xref: /llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp (revision 4048c64306e23b622443bbe7293057a9b07a13bb)
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Jump Threading pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Scalar/JumpThreading.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/MapVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BlockFrequencyInfo.h"
22 #include "llvm/Analysis/BranchProbabilityInfo.h"
23 #include "llvm/Analysis/CFG.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/GlobalsModRef.h"
26 #include "llvm/Analysis/GuardUtils.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LazyValueInfo.h"
29 #include "llvm/Analysis/Loads.h"
30 #include "llvm/Analysis/LoopInfo.h"
31 #include "llvm/Analysis/MemoryLocation.h"
32 #include "llvm/Analysis/PostDominators.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/ConstantRange.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugInfo.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/PassManager.h"
55 #include "llvm/IR/PatternMatch.h"
56 #include "llvm/IR/ProfDataUtils.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/Support/BlockFrequency.h"
61 #include "llvm/Support/BranchProbability.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #include "llvm/Transforms/Utils/Cloning.h"
68 #include "llvm/Transforms/Utils/Local.h"
69 #include "llvm/Transforms/Utils/SSAUpdater.h"
70 #include "llvm/Transforms/Utils/ValueMapper.h"
71 #include <cassert>
72 #include <cstdint>
73 #include <iterator>
74 #include <memory>
75 #include <utility>
76 
77 using namespace llvm;
78 using namespace jumpthreading;
79 
80 #define DEBUG_TYPE "jump-threading"
81 
82 STATISTIC(NumThreads, "Number of jumps threaded");
83 STATISTIC(NumFolds,   "Number of terminators folded");
84 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
85 
86 static cl::opt<unsigned>
87 BBDuplicateThreshold("jump-threading-threshold",
88           cl::desc("Max block size to duplicate for jump threading"),
89           cl::init(6), cl::Hidden);
90 
91 static cl::opt<unsigned>
92 ImplicationSearchThreshold(
93   "jump-threading-implication-search-threshold",
94   cl::desc("The number of predecessors to search for a stronger "
95            "condition to use to thread over a weaker condition"),
96   cl::init(3), cl::Hidden);
97 
98 static cl::opt<unsigned> PhiDuplicateThreshold(
99     "jump-threading-phi-threshold",
100     cl::desc("Max PHIs in BB to duplicate for jump threading"), cl::init(76),
101     cl::Hidden);
102 
103 static cl::opt<bool> ThreadAcrossLoopHeaders(
104     "jump-threading-across-loop-headers",
105     cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
106     cl::init(false), cl::Hidden);
107 
108 JumpThreadingPass::JumpThreadingPass(int T) {
109   DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
110 }
111 
112 // Update branch probability information according to conditional
113 // branch probability. This is usually made possible for cloned branches
114 // in inline instances by the context specific profile in the caller.
115 // For instance,
116 //
117 //  [Block PredBB]
118 //  [Branch PredBr]
119 //  if (t) {
120 //     Block A;
121 //  } else {
122 //     Block B;
123 //  }
124 //
125 //  [Block BB]
126 //  cond = PN([true, %A], [..., %B]); // PHI node
127 //  [Branch CondBr]
128 //  if (cond) {
129 //    ...  // P(cond == true) = 1%
130 //  }
131 //
132 //  Here we know that when block A is taken, cond must be true, which means
133 //      P(cond == true | A) = 1
134 //
135 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
136 //                               P(cond == true | B) * P(B)
137 //  we get:
138 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
139 //
140 //  which gives us:
141 //     P(A) is less than P(cond == true), i.e.
142 //     P(t == true) <= P(cond == true)
143 //
144 //  In other words, if we know P(cond == true) is unlikely, we know
145 //  that P(t == true) is also unlikely.
146 //
147 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
148   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
149   if (!CondBr)
150     return;
151 
152   uint64_t TrueWeight, FalseWeight;
153   if (!extractBranchWeights(*CondBr, TrueWeight, FalseWeight))
154     return;
155 
156   if (TrueWeight + FalseWeight == 0)
157     // Zero branch_weights do not give a hint for getting branch probabilities.
158     // Technically it would result in division by zero denominator, which is
159     // TrueWeight + FalseWeight.
160     return;
161 
162   // Returns the outgoing edge of the dominating predecessor block
163   // that leads to the PhiNode's incoming block:
164   auto GetPredOutEdge =
165       [](BasicBlock *IncomingBB,
166          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
167     auto *PredBB = IncomingBB;
168     auto *SuccBB = PhiBB;
169     SmallPtrSet<BasicBlock *, 16> Visited;
170     while (true) {
171       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
172       if (PredBr && PredBr->isConditional())
173         return {PredBB, SuccBB};
174       Visited.insert(PredBB);
175       auto *SinglePredBB = PredBB->getSinglePredecessor();
176       if (!SinglePredBB)
177         return {nullptr, nullptr};
178 
179       // Stop searching when SinglePredBB has been visited. It means we see
180       // an unreachable loop.
181       if (Visited.count(SinglePredBB))
182         return {nullptr, nullptr};
183 
184       SuccBB = PredBB;
185       PredBB = SinglePredBB;
186     }
187   };
188 
189   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
190     Value *PhiOpnd = PN->getIncomingValue(i);
191     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
192 
193     if (!CI || !CI->getType()->isIntegerTy(1))
194       continue;
195 
196     BranchProbability BP =
197         (CI->isOne() ? BranchProbability::getBranchProbability(
198                            TrueWeight, TrueWeight + FalseWeight)
199                      : BranchProbability::getBranchProbability(
200                            FalseWeight, TrueWeight + FalseWeight));
201 
202     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
203     if (!PredOutEdge.first)
204       return;
205 
206     BasicBlock *PredBB = PredOutEdge.first;
207     BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
208     if (!PredBr)
209       return;
210 
211     uint64_t PredTrueWeight, PredFalseWeight;
212     // FIXME: We currently only set the profile data when it is missing.
213     // With PGO, this can be used to refine even existing profile data with
214     // context information. This needs to be done after more performance
215     // testing.
216     if (extractBranchWeights(*PredBr, PredTrueWeight, PredFalseWeight))
217       continue;
218 
219     // We can not infer anything useful when BP >= 50%, because BP is the
220     // upper bound probability value.
221     if (BP >= BranchProbability(50, 100))
222       continue;
223 
224     uint32_t Weights[2];
225     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
226       Weights[0] = BP.getNumerator();
227       Weights[1] = BP.getCompl().getNumerator();
228     } else {
229       Weights[0] = BP.getCompl().getNumerator();
230       Weights[1] = BP.getNumerator();
231     }
232     setBranchWeights(*PredBr, Weights, hasBranchWeightOrigin(*PredBr));
233   }
234 }
235 
236 PreservedAnalyses JumpThreadingPass::run(Function &F,
237                                          FunctionAnalysisManager &AM) {
238   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
239   // Jump Threading has no sense for the targets with divergent CF
240   if (TTI.hasBranchDivergence(&F))
241     return PreservedAnalyses::all();
242   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
243   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
244   auto &AA = AM.getResult<AAManager>(F);
245   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
246 
247   bool Changed =
248       runImpl(F, &AM, &TLI, &TTI, &LVI, &AA,
249               std::make_unique<DomTreeUpdater>(
250                   &DT, nullptr, DomTreeUpdater::UpdateStrategy::Lazy),
251               std::nullopt, std::nullopt);
252 
253   if (!Changed)
254     return PreservedAnalyses::all();
255 
256 
257   getDomTreeUpdater()->flush();
258 
259 #if defined(EXPENSIVE_CHECKS)
260   assert(getDomTreeUpdater()->getDomTree().verify(
261              DominatorTree::VerificationLevel::Full) &&
262          "DT broken after JumpThreading");
263   assert((!getDomTreeUpdater()->hasPostDomTree() ||
264           getDomTreeUpdater()->getPostDomTree().verify(
265               PostDominatorTree::VerificationLevel::Full)) &&
266          "PDT broken after JumpThreading");
267 #else
268   assert(getDomTreeUpdater()->getDomTree().verify(
269              DominatorTree::VerificationLevel::Fast) &&
270          "DT broken after JumpThreading");
271   assert((!getDomTreeUpdater()->hasPostDomTree() ||
272           getDomTreeUpdater()->getPostDomTree().verify(
273               PostDominatorTree::VerificationLevel::Fast)) &&
274          "PDT broken after JumpThreading");
275 #endif
276 
277   return getPreservedAnalysis();
278 }
279 
280 bool JumpThreadingPass::runImpl(Function &F_, FunctionAnalysisManager *FAM_,
281                                 TargetLibraryInfo *TLI_,
282                                 TargetTransformInfo *TTI_, LazyValueInfo *LVI_,
283                                 AliasAnalysis *AA_,
284                                 std::unique_ptr<DomTreeUpdater> DTU_,
285                                 std::optional<BlockFrequencyInfo *> BFI_,
286                                 std::optional<BranchProbabilityInfo *> BPI_) {
287   LLVM_DEBUG(dbgs() << "Jump threading on function '" << F_.getName() << "'\n");
288   F = &F_;
289   FAM = FAM_;
290   TLI = TLI_;
291   TTI = TTI_;
292   LVI = LVI_;
293   AA = AA_;
294   DTU = std::move(DTU_);
295   BFI = BFI_;
296   BPI = BPI_;
297   auto *GuardDecl = Intrinsic::getDeclarationIfExists(
298       F->getParent(), Intrinsic::experimental_guard);
299   HasGuards = GuardDecl && !GuardDecl->use_empty();
300 
301   // Reduce the number of instructions duplicated when optimizing strictly for
302   // size.
