages jump threading, and needs to be run 924 /// interlaced with other jump threading tasks. 925 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 926 // Don't hack volatile/atomic loads. 927 if (!LI->isSimple()) return false; 928 929 // If the load is defined in a block with exactly one predecessor, it can't be 930 // partially redundant. 931 BasicBlock *LoadBB = LI->getParent(); 932 if (LoadBB->getSinglePredecessor()) 933 return false; 934 935 // If the load is defined in an EH pad, it can't be partially redundant, 936 // because the edges between the invoke and the EH pad cannot have other 937 // instructions between them. 938 if (LoadBB->isEHPad()) 939 return false; 940 941 Value *LoadedPtr = LI->getOperand(0); 942 943 // If the loaded operand is defined in the LoadBB, it can't be available. 944 // TODO: Could do simple PHI translation, that would be fun :) 945 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 946 if (PtrOp->getParent() == LoadBB) 947 return false; 948 949 // Scan a few instructions up from the load, to see if it is obviously live at 950 // the entry to its block. 951 BasicBlock::iterator BBIt(LI); 952 953 if (Value *AvailableVal = 954 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, DefMaxInstsToScan)) { 955 // If the value of the load is locally available within the block, just use 956 // it. This frequently occurs for reg2mem'd allocas. 957 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 958 959 // If the returned value is the load itself, replace with an undef. This can 960 // only happen in dead loops. 961 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 962 if (AvailableVal->getType() != LI->getType()) 963 AvailableVal = 964 CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI); 965 LI->replaceAllUsesWith(AvailableVal); 966 LI->eraseFromParent(); 967 return true; 968 } 969 970 // Otherwise, if we scanned the whole block and got to the top of the block, 971 // we know the block is locally transparent to the load. If not, something 972 // might clobber its value. 973 if (BBIt != LoadBB->begin()) 974 return false; 975 976 // If all of the loads and stores that feed the value have the same AA tags, 977 // then we can propagate them onto any newly inserted loads. 978 AAMDNodes AATags; 979 LI->getAAMetadata(AATags); 980 981 SmallPtrSet<BasicBlock*, 8> PredsScanned; 982 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 983 AvailablePredsTy AvailablePreds; 984 BasicBlock *OneUnavailablePred = nullptr; 985 986 // If we got here, the loaded value is transparent through to the start of the 987 // block. Check to see if it is available in any of the predecessor blocks. 988 for (BasicBlock *PredBB : predecessors(LoadBB)) { 989 // If we already scanned this predecessor, skip it. 990 if (!PredsScanned.insert(PredBB).second) 991 continue; 992 993 // Scan the predecessor to see if the value is available in the pred. 994 BBIt = PredBB->end(); 995 AAMDNodes ThisAATags; 996 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 997 DefMaxInstsToScan, 998 nullptr, &ThisAATags); 999 if (!PredAvailable) { 1000 OneUnavailablePred = PredBB; 1001 continue; 1002 } 1003 1004 // If AA tags disagree or are not present, forget about them. 1005 if (AATags != ThisAATags) AATags = AAMDNodes(); 1006 1007 // If so, this load is partially redundant. Remember this info so that we 1008 // can create a PHI node. 1009 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 1010 } 1011 1012 // If the loaded value isn't available in any predecessor, it isn't partially 1013 // redundant. 1014 if (AvailablePreds.empty()) return false; 1015 1016 // Okay, the loaded value is available in at least one (and maybe all!) 1017 // predecessors. If the value is unavailable in more than one unique 1018 // predecessor, we want to insert a merge block for those common predecessors. 1019 // This ensures that we only have to insert one reload, thus not increasing 1020 // code size. 1021 BasicBlock *UnavailablePred = nullptr; 1022 1023 // If there is exactly one predecessor where the value is unavailable, the 1024 // already computed 'OneUnavailablePred' block is it. If it ends in an 1025 // unconditional branch, we know that it isn't a critical edge. 1026 if (PredsScanned.size() == AvailablePreds.size()+1 && 1027 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1028 UnavailablePred = OneUnavailablePred; 1029 } else if (PredsScanned.size() != AvailablePreds.size()) { 1030 // Otherwise, we had multiple unavailable predecessors or we had a critical 1031 // edge from the one. 1032 SmallVector<BasicBlock*, 8> PredsToSplit; 1033 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1034 1035 for (const auto &AvailablePred : AvailablePreds) 1036 AvailablePredSet.insert(AvailablePred.first); 1037 1038 // Add all the unavailable predecessors to the PredsToSplit list. 1039 for (BasicBlock *P : predecessors(LoadBB)) { 1040 // If the predecessor is an indirect goto, we can't split the edge. 1041 if (isa<IndirectBrInst>(P->getTerminator())) 1042 return false; 1043 1044 if (!AvailablePredSet.count(P)) 1045 PredsToSplit.push_back(P); 1046 } 1047 1048 // Split them out to their own block. 