1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/GlobalsModRef.h" 22 #include "llvm/Analysis/CFG.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LazyValueInfo.h" 29 #include "llvm/Analysis/Loads.h" 30 #include "llvm/Analysis/LoopInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/ValueHandle.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 44 #include "llvm/Transforms/Utils/Local.h" 45 #include "llvm/Transforms/Utils/SSAUpdater.h" 46 #include <algorithm> 47 #include <memory> 48 using namespace llvm; 49 50 #define DEBUG_TYPE "jump-threading" 51 52 STATISTIC(NumThreads, "Number of jumps threaded"); 53 STATISTIC(NumFolds, "Number of terminators folded"); 54 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 55 56 static cl::opt<unsigned> 57 BBDuplicateThreshold("jump-threading-threshold", 58 cl::desc("Max block size to duplicate for jump threading"), 59 cl::init(6), cl::Hidden); 60 61 static cl::opt<unsigned> 62 ImplicationSearchThreshold( 63 "jump-threading-implication-search-threshold", 64 cl::desc("The number of predecessors to search for a stronger " 65 "condition to use to thread over a weaker condition"), 66 cl::init(3), cl::Hidden); 67 68 namespace { 69 // These are at global scope so static functions can use them too. 70 typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo; 71 typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy; 72 73 // This is used to keep track of what kind of constant we're currently hoping 74 // to find. 75 enum ConstantPreference { 76 WantInteger, 77 WantBlockAddress 78 }; 79 80 /// This pass performs 'jump threading', which looks at blocks that have 81 /// multiple predecessors and multiple successors. If one or more of the 82 /// predecessors of the block can be proven to always jump to one of the 83 /// successors, we forward the edge from the predecessor to the successor by 84 /// duplicating the contents of this block. 85 /// 86 /// An example of when this can occur is code like this: 87 /// 88 /// if () { ... 89 /// X = 4; 90 /// } 91 /// if (X < 3) { 92 /// 93 /// In this case, the unconditional branch at the end of the first if can be 94 /// revectored to the false side of the second if. 95 /// 96 class JumpThreading : public FunctionPass { 97 TargetLibraryInfo *TLI; 98 LazyValueInfo *LVI; 99 std::unique_ptr<BlockFrequencyInfo> BFI; 100 std::unique_ptr<BranchProbabilityInfo> BPI; 101 bool HasProfileData; 102 #ifdef NDEBUG 103 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 104 #else 105 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 106 #endif 107 DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet; 108 109 unsigned BBDupThreshold; 110 111 // RAII helper for updating the recursion stack. 112 struct RecursionSetRemover { 113 DenseSet<std::pair<Value*, BasicBlock*> > &TheSet; 114 std::pair<Value*, BasicBlock*> ThePair; 115 116 RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S, 117 std::pair<Value*, BasicBlock*> P) 118 : TheSet(S), ThePair(P) { } 119 120 ~RecursionSetRemover() { 121 TheSet.erase(ThePair); 122 } 123 }; 124 public: 125 static char ID; // Pass identification 126 JumpThreading(int T = -1) : FunctionPass(ID) { 127 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 128 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 129 } 130 131 bool runOnFunction(Function &F) override; 132 133 void getAnalysisUsage(AnalysisUsage &AU) const override { 134 AU.addRequired<LazyValueInfo>(); 135 AU.addPreserved<LazyValueInfo>(); 136 AU.addPreserved<GlobalsAAWrapperPass>(); 137 AU.addRequired<TargetLibraryInfoWrapperPass>(); 138 } 139 140 void releaseMemory() override { 141 BFI.reset(); 142 BPI.reset(); 143 } 144 145 void FindLoopHeaders(Function &F); 146 bool ProcessBlock(BasicBlock *BB); 147 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 148 BasicBlock *SuccBB); 149 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 150 const SmallVectorImpl<BasicBlock *> &PredBBs); 151 152 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 153 PredValueInfo &Result, 154 ConstantPreference Preference, 155 Instruction *CxtI = nullptr); 156 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 157 ConstantPreference Preference, 158 Instruction *CxtI = nullptr); 159 160 bool ProcessBranchOnPHI(PHINode *PN); 161 bool ProcessBranchOnXOR(BinaryOperator *BO); 162 bool ProcessImpliedCondition(BasicBlock *BB); 163 164 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 165 bool TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB); 166 167 private: 168 BasicBlock *SplitBlockPreds(BasicBlock *BB, ArrayRef<BasicBlock *> Preds, 169 const char *Suffix); 170 void UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, BasicBlock *BB, 171 BasicBlock *NewBB, BasicBlock *SuccBB); 172 }; 173 } 174 175 char JumpThreading::ID = 0; 176 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 177 "Jump Threading", false, false) 178 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo) 179 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 180 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 181 "Jump Threading", false, false) 182 183 // Public interface to the Jump Threading pass 184 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); } 185 186 /// runOnFunction - Top level algorithm. 187 /// 188 bool JumpThreading::runOnFunction(Function &F) { 189 if (skipOptnoneFunction(F)) 190 return false; 191 192 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 193 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 194 LVI = &getAnalysis<LazyValueInfo>(); 195 BFI.reset(); 196 BPI.reset(); 197 // When profile data is available, we need to update edge weights after 198 // successful jump threading, which requires both BPI and BFI being available. 199 HasProfileData = F.getEntryCount().hasValue(); 200 if (HasProfileData) { 201 LoopInfo LI{DominatorTree(F)}; 202 BPI.reset(new BranchProbabilityInfo(F, LI)); 203 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 204 } 205 206 // Remove unreachable blocks from function as they may result in infinite 207 // loop. We do threading if we found something profitable. Jump threading a 208 // branch can create other opportunities. If these opportunities form a cycle 209 // i.e. if any jump threading is undoing previous threading in the path, then 210 // we will loop forever. We take care of this issue by not jump threading for 211 // back edges. This works for normal cases but not for unreachable blocks as 212 // they may have cycle with no back edge. 213 removeUnreachableBlocks(F); 214 215 FindLoopHeaders(F); 216 217 bool Changed, EverChanged = false; 218 do { 219 Changed = false; 220 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 221 BasicBlock *BB = &*I; 222 // Thread all of the branches we can over this block. 223 while (ProcessBlock(BB)) 224 Changed = true; 225 226 ++I; 227 228 // If the block is trivially dead, zap it. This eliminates the successor 229 // edges which simplifies the CFG. 230 if (pred_empty(BB) && 231 BB != &BB->getParent()->getEntryBlock()) { 232 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 233 << "' with terminator: " << *BB->getTerminator() << '\n'); 234 LoopHeaders.erase(BB); 235 LVI->eraseBlock(BB); 236 DeleteDeadBlock(BB); 237 Changed = true; 238 continue; 239 } 240 241 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 242 243 // Can't thread an unconditional jump, but if the block is "almost 244 // empty", we can replace uses of it with uses of the successor and make 245 // this dead. 246 if (BI && BI->isUnconditional() && 247 BB != &BB->getParent()->getEntryBlock() && 248 // If the terminator is the only non-phi instruction, try to nuke it. 249 BB->getFirstNonPHIOrDbg()->isTerminator()) { 250 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 251 // block, we have to make sure it isn't in the LoopHeaders set. We 252 // reinsert afterward if needed. 253 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 254 BasicBlock *Succ = BI->getSuccessor(0); 255 256 // FIXME: It is always conservatively correct to drop the info 257 // for a block even if it doesn't get erased. This isn't totally 258 // awesome, but it allows us to use AssertingVH to prevent nasty 259 // dangling pointer issues within LazyValueInfo. 260 LVI->eraseBlock(BB); 261 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { 262 Changed = true; 263 // If we deleted BB and BB was the header of a loop, then the 264 // successor is now the header of the loop. 265 BB = Succ; 266 } 267 268 if (ErasedFromLoopHeaders) 269 LoopHeaders.insert(BB); 270 } 271 } 272 EverChanged |= Changed; 273 } while (Changed); 274 275 LoopHeaders.clear(); 276 return EverChanged; 277 } 278 279 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 280 /// thread across it. Stop scanning the block when passing the threshold. 281 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB, 282 unsigned Threshold) { 283 /// Ignore PHI nodes, these will be flattened when duplication happens. 