303   if (BBDuplicateThreshold.getNumOccurrences())
304     BBDupThreshold = BBDuplicateThreshold;
305   else if (F->hasFnAttribute(Attribute::MinSize))
306     BBDupThreshold = 3;
307   else
308     BBDupThreshold = DefaultBBDupThreshold;
309 
310   // JumpThreading must not processes blocks unreachable from entry. It's a
311   // waste of compute time and can potentially lead to hangs.
312   SmallPtrSet<BasicBlock *, 16> Unreachable;
313   assert(DTU && "DTU isn't passed into JumpThreading before using it.");
314   assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
315   DominatorTree &DT = DTU->getDomTree();
316   for (auto &BB : *F)
317     if (!DT.isReachableFromEntry(&BB))
318       Unreachable.insert(&BB);
319 
320   if (!ThreadAcrossLoopHeaders)
321     findLoopHeaders(*F);
322 
323   bool EverChanged = false;
324   bool Changed;
325   do {
326     Changed = false;
327     for (auto &BB : *F) {
328       if (Unreachable.count(&BB))
329         continue;
330       while (processBlock(&BB)) // Thread all of the branches we can over BB.
331         Changed = ChangedSinceLastAnalysisUpdate = true;
332 
333       // Jump threading may have introduced redundant debug values into BB
334       // which should be removed.
335       if (Changed)
336         RemoveRedundantDbgInstrs(&BB);
337 
338       // Stop processing BB if it's the entry or is now deleted. The following
339       // routines attempt to eliminate BB and locating a suitable replacement
340       // for the entry is non-trivial.
341       if (&BB == &F->getEntryBlock() || DTU->isBBPendingDeletion(&BB))
342         continue;
343 
344       if (pred_empty(&BB)) {
345         // When processBlock makes BB unreachable it doesn't bother to fix up
346         // the instructions in it. We must remove BB to prevent invalid IR.
347         LLVM_DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
348                           << "' with terminator: " << *BB.getTerminator()
349                           << '\n');
350         LoopHeaders.erase(&BB);
351         LVI->eraseBlock(&BB);
352         DeleteDeadBlock(&BB, DTU.get());
353         Changed = ChangedSinceLastAnalysisUpdate = true;
354         continue;
355       }
356 
357       // processBlock doesn't thread BBs with unconditional TIs. However, if BB
358       // is "almost empty", we attempt to merge BB with its sole successor.
359       auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
360       if (BI && BI->isUnconditional()) {
361         BasicBlock *Succ = BI->getSuccessor(0);
362         if (
363             // The terminator must be the only non-phi instruction in BB.
364             BB.getFirstNonPHIOrDbg(true)->isTerminator() &&
365             // Don't alter Loop headers and latches to ensure another pass can
366             // detect and transform nested loops later.
367             !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) &&
368             TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU.get())) {
369           RemoveRedundantDbgInstrs(Succ);
370           // BB is valid for cleanup here because we passed in DTU. F remains
371           // BB's parent until a DTU->getDomTree() event.
372           LVI->eraseBlock(&BB);
373           Changed = ChangedSinceLastAnalysisUpdate = true;
374         }
375       }
376     }
377     EverChanged |= Changed;
378   } while (Changed);
379 
380   LoopHeaders.clear();
381   return EverChanged;
382 }
383 
384 // Replace uses of Cond with ToVal when safe to do so. If all uses are
385 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
386 // because we may incorrectly replace uses when guards/assumes are uses of
387 // of `Cond` and we used the guards/assume to reason about the `Cond` value
388 // at the end of block. RAUW unconditionally replaces all uses
389 // including the guards/assumes themselves and the uses before the
390 // guard/assume.
391 static bool replaceFoldableUses(Instruction *Cond, Value *ToVal,
392                                 BasicBlock *KnownAtEndOfBB) {
393   bool Changed = false;
394   assert(Cond->getType() == ToVal->getType());
395   // We can unconditionally replace all uses in non-local blocks (i.e. uses
396   // strictly dominated by BB), since LVI information is true from the
397   // terminator of BB.
398   if (Cond->getParent() == KnownAtEndOfBB)
399     Changed |= replaceNonLocalUsesWith(Cond, ToVal);
400   for (Instruction &I : reverse(*KnownAtEndOfBB)) {
401     // Replace any debug-info record users of Cond with ToVal.
402     for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange()))
403       DVR.replaceVariableLocationOp(Cond, ToVal, true);
404 
405     // Reached the Cond whose uses we are trying to replace, so there are no
406     // more uses.
407     if (&I == Cond)
408       break;
409     // We only replace uses in instructions that are guaranteed to reach the end
410     // of BB, where we know Cond is ToVal.
411     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
412       break;
413     Changed |= I.replaceUsesOfWith(Cond, ToVal);
414   }
415   if (Cond->use_empty() && !Cond->mayHaveSideEffects()) {
416     Cond->eraseFromParent();
417     Changed = true;
418   }
419   return Changed;
420 }
421 
422 /// Return the cost of duplicating a piece of this block from first non-phi
423 /// and before StopAt instruction to thread across it. Stop scanning the block
424 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
425 static unsigned getJumpThreadDuplicationCost(const TargetTransformInfo *TTI,
426                                              BasicBlock *BB,
427                                              Instruction *StopAt,
428                                              unsigned Threshold) {
429   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
430 
431   // Do not duplicate the BB if it has a lot of PHI nodes.
432   // If a threadable chain is too long then the number of PHI nodes can add up,
433   // leading to a substantial increase in compile time when rewriting the SSA.
434   unsigned PhiCount = 0;
435   Instruction *FirstNonPHI = nullptr;
436   for (Instruction &I : *BB) {
437     if (!isa<PHINode>(&I)) {
438       FirstNonPHI = &I;
439       break;
440     }
441     if (++PhiCount > PhiDuplicateThreshold)
442       return ~0U;
443   }
444 
445   /// Ignore PHI nodes, these will be flattened when duplication happens.
446   BasicBlock::const_iterator I(FirstNonPHI);
447 
448   // FIXME: THREADING will delete values that are just used to compute the
449   // branch, so they shouldn't count against the duplication cost.
450 
451   unsigned Bonus = 0;
452   if (BB->getTerminator() == StopAt) {
453     // Threading through a switch statement is particularly profitable.  If this
454     // block ends in a switch, decrease its cost to make it more likely to
455     // happen.
456     if (isa<SwitchInst>(StopAt))
457       Bonus = 6;
458 
459     // The same holds for indirect branches, but slightly more so.