1049 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1050 } 1051 1052 // If the value isn't available in all predecessors, then there will be 1053 // exactly one where it isn't available. Insert a load on that edge and add 1054 // it to the AvailablePreds list. 1055 if (UnavailablePred) { 1056 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1057 "Can't handle critical edge here!"); 1058 LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, 1059 LI->getAlignment(), 1060 UnavailablePred->getTerminator()); 1061 NewVal->setDebugLoc(LI->getDebugLoc()); 1062 if (AATags) 1063 NewVal->setAAMetadata(AATags); 1064 1065 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1066 } 1067 1068 // Now we know that each predecessor of this block has a value in 1069 // AvailablePreds, sort them for efficient access as we're walking the preds. 1070 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1071 1072 // Create a PHI node at the start of the block for the PRE'd load value. 1073 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1074 PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "", 1075 &LoadBB->front()); 1076 PN->takeName(LI); 1077 PN->setDebugLoc(LI->getDebugLoc()); 1078 1079 // Insert new entries into the PHI for each predecessor. A single block may 1080 // have multiple entries here. 1081 for (pred_iterator PI = PB; PI != PE; ++PI) { 1082 BasicBlock *P = *PI; 1083 AvailablePredsTy::iterator I = 1084 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1085 std::make_pair(P, (Value*)nullptr)); 1086 1087 assert(I != AvailablePreds.end() && I->first == P && 1088 "Didn't find entry for predecessor!"); 1089 1090 // If we have an available predecessor but it requires casting, insert the 1091 // cast in the predecessor and use the cast. Note that we have to update the 1092 // AvailablePreds vector as we go so that all of the PHI entries for this 1093 // predecessor use the same bitcast. 1094 Value *&PredV = I->second; 1095 if (PredV->getType() != LI->getType()) 1096 PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "", 1097 P->getTerminator()); 1098 1099 PN->addIncoming(PredV, I->first); 1100 } 1101 1102 //cerr << "PRE: " << *LI << *PN << "\n"; 1103 1104 LI->replaceAllUsesWith(PN); 1105 LI->eraseFromParent(); 1106 1107 return true; 1108 } 1109 1110 /// FindMostPopularDest - The specified list contains multiple possible 1111 /// threadable destinations. Pick the one that occurs the most frequently in 1112 /// the list. 1113 static BasicBlock * 1114 FindMostPopularDest(BasicBlock *BB, 1115 const SmallVectorImpl<std::pair<BasicBlock*, 1116 BasicBlock*> > &PredToDestList) { 1117 assert(!PredToDestList.empty()); 1118 1119 // Determine popularity. If there are multiple possible destinations, we 1120 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1121 // blocks with known and real destinations to threading undef. We'll handle 1122 // them later if interesting. 1123 DenseMap<BasicBlock*, unsigned> DestPopularity; 1124 for (const auto &PredToDest : PredToDestList) 1125 if (PredToDest.second) 1126 DestPopularity[PredToDest.second]++; 1127 1128 // Find the most popular dest. 1129 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1130 BasicBlock *MostPopularDest = DPI->first; 1131 unsigned Popularity = DPI->second; 1132 SmallVector<BasicBlock*, 4> SamePopularity; 1133 1134 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1135 // If the popularity of this entry isn't higher than the popularity we've 1136 // seen so far, ignore it. 1137 if (DPI->second < Popularity) 1138 ; // ignore. 1139 else if (DPI->second == Popularity) { 1140 // If it is the same as what we've seen so far, keep track of it. 1141 SamePopularity.push_back(DPI->first); 1142 } else { 1143 // If it is more popular, remember it. 1144 SamePopularity.clear(); 1145 MostPopularDest = DPI->first; 1146 Popularity = DPI->second; 1147 } 1148 } 1149 1150 // Okay, now we know the most popular destination. If there is more than one 1151 // destination, we need to determine one. This is arbitrary, but we need 1152 // to make a deterministic decision. Pick the first one that appears in the 1153 // successor list. 1154 if (!SamePopularity.empty()) { 1155 SamePopularity.push_back(MostPopularDest); 1156 TerminatorInst *TI = BB->getTerminator(); 1157 for (unsigned i = 0; ; ++i) { 1158 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1159 1160 if (std::find(SamePopularity.begin(), SamePopularity.end(), 1161 TI->getSuccessor(i)) == SamePopularity.end()) 1162 continue; 1163 1164 MostPopularDest = TI->getSuccessor(i); 1165 break; 1166 } 1167 } 1168 1169 // Okay, we have finally picked the most popular destination. 