284 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 285 286 // FIXME: THREADING will delete values that are just used to compute the 287 // branch, so they shouldn't count against the duplication cost. 288 289 unsigned Bonus = 0; 290 const TerminatorInst *BBTerm = BB->getTerminator(); 291 // Threading through a switch statement is particularly profitable. If this 292 // block ends in a switch, decrease its cost to make it more likely to happen. 293 if (isa<SwitchInst>(BBTerm)) 294 Bonus = 6; 295 296 // The same holds for indirect branches, but slightly more so. 297 if (isa<IndirectBrInst>(BBTerm)) 298 Bonus = 8; 299 300 // Bump the threshold up so the early exit from the loop doesn't skip the 301 // terminator-based Size adjustment at the end. 302 Threshold += Bonus; 303 304 // Sum up the cost of each instruction until we get to the terminator. Don't 305 // include the terminator because the copy won't include it. 306 unsigned Size = 0; 307 for (; !isa<TerminatorInst>(I); ++I) { 308 309 // Stop scanning the block if we've reached the threshold. 310 if (Size > Threshold) 311 return Size; 312 313 // Debugger intrinsics don't incur code size. 314 if (isa<DbgInfoIntrinsic>(I)) continue; 315 316 // If this is a pointer->pointer bitcast, it is free. 317 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 318 continue; 319 320 // Bail out if this instruction gives back a token type, it is not possible 321 // to duplicate it if it is used outside this BB. 322 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 323 return ~0U; 324 325 // All other instructions count for at least one unit. 326 ++Size; 327 328 // Calls are more expensive. If they are non-intrinsic calls, we model them 329 // as having cost of 4. If they are a non-vector intrinsic, we model them 330 // as having cost of 2 total, and if they are a vector intrinsic, we model 331 // them as having cost 1. 332 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 333 if (CI->cannotDuplicate() || CI->isConvergent()) 334 // Blocks with NoDuplicate are modelled as having infinite cost, so they 335 // are never duplicated. 336 return ~0U; 337 else if (!isa<IntrinsicInst>(CI)) 338 Size += 3; 339 else if (!CI->getType()->isVectorTy()) 340 Size += 1; 341 } 342 } 343 344 return Size > Bonus ? Size - Bonus : 0; 345 } 346 347 /// FindLoopHeaders - We do not want jump threading to turn proper loop 348 /// structures into irreducible loops. Doing this breaks up the loop nesting 349 /// hierarchy and pessimizes later transformations. To prevent this from 350 /// happening, we first have to find the loop headers. Here we approximate this 351 /// by finding targets of backedges in the CFG. 352 /// 353 /// Note that there definitely are cases when we want to allow threading of 354 /// edges across a loop header. For example, threading a jump from outside the 355 /// loop (the preheader) to an exit block of the loop is definitely profitable. 356 /// It is also almost always profitable to thread backedges from within the loop 357 /// to exit blocks, and is often profitable to thread backedges to other blocks 358 /// within the loop (forming a nested loop). This simple analysis is not rich 359 /// enough to track all of these properties and keep it up-to-date as the CFG 360 /// mutates, so we don't allow any of these transformations. 361 /// 362 void JumpThreading::FindLoopHeaders(Function &F) { 363 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 364 FindFunctionBackedges(F, Edges); 365 366 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 367 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 368 } 369 370 /// getKnownConstant - Helper method to determine if we can thread over a 371 /// terminator with the given value as its condition, and if so what value to 372 /// use for that. What kind of value this is depends on whether we want an 373 /// integer or a block address, but an undef is always accepted. 374 /// Returns null if Val is null or not an appropriate constant. 375 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 376 if (!Val) 377 return nullptr; 378 379 // Undef is "known" enough. 380 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 381 return U; 382 383 if (Preference == WantBlockAddress) 384 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 385 386 return dyn_cast<ConstantInt>(Val); 387 } 388 389 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 390 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 391 /// in any of our predecessors. If so, return the known list of value and pred 392 /// BB in the result vector. 393 /// 394 /// This returns true if there were any known values. 395 /// 396 bool JumpThreading:: 397 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result, 398 ConstantPreference Preference, 399 Instruction *CxtI) { 400 // This method walks up use-def chains recursively. Because of this, we could 401 // get into an infinite loop going around loops in the use-def chain. To 402 // prevent this, keep track of what (value, block) pairs we've already visited 403 // and terminate the search if we loop back to them 404 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 405 return false; 406 407 // An RAII help to remove this pair from the recursion set once the recursion 408 // stack pops back out again. 409 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 410 411 // If V is a constant, then it is known in all predecessors. 412 if (Constant *KC = getKnownConstant(V, Preference)) { 413 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 414 Result.push_back(std::make_pair(KC, *PI)); 415 416 return true; 417 } 418 419 // If V is a non-instruction value, or an instruction in a different block, 420 // then it can't be derived from a PHI. 421 Instruction *I = dyn_cast<Instruction>(V); 422 if (!I || I->getParent() != BB) { 423 424 // Okay, if this is a live-in value, see if it has a known value at the end 425 // of any of our predecessors. 426 // 427 // FIXME: This should be an edge property, not a block end property. 428 /// TODO: Per PR2563, we could infer value range information about a 429 /// predecessor based on its terminator. 430 // 431 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 432 // "I" is a non-local compare-with-a-constant instruction. This would be 433 // able to handle value inequalities better, for example if the compare is 434 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 435 // Perhaps getConstantOnEdge should be smart enough to do this? 436 437 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 438 BasicBlock *P = *PI; 439 // If the value is known by LazyValueInfo to be a constant in a 440 // predecessor, use that information to try to thread this block. 441 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 442 if (Constant *KC = getKnownConstant(PredCst, Preference)) 443 Result.push_back(std::make_pair(KC, P)); 444 } 445 446 return !Result.empty(); 447 } 448 449 /// If I is a PHI node, then we know the incoming values for any constants. 450 if (PHINode *PN = dyn_cast<PHINode>(I)) { 451 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 452 Value *InVal = PN->getIncomingValue(i); 453 if (Constant *KC = getKnownConstant(InVal, Preference)) { 454 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 455 } else { 456 Constant *CI = LVI->getConstantOnEdge(InVal, 457 PN->getIncomingBlock(i), 458 BB, CxtI); 459 if (Constant *KC = getKnownConstant(CI, Preference)) 460 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 461 } 462 } 463 464 return !Result.empty(); 465 } 466 467 PredValueInfoTy LHSVals, RHSVals; 468 469 // Handle some boolean conditions. 470 if (I->getType()->getPrimitiveSizeInBits() == 1) { 471 assert(Preference == WantInteger && "One-bit non-integer type?"); 472 // X | true -> true 473 // X & false -> false 474 if (I->getOpcode() == Instruction::Or || 475 I->getOpcode() == Instruction::And) { 476 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 477 WantInteger, CxtI); 478 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 479 WantInteger, CxtI); 480 481 if (LHSVals.empty() && RHSVals.empty()) 482 return false; 483 484 ConstantInt *InterestingVal; 485 if (I->getOpcode() == Instruction::Or) 486 InterestingVal = ConstantInt::getTrue(I->getContext()); 487 else 488 InterestingVal = ConstantInt::getFalse(I->getContext()); 489 490 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 491 492 // Scan for the sentinel. If we find an undef, force it to the 493 // interesting value: x|undef -> true and x&undef -> false. 