460     if (isa<IndirectBrInst>(StopAt))
461       Bonus = 8;
462   }
463 
464   // Bump the threshold up so the early exit from the loop doesn't skip the
465   // terminator-based Size adjustment at the end.
466   Threshold += Bonus;
467 
468   // Sum up the cost of each instruction until we get to the terminator.  Don't
469   // include the terminator because the copy won't include it.
470   unsigned Size = 0;
471   for (; &*I != StopAt; ++I) {
472 
473     // Stop scanning the block if we've reached the threshold.
474     if (Size > Threshold)
475       return Size;
476 
477     // Bail out if this instruction gives back a token type, it is not possible
478     // to duplicate it if it is used outside this BB.
479     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
480       return ~0U;
481 
482     // Blocks with NoDuplicate are modelled as having infinite cost, so they
483     // are never duplicated.
484     if (const CallInst *CI = dyn_cast<CallInst>(I))
485       if (CI->cannotDuplicate() || CI->isConvergent())
486         return ~0U;
487 
488     if (TTI->getInstructionCost(&*I, TargetTransformInfo::TCK_SizeAndLatency) ==
489         TargetTransformInfo::TCC_Free)
490       continue;
491 
492     // All other instructions count for at least one unit.
493     ++Size;
494 
495     // Calls are more expensive.  If they are non-intrinsic calls, we model them
496     // as having cost of 4.  If they are a non-vector intrinsic, we model them
497     // as having cost of 2 total, and if they are a vector intrinsic, we model
498     // them as having cost 1.
499     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
500       if (!isa<IntrinsicInst>(CI))
501         Size += 3;
502       else if (!CI->getType()->isVectorTy())
503         Size += 1;
504     }
505   }
506 
507   return Size > Bonus ? Size - Bonus : 0;
508 }
509 
510 /// findLoopHeaders - We do not want jump threading to turn proper loop
511 /// structures into irreducible loops.  Doing this breaks up the loop nesting
512 /// hierarchy and pessimizes later transformations.  To prevent this from
513 /// happening, we first have to find the loop headers.  Here we approximate this
514 /// by finding targets of backedges in the CFG.
515 ///
516 /// Note that there definitely are cases when we want to allow threading of
517 /// edges across a loop header.  For example, threading a jump from outside the
518 /// loop (the preheader) to an exit block of the loop is definitely profitable.
519 /// It is also almost always profitable to thread backedges from within the loop
520 /// to exit blocks, and is often profitable to thread backedges to other blocks
521 /// within the loop (forming a nested loop).  This simple analysis is not rich
522 /// enough to track all of these properties and keep it up-to-date as the CFG
523 /// mutates, so we don't allow any of these transformations.
524 void JumpThreadingPass::findLoopHeaders(Function &F) {
525   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
526   FindFunctionBackedges(F, Edges);
527 
528   for (const auto &Edge : Edges)
529     LoopHeaders.insert(Edge.second);
530 }
531 
532 /// getKnownConstant - Helper method to determine if we can thread over a
533 /// terminator with the given value as its condition, and if so what value to
534 /// use for that. What kind of value this is depends on whether we want an
535 /// integer or a block address, but an undef is always accepted.
536 /// Returns null if Val is null or not an appropriate constant.
537 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
538   if (!Val)
539     return nullptr;
540 
541   // Undef is "known" enough.
542   if (UndefValue *U = dyn_cast<UndefValue>(Val))
543     return U;
544 
545   if (Preference == WantBlockAddress)
546     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
547 
548   return dyn_cast<ConstantInt>(Val);
549 }
550 
551 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see
552 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
553 /// in any of our predecessors.  If so, return the known list of value and pred
554 /// BB in the result vector.
555 ///
556 /// This returns true if there were any known values.
557 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl(
558     Value *V, BasicBlock *BB, PredValueInfo &Result,
559     ConstantPreference Preference, SmallPtrSet<Value *, 4> &RecursionSet,
560     Instruction *CxtI) {
561   const DataLayout &DL = BB->getDataLayout();
562 
563   // This method walks up use-def chains recursively.  Because of this, we could
564   // get into an infinite loop going around loops in the use-def chain.  To
565   // prevent this, keep track of what (value, block) pairs we've already visited
566   // and terminate the search if we loop back to them
567   if (!RecursionSet.insert(V).second)
568     return false;
569 
570   // If V is a constant, then it is known in all predecessors.
571   if (Constant *KC = getKnownConstant(V, Preference)) {
572     for (BasicBlock *Pred : predecessors(BB))
573       Result.emplace_back(KC, Pred);
574 
575     return !Result.empty();
576   }
577 
578   // If V is a non-instruction value, or an instruction in a different block,
579   // then it can't be derived from a PHI.
580   Instruction *I = dyn_cast<Instruction>(V);
581   if (!I || I->getParent() != BB) {
582 
583     // Okay, if this is a live-in value, see if it has a known value at the any
584     // edge from our predecessors.
585     for (BasicBlock *P : predecessors(BB)) {
586       using namespace PatternMatch;
587       // If the value is known by LazyValueInfo to be a constant in a
588       // predecessor, use that information to try to thread this block.
589       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
590       // If I is a non-local compare-with-constant instruction, use more-rich
591       // 'getPredicateOnEdge' method. This would be able to handle value
592       // inequalities better, for example if the compare is "X < 4" and "X < 3"
593       // is known true but "X < 4" itself is not available.
594       CmpInst::Predicate Pred;
595       Value *Val;
596       Constant *Cst;
597       if (!PredCst && match(V, m_Cmp(Pred, m_Value(Val), m_Constant(Cst))))
598         PredCst = LVI->getPredicateOnEdge(Pred, Val, Cst, P, BB, CxtI);
599       if (Constant *KC = getKnownConstant(PredCst, Preference))
600         Result.emplace_back(KC, P);
601     }
602 
603     return !Result.empty();
604   }
605 
606   /// If I is a PHI node, then we know the incoming values for any constants.
607   if (PHINode *PN = dyn_cast<PHINode>(I)) {
608     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
609       Value *InVal = PN->getIncomingValue(i);
610       if (Constant *KC = getKnownConstant(InVal, Preference)) {
611         Result.emplace_back(KC, PN->getIncomingBlock(i));
612       } else {
613         Constant *CI = LVI->getConstantOnEdge(InVal,
614                                               PN->getIncomingBlock(i),
615                                               BB, CxtI);
616         if (Constant *KC = getKnownConstant(CI, Preference))
617           Result.emplace_back(KC, PN->getIncomingBlock(i));
618       }
619     }
620 
621     return !Result.empty();
622   }
623 
624   // Handle Cast instructions.
625   if (CastInst *CI = dyn_cast<CastInst>(I)) {
626     Value *Source = CI->getOperand(0);
627     PredValueInfoTy Vals;
628     computeValueKnownInPredecessorsImpl(Source, BB, Vals, Preference,
629                                         RecursionSet, CxtI);
630     if (Vals.empty())
631       return false;
632 
633     // Convert the known values.
634     for (auto &Val : Vals)
635       if (Constant *Folded = ConstantFoldCastOperand(CI->getOpcode(), Val.first,
636                                                      CI->getType(), DL))
637         Result.emplace_back(Folded, Val.second);
638 
639     return !Result.empty();
640   }
641 
642   if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
643     Value *Source = FI->getOperand(0);
644     computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
645                                         RecursionSet, CxtI);
646 
647     erase_if(Result, [](auto &Pair) {
648       return !isGuaranteedNotToBeUndefOrPoison(Pair.first);
649     });
650 
651     return !Result.empty();
652   }
653 
654   // Handle some boolean conditions.
655   if (I->getType()->getPrimitiveSizeInBits() == 1) {
656     using namespace PatternMatch;
657     if (Preference != WantInteger)
658       return false;
659     // X | true -> true
660     // X & false -> false
661     Value *Op0, *Op1;
662     if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
663         match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
664       PredValueInfoTy LHSVals, RHSVals;
665 
666       computeValueKnownInPredecessorsImpl(Op0, BB, LHSVals, WantInteger,
667                                           RecursionSet, CxtI);
668       computeValueKnownInPredecessorsImpl(Op1, BB, RHSVals, WantInteger,
669                                           RecursionSet, CxtI);
670 
671       if (LHSVals.empty() && RHSVals.empty())
672         return false;
673 
674       ConstantInt *InterestingVal;
675       if (match(I, m_LogicalOr()))
676         InterestingVal = ConstantInt::getTrue(I->getContext());
677       else
678         InterestingVal = ConstantInt::getFalse(I->getContext());
679 
680       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
681 
682       // Scan for the sentinel.  If we find an undef, force it to the
683       // interesting value: x|undef -> true and x&undef -> false.