1170 return MostPopularDest; 1171 } 1172 1173 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1174 ConstantPreference Preference, 1175 Instruction *CxtI) { 1176 // If threading this would thread across a loop header, don't even try to 1177 // thread the edge. 1178 if (LoopHeaders.count(BB)) 1179 return false; 1180 1181 PredValueInfoTy PredValues; 1182 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1183 return false; 1184 1185 assert(!PredValues.empty() && 1186 "ComputeValueKnownInPredecessors returned true with no values"); 1187 1188 DEBUG(dbgs() << "IN BB: " << *BB; 1189 for (const auto &PredValue : PredValues) { 1190 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1191 << *PredValue.first 1192 << " for pred '" << PredValue.second->getName() << "'.\n"; 1193 }); 1194 1195 // Decide what we want to thread through. Convert our list of known values to 1196 // a list of known destinations for each pred. This also discards duplicate 1197 // predecessors and keeps track of the undefined inputs (which are represented 1198 // as a null dest in the PredToDestList). 1199 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1200 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1201 1202 BasicBlock *OnlyDest = nullptr; 1203 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1204 1205 for (const auto &PredValue : PredValues) { 1206 BasicBlock *Pred = PredValue.second; 1207 if (!SeenPreds.insert(Pred).second) 1208 continue; // Duplicate predecessor entry. 1209 1210 // If the predecessor ends with an indirect goto, we can't change its 1211 // destination. 1212 if (isa<IndirectBrInst>(Pred->getTerminator())) 1213 continue; 1214 1215 Constant *Val = PredValue.first; 1216 1217 BasicBlock *DestBB; 1218 if (isa<UndefValue>(Val)) 1219 DestBB = nullptr; 1220 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1221 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1222 else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1223 DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor(); 1224 } else { 1225 assert(isa<IndirectBrInst>(BB->getTerminator()) 1226 && "Unexpected terminator"); 1227 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1228 } 1229 1230 // If we have exactly one destination, remember it for efficiency below. 1231 if (PredToDestList.empty()) 1232 OnlyDest = DestBB; 1233 else if (OnlyDest != DestBB) 1234 OnlyDest = MultipleDestSentinel; 1235 1236 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1237 } 1238 1239 // If all edges were unthreadable, we fail. 1240 if (PredToDestList.empty()) 1241 return false; 1242 1243 // Determine which is the most common successor. If we have many inputs and 1244 // this block is a switch, we want to start by threading the batch that goes 1245 // to the most popular destination first. If we only know about one 1246 // threadable destination (the common case) we can avoid this. 1247 BasicBlock *MostPopularDest = OnlyDest; 1248 1249 if (MostPopularDest == MultipleDestSentinel) 1250 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1251 1252 // Now that we know what the most popular destination is, factor all 1253 // predecessors that will jump to it into a single predecessor. 1254 SmallVector<BasicBlock*, 16> PredsToFactor; 1255 for (const auto &PredToDest : PredToDestList) 1256 if (PredToDest.second == MostPopularDest) { 1257 BasicBlock *Pred = PredToDest.first; 1258 1259 // This predecessor may be a switch or something else that has multiple 1260 // edges to the block. Factor each of these edges by listing them 1261 // according to # occurrences in PredsToFactor. 1262 for (BasicBlock *Succ : successors(Pred)) 1263 if (Succ == BB) 1264 PredsToFactor.push_back(Pred); 1265 } 1266 1267 // If the threadable edges are branching on an undefined value, we get to pick 1268 // the destination that these predecessors should get to. 1269 if (!MostPopularDest) 1270 MostPopularDest = BB->getTerminator()-> 1271 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1272 1273 // Ok, try to thread it! 1274 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1275 } 1276 1277 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1278 /// a PHI node in the current block. See if there are any simplifications we 1279 /// can do based on inputs to the phi node. 1280 /// 1281 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) { 1282 BasicBlock *BB = PN->getParent(); 1283 1284 // TODO: We could make use of this to do it once for blocks with common PHI 1285 // values. 1286 SmallVector<BasicBlock*, 1> PredBBs; 1287 PredBBs.resize(1); 1288 1289 // If any of the predecessor blocks end in an unconditional branch, we can 1290 // *duplicate* the conditional branch into that block in order to further 1291 // encourage jump threading and to eliminate cases where we have branch on a 1292 // phi of an icmp (branch on icmp is much better). 1293 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1294 BasicBlock *PredBB = PN->getIncomingBlock(i); 1295 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1296 if (PredBr->isUnconditional()) { 1297 PredBBs[0] = PredBB; 1298 // Try to duplicate BB into PredBB. 