494 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 495 if (LHSVals[i].first == InterestingVal || 496 isa<UndefValue>(LHSVals[i].first)) { 497 Result.push_back(LHSVals[i]); 498 Result.back().first = InterestingVal; 499 LHSKnownBBs.insert(LHSVals[i].second); 500 } 501 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 502 if (RHSVals[i].first == InterestingVal || 503 isa<UndefValue>(RHSVals[i].first)) { 504 // If we already inferred a value for this block on the LHS, don't 505 // re-add it. 506 if (!LHSKnownBBs.count(RHSVals[i].second)) { 507 Result.push_back(RHSVals[i]); 508 Result.back().first = InterestingVal; 509 } 510 } 511 512 return !Result.empty(); 513 } 514 515 // Handle the NOT form of XOR. 516 if (I->getOpcode() == Instruction::Xor && 517 isa<ConstantInt>(I->getOperand(1)) && 518 cast<ConstantInt>(I->getOperand(1))->isOne()) { 519 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 520 WantInteger, CxtI); 521 if (Result.empty()) 522 return false; 523 524 // Invert the known values. 525 for (unsigned i = 0, e = Result.size(); i != e; ++i) 526 Result[i].first = ConstantExpr::getNot(Result[i].first); 527 528 return true; 529 } 530 531 // Try to simplify some other binary operator values. 532 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 533 assert(Preference != WantBlockAddress 534 && "A binary operator creating a block address?"); 535 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 536 PredValueInfoTy LHSVals; 537 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 538 WantInteger, CxtI); 539 540 // Try to use constant folding to simplify the binary operator. 541 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 542 Constant *V = LHSVals[i].first; 543 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 544 545 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 546 Result.push_back(std::make_pair(KC, LHSVals[i].second)); 547 } 548 } 549 550 return !Result.empty(); 551 } 552 553 // Handle compare with phi operand, where the PHI is defined in this block. 554 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 555 assert(Preference == WantInteger && "Compares only produce integers"); 556 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 557 if (PN && PN->getParent() == BB) { 558 const DataLayout &DL = PN->getModule()->getDataLayout(); 559 // We can do this simplification if any comparisons fold to true or false. 560 // See if any do. 561 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 562 BasicBlock *PredBB = PN->getIncomingBlock(i); 563 Value *LHS = PN->getIncomingValue(i); 564 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 565 566 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL); 567 if (!Res) { 568 if (!isa<Constant>(RHS)) 569 continue; 570 571 LazyValueInfo::Tristate 572 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 573 cast<Constant>(RHS), PredBB, BB, 574 CxtI ? CxtI : Cmp); 575 if (ResT == LazyValueInfo::Unknown) 576 continue; 577 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 578 } 579 580 if (Constant *KC = getKnownConstant(Res, WantInteger)) 581 Result.push_back(std::make_pair(KC, PredBB)); 582 } 583 584 return !Result.empty(); 585 } 586 587 // If comparing a live-in value against a constant, see if we know the 588 // live-in value on any predecessors. 589 if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) { 590 if (!isa<Instruction>(Cmp->getOperand(0)) || 591 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) { 592 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 593 594 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){ 595 BasicBlock *P = *PI; 596 // If the value is known by LazyValueInfo to be a constant in a 597 // predecessor, use that information to try to thread this block. 598 LazyValueInfo::Tristate Res = 599 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 600 RHSCst, P, BB, CxtI ? CxtI : Cmp); 601 if (Res == LazyValueInfo::Unknown) 602 continue; 603 604 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 605 Result.push_back(std::make_pair(ResC, P)); 606 } 607 608 return !Result.empty(); 609 } 610 611 // Try to find a constant value for the LHS of a comparison, 612 // and evaluate it statically if we can. 613 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) { 614 PredValueInfoTy LHSVals; 615 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 616 WantInteger, CxtI); 617 618 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 619 Constant *V = LHSVals[i].first; 620 Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(), 621 V, CmpConst); 622 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 623 Result.push_back(std::make_pair(KC, LHSVals[i].second)); 624 } 625 626 return !Result.empty(); 627 } 628 } 629 } 630 631 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 632 // Handle select instructions where at least one operand is a known constant 633 // and we can figure out the condition value for any predecessor block. 634 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 635 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 636 PredValueInfoTy Conds; 637 if ((TrueVal || FalseVal) && 638 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 639 WantInteger, CxtI)) { 640 for (unsigned i = 0, e = Conds.size(); i != e; ++i) { 641 Constant *Cond = Conds[i].first; 642 643 // Figure out what value to use for the condition. 644 bool KnownCond; 645 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 646 // A known boolean. 647 KnownCond = CI->isOne(); 648 } else { 649 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 650 // Either operand will do, so be sure to pick the one that's a known 651 // constant. 652 // FIXME: Do this more cleverly if both values are known constants? 653 KnownCond = (TrueVal != nullptr); 654 } 655 656 // See if the select has a known constant value for this predecessor. 657 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 658 Result.push_back(std::make_pair(Val, Conds[i].second)); 659 } 660 661 return !Result.empty(); 662 } 663 } 664 665 // If all else fails, see if LVI can figure out a constant value for us. 666 Constant *CI = LVI->getConstant(V, BB, CxtI); 667 if (Constant *KC = getKnownConstant(CI, Preference)) { 668 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 669 Result.push_back(std::make_pair(KC, *PI)); 670 } 671 672 return !Result.empty(); 673 } 674 675 676 677 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 678 /// in an undefined jump, decide which block is best to revector to. 679 /// 680 /// Since we can pick an arbitrary destination, we pick the successor with the 681 /// fewest predecessors. This should reduce the in-degree of the others. 682 /// 683 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 684 TerminatorInst *BBTerm = BB->getTerminator(); 685 unsigned MinSucc = 0; 686 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 687 // Compute the successor with the minimum number of predecessors. 688 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 689 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 690 TestBB = BBTerm->getSuccessor(i); 691 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 692 if (NumPreds < MinNumPreds) { 693 MinSucc = i; 694 MinNumPreds = NumPreds; 695 } 696 } 697 698 return MinSucc; 699 } 700 701 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 702 if (!BB->hasAddressTaken()) return false; 703 704 // If the block has its address taken, it may be a tree of dead constants 705 // hanging off of it. These shouldn't keep the block alive. 706 BlockAddress *BA = BlockAddress::get(BB); 707 BA->removeDeadConstantUsers(); 708 return !BA->use_empty(); 709 } 710 711 /// ProcessBlock - If there are any predecessors whose control can be threaded 712 /// through to a successor, transform them now. 713 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 714 // If the block is trivially dead, just return and let the caller nuke it. 715 // This simplifies other transformations. 716 if (pred_empty(BB) && 717 BB != &BB->getParent()->getEntryBlock()) 718 return false; 719 720 // If this block has a single predecessor, and if that pred has a single 721 // successor, merge the blocks. This encourages recursive jump threading 722 // because now the condition in this block can be threaded through 723 // predecessors of our predecessor block. 724 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 725 const TerminatorInst *TI = SinglePred->getTerminator(); 726 if (!TI->isExceptional() && TI->getNumSuccessors() == 1 && 727 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 728 // If SinglePred was a loop header, BB becomes one. 729 if (LoopHeaders.erase(SinglePred)) 730 LoopHeaders.insert(BB); 731 732 LVI->eraseBlock(SinglePred); 733 MergeBasicBlockIntoOnlyPred(BB); 734 735 return true; 736 } 737 } 738 739 // What kind of constant we're looking for. 740 ConstantPreference Preference = WantInteger; 741 742 // Look to see if the terminator is a conditional branch, switch or indirect 743 // branch, if not we can't thread it. 744 Value *Condition; 745 Instruction *Terminator = BB->getTerminator(); 746 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 747 // Can't thread an unconditional jump. 748 if (BI->isUnconditional()) return false; 749 Condition = BI->getCondition(); 750 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 751 Condition = SI->getCondition(); 752 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 753 // Can't thread indirect branch with no successors. 