684       for (const auto &LHSVal : LHSVals)
685         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
686           Result.emplace_back(InterestingVal, LHSVal.second);
687           LHSKnownBBs.insert(LHSVal.second);
688         }
689       for (const auto &RHSVal : RHSVals)
690         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
691           // If we already inferred a value for this block on the LHS, don't
692           // re-add it.
693           if (!LHSKnownBBs.count(RHSVal.second))
694             Result.emplace_back(InterestingVal, RHSVal.second);
695         }
696 
697       return !Result.empty();
698     }
699 
700     // Handle the NOT form of XOR.
701     if (I->getOpcode() == Instruction::Xor &&
702         isa<ConstantInt>(I->getOperand(1)) &&
703         cast<ConstantInt>(I->getOperand(1))->isOne()) {
704       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
705                                           WantInteger, RecursionSet, CxtI);
706       if (Result.empty())
707         return false;
708 
709       // Invert the known values.
710       for (auto &R : Result)
711         R.first = ConstantExpr::getNot(R.first);
712 
713       return true;
714     }
715 
716   // Try to simplify some other binary operator values.
717   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
718     if (Preference != WantInteger)
719       return false;
720     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
721       PredValueInfoTy LHSVals;
722       computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
723                                           WantInteger, RecursionSet, CxtI);
724 
725       // Try to use constant folding to simplify the binary operator.
726       for (const auto &LHSVal : LHSVals) {
727         Constant *V = LHSVal.first;
728         Constant *Folded =
729             ConstantFoldBinaryOpOperands(BO->getOpcode(), V, CI, DL);
730 
731         if (Constant *KC = getKnownConstant(Folded, WantInteger))
732           Result.emplace_back(KC, LHSVal.second);
733       }
734     }
735 
736     return !Result.empty();
737   }
738 
739   // Handle compare with phi operand, where the PHI is defined in this block.
740   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
741     if (Preference != WantInteger)
742       return false;
743     Type *CmpType = Cmp->getType();
744     Value *CmpLHS = Cmp->getOperand(0);
745     Value *CmpRHS = Cmp->getOperand(1);
746     CmpInst::Predicate Pred = Cmp->getPredicate();
747 
748     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
749     if (!PN)
750       PN = dyn_cast<PHINode>(CmpRHS);
751     // Do not perform phi translation across a loop header phi, because this
752     // may result in comparison of values from two different loop iterations.
753     // FIXME: This check is broken if LoopHeaders is not populated.
754     if (PN && PN->getParent() == BB && !LoopHeaders.contains(BB)) {
755       const DataLayout &DL = PN->getDataLayout();
756       // We can do this simplification if any comparisons fold to true or false.
757       // See if any do.
758       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
759         BasicBlock *PredBB = PN->getIncomingBlock(i);
760         Value *LHS, *RHS;
761         if (PN == CmpLHS) {
762           LHS = PN->getIncomingValue(i);
763           RHS = CmpRHS->DoPHITranslation(BB, PredBB);
764         } else {
765           LHS = CmpLHS->DoPHITranslation(BB, PredBB);
766           RHS = PN->getIncomingValue(i);
767         }
768         Value *Res = simplifyCmpInst(Pred, LHS, RHS, {DL});
769         if (!Res) {
770           if (!isa<Constant>(RHS))
771             continue;
772 
773           // getPredicateOnEdge call will make no sense if LHS is defined in BB.
774           auto LHSInst = dyn_cast<Instruction>(LHS);
775           if (LHSInst && LHSInst->getParent() == BB)
776             continue;
777 
778           Res = LVI->getPredicateOnEdge(Pred, LHS, cast<Constant>(RHS), PredBB,
779                                         BB, CxtI ? CxtI : Cmp);
780         }
781 
782         if (Constant *KC = getKnownConstant(Res, WantInteger))
783           Result.emplace_back(KC, PredBB);
784       }
785 
786       return !Result.empty();
787     }
788 
789     // If comparing a live-in value against a constant, see if we know the
790     // live-in value on any predecessors.
791     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
792       Constant *CmpConst = cast<Constant>(CmpRHS);
793 
794       if (!isa<Instruction>(CmpLHS) ||
795           cast<Instruction>(CmpLHS)->getParent() != BB) {
796         for (BasicBlock *P : predecessors(BB)) {
797           // If the value is known by LazyValueInfo to be a constant in a
798           // predecessor, use that information to try to thread this block.
799           Constant *Res = LVI->getPredicateOnEdge(Pred, CmpLHS, CmpConst, P, BB,
800                                                   CxtI ? CxtI : Cmp);
801           if (Constant *KC = getKnownConstant(Res, WantInteger))
802             Result.emplace_back(KC, P);
803         }
804 
805         return !Result.empty();
806       }
807 
808       // InstCombine can fold some forms of constant range checks into
809       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
810       // x as a live-in.
811       {
812         using namespace PatternMatch;
813 
814         Value *AddLHS;
815         ConstantInt *AddConst;
816         if (isa<ConstantInt>(CmpConst) &&
817             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
818           if (!isa<Instruction>(AddLHS) ||
819               cast<Instruction>(AddLHS)->getParent() != BB) {
820             for (BasicBlock *P : predecessors(BB)) {
821               // If the value is known by LazyValueInfo to be a ConstantRange in
822               // a predecessor, use that information to try to thread this
823               // block.
824               ConstantRange CR = LVI->getConstantRangeOnEdge(
825                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
826               // Propagate the range through the addition.
827               CR = CR.add(AddConst->getValue());
828 
829               // Get the range where the compare returns true.
830               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
831                   Pred, cast<ConstantInt>(CmpConst)->getValue());
832 
833               Constant *ResC;
834               if (CmpRange.contains(CR))
835                 ResC = ConstantInt::getTrue(CmpType);
836               else if (CmpRange.inverse().contains(CR))
837                 ResC = ConstantInt::getFalse(CmpType);
838               else
839                 continue;
840 
841               Result.emplace_back(ResC, P);
842             }
843 
844             return !Result.empty();
845           }
846         }
847       }
848 
849       // Try to find a constant value for the LHS of a comparison,
850       // and evaluate it statically if we can.
851       PredValueInfoTy LHSVals;
852       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
853                                           WantInteger, RecursionSet, CxtI);
854 
855       for (const auto &LHSVal : LHSVals) {
856         Constant *V = LHSVal.first;
857         Constant *Folded =
858             ConstantFoldCompareInstOperands(Pred, V, CmpConst, DL);
859         if (Constant *KC = getKnownConstant(Folded, WantInteger))
860           Result.emplace_back(KC, LHSVal.second);
861       }
862 
863       return !Result.empty();
864     }
865   }
866 
867   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
868     // Handle select instructions where at least one operand is a known constant
869     // and we can figure out the condition value for any predecessor block.
870     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
871     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
872     PredValueInfoTy Conds;
873     if ((TrueVal || FalseVal) &&
874         computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
875                                             WantInteger, RecursionSet, CxtI)) {
876       for (auto &C : Conds) {
877         Constant *Cond = C.first;
878 
879         // Figure out what value to use for the condition.
880         bool KnownCond;
881         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
882           // A known boolean.
883           KnownCond = CI->isOne();
884         } else {
885           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
886           // Either operand will do, so be sure to pick the one that's a known
887           // constant.
888           // FIXME: Do this more cleverly if both values are known constants?
889           KnownCond = (TrueVal != nullptr);
890         }
891 
892         // See if the select has a known constant value for this predecessor.