1299 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1300 return true; 1301 } 1302 } 1303 1304 return false; 1305 } 1306 1307 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1308 /// a xor instruction in the current block. See if there are any 1309 /// simplifications we can do based on inputs to the xor. 1310 /// 1311 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) { 1312 BasicBlock *BB = BO->getParent(); 1313 1314 // If either the LHS or RHS of the xor is a constant, don't do this 1315 // optimization. 1316 if (isa<ConstantInt>(BO->getOperand(0)) || 1317 isa<ConstantInt>(BO->getOperand(1))) 1318 return false; 1319 1320 // If the first instruction in BB isn't a phi, we won't be able to infer 1321 // anything special about any particular predecessor. 1322 if (!isa<PHINode>(BB->front())) 1323 return false; 1324 1325 // If we have a xor as the branch input to this block, and we know that the 1326 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1327 // the condition into the predecessor and fix that value to true, saving some 1328 // logical ops on that path and encouraging other paths to simplify. 1329 // 1330 // This copies something like this: 1331 // 1332 // BB: 1333 // %X = phi i1 [1], [%X'] 1334 // %Y = icmp eq i32 %A, %B 1335 // %Z = xor i1 %X, %Y 1336 // br i1 %Z, ... 1337 // 1338 // Into: 1339 // BB': 1340 // %Y = icmp ne i32 %A, %B 1341 // br i1 %Y, ... 1342 1343 PredValueInfoTy XorOpValues; 1344 bool isLHS = true; 1345 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1346 WantInteger, BO)) { 1347 assert(XorOpValues.empty()); 1348 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1349 WantInteger, BO)) 1350 return false; 1351 isLHS = false; 1352 } 1353 1354 assert(!XorOpValues.empty() && 1355 "ComputeValueKnownInPredecessors returned true with no values"); 1356 1357 // Scan the information to see which is most popular: true or false. The 1358 // predecessors can be of the set true, false, or undef. 1359 unsigned NumTrue = 0, NumFalse = 0; 1360 for (const auto &XorOpValue : XorOpValues) { 1361 if (isa<UndefValue>(XorOpValue.first)) 1362 // Ignore undefs for the count. 1363 continue; 1364 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1365 ++NumFalse; 1366 else 1367 ++NumTrue; 1368 } 1369 1370 // Determine which value to split on, true, false, or undef if neither. 1371 ConstantInt *SplitVal = nullptr; 1372 if (NumTrue > NumFalse) 1373 SplitVal = ConstantInt::getTrue(BB->getContext()); 1374 else if (NumTrue != 0 || NumFalse != 0) 1375 SplitVal = ConstantInt::getFalse(BB->getContext()); 1376 1377 // Collect all of the blocks that this can be folded into so that we can 1378 // factor this once and clone it once. 1379 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1380 for (const auto &XorOpValue : XorOpValues) { 1381 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1382 continue; 1383 1384 BlocksToFoldInto.push_back(XorOpValue.second); 1385 } 1386 1387 // If we inferred a value for all of the predecessors, then duplication won't 1388 // help us. However, we can just replace the LHS or RHS with the constant. 1389 if (BlocksToFoldInto.size() == 1390 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1391 if (!SplitVal) { 1392 // If all preds provide undef, just nuke the xor, because it is undef too. 1393 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1394 BO->eraseFromParent(); 1395 } else if (SplitVal->isZero()) { 1396 // If all preds provide 0, replace the xor with the other input. 1397 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1398 BO->eraseFromParent(); 1399 } else { 1400 // If all preds provide 1, set the computed value to 1. 1401 BO->setOperand(!isLHS, SplitVal); 1402 } 1403 1404 return true; 1405 } 1406 1407 // Try to duplicate BB into PredBB. 1408 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1409 } 1410 1411 1412 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1413 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1414 /// NewPred using the entries from OldPred (suitably mapped). 1415 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1416 BasicBlock *OldPred, 1417 BasicBlock *NewPred, 1418 DenseMap<Instruction*, Value*> &ValueMap) { 1419 for (BasicBlock::iterator PNI = PHIBB->begin(); 1420 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1421 // Ok, we have a PHI node. Figure out what the incoming value was for the 1422 // DestBlock. 1423 Value *IV = PN->getIncomingValueForBlock(OldPred); 1424 1425 // Remap the value if necessary. 1426 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1427 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1428 if (I != ValueMap.end()) 1429 IV = I->second; 1430 } 1431 1432 PN->addIncoming(IV, NewPred); 1433 } 1434 } 1435 1436 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1437 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1438 /// across BB. Transform the IR to reflect this change. 