754 if (IB->getNumSuccessors() == 0) return false; 755 Condition = IB->getAddress()->stripPointerCasts(); 756 Preference = WantBlockAddress; 757 } else { 758 return false; // Must be an invoke. 759 } 760 761 // Run constant folding to see if we can reduce the condition to a simple 762 // constant. 763 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 764 Value *SimpleVal = 765 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 766 if (SimpleVal) { 767 I->replaceAllUsesWith(SimpleVal); 768 I->eraseFromParent(); 769 Condition = SimpleVal; 770 } 771 } 772 773 // If the terminator is branching on an undef, we can pick any of the 774 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 775 if (isa<UndefValue>(Condition)) { 776 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 777 778 // Fold the branch/switch. 779 TerminatorInst *BBTerm = BB->getTerminator(); 780 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 781 if (i == BestSucc) continue; 782 BBTerm->getSuccessor(i)->removePredecessor(BB, true); 783 } 784 785 DEBUG(dbgs() << " In block '" << BB->getName() 786 << "' folding undef terminator: " << *BBTerm << '\n'); 787 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 788 BBTerm->eraseFromParent(); 789 return true; 790 } 791 792 // If the terminator of this block is branching on a constant, simplify the 793 // terminator to an unconditional branch. This can occur due to threading in 794 // other blocks. 795 if (getKnownConstant(Condition, Preference)) { 796 DEBUG(dbgs() << " In block '" << BB->getName() 797 << "' folding terminator: " << *BB->getTerminator() << '\n'); 798 ++NumFolds; 799 ConstantFoldTerminator(BB, true); 800 return true; 801 } 802 803 Instruction *CondInst = dyn_cast<Instruction>(Condition); 804 805 // All the rest of our checks depend on the condition being an instruction. 806 if (!CondInst) { 807 // FIXME: Unify this with code below. 808 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 809 return true; 810 return false; 811 } 812 813 814 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 815 // If we're branching on a conditional, LVI might be able to determine 816 // it's value at the branch instruction. We only handle comparisons 817 // against a constant at this time. 818 // TODO: This should be extended to handle switches as well. 819 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 820 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 821 if (CondBr && CondConst && CondBr->isConditional()) { 822 LazyValueInfo::Tristate Ret = 823 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 824 CondConst, CondBr); 825 if (Ret != LazyValueInfo::Unknown) { 826 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 827 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 828 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 829 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 830 CondBr->eraseFromParent(); 831 if (CondCmp->use_empty()) 832 CondCmp->eraseFromParent(); 833 else if (CondCmp->getParent() == BB) { 834 // If the fact we just learned is true for all uses of the 835 // condition, replace it with a constant value 836 auto *CI = Ret == LazyValueInfo::True ? 837 ConstantInt::getTrue(CondCmp->getType()) : 838 ConstantInt::getFalse(CondCmp->getType()); 839 CondCmp->replaceAllUsesWith(CI); 840 CondCmp->eraseFromParent(); 841 } 842 return true; 843 } 844 } 845 846 if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB)) 847 return true; 848 } 849 850 // Check for some cases that are worth simplifying. Right now we want to look 851 // for loads that are used by a switch or by the condition for the branch. If 852 // we see one, check to see if it's partially redundant. If so, insert a PHI 853 // which can then be used to thread the values. 854 // 855 Value *SimplifyValue = CondInst; 856 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 857 if (isa<Constant>(CondCmp->getOperand(1))) 858 SimplifyValue = CondCmp->getOperand(0); 859 860 // TODO: There are other places where load PRE would be profitable, such as 861 // more complex comparisons. 862 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 863 if (SimplifyPartiallyRedundantLoad(LI)) 864 return true; 865 866 867 // Handle a variety of cases where we are branching on something derived from 868 // a PHI node in the current block. If we can prove that any predecessors 869 // compute a predictable value based on a PHI node, thread those predecessors. 870 // 871 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 872 return true; 873 874 // If this is an otherwise-unfoldable branch on a phi node in the current 875 // block, see if we can simplify. 876 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 877 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 878 return ProcessBranchOnPHI(PN); 879 880 881 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 882 if (CondInst->getOpcode() == Instruction::Xor && 883 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 884 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 885 886 // Search for a stronger dominating condition that can be used to simplify a 887 // conditional branch leaving BB. 888 if (ProcessImpliedCondition(BB)) 889 return true; 890 891 return false; 892 } 893 894 bool JumpThreading::ProcessImpliedCondition(BasicBlock *BB) { 895 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 896 if (!BI || !BI->isConditional()) 897 return false; 898 899 Value *Cond = BI->getCondition(); 900 BasicBlock *CurrentBB = BB; 901 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 902 unsigned Iter = 0; 903 904 auto &DL = BB->getModule()->getDataLayout(); 905 906 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 907 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 908 if (!PBI || !PBI->isConditional() || PBI->getSuccessor(0) != CurrentBB) 909 return false; 910 911 if (isImpliedCondition(PBI->getCondition(), Cond, DL)) { 912 BI->getSuccessor(1)->removePredecessor(BB); 913 BranchInst::Create(BI->getSuccessor(0), BI); 914 BI->eraseFromParent(); 915 return true; 916 } 917 CurrentBB = CurrentPred; 918 CurrentPred = CurrentBB->getSinglePredecessor(); 919 } 920 921 return false; 922 } 923 924 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 925 /// load instruction, eliminate it by replacing it with a PHI node. This is an 926 /// important optimization that encourages jump threading, and needs to be run 927 /// interlaced with other jump threading tasks. 928 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 929 // Don't hack volatile/atomic loads. 930 if (!LI->isSimple()) return false; 931 932 // If the load is defined in a block with exactly one predecessor, it can't be 933 // partially redundant. 934 BasicBlock *LoadBB = LI->getParent(); 935 if (LoadBB->getSinglePredecessor()) 936 return false; 937 938 // If the load is defined in an EH pad, it can't be partially redundant, 939 // because the edges between the invoke and the EH pad cannot have other 940 // instructions between them. 941 if (LoadBB->isEHPad()) 942 return false; 943 944 Value *LoadedPtr = LI->getOperand(0); 945 946 // If the loaded operand is defined in the LoadBB, it can't be available. 947 // TODO: Could do simple PHI translation, that would be fun :) 948 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 949 if (PtrOp->getParent() == LoadBB) 950 return false; 951 952 // Scan a few instructions up from the load, to see if it is obviously live at 953 // the entry to its block. 954 BasicBlock::iterator BBIt(LI); 955 956 if (Value *AvailableVal = 957 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, DefMaxInstsToScan)) { 958 // If the value of the load is locally available within the block, just use 959 // it. This frequently occurs for reg2mem'd allocas. 960 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 961 962 // If the returned value is the load itself, replace with an undef. This can 963 // only happen in dead loops. 964 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 965 if (AvailableVal->getType() != LI->getType()) 966 AvailableVal = 967 CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI); 968 LI->replaceAllUsesWith(AvailableVal); 969 LI->eraseFromParent(); 970 return true; 971 } 972 973 // Otherwise, if we scanned the whole block and got to the top of the block, 974 // we know the block is locally transparent to the load. If not, something 975 // might clobber its value. 976 if (BBIt != LoadBB->begin()) 977 return false; 978 979 // If all of the loads and stores that feed the value have the same AA tags, 980 // then we can propagate them onto any newly inserted loads. 