893         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
894           Result.emplace_back(Val, C.second);
895       }
896 
897       return !Result.empty();
898     }
899   }
900 
901   // If all else fails, see if LVI can figure out a constant value for us.
902   assert(CxtI->getParent() == BB && "CxtI should be in BB");
903   Constant *CI = LVI->getConstant(V, CxtI);
904   if (Constant *KC = getKnownConstant(CI, Preference)) {
905     for (BasicBlock *Pred : predecessors(BB))
906       Result.emplace_back(KC, Pred);
907   }
908 
909   return !Result.empty();
910 }
911 
912 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
913 /// in an undefined jump, decide which block is best to revector to.
914 ///
915 /// Since we can pick an arbitrary destination, we pick the successor with the
916 /// fewest predecessors.  This should reduce the in-degree of the others.
917 static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) {
918   Instruction *BBTerm = BB->getTerminator();
919   unsigned MinSucc = 0;
920   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
921   // Compute the successor with the minimum number of predecessors.
922   unsigned MinNumPreds = pred_size(TestBB);
923   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
924     TestBB = BBTerm->getSuccessor(i);
925     unsigned NumPreds = pred_size(TestBB);
926     if (NumPreds < MinNumPreds) {
927       MinSucc = i;
928       MinNumPreds = NumPreds;
929     }
930   }
931 
932   return MinSucc;
933 }
934 
935 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
936   if (!BB->hasAddressTaken()) return false;
937 
938   // If the block has its address taken, it may be a tree of dead constants
939   // hanging off of it.  These shouldn't keep the block alive.
940   BlockAddress *BA = BlockAddress::get(BB);
941   BA->removeDeadConstantUsers();
942   return !BA->use_empty();
943 }
944 
945 /// processBlock - If there are any predecessors whose control can be threaded
946 /// through to a successor, transform them now.
947 bool JumpThreadingPass::processBlock(BasicBlock *BB) {
948   // If the block is trivially dead, just return and let the caller nuke it.
949   // This simplifies other transformations.
950   if (DTU->isBBPendingDeletion(BB) ||
951       (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
952     return false;
953 
954   // If this block has a single predecessor, and if that pred has a single
955   // successor, merge the blocks.  This encourages recursive jump threading
956   // because now the condition in this block can be threaded through
957   // predecessors of our predecessor block.
958   if (maybeMergeBasicBlockIntoOnlyPred(BB))
959     return true;
960 
961   if (tryToUnfoldSelectInCurrBB(BB))
962     return true;
963 
964   // Look if we can propagate guards to predecessors.
965   if (HasGuards && processGuards(BB))
966     return true;
967 
968   // What kind of constant we're looking for.
969   ConstantPreference Preference = WantInteger;
970 
971   // Look to see if the terminator is a conditional branch, switch or indirect
972   // branch, if not we can't thread it.
973   Value *Condition;
974   Instruction *Terminator = BB->getTerminator();
975   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
976     // Can't thread an unconditional jump.
977     if (BI->isUnconditional()) return false;
978     Condition = BI->getCondition();
979   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
980     Condition = SI->getCondition();
981   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
982     // Can't thread indirect branch with no successors.
983     if (IB->getNumSuccessors() == 0) return false;
984     Condition = IB->getAddress()->stripPointerCasts();
985     Preference = WantBlockAddress;
986   } else {
987     return false; // Must be an invoke or callbr.
988   }
989 
990   // Keep track if we constant folded the condition in this invocation.
991   bool ConstantFolded = false;
992 
993   // Run constant folding to see if we can reduce the condition to a simple
994   // constant.
995   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
996     Value *SimpleVal =
997         ConstantFoldInstruction(I, BB->getDataLayout(), TLI);
998     if (SimpleVal) {
999       I->replaceAllUsesWith(SimpleVal);
1000       if (isInstructionTriviallyDead(I, TLI))
1001         I->eraseFromParent();
1002       Condition = SimpleVal;
1003       ConstantFolded = true;
1004     }
1005   }
1006 
1007   // If the terminator is branching on an undef or freeze undef, we can pick any
1008   // of the successors to branch to.  Let getBestDestForJumpOnUndef decide.
1009   auto *FI = dyn_cast<FreezeInst>(Condition);
1010   if (isa<UndefValue>(Condition) ||
1011       (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) {
1012     unsigned BestSucc = getBestDestForJumpOnUndef(BB);
1013     std::vector<DominatorTree::UpdateType> Updates;
1014 
1015     // Fold the branch/switch.
1016     Instruction *BBTerm = BB->getTerminator();
1017     Updates.reserve(BBTerm->getNumSuccessors());
1018     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1019       if (i == BestSucc) continue;
1020       BasicBlock *Succ = BBTerm->getSuccessor(i);
1021       Succ->removePredecessor(BB, true);
1022       Updates.push_back({DominatorTree::Delete, BB, Succ});
1023     }
1024 
1025     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1026                       << "' folding undef terminator: " << *BBTerm << '\n');
1027     Instruction *NewBI = BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm->getIterator());
1028     NewBI->setDebugLoc(BBTerm->getDebugLoc());
1029     ++NumFolds;
1030     BBTerm->eraseFromParent();
1031     DTU->applyUpdatesPermissive(Updates);
1032     if (FI)
1033       FI->eraseFromParent();
1034     return true;
1035   }
1036 
1037   // If the terminator of this block is branching on a constant, simplify the
1038   // terminator to an unconditional branch.  This can occur due to threading in
1039   // other blocks.
1040   if (getKnownConstant(Condition, Preference)) {
1041     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1042                       << "' folding terminator: " << *BB->getTerminator()
1043                       << '\n');
1044     ++NumFolds;
1045     ConstantFoldTerminator(BB, true, nullptr, DTU.get());
1046     if (auto *BPI = getBPI())
1047       BPI->eraseBlock(BB);
1048     return true;
1049   }
1050 
1051   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1052 
1053   // All the rest of our checks depend on the condition being an instruction.
1054   if (!CondInst) {
1055     // FIXME: Unify this with code below.
1056     if (processThreadableEdges(Condition, BB, Preference, Terminator))
1057       return true;
1058     return ConstantFolded;
1059   }
1060 
1061   // Some of the following optimization can safely work on the unfrozen cond.
1062   Value *CondWithoutFreeze = CondInst;
1063   if (auto *FI = dyn_cast<FreezeInst>(CondInst))
1064     CondWithoutFreeze = FI->getOperand(0);
1065 
1066   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondWithoutFreeze)) {
1067     // If we're branching on a conditional, LVI might be able to determine
1068     // it's value at the branch instruction.  We only handle comparisons
1069     // against a constant at this time.
1070     if (Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1))) {
1071       Constant *Res =
1072           LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1073                               CondConst, BB->getTerminator(),
1074                               /*UseBlockValue=*/false);
1075       if (Res) {
1076         // We can safely replace *some* uses of the CondInst if it has
1077         // exactly one value as returned by LVI. RAUW is incorrect in the
1078         // presence of guards and assumes, that have the `Cond` as the use. This
1079         // is because we use the guards/assume to reason about the `Cond` value
1080         // at the end of block, but RAUW unconditionally replaces all uses
1081         // including the guards/assumes themselves and the uses before the
1082         // guard/assume.
1083         if (replaceFoldableUses(CondCmp, Res, BB))
1084           return true;
1085       }
1086 
1087       // We did not manage to simplify this branch, try to see whether
1088       // CondCmp depends on a known phi-select pattern.
1089       if (tryToUnfoldSelect(CondCmp, BB))
1090         return true;
1091     }
1092   }
1093 
1094   if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1095     if (tryToUnfoldSelect(SI, BB))
1096       return true;
1097 
1098   // Check for some cases that are worth simplifying.  Right now we want to look
1099   // for loads that are used by a switch or by the condition for the branch.  If
1100   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1101   // which can then be used to thread the values.
1102   Value *SimplifyValue = CondWithoutFreeze;
1103 
1104   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1105     if (isa<Constant>(CondCmp->getOperand(1)))
1106       SimplifyValue = CondCmp->getOperand(0);
1107 
1108   // TODO: There are other places where load PRE would be profitable, such as
1109   // more complex comparisons.