1439 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1440 const SmallVectorImpl<BasicBlock*> &PredBBs, 1441 BasicBlock *SuccBB) { 1442 // If threading to the same block as we come from, we would infinite loop. 1443 if (SuccBB == BB) { 1444 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1445 << "' - would thread to self!\n"); 1446 return false; 1447 } 1448 1449 // If threading this would thread across a loop header, don't thread the edge. 1450 // See the comments above FindLoopHeaders for justifications and caveats. 1451 if (LoopHeaders.count(BB)) { 1452 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1453 << "' to dest BB '" << SuccBB->getName() 1454 << "' - it might create an irreducible loop!\n"); 1455 return false; 1456 } 1457 1458 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, BBDupThreshold); 1459 if (JumpThreadCost > BBDupThreshold) { 1460 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1461 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1462 return false; 1463 } 1464 1465 // And finally, do it! Start by factoring the predecessors if needed. 1466 BasicBlock *PredBB; 1467 if (PredBBs.size() == 1) 1468 PredBB = PredBBs[0]; 1469 else { 1470 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1471 << " common predecessors.\n"); 1472 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1473 } 1474 1475 // And finally, do it! 1476 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1477 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1478 << ", across block:\n " 1479 << *BB << "\n"); 1480 1481 LVI->threadEdge(PredBB, BB, SuccBB); 1482 1483 // We are going to have to map operands from the original BB block to the new 1484 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1485 // account for entry from PredBB. 1486 DenseMap<Instruction*, Value*> ValueMapping; 1487 1488 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1489 BB->getName()+".thread", 1490 BB->getParent(), BB); 1491 NewBB->moveAfter(PredBB); 1492 1493 // Set the block frequency of NewBB. 1494 if (HasProfileData) { 1495 auto NewBBFreq = 1496 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 1497 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 1498 } 1499 1500 BasicBlock::iterator BI = BB->begin(); 1501 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1502 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1503 1504 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1505 // mapping and using it to remap operands in the cloned instructions. 1506 for (; !isa<TerminatorInst>(BI); ++BI) { 1507 Instruction *New = BI->clone(); 1508 New->setName(BI->getName()); 1509 NewBB->getInstList().push_back(New); 1510 ValueMapping[&*BI] = New; 1511 1512 // Remap operands to patch up intra-block references. 1513 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1514 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1515 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1516 if (I != ValueMapping.end()) 1517 New->setOperand(i, I->second); 1518 } 1519 } 1520 1521 // We didn't copy the terminator from BB over to NewBB, because there is now 1522 // an unconditional jump to SuccBB. Insert the unconditional jump. 1523 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 1524 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1525 1526 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1527 // PHI nodes for NewBB now. 1528 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1529 1530 // If there were values defined in BB that are used outside the block, then we 1531 // now have to update all uses of the value to use either the original value, 1532 // the cloned value, or some PHI derived value. This can require arbitrary 1533 // PHI insertion, of which we are prepared to do, clean these up now. 1534 SSAUpdater SSAUpdate; 1535 SmallVector<Use*, 16> UsesToRename; 1536 for (Instruction &I : *BB) { 1537 // Scan all uses of this instruction to see if it is used outside of its 1538 // block, and if so, record them in UsesToRename. 1539 for (Use &U : I.uses()) { 1540 Instruction *User = cast<Instruction>(U.getUser()); 1541 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1542 if (UserPN->getIncomingBlock(U) == BB) 1543 continue; 1544 } else if (User->getParent() == BB) 1545 continue; 1546 1547 UsesToRename.push_back(&U); 1548 } 1549 1550 // If there are no uses outside the block, we're done with this instruction. 