981 AAMDNodes AATags; 982 LI->getAAMetadata(AATags); 983 984 SmallPtrSet<BasicBlock*, 8> PredsScanned; 985 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 986 AvailablePredsTy AvailablePreds; 987 BasicBlock *OneUnavailablePred = nullptr; 988 989 // If we got here, the loaded value is transparent through to the start of the 990 // block. Check to see if it is available in any of the predecessor blocks. 991 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 992 PI != PE; ++PI) { 993 BasicBlock *PredBB = *PI; 994 995 // If we already scanned this predecessor, skip it. 996 if (!PredsScanned.insert(PredBB).second) 997 continue; 998 999 // Scan the predecessor to see if the value is available in the pred. 1000 BBIt = PredBB->end(); 1001 AAMDNodes ThisAATags; 1002 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 1003 DefMaxInstsToScan, 1004 nullptr, &ThisAATags); 1005 if (!PredAvailable) { 1006 OneUnavailablePred = PredBB; 1007 continue; 1008 } 1009 1010 // If AA tags disagree or are not present, forget about them. 1011 if (AATags != ThisAATags) AATags = AAMDNodes(); 1012 1013 // If so, this load is partially redundant. Remember this info so that we 1014 // can create a PHI node. 1015 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 1016 } 1017 1018 // If the loaded value isn't available in any predecessor, it isn't partially 1019 // redundant. 1020 if (AvailablePreds.empty()) return false; 1021 1022 // Okay, the loaded value is available in at least one (and maybe all!) 1023 // predecessors. If the value is unavailable in more than one unique 1024 // predecessor, we want to insert a merge block for those common predecessors. 1025 // This ensures that we only have to insert one reload, thus not increasing 1026 // code size. 1027 BasicBlock *UnavailablePred = nullptr; 1028 1029 // If there is exactly one predecessor where the value is unavailable, the 1030 // already computed 'OneUnavailablePred' block is it. If it ends in an 1031 // unconditional branch, we know that it isn't a critical edge. 1032 if (PredsScanned.size() == AvailablePreds.size()+1 && 1033 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1034 UnavailablePred = OneUnavailablePred; 1035 } else if (PredsScanned.size() != AvailablePreds.size()) { 1036 // Otherwise, we had multiple unavailable predecessors or we had a critical 1037 // edge from the one. 1038 SmallVector<BasicBlock*, 8> PredsToSplit; 1039 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1040 1041 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 1042 AvailablePredSet.insert(AvailablePreds[i].first); 1043 1044 // Add all the unavailable predecessors to the PredsToSplit list. 1045 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 1046 PI != PE; ++PI) { 1047 BasicBlock *P = *PI; 1048 // If the predecessor is an indirect goto, we can't split the edge. 1049 if (isa<IndirectBrInst>(P->getTerminator())) 1050 return false; 1051 1052 if (!AvailablePredSet.count(P)) 1053 PredsToSplit.push_back(P); 1054 } 1055 1056 // Split them out to their own block. 1057 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1058 } 1059 1060 // If the value isn't available in all predecessors, then there will be 1061 // exactly one where it isn't available. Insert a load on that edge and add 1062 // it to the AvailablePreds list. 1063 if (UnavailablePred) { 1064 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1065 "Can't handle critical edge here!"); 1066 LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, 1067 LI->getAlignment(), 1068 UnavailablePred->getTerminator()); 1069 NewVal->setDebugLoc(LI->getDebugLoc()); 1070 if (AATags) 1071 NewVal->setAAMetadata(AATags); 1072 1073 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1074 } 1075 1076 // Now we know that each predecessor of this block has a value in 1077 // AvailablePreds, sort them for efficient access as we're walking the preds. 1078 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1079 1080 // Create a PHI node at the start of the block for the PRE'd load value. 1081 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1082 PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "", 1083 &LoadBB->front()); 1084 PN->takeName(LI); 1085 PN->setDebugLoc(LI->getDebugLoc()); 1086 1087 // Insert new entries into the PHI for each predecessor. A single block may 1088 // have multiple entries here. 1089 for (pred_iterator PI = PB; PI != PE; ++PI) { 1090 BasicBlock *P = *PI; 1091 AvailablePredsTy::iterator I = 1092 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1093 std::make_pair(P, (Value*)nullptr)); 1094 1095 assert(I != AvailablePreds.end() && I->first == P && 1096 "Didn't find entry for predecessor!"); 1097 1098 // If we have an available predecessor but it requires casting, insert the 1099 // cast in the predecessor and use the cast. Note that we have to update the 1100 // AvailablePreds vector as we go so that all of the PHI entries for this 1101 // predecessor use the same bitcast. 1102 Value *&PredV = I->second; 1103 if (PredV->getType() != LI->getType()) 1104 PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "", 1105 P->getTerminator()); 1106 1107 PN->addIncoming(PredV, I->first); 1108 } 1109 1110 //cerr << "PRE: " << *LI << *PN << "\n"; 1111 1112 LI->replaceAllUsesWith(PN); 1113 LI->eraseFromParent(); 1114 1115 return true; 1116 } 1117 1118 /// FindMostPopularDest - The specified list contains multiple possible 1119 /// threadable destinations. Pick the one that occurs the most frequently in 1120 /// the list. 1121 static BasicBlock * 1122 FindMostPopularDest(BasicBlock *BB, 1123 const SmallVectorImpl<std::pair<BasicBlock*, 1124 BasicBlock*> > &PredToDestList) { 1125 assert(!PredToDestList.empty()); 1126 1127 // Determine popularity. If there are multiple possible destinations, we 1128 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1129 // blocks with known and real destinations to threading undef. We'll handle 1130 // them later if interesting. 1131 DenseMap<BasicBlock*, unsigned> DestPopularity; 1132 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1133 if (PredToDestList[i].second) 1134 DestPopularity[PredToDestList[i].second]++; 1135 1136 // Find the most popular dest. 1137 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1138 BasicBlock *MostPopularDest = DPI->first; 1139 unsigned Popularity = DPI->second; 1140 SmallVector<BasicBlock*, 4> SamePopularity; 1141 1142 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1143 // If the popularity of this entry isn't higher than the popularity we've 1144 // seen so far, ignore it. 1145 if (DPI->second < Popularity) 1146 ; // ignore. 1147 else if (DPI->second == Popularity) { 1148 // If it is the same as what we've seen so far, keep track of it. 1149 SamePopularity.push_back(DPI->first); 1150 } else { 1151 // If it is more popular, remember it. 1152 SamePopularity.clear(); 1153 MostPopularDest = DPI->first; 1154 Popularity = DPI->second; 1155 } 1156 } 1157 1158 // Okay, now we know the most popular destination. If there is more than one 1159 // destination, we need to determine one. This is arbitrary, but we need 1160 // to make a deterministic decision. Pick the first one that appears in the 1161 // successor list. 1162 if (!SamePopularity.empty()) { 1163 SamePopularity.push_back(MostPopularDest); 1164 TerminatorInst *TI = BB->getTerminator(); 1165 for (unsigned i = 0; ; ++i) { 1166 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1167 1168 if (std::find(SamePopularity.begin(), SamePopularity.end(), 1169 TI->getSuccessor(i)) == SamePopularity.end()) 1170 continue; 1171 1172 MostPopularDest = TI->getSuccessor(i); 1173 break; 1174 } 1175 } 1176 1177 // Okay, we have finally picked the most popular destination. 1178 return MostPopularDest; 1179 } 1180 1181 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1182 ConstantPreference Preference, 1183 Instruction *CxtI) { 1184 // If threading this would thread across a loop header, don't even try to 1185 // thread the edge. 1186 if (LoopHeaders.count(BB)) 1187 return false; 1188 1189 PredValueInfoTy PredValues; 1190 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1191 return false; 1192 1193 assert(!PredValues.empty() && 1194 "ComputeValueKnownInPredecessors returned true with no values"); 1195 1196 DEBUG(dbgs() << "IN BB: " << *BB; 1197 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1198 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1199 << *PredValues[i].first 1200 << " for pred '" << PredValues[i].second->getName() << "'.\n"; 1201 }); 1202 1203 // Decide what we want to thread through. Convert our list of known values to 1204 // a list of known destinations for each pred. This also discards duplicate 1205 // predecessors and keeps track of the undefined inputs (which are represented 1206 // as a null dest in the PredToDestList). 