1110   if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1111     if (simplifyPartiallyRedundantLoad(LoadI))
1112       return true;
1113 
1114   // Before threading, try to propagate profile data backwards:
1115   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1116     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1117       updatePredecessorProfileMetadata(PN, BB);
1118 
1119   // Handle a variety of cases where we are branching on something derived from
1120   // a PHI node in the current block.  If we can prove that any predecessors
1121   // compute a predictable value based on a PHI node, thread those predecessors.
1122   if (processThreadableEdges(CondInst, BB, Preference, Terminator))
1123     return true;
1124 
1125   // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in
1126   // the current block, see if we can simplify.
1127   PHINode *PN = dyn_cast<PHINode>(CondWithoutFreeze);
1128   if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1129     return processBranchOnPHI(PN);
1130 
1131   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1132   if (CondInst->getOpcode() == Instruction::Xor &&
1133       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1134     return processBranchOnXOR(cast<BinaryOperator>(CondInst));
1135 
1136   // Search for a stronger dominating condition that can be used to simplify a
1137   // conditional branch leaving BB.
1138   if (processImpliedCondition(BB))
1139     return true;
1140 
1141   return false;
1142 }
1143 
1144 bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) {
1145   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1146   if (!BI || !BI->isConditional())
1147     return false;
1148 
1149   Value *Cond = BI->getCondition();
1150   // Assuming that predecessor's branch was taken, if pred's branch condition
1151   // (V) implies Cond, Cond can be either true, undef, or poison. In this case,
1152   // freeze(Cond) is either true or a nondeterministic value.
1153   // If freeze(Cond) has only one use, we can freely fold freeze(Cond) to true
1154   // without affecting other instructions.
1155   auto *FICond = dyn_cast<FreezeInst>(Cond);
1156   if (FICond && FICond->hasOneUse())
1157     Cond = FICond->getOperand(0);
1158   else
1159     FICond = nullptr;
1160 
1161   BasicBlock *CurrentBB = BB;
1162   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1163   unsigned Iter = 0;
1164 
1165   auto &DL = BB->getDataLayout();
1166 
1167   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1168     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1169     if (!PBI || !PBI->isConditional())
1170       return false;
1171     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1172       return false;
1173 
1174     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1175     std::optional<bool> Implication =
1176         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1177 
1178     // If the branch condition of BB (which is Cond) and CurrentPred are
1179     // exactly the same freeze instruction, Cond can be folded into CondIsTrue.
1180     if (!Implication && FICond && isa<FreezeInst>(PBI->getCondition())) {
1181       if (cast<FreezeInst>(PBI->getCondition())->getOperand(0) ==
1182           FICond->getOperand(0))
1183         Implication = CondIsTrue;
1184     }
1185 
1186     if (Implication) {
1187       BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1188       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1189       RemoveSucc->removePredecessor(BB);
1190       BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI->getIterator());
1191       UncondBI->setDebugLoc(BI->getDebugLoc());
1192       ++NumFolds;
1193       BI->eraseFromParent();
1194       if (FICond)
1195         FICond->eraseFromParent();
1196 
1197       DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}});
1198       if (auto *BPI = getBPI())
1199         BPI->eraseBlock(BB);
1200       return true;
1201     }
1202     CurrentBB = CurrentPred;
1203     CurrentPred = CurrentBB->getSinglePredecessor();
1204   }
1205 
1206   return false;
1207 }
1208 
1209 /// Return true if Op is an instruction defined in the given block.
1210 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1211   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1212     if (OpInst->getParent() == BB)
1213       return true;
1214   return false;
1215 }
1216 
1217 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1218 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1219 /// This is an important optimization that encourages jump threading, and needs
1220 /// to be run interlaced with other jump threading tasks.
1221 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1222   // Don't hack volatile and ordered loads.
1223   if (!LoadI->isUnordered()) return false;
1224 
1225   // If the load is defined in a block with exactly one predecessor, it can't be
1226   // partially redundant.
1227   BasicBlock *LoadBB = LoadI->getParent();
1228   if (LoadBB->getSinglePredecessor())
1229     return false;
1230 
1231   // If the load is defined in an EH pad, it can't be partially redundant,
1232   // because the edges between the invoke and the EH pad cannot have other
1233   // instructions between them.
1234   if (LoadBB->isEHPad())
1235     return false;
1236 
1237   Value *LoadedPtr = LoadI->getOperand(0);
1238 
1239   // If the loaded operand is defined in the LoadBB and its not a phi,
1240   // it can't be available in predecessors.
1241   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1242     return false;
1243 
1244   // Scan a few instructions up from the load, to see if it is obviously live at
1245   // the entry to its block.
1246   BasicBlock::iterator BBIt(LoadI);
1247   bool IsLoadCSE;
1248   BatchAAResults BatchAA(*AA);
1249   // The dominator tree is updated lazily and may not be valid at this point.
1250   BatchAA.disableDominatorTree();
1251   if (Value *AvailableVal = FindAvailableLoadedValue(
1252           LoadI, LoadBB, BBIt, DefMaxInstsToScan, &BatchAA, &IsLoadCSE)) {
1253     // If the value of the load is locally available within the block, just use
1254     // it.  This frequently occurs for reg2mem'd allocas.
1255 
1256     if (IsLoadCSE) {
1257       LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1258       combineMetadataForCSE(NLoadI, LoadI, false);
1259       LVI->forgetValue(NLoadI);
1260     };
1261 
1262     // If the returned value is the load itself, replace with poison. This can
1263     // only happen in dead loops.
1264     if (AvailableVal == LoadI)
1265       AvailableVal = PoisonValue::get(LoadI->getType());
1266     if (AvailableVal->getType() != LoadI->getType()) {
1267       AvailableVal = CastInst::CreateBitOrPointerCast(
1268           AvailableVal, LoadI->getType(), "", LoadI->getIterator());
1269       cast<Instruction>(AvailableVal)->setDebugLoc(LoadI->getDebugLoc());
1270     }
1271     LoadI->replaceAllUsesWith(AvailableVal);
1272     LoadI->eraseFromParent();
1273     return true;
1274   }
1275 
1276   // Otherwise, if we scanned the whole block and got to the top of the block,
1277   // we know the block is locally transparent to the load.  If not, something
1278   // might clobber its value.
1279   if (BBIt != LoadBB->begin())
1280     return false;
1281 
1282   // If all of the loads and stores that feed the value have the same AA tags,
1283   // then we can propagate them onto any newly inserted loads.
1284   AAMDNodes AATags = LoadI->getAAMetadata();
1285 
1286   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1287 
1288   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1289 
1290   AvailablePredsTy AvailablePreds;
1291   BasicBlock *OneUnavailablePred = nullptr;
1292   SmallVector<LoadInst*, 8> CSELoads;
1293 
1294   // If we got here, the loaded value is transparent through to the start of the
1295   // block.  Check to see if it is available in any of the predecessor blocks.
1296   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1297     // If we already scanned this predecessor, skip it.
1298     if (!PredsScanned.insert(PredBB).second)
1299       continue;
1300 
1301     BBIt = PredBB->end();
1302     unsigned NumScanedInst = 0;
1303     Value *PredAvailable = nullptr;
1304     // NOTE: We don't CSE load that is volatile or anything stronger than
1305     // unordered, that should have been checked when we entered the function.
1306     assert(LoadI->isUnordered() &&
1307            "Attempting to CSE volatile or atomic loads");
1308     // If this is a load on a phi pointer, phi-translate it and search
1309     // for available load/store to the pointer in predecessors.
1310     Type *AccessTy = LoadI->getType();
1311     const auto &DL = LoadI->getDataLayout();
1312     MemoryLocation Loc(LoadedPtr->DoPHITranslation(LoadBB, PredBB),
1313                        LocationSize::precise(DL.getTypeStoreSize(AccessTy)),
1314                        AATags);
1315     PredAvailable = findAvailablePtrLoadStore(
1316         Loc, AccessTy, LoadI->isAtomic(), PredBB, BBIt, DefMaxInstsToScan,
1317         &BatchAA, &IsLoadCSE, &NumScanedInst);
1318 
1319     // If PredBB has a single predecessor, continue scanning through the
1320     // single predecessor.