1551 if (UsesToRename.empty()) 1552 continue; 1553 1554 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 1555 1556 // We found a use of I outside of BB. Rename all uses of I that are outside 1557 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1558 // with the two values we know. 1559 SSAUpdate.Initialize(I.getType(), I.getName()); 1560 SSAUpdate.AddAvailableValue(BB, &I); 1561 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 1562 1563 while (!UsesToRename.empty()) 1564 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1565 DEBUG(dbgs() << "\n"); 1566 } 1567 1568 1569 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1570 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1571 // us to simplify any PHI nodes in BB. 1572 TerminatorInst *PredTerm = PredBB->getTerminator(); 1573 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1574 if (PredTerm->getSuccessor(i) == BB) { 1575 BB->removePredecessor(PredBB, true); 1576 PredTerm->setSuccessor(i, NewBB); 1577 } 1578 1579 // At this point, the IR is fully up to date and consistent. Do a quick scan 1580 // over the new instructions and zap any that are constants or dead. This 1581 // frequently happens because of phi translation. 1582 SimplifyInstructionsInBlock(NewBB, TLI); 1583 1584 // Update the edge weight from BB to SuccBB, which should be less than before. 1585 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 1586 1587 // Threaded an edge! 1588 ++NumThreads; 1589 return true; 1590 } 1591 1592 /// Create a new basic block that will be the predecessor of BB and successor of 1593 /// all blocks in Preds. When profile data is availble, update the frequency of 1594 /// this new block. 1595 BasicBlock *JumpThreading::SplitBlockPreds(BasicBlock *BB, 1596 ArrayRef<BasicBlock *> Preds, 1597 const char *Suffix) { 1598 // Collect the frequencies of all predecessors of BB, which will be used to 1599 // update the edge weight on BB->SuccBB. 1600 BlockFrequency PredBBFreq(0); 1601 if (HasProfileData) 1602 for (auto Pred : Preds) 1603 PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB); 1604 1605 BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix); 1606 1607 // Set the block frequency of the newly created PredBB, which is the sum of 1608 // frequencies of Preds. 1609 if (HasProfileData) 1610 BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency()); 1611 return PredBB; 1612 } 1613 1614 /// Update the block frequency of BB and branch weight and the metadata on the 1615 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 1616 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 1617 void JumpThreading::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 1618 BasicBlock *BB, 1619 BasicBlock *NewBB, 1620 BasicBlock *SuccBB) { 1621 if (!HasProfileData) 1622 return; 1623 1624 assert(BFI && BPI && "BFI & BPI should have been created here"); 1625 1626 // As the edge from PredBB to BB is deleted, we have to update the block 1627 // frequency of BB. 1628 auto BBOrigFreq = BFI->getBlockFreq(BB); 1629 auto NewBBFreq = BFI->getBlockFreq(NewBB); 1630 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 1631 auto BBNewFreq = BBOrigFreq - NewBBFreq; 1632 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 1633 1634 // Collect updated outgoing edges' frequencies from BB and use them to update 1635 // edge probabilities. 1636 SmallVector<uint64_t, 4> BBSuccFreq; 1637 for (BasicBlock *Succ : successors(BB)) { 1638 auto SuccFreq = (Succ == SuccBB) 1639 ? BB2SuccBBFreq - NewBBFreq 1640 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 1641 BBSuccFreq.push_back(SuccFreq.getFrequency()); 1642 } 1643 1644 uint64_t MaxBBSuccFreq = 1645 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 1646 1647 SmallVector<BranchProbability, 4> BBSuccProbs; 1648 if (MaxBBSuccFreq == 0) 1649 BBSuccProbs.assign(BBSuccFreq.size(), 1650 {1, static_cast<unsigned>(BBSuccFreq.size())}); 1651 else { 1652 for (uint64_t Freq : BBSuccFreq) 1653 BBSuccProbs.push_back( 1654 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 1655 // Normalize edge probabilities so that they sum up to one. 1656 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 1657 BBSuccProbs.end()); 1658 } 1659 1660 // Update edge probabilities in BPI. 1661 for (int I = 0, E = BBSuccProbs.size(); I < E; I++) 1662 BPI->setEdgeProbability(BB, I, BBSuccProbs[I]); 1663 1664 if (BBSuccProbs.size() >= 2) { 1665 SmallVector<uint32_t, 4> Weights; 1666 for (auto Prob : BBSuccProbs) 1667 Weights.push_back(Prob.getNumerator()); 1668 1669 auto TI = BB->getTerminator(); 1670 TI->setMetadata( 1671 LLVMContext::MD_prof, 1672 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 1673 } 1674 } 1675 1676 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1677 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1678 /// If we can duplicate the contents of BB up into PredBB do so now, this 1679 /// improves the odds that the branch will be on an analyzable instruction like 1680 /// a compare. 1681 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1682 const SmallVectorImpl<BasicBlock *> &PredBBs) { 1683 assert(!PredBBs.empty() && "Can't handle an empty set"); 1684 1685 // If BB is a loop header, then duplicating this block outside the loop would 1686 // cause us to transform this into an irreducible loop, don't do this. 1687 // See the comments above FindLoopHeaders for justifications and caveats. 