1207 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1208 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1209 1210 BasicBlock *OnlyDest = nullptr; 1211 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1212 1213 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1214 BasicBlock *Pred = PredValues[i].second; 1215 if (!SeenPreds.insert(Pred).second) 1216 continue; // Duplicate predecessor entry. 1217 1218 // If the predecessor ends with an indirect goto, we can't change its 1219 // destination. 1220 if (isa<IndirectBrInst>(Pred->getTerminator())) 1221 continue; 1222 1223 Constant *Val = PredValues[i].first; 1224 1225 BasicBlock *DestBB; 1226 if (isa<UndefValue>(Val)) 1227 DestBB = nullptr; 1228 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1229 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1230 else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1231 DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor(); 1232 } else { 1233 assert(isa<IndirectBrInst>(BB->getTerminator()) 1234 && "Unexpected terminator"); 1235 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1236 } 1237 1238 // If we have exactly one destination, remember it for efficiency below. 1239 if (PredToDestList.empty()) 1240 OnlyDest = DestBB; 1241 else if (OnlyDest != DestBB) 1242 OnlyDest = MultipleDestSentinel; 1243 1244 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1245 } 1246 1247 // If all edges were unthreadable, we fail. 1248 if (PredToDestList.empty()) 1249 return false; 1250 1251 // Determine which is the most common successor. If we have many inputs and 1252 // this block is a switch, we want to start by threading the batch that goes 1253 // to the most popular destination first. If we only know about one 1254 // threadable destination (the common case) we can avoid this. 1255 BasicBlock *MostPopularDest = OnlyDest; 1256 1257 if (MostPopularDest == MultipleDestSentinel) 1258 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1259 1260 // Now that we know what the most popular destination is, factor all 1261 // predecessors that will jump to it into a single predecessor. 1262 SmallVector<BasicBlock*, 16> PredsToFactor; 1263 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1264 if (PredToDestList[i].second == MostPopularDest) { 1265 BasicBlock *Pred = PredToDestList[i].first; 1266 1267 // This predecessor may be a switch or something else that has multiple 1268 // edges to the block. Factor each of these edges by listing them 1269 // according to # occurrences in PredsToFactor. 1270 TerminatorInst *PredTI = Pred->getTerminator(); 1271 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 1272 if (PredTI->getSuccessor(i) == BB) 1273 PredsToFactor.push_back(Pred); 1274 } 1275 1276 // If the threadable edges are branching on an undefined value, we get to pick 1277 // the destination that these predecessors should get to. 1278 if (!MostPopularDest) 1279 MostPopularDest = BB->getTerminator()-> 1280 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1281 1282 // Ok, try to thread it! 1283 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1284 } 1285 1286 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1287 /// a PHI node in the current block. See if there are any simplifications we 1288 /// can do based on inputs to the phi node. 1289 /// 1290 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) { 1291 BasicBlock *BB = PN->getParent(); 1292 1293 // TODO: We could make use of this to do it once for blocks with common PHI 1294 // values. 1295 SmallVector<BasicBlock*, 1> PredBBs; 1296 PredBBs.resize(1); 1297 1298 // If any of the predecessor blocks end in an unconditional branch, we can 1299 // *duplicate* the conditional branch into that block in order to further 1300 // encourage jump threading and to eliminate cases where we have branch on a 1301 // phi of an icmp (branch on icmp is much better). 1302 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1303 BasicBlock *PredBB = PN->getIncomingBlock(i); 1304 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1305 if (PredBr->isUnconditional()) { 1306 PredBBs[0] = PredBB; 1307 // Try to duplicate BB into PredBB. 1308 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1309 return true; 1310 } 1311 } 1312 1313 return false; 1314 } 1315 1316 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1317 /// a xor instruction in the current block. See if there are any 1318 /// simplifications we can do based on inputs to the xor. 1319 /// 1320 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) { 1321 BasicBlock *BB = BO->getParent(); 1322 1323 // If either the LHS or RHS of the xor is a constant, don't do this 1324 // optimization. 1325 if (isa<ConstantInt>(BO->getOperand(0)) || 1326 isa<ConstantInt>(BO->getOperand(1))) 1327 return false; 1328 1329 // If the first instruction in BB isn't a phi, we won't be able to infer 1330 // anything special about any particular predecessor. 1331 if (!isa<PHINode>(BB->front())) 1332 return false; 1333 1334 // If we have a xor as the branch input to this block, and we know that the 1335 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1336 // the condition into the predecessor and fix that value to true, saving some 1337 // logical ops on that path and encouraging other paths to simplify. 1338 // 1339 // This copies something like this: 1340 // 1341 // BB: 1342 // %X = phi i1 [1], [%X'] 1343 // %Y = icmp eq i32 %A, %B 1344 // %Z = xor i1 %X, %Y 1345 // br i1 %Z, ... 1346 // 1347 // Into: 1348 // BB': 1349 // %Y = icmp ne i32 %A, %B 1350 // br i1 %Y, ... 1351 1352 PredValueInfoTy XorOpValues; 1353 bool isLHS = true; 1354 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1355 WantInteger, BO)) { 1356 assert(XorOpValues.empty()); 1357 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1358 WantInteger, BO)) 1359 return false; 1360 isLHS = false; 1361 } 1362 1363 assert(!XorOpValues.empty() && 1364 "ComputeValueKnownInPredecessors returned true with no values"); 1365 1366 // Scan the information to see which is most popular: true or false. The 1367 // predecessors can be of the set true, false, or undef. 1368 unsigned NumTrue = 0, NumFalse = 0; 1369 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1370 if (isa<UndefValue>(XorOpValues[i].first)) 1371 // Ignore undefs for the count. 1372 continue; 1373 if (cast<ConstantInt>(XorOpValues[i].first)->isZero()) 1374 ++NumFalse; 1375 else 1376 ++NumTrue; 1377 } 1378 1379 // Determine which value to split on, true, false, or undef if neither. 1380 ConstantInt *SplitVal = nullptr; 1381 if (NumTrue > NumFalse) 1382 SplitVal = ConstantInt::getTrue(BB->getContext()); 1383 else if (NumTrue != 0 || NumFalse != 0) 1384 SplitVal = ConstantInt::getFalse(BB->getContext()); 1385 1386 // Collect all of the blocks that this can be folded into so that we can 1387 // factor this once and clone it once. 1388 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1389 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1390 if (XorOpValues[i].first != SplitVal && 1391 !isa<UndefValue>(XorOpValues[i].first)) 1392 continue; 1393 1394 BlocksToFoldInto.push_back(XorOpValues[i].second); 1395 } 1396 1397 // If we inferred a value for all of the predecessors, then duplication won't 1398 // help us. However, we can just replace the LHS or RHS with the constant. 1399 if (BlocksToFoldInto.size() == 1400 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1401 if (!SplitVal) { 1402 // If all preds provide undef, just nuke the xor, because it is undef too. 1403 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1404 BO->eraseFromParent(); 1405 } else if (SplitVal->isZero()) { 1406 // If all preds provide 0, replace the xor with the other input. 1407 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1408 BO->eraseFromParent(); 1409 } else { 1410 // If all preds provide 1, set the computed value to 1. 1411 BO->setOperand(!isLHS, SplitVal); 1412 } 1413 1414 return true; 1415 } 1416 1417 // Try to duplicate BB into PredBB. 1418 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1419 } 1420 1421 1422 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1423 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1424 /// NewPred using the entries from OldPred (suitably mapped). 1425 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1426 BasicBlock *OldPred, 1427 BasicBlock *NewPred, 1428 DenseMap<Instruction*, Value*> &ValueMap) { 1429 for (BasicBlock::iterator PNI = PHIBB->begin(); 1430 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1431 // Ok, we have a PHI node. Figure out what the incoming value was for the 1432 // DestBlock. 1433 Value *IV = PN->getIncomingValueForBlock(OldPred); 1434 1435 // Remap the value if necessary. 1436 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1437 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1438 if (I != ValueMap.end()) 1439 IV = I->second; 1440 } 1441 1442 PN->addIncoming(IV, NewPred); 1443 } 1444 } 1445 1446 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1447 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1448 /// across BB. Transform the IR to reflect this change. 