1321     BasicBlock *SinglePredBB = PredBB;
1322     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1323            NumScanedInst < DefMaxInstsToScan) {
1324       SinglePredBB = SinglePredBB->getSinglePredecessor();
1325       if (SinglePredBB) {
1326         BBIt = SinglePredBB->end();
1327         PredAvailable = findAvailablePtrLoadStore(
1328             Loc, AccessTy, LoadI->isAtomic(), SinglePredBB, BBIt,
1329             (DefMaxInstsToScan - NumScanedInst), &BatchAA, &IsLoadCSE,
1330             &NumScanedInst);
1331       }
1332     }
1333 
1334     if (!PredAvailable) {
1335       OneUnavailablePred = PredBB;
1336       continue;
1337     }
1338 
1339     if (IsLoadCSE)
1340       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1341 
1342     // If so, this load is partially redundant.  Remember this info so that we
1343     // can create a PHI node.
1344     AvailablePreds.emplace_back(PredBB, PredAvailable);
1345   }
1346 
1347   // If the loaded value isn't available in any predecessor, it isn't partially
1348   // redundant.
1349   if (AvailablePreds.empty()) return false;
1350 
1351   // Okay, the loaded value is available in at least one (and maybe all!)
1352   // predecessors.  If the value is unavailable in more than one unique
1353   // predecessor, we want to insert a merge block for those common predecessors.
1354   // This ensures that we only have to insert one reload, thus not increasing
1355   // code size.
1356   BasicBlock *UnavailablePred = nullptr;
1357 
1358   // If the value is unavailable in one of predecessors, we will end up
1359   // inserting a new instruction into them. It is only valid if all the
1360   // instructions before LoadI are guaranteed to pass execution to its
1361   // successor, or if LoadI is safe to speculate.
1362   // TODO: If this logic becomes more complex, and we will perform PRE insertion
1363   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1364   // It requires domination tree analysis, so for this simple case it is an
1365   // overkill.
1366   if (PredsScanned.size() != AvailablePreds.size() &&
1367       !isSafeToSpeculativelyExecute(LoadI))
1368     for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1369       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1370         return false;
1371 
1372   // If there is exactly one predecessor where the value is unavailable, the
1373   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1374   // unconditional branch, we know that it isn't a critical edge.
1375   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1376       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1377     UnavailablePred = OneUnavailablePred;
1378   } else if (PredsScanned.size() != AvailablePreds.size()) {
1379     // Otherwise, we had multiple unavailable predecessors or we had a critical
1380     // edge from the one.
1381     SmallVector<BasicBlock*, 8> PredsToSplit;
1382     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1383 
1384     for (const auto &AvailablePred : AvailablePreds)
1385       AvailablePredSet.insert(AvailablePred.first);
1386 
1387     // Add all the unavailable predecessors to the PredsToSplit list.
1388     for (BasicBlock *P : predecessors(LoadBB)) {
1389       // If the predecessor is an indirect goto, we can't split the edge.
1390       if (isa<IndirectBrInst>(P->getTerminator()))
1391         return false;
1392 
1393       if (!AvailablePredSet.count(P))
1394         PredsToSplit.push_back(P);
1395     }
1396 
1397     // Split them out to their own block.
1398     UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1399   }
1400 
1401   // If the value isn't available in all predecessors, then there will be
1402   // exactly one where it isn't available.  Insert a load on that edge and add
1403   // it to the AvailablePreds list.
1404   if (UnavailablePred) {
1405     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1406            "Can't handle critical edge here!");
1407     LoadInst *NewVal = new LoadInst(
1408         LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1409         LoadI->getName() + ".pr", false, LoadI->getAlign(),
1410         LoadI->getOrdering(), LoadI->getSyncScopeID(),
1411         UnavailablePred->getTerminator()->getIterator());
1412     NewVal->setDebugLoc(LoadI->getDebugLoc());
1413     if (AATags)
1414       NewVal->setAAMetadata(AATags);
1415 
1416     AvailablePreds.emplace_back(UnavailablePred, NewVal);
1417   }
1418 
1419   // Now we know that each predecessor of this block has a value in
1420   // AvailablePreds, sort them for efficient access as we're walking the preds.
1421   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1422 
1423   // Create a PHI node at the start of the block for the PRE'd load value.
1424   PHINode *PN = PHINode::Create(LoadI->getType(), pred_size(LoadBB), "");
1425   PN->insertBefore(LoadBB->begin());
1426   PN->takeName(LoadI);
1427   PN->setDebugLoc(LoadI->getDebugLoc());
1428 
1429   // Insert new entries into the PHI for each predecessor.  A single block may
1430   // have multiple entries here.
1431   for (BasicBlock *P : predecessors(LoadBB)) {
1432     AvailablePredsTy::iterator I =
1433         llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr));
1434 
1435     assert(I != AvailablePreds.end() && I->first == P &&
1436            "Didn't find entry for predecessor!");
1437 
1438     // If we have an available predecessor but it requires casting, insert the
1439     // cast in the predecessor and use the cast. Note that we have to update the
1440     // AvailablePreds vector as we go so that all of the PHI entries for this
1441     // predecessor use the same bitcast.
1442     Value *&PredV = I->second;
1443     if (PredV->getType() != LoadI->getType())
1444       PredV = CastInst::CreateBitOrPointerCast(
1445           PredV, LoadI->getType(), "", P->getTerminator()->getIterator());
1446 
1447     PN->addIncoming(PredV, I->first);
1448   }
1449 
1450   for (LoadInst *PredLoadI : CSELoads) {
1451     combineMetadataForCSE(PredLoadI, LoadI, true);
1452     LVI->forgetValue(PredLoadI);
1453   }
1454 
1455   LoadI->replaceAllUsesWith(PN);
1456   LoadI->eraseFromParent();
1457 
1458   return true;
1459 }
1460 
1461 /// findMostPopularDest - The specified list contains multiple possible
1462 /// threadable destinations.  Pick the one that occurs the most frequently in
1463 /// the list.
1464 static BasicBlock *
1465 findMostPopularDest(BasicBlock *BB,
1466                     const SmallVectorImpl<std::pair<BasicBlock *,
1467                                           BasicBlock *>> &PredToDestList) {
1468   assert(!PredToDestList.empty());
1469 
1470   // Determine popularity.  If there are multiple possible destinations, we
1471   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1472   // blocks with known and real destinations to threading undef.  We'll handle
1473   // them later if interesting.
1474   MapVector<BasicBlock *, unsigned> DestPopularity;
1475 
1476   // Populate DestPopularity with the successors in the order they appear in the
1477   // successor list.  This way, we ensure determinism by iterating it in the
1478   // same order in llvm::max_element below.  We map nullptr to 0 so that we can
1479   // return nullptr when PredToDestList contains nullptr only.
1480   DestPopularity[nullptr] = 0;
1481   for (auto *SuccBB : successors(BB))
1482     DestPopularity[SuccBB] = 0;
1483 
1484   for (const auto &PredToDest : PredToDestList)
1485     if (PredToDest.second)
1486       DestPopularity[PredToDest.second]++;
1487 
1488   // Find the most popular dest.
1489   auto MostPopular = llvm::max_element(DestPopularity, llvm::less_second());
1490 
1491   // Okay, we have finally picked the most popular destination.
1492   return MostPopular->first;
1493 }
1494 
1495 // Try to evaluate the value of V when the control flows from PredPredBB to
1496 // BB->getSinglePredecessor() and then on to BB.
1497 Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB,
1498                                                        BasicBlock *PredPredBB,
1499                                                        Value *V,
1500                                                        const DataLayout &DL) {
1501   BasicBlock *PredBB = BB->getSinglePredecessor();
1502   assert(PredBB && "Expected a single predecessor");
1503 
1504   if (Constant *Cst = dyn_cast<Constant>(V)) {
1505     return Cst;
1506   }
1507 
1508   // Consult LVI if V is not an instruction in BB or PredBB.
1509   Instruction *I = dyn_cast<Instruction>(V);
1510   if (!I || (I->getParent() != BB && I->getParent() != PredBB)) {
1511     return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr);
1512   }
1513 
1514   // Look into a PHI argument.