1688 if (LoopHeaders.count(BB)) { 1689 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1690 << "' into predecessor block '" << PredBBs[0]->getName() 1691 << "' - it might create an irreducible loop!\n"); 1692 return false; 1693 } 1694 1695 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, BBDupThreshold); 1696 if (DuplicationCost > BBDupThreshold) { 1697 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1698 << "' - Cost is too high: " << DuplicationCost << "\n"); 1699 return false; 1700 } 1701 1702 // And finally, do it! Start by factoring the predecessors if needed. 1703 BasicBlock *PredBB; 1704 if (PredBBs.size() == 1) 1705 PredBB = PredBBs[0]; 1706 else { 1707 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1708 << " common predecessors.\n"); 1709 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1710 } 1711 1712 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1713 // of PredBB. 1714 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1715 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1716 << DuplicationCost << " block is:" << *BB << "\n"); 1717 1718 // Unless PredBB ends with an unconditional branch, split the edge so that we 1719 // can just clone the bits from BB into the end of the new PredBB. 1720 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 1721 1722 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 1723 PredBB = SplitEdge(PredBB, BB); 1724 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1725 } 1726 1727 // We are going to have to map operands from the original BB block into the 1728 // PredBB block. Evaluate PHI nodes in BB. 1729 DenseMap<Instruction*, Value*> ValueMapping; 1730 1731 BasicBlock::iterator BI = BB->begin(); 1732 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1733 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1734 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1735 // mapping and using it to remap operands in the cloned instructions. 1736 for (; BI != BB->end(); ++BI) { 1737 Instruction *New = BI->clone(); 1738 1739 // Remap operands to patch up intra-block references. 1740 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1741 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1742 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1743 if (I != ValueMapping.end()) 1744 New->setOperand(i, I->second); 1745 } 1746 1747 // If this instruction can be simplified after the operands are updated, 1748 // just use the simplified value instead. This frequently happens due to 1749 // phi translation. 1750 if (Value *IV = 1751 SimplifyInstruction(New, BB->getModule()->getDataLayout())) { 1752 delete New; 1753 ValueMapping[&*BI] = IV; 1754 } else { 1755 // Otherwise, insert the new instruction into the block. 1756 New->setName(BI->getName()); 1757 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 1758 ValueMapping[&*BI] = New; 1759 } 1760 } 1761 1762 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1763 // add entries to the PHI nodes for branch from PredBB now. 1764 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1765 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1766 ValueMapping); 1767 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1768 ValueMapping); 1769 1770 // If there were values defined in BB that are used outside the block, then we 1771 // now have to update all uses of the value to use either the original value, 1772 // the cloned value, or some PHI derived value. This can require arbitrary 1773 // PHI insertion, of which we are prepared to do, clean these up now. 1774 SSAUpdater SSAUpdate; 1775 SmallVector<Use*, 16> UsesToRename; 1776 for (Instruction &I : *BB) { 1777 // Scan all uses of this instruction to see if it is used outside of its 1778 // block, and if so, record them in UsesToRename. 1779 for (Use &U : I.uses()) { 1780 Instruction *User = cast<Instruction>(U.getUser()); 1781 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1782 if (UserPN->getIncomingBlock(U) == BB) 1783 continue; 1784 } else if (User->getParent() == BB) 1785 continue; 1786 1787 UsesToRename.push_back(&U); 1788 } 1789 1790 // If there are no uses outside the block, we're done with this instruction. 1791 if (UsesToRename.empty()) 1792 continue; 1793 1794 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 1795 1796 // We found a use of I outside of BB. Rename all uses of I that are outside 1797 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1798 // with the two values we know. 1799 SSAUpdate.Initialize(I.getType(), I.getName()); 1800 SSAUpdate.AddAvailableValue(BB, &I); 1801 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]); 1802 1803 while (!UsesToRename.empty()) 1804 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1805 DEBUG(dbgs() << "\n"); 1806 } 1807 1808 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1809 // that we nuked. 1810 BB->removePredecessor(PredBB, true); 1811 1812 // Remove the unconditional branch at the end of the PredBB block. 