1449 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1450 const SmallVectorImpl<BasicBlock*> &PredBBs, 1451 BasicBlock *SuccBB) { 1452 // If threading to the same block as we come from, we would infinite loop. 1453 if (SuccBB == BB) { 1454 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1455 << "' - would thread to self!\n"); 1456 return false; 1457 } 1458 1459 // If threading this would thread across a loop header, don't thread the edge. 1460 // See the comments above FindLoopHeaders for justifications and caveats. 1461 if (LoopHeaders.count(BB)) { 1462 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1463 << "' to dest BB '" << SuccBB->getName() 1464 << "' - it might create an irreducible loop!\n"); 1465 return false; 1466 } 1467 1468 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, BBDupThreshold); 1469 if (JumpThreadCost > BBDupThreshold) { 1470 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1471 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1472 return false; 1473 } 1474 1475 // And finally, do it! Start by factoring the predecessors if needed. 1476 BasicBlock *PredBB; 1477 if (PredBBs.size() == 1) 1478 PredBB = PredBBs[0]; 1479 else { 1480 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1481 << " common predecessors.\n"); 1482 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1483 } 1484 1485 // And finally, do it! 1486 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1487 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1488 << ", across block:\n " 1489 << *BB << "\n"); 1490 1491 LVI->threadEdge(PredBB, BB, SuccBB); 1492 1493 // We are going to have to map operands from the original BB block to the new 1494 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1495 // account for entry from PredBB. 1496 DenseMap<Instruction*, Value*> ValueMapping; 1497 1498 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1499 BB->getName()+".thread", 1500 BB->getParent(), BB); 1501 NewBB->moveAfter(PredBB); 1502 1503 // Set the block frequency of NewBB. 1504 if (HasProfileData) { 1505 auto NewBBFreq = 1506 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 1507 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 1508 } 1509 1510 BasicBlock::iterator BI = BB->begin(); 1511 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1512 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1513 1514 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1515 // mapping and using it to remap operands in the cloned instructions. 1516 for (; !isa<TerminatorInst>(BI); ++BI) { 1517 Instruction *New = BI->clone(); 1518 New->setName(BI->getName()); 1519 NewBB->getInstList().push_back(New); 1520 ValueMapping[&*BI] = New; 1521 1522 // Remap operands to patch up intra-block references. 1523 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1524 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1525 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1526 if (I != ValueMapping.end()) 1527 New->setOperand(i, I->second); 1528 } 1529 } 1530 1531 // We didn't copy the terminator from BB over to NewBB, because there is now 1532 // an unconditional jump to SuccBB. Insert the unconditional jump. 1533 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 1534 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1535 1536 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1537 // PHI nodes for NewBB now. 1538 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1539 1540 // If there were values defined in BB that are used outside the block, then we 1541 // now have to update all uses of the value to use either the original value, 1542 // the cloned value, or some PHI derived value. This can require arbitrary 1543 // PHI insertion, of which we are prepared to do, clean these up now. 1544 SSAUpdater SSAUpdate; 1545 SmallVector<Use*, 16> UsesToRename; 1546 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1547 // Scan all uses of this instruction to see if it is used outside of its 1548 // block, and if so, record them in UsesToRename. 1549 for (Use &U : I->uses()) { 1550 Instruction *User = cast<Instruction>(U.getUser()); 1551 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1552 if (UserPN->getIncomingBlock(U) == BB) 1553 continue; 1554 } else if (User->getParent() == BB) 1555 continue; 1556 1557 UsesToRename.push_back(&U); 1558 } 1559 1560 // If there are no uses outside the block, we're done with this instruction. 1561 if (UsesToRename.empty()) 1562 continue; 1563 1564 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1565 1566 // We found a use of I outside of BB. Rename all uses of I that are outside 1567 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1568 // with the two values we know. 1569 SSAUpdate.Initialize(I->getType(), I->getName()); 1570 SSAUpdate.AddAvailableValue(BB, &*I); 1571 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&*I]); 1572 1573 while (!UsesToRename.empty()) 1574 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1575 DEBUG(dbgs() << "\n"); 1576 } 1577 1578 1579 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1580 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1581 // us to simplify any PHI nodes in BB. 1582 TerminatorInst *PredTerm = PredBB->getTerminator(); 1583 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1584 if (PredTerm->getSuccessor(i) == BB) { 1585 BB->removePredecessor(PredBB, true); 1586 PredTerm->setSuccessor(i, NewBB); 1587 } 1588 1589 // At this point, the IR is fully up to date and consistent. Do a quick scan 1590 // over the new instructions and zap any that are constants or dead. This 1591 // frequently happens because of phi translation. 1592 SimplifyInstructionsInBlock(NewBB, TLI); 1593 1594 // Update the edge weight from BB to SuccBB, which should be less than before. 1595 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 1596 1597 // Threaded an edge! 1598 ++NumThreads; 1599 return true; 1600 } 1601 1602 /// Create a new basic block that will be the predecessor of BB and successor of 1603 /// all blocks in Preds. When profile data is availble, update the frequency of 1604 /// this new block. 1605 BasicBlock *JumpThreading::SplitBlockPreds(BasicBlock *BB, 1606 ArrayRef<BasicBlock *> Preds, 1607 const char *Suffix) { 1608 // Collect the frequencies of all predecessors of BB, which will be used to 1609 // update the edge weight on BB->SuccBB. 1610 BlockFrequency PredBBFreq(0); 1611 if (HasProfileData) 1612 for (auto Pred : Preds) 1613 PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB); 1614 1615 BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix); 1616 1617 // Set the block frequency of the newly created PredBB, which is the sum of 1618 // frequencies of Preds. 1619 if (HasProfileData) 1620 BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency()); 1621 return PredBB; 1622 } 1623 1624 /// Update the block frequency of BB and branch weight and the metadata on the 1625 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 1626 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 1627 void JumpThreading::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 1628 BasicBlock *BB, 1629 BasicBlock *NewBB, 1630 BasicBlock *SuccBB) { 1631 if (!HasProfileData) 1632 return; 1633 1634 assert(BFI && BPI && "BFI & BPI should have been created here"); 1635 1636 // As the edge from PredBB to BB is deleted, we have to update the block 1637 // frequency of BB. 1638 auto BBOrigFreq = BFI->getBlockFreq(BB); 1639 auto NewBBFreq = BFI->getBlockFreq(NewBB); 1640 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 1641 auto BBNewFreq = BBOrigFreq - NewBBFreq; 1642 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 1643 1644 // Collect updated outgoing edges' frequencies from BB and use them to update 1645 // edge probabilities. 1646 SmallVector<uint64_t, 4> BBSuccFreq; 1647 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I) { 1648 auto SuccFreq = (*I == SuccBB) 1649 ? BB2SuccBBFreq - NewBBFreq 1650 : BBOrigFreq * BPI->getEdgeProbability(BB, *I); 1651 BBSuccFreq.push_back(SuccFreq.getFrequency()); 1652 } 1653 1654 uint64_t MaxBBSuccFreq = 1655 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 1656 1657 SmallVector<BranchProbability, 4> BBSuccProbs; 1658 if (MaxBBSuccFreq == 0) 1659 BBSuccProbs.assign(BBSuccFreq.size(), 1660 {1, static_cast<unsigned>(BBSuccFreq.size())}); 1661 else { 1662 for (uint64_t Freq : BBSuccFreq) 1663 BBSuccProbs.push_back( 1664 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 1665 // Normalize edge probabilities so that they sum up to one. 1666 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 1667 BBSuccProbs.end()); 1668 } 1669 1670 // Update edge probabilities in BPI. 1671 for (int I = 0, E = BBSuccProbs.size(); I < E; I++) 1672 BPI->setEdgeProbability(BB, I, BBSuccProbs[I]); 1673 1674 if (BBSuccProbs.size() >= 2) { 1675 SmallVector<uint32_t, 4> Weights; 1676 for (auto Prob : BBSuccProbs) 1677 Weights.push_back(Prob.getNumerator()); 1678 1679 auto TI = BB->getTerminator(); 1680 TI->setMetadata( 1681 LLVMContext::MD_prof, 1682 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 1683 } 1684 } 1685 1686 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1687 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1688 /// If we can duplicate the contents of BB up into PredBB do so now, this 1689 /// improves the odds that the branch will be on an analyzable instruction like 1690 /// a compare. 