1813 OldPredBranch->eraseFromParent(); 1814 1815 ++NumDupes; 1816 return true; 1817 } 1818 1819 /// TryToUnfoldSelect - Look for blocks of the form 1820 /// bb1: 1821 /// %a = select 1822 /// br bb 1823 /// 1824 /// bb2: 1825 /// %p = phi [%a, %bb] ... 1826 /// %c = icmp %p 1827 /// br i1 %c 1828 /// 1829 /// And expand the select into a branch structure if one of its arms allows %c 1830 /// to be folded. This later enables threading from bb1 over bb2. 1831 bool JumpThreading::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 1832 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1833 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 1834 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 1835 1836 if (!CondBr || !CondBr->isConditional() || !CondLHS || 1837 CondLHS->getParent() != BB) 1838 return false; 1839 1840 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 1841 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 1842 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 1843 1844 // Look if one of the incoming values is a select in the corresponding 1845 // predecessor. 1846 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 1847 continue; 1848 1849 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 1850 if (!PredTerm || !PredTerm->isUnconditional()) 1851 continue; 1852 1853 // Now check if one of the select values would allow us to constant fold the 1854 // terminator in BB. We don't do the transform if both sides fold, those 1855 // cases will be threaded in any case. 1856 LazyValueInfo::Tristate LHSFolds = 1857 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 1858 CondRHS, Pred, BB, CondCmp); 1859 LazyValueInfo::Tristate RHSFolds = 1860 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 1861 CondRHS, Pred, BB, CondCmp); 1862 if ((LHSFolds != LazyValueInfo::Unknown || 1863 RHSFolds != LazyValueInfo::Unknown) && 1864 LHSFolds != RHSFolds) { 1865 // Expand the select. 1866 // 1867 // Pred -- 1868 // | v 1869 // | NewBB 1870 // | | 1871 // |----- 1872 // v 1873 // BB 1874 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 1875 BB->getParent(), BB); 1876 // Move the unconditional branch to NewBB. 1877 PredTerm->removeFromParent(); 1878 NewBB->getInstList().insert(NewBB->end(), PredTerm); 1879 // Create a conditional branch and update PHI nodes. 1880 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 1881 CondLHS->setIncomingValue(I, SI->getFalseValue()); 1882 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 1883 // The select is now dead. 1884 SI->eraseFromParent(); 1885 1886 // Update any other PHI nodes in BB. 1887 for (BasicBlock::iterator BI = BB->begin(); 1888 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 1889 if (Phi != CondLHS) 1890 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 1891 return true; 1892 } 1893 } 1894 return false; 1895 } 1896 1897 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select in the same BB of the form 1898 /// bb: 1899 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 1900 /// %s = select p, trueval, falseval 1901 /// 1902 /// And expand the select into a branch structure. This later enables 1903 /// jump-threading over bb in this pass. 1904 /// 1905 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 1906 /// select if the associated PHI has at least one constant. If the unfolded 1907 /// select is not jump-threaded, it will be folded again in the later 1908 /// optimizations. 1909 bool JumpThreading::TryToUnfoldSelectInCurrBB(BasicBlock *BB) { 1910 // If threading this would thread across a loop header, don't thread the edge. 1911 // See the comments above FindLoopHeaders for justifications and caveats. 1912 if (LoopHeaders.count(BB)) 1913 return false; 1914 1915 // Look for a Phi/Select pair in the same basic block. The Phi feeds the 1916 // condition of the Select and at least one of the incoming values is a 1917 // constant. 1918 for (BasicBlock::iterator BI = BB->begin(); 1919 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 1920 unsigned NumPHIValues = PN->getNumIncomingValues(); 1921 if (NumPHIValues == 0 || !PN->hasOneUse()) 1922 continue; 1923 1924 SelectInst *SI = dyn_cast<SelectInst>(PN->user_back()); 1925 if (!SI || SI->getParent() != BB) 1926 continue; 1927 1928 Value *Cond = SI->getCondition(); 1929 if (!Cond || Cond != PN || !Cond->getType()->isIntegerTy(1)) 1930 continue; 1931 1932 bool HasConst = false; 1933 for (unsigned i = 0; i != NumPHIValues; ++i) { 1934 if (PN->getIncomingBlock(i) == BB) 1935 return false; 1936 if (isa<ConstantInt>(PN->getIncomingValue(i))) 1937 HasConst = true; 1938 } 1939 1940 if (HasConst) { 1941 // Expand the select. 1942 TerminatorInst *Term = 1943 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false); 1944 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 1945 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 1946 NewPN->addIncoming(SI->getFalseValue(), BB); 1947 SI->replaceAllUsesWith(NewPN); 1948 SI->eraseFromParent(); 1949 return true; 1950 } 1951 } 1952 1953 return false; 1954 } 1955