1691 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1692 const SmallVectorImpl<BasicBlock *> &PredBBs) { 1693 assert(!PredBBs.empty() && "Can't handle an empty set"); 1694 1695 // If BB is a loop header, then duplicating this block outside the loop would 1696 // cause us to transform this into an irreducible loop, don't do this. 1697 // See the comments above FindLoopHeaders for justifications and caveats. 1698 if (LoopHeaders.count(BB)) { 1699 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1700 << "' into predecessor block '" << PredBBs[0]->getName() 1701 << "' - it might create an irreducible loop!\n"); 1702 return false; 1703 } 1704 1705 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, BBDupThreshold); 1706 if (DuplicationCost > BBDupThreshold) { 1707 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1708 << "' - Cost is too high: " << DuplicationCost << "\n"); 1709 return false; 1710 } 1711 1712 // And finally, do it! Start by factoring the predecessors if needed. 1713 BasicBlock *PredBB; 1714 if (PredBBs.size() == 1) 1715 PredBB = PredBBs[0]; 1716 else { 1717 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1718 << " common predecessors.\n"); 1719 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1720 } 1721 1722 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1723 // of PredBB. 1724 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1725 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1726 << DuplicationCost << " block is:" << *BB << "\n"); 1727 1728 // Unless PredBB ends with an unconditional branch, split the edge so that we 1729 // can just clone the bits from BB into the end of the new PredBB. 1730 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 1731 1732 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 1733 PredBB = SplitEdge(PredBB, BB); 1734 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1735 } 1736 1737 // We are going to have to map operands from the original BB block into the 1738 // PredBB block. Evaluate PHI nodes in BB. 1739 DenseMap<Instruction*, Value*> ValueMapping; 1740 1741 BasicBlock::iterator BI = BB->begin(); 1742 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1743 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1744 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1745 // mapping and using it to remap operands in the cloned instructions. 1746 for (; BI != BB->end(); ++BI) { 1747 Instruction *New = BI->clone(); 1748 1749 // Remap operands to patch up intra-block references. 1750 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1751 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1752 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1753 if (I != ValueMapping.end()) 1754 New->setOperand(i, I->second); 1755 } 1756 1757 // If this instruction can be simplified after the operands are updated, 1758 // just use the simplified value instead. This frequently happens due to 1759 // phi translation. 1760 if (Value *IV = 1761 SimplifyInstruction(New, BB->getModule()->getDataLayout())) { 1762 delete New; 1763 ValueMapping[&*BI] = IV; 1764 } else { 1765 // Otherwise, insert the new instruction into the block. 1766 New->setName(BI->getName()); 1767 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 1768 ValueMapping[&*BI] = New; 1769 } 1770 } 1771 1772 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1773 // add entries to the PHI nodes for branch from PredBB now. 1774 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1775 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1776 ValueMapping); 1777 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1778 ValueMapping); 1779 1780 // If there were values defined in BB that are used outside the block, then we 1781 // now have to update all uses of the value to use either the original value, 1782 // the cloned value, or some PHI derived value. This can require arbitrary 1783 // PHI insertion, of which we are prepared to do, clean these up now. 1784 SSAUpdater SSAUpdate; 1785 SmallVector<Use*, 16> UsesToRename; 1786 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1787 // Scan all uses of this instruction to see if it is used outside of its 1788 // block, and if so, record them in UsesToRename. 1789 for (Use &U : I->uses()) { 1790 Instruction *User = cast<Instruction>(U.getUser()); 1791 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1792 if (UserPN->getIncomingBlock(U) == BB) 1793 continue; 1794 } else if (User->getParent() == BB) 1795 continue; 1796 1797 UsesToRename.push_back(&U); 1798 } 1799 1800 // If there are no uses outside the block, we're done with this instruction. 1801 if (UsesToRename.empty()) 1802 continue; 1803 1804 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1805 1806 // We found a use of I outside of BB. Rename all uses of I that are outside 1807 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1808 // with the two values we know. 1809 SSAUpdate.Initialize(I->getType(), I->getName()); 1810 SSAUpdate.AddAvailableValue(BB, &*I); 1811 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&*I]); 1812 1813 while (!UsesToRename.empty()) 1814 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1815 DEBUG(dbgs() << "\n"); 1816 } 1817 1818 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1819 // that we nuked. 1820 BB->removePredecessor(PredBB, true); 1821 1822 // Remove the unconditional branch at the end of the PredBB block. 1823 OldPredBranch->eraseFromParent(); 1824 1825 ++NumDupes; 1826 return true; 1827 } 1828 1829 /// TryToUnfoldSelect - Look for blocks of the form 1830 /// bb1: 1831 /// %a = select 1832 /// br bb 1833 /// 1834 /// bb2: 1835 /// %p = phi [%a, %bb] ... 1836 /// %c = icmp %p 1837 /// br i1 %c 1838 /// 1839 /// And expand the select into a branch structure if one of its arms allows %c 1840 /// to be folded. This later enables threading from bb1 over bb2. 1841 bool JumpThreading::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 1842 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1843 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 1844 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 1845 1846 if (!CondBr || !CondBr->isConditional() || !CondLHS || 1847 CondLHS->getParent() != BB) 1848 return false; 1849 1850 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 1851 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 1852 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 1853 1854 // Look if one of the incoming values is a select in the corresponding 1855 // predecessor. 1856 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 1857 continue; 1858 1859 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 1860 if (!PredTerm || !PredTerm->isUnconditional()) 1861 continue; 1862 1863 // Now check if one of the select values would allow us to constant fold the 1864 // terminator in BB. We don't do the transform if both sides fold, those 1865 // cases will be threaded in any case. 1866 LazyValueInfo::Tristate LHSFolds = 1867 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 1868 CondRHS, Pred, BB, CondCmp); 1869 LazyValueInfo::Tristate RHSFolds = 1870 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 1871 CondRHS, Pred, BB, CondCmp); 1872 if ((LHSFolds != LazyValueInfo::Unknown || 1873 RHSFolds != LazyValueInfo::Unknown) && 1874 LHSFolds != RHSFolds) { 1875 // Expand the select. 1876 // 1877 // Pred -- 1878 // | v 1879 // | NewBB 1880 // | | 1881 // |----- 1882 // v 1883 // BB 1884 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 1885 BB->getParent(), BB); 1886 // Move the unconditional branch to NewBB. 1887 PredTerm->removeFromParent(); 1888 NewBB->getInstList().insert(NewBB->end(), PredTerm); 1889 // Create a conditional branch and update PHI nodes. 1890 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 1891 CondLHS->setIncomingValue(I, SI->getFalseValue()); 1892 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 1893 // The select is now dead. 1894 SI->eraseFromParent(); 1895 1896 // Update any other PHI nodes in BB. 1897 for (BasicBlock::iterator BI = BB->begin(); 1898 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 1899 if (Phi != CondLHS) 1900 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 1901 return true; 1902 } 1903 } 1904 return false; 1905 } 1906