1515   if (PHINode *PHI = dyn_cast<PHINode>(V)) {
1516     if (PHI->getParent() == PredBB)
1517       return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB));
1518     return nullptr;
1519   }
1520 
1521   // If we have a CmpInst, try to fold it for each incoming edge into PredBB.
1522   if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) {
1523     if (CondCmp->getParent() == BB) {
1524       Constant *Op0 =
1525           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0), DL);
1526       Constant *Op1 =
1527           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1), DL);
1528       if (Op0 && Op1) {
1529         return ConstantFoldCompareInstOperands(CondCmp->getPredicate(), Op0,
1530                                                Op1, DL);
1531       }
1532     }
1533     return nullptr;
1534   }
1535 
1536   return nullptr;
1537 }
1538 
1539 bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB,
1540                                                ConstantPreference Preference,
1541                                                Instruction *CxtI) {
1542   // If threading this would thread across a loop header, don't even try to
1543   // thread the edge.
1544   if (LoopHeaders.count(BB))
1545     return false;
1546 
1547   PredValueInfoTy PredValues;
1548   if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference,
1549                                        CxtI)) {
1550     // We don't have known values in predecessors.  See if we can thread through
1551     // BB and its sole predecessor.
1552     return maybethreadThroughTwoBasicBlocks(BB, Cond);
1553   }
1554 
1555   assert(!PredValues.empty() &&
1556          "computeValueKnownInPredecessors returned true with no values");
1557 
1558   LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1559              for (const auto &PredValue : PredValues) {
1560                dbgs() << "  BB '" << BB->getName()
1561                       << "': FOUND condition = " << *PredValue.first
1562                       << " for pred '" << PredValue.second->getName() << "'.\n";
1563   });
1564 
1565   // Decide what we want to thread through.  Convert our list of known values to
1566   // a list of known destinations for each pred.  This also discards duplicate
1567   // predecessors and keeps track of the undefined inputs (which are represented
1568   // as a null dest in the PredToDestList).
1569   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1570   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1571 
1572   BasicBlock *OnlyDest = nullptr;
1573   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1574   Constant *OnlyVal = nullptr;
1575   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1576 
1577   for (const auto &PredValue : PredValues) {
1578     BasicBlock *Pred = PredValue.second;
1579     if (!SeenPreds.insert(Pred).second)
1580       continue;  // Duplicate predecessor entry.
1581 
1582     Constant *Val = PredValue.first;
1583 
1584     BasicBlock *DestBB;
1585     if (isa<UndefValue>(Val))
1586       DestBB = nullptr;
1587     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1588       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1589       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1590     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1591       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1592       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1593     } else {
1594       assert(isa<IndirectBrInst>(BB->getTerminator())
1595               && "Unexpected terminator");
1596       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1597       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1598     }
1599 
1600     // If we have exactly one destination, remember it for efficiency below.
1601     if (PredToDestList.empty()) {
1602       OnlyDest = DestBB;
1603       OnlyVal = Val;
1604     } else {
1605       if (OnlyDest != DestBB)
1606         OnlyDest = MultipleDestSentinel;
1607       // It possible we have same destination, but different value, e.g. default
1608       // case in switchinst.
1609       if (Val != OnlyVal)
1610         OnlyVal = MultipleVal;
1611     }
1612 
1613     // If the predecessor ends with an indirect goto, we can't change its
1614     // destination.
1615     if (isa<IndirectBrInst>(Pred->getTerminator()))
1616       continue;
1617 
1618     PredToDestList.emplace_back(Pred, DestBB);
1619   }
1620 
1621   // If all edges were unthreadable, we fail.
1622   if (PredToDestList.empty())
1623     return false;
1624 
1625   // If all the predecessors go to a single known successor, we want to fold,
1626   // not thread. By doing so, we do not need to duplicate the current block and
1627   // also miss potential opportunities in case we dont/cant duplicate.
1628   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1629     if (BB->hasNPredecessors(PredToDestList.size())) {
1630       bool SeenFirstBranchToOnlyDest = false;
1631       std::vector <DominatorTree::UpdateType> Updates;
1632       Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1633       for (BasicBlock *SuccBB : successors(BB)) {
1634         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1635           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1636         } else {
1637           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1638           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1639         }
1640       }
1641 
1642       // Finally update the terminator.
1643       Instruction *Term = BB->getTerminator();
1644       Instruction *NewBI = BranchInst::Create(OnlyDest, Term->getIterator());
1645       NewBI->setDebugLoc(Term->getDebugLoc());
1646       ++NumFolds;
1647       Term->eraseFromParent();
1648       DTU->applyUpdatesPermissive(Updates);
1649       if (auto *BPI = getBPI())
1650         BPI->eraseBlock(BB);
1651 
1652       // If the condition is now dead due to the removal of the old terminator,
1653       // erase it.
1654       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1655         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1656           CondInst->eraseFromParent();
1657         // We can safely replace *some* uses of the CondInst if it has
1658         // exactly one value as returned by LVI. RAUW is incorrect in the
1659         // presence of guards and assumes, that have the `Cond` as the use. This
1660         // is because we use the guards/assume to reason about the `Cond` value
1661         // at the end of block, but RAUW unconditionally replaces all uses
1662         // including the guards/assumes themselves and the uses before the
1663         // guard/assume.
1664         else if (OnlyVal && OnlyVal != MultipleVal)
1665           replaceFoldableUses(CondInst, OnlyVal, BB);
1666       }
1667       return true;
1668     }
1669   }
1670 
1671   // Determine which is the most common successor.  If we have many inputs and
1672   // this block is a switch, we want to start by threading the batch that goes
1673   // to the most popular destination first.  If we only know about one
1674   // threadable destination (the common case) we can avoid this.
1675   BasicBlock *MostPopularDest = OnlyDest;
1676 
1677   if (MostPopularDest == MultipleDestSentinel) {
1678     // Remove any loop headers from the Dest list, threadEdge conservatively
1679     // won't process them, but we might have other destination that are eligible
1680     // and we still want to process.
1681     erase_if(PredToDestList,
1682              [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1683                return LoopHeaders.contains(PredToDest.second);
1684              });
1685 
1686     if (PredToDestList.empty())
1687       return false;
1688 
1689     MostPopularDest = findMostPopularDest(BB, PredToDestList);
1690   }
1691 
1692   // Now that we know what the most popular destination is, factor all
1693   // predecessors that will jump to it into a single predecessor.
1694   SmallVector<BasicBlock*, 16> PredsToFactor;
1695   for (const auto &PredToDest : PredToDestList)
1696     if (PredToDest.second == MostPopularDest) {
1697       BasicBlock *Pred = PredToDest.first;
1698 
1699       // This predecessor may be a switch or something else that has multiple
1700       // edges to the block.  Factor each of these edges by listing them
1701       // according to # occurrences in PredsToFactor.
1702       for (BasicBlock *Succ : successors(Pred))
1703         if (Succ == BB)
1704           PredsToFactor.push_back(Pred);
1705     }
1706 
1707   // If the threadable edges are branching on an undefined value, we get to pick
1708   // the destination that these predecessors should get to.
1709   if (!MostPopularDest)
1710     MostPopularDest = BB->getTerminator()->
1711                             getSuccessor(getBestDestForJumpOnUndef(BB));
1712 
1713   // Ok, try to thread it!
1714   return tryThreadEdge(BB, PredsToFactor, MostPopularDest);
1715 }
1716 
1717 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on
1718 /// a PHI node (or freeze PHI) in the current block.  See if there are any
1719 /// simplifications we can do based on inputs to the phi node.
1720 bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) {
1721   BasicBlock *BB = PN->getParent();
1722 
1723   // TODO: We could make use of this to do it once for blocks with common PHI
1724   // values.
1725   SmallVector<BasicBlock*, 1> PredBBs;
1726   PredBBs.resize(1);
1727 
1728   // If any of the predecessor blocks end in an unconditional branch, we can
1729   // *duplicate* the conditional branch into that block in order to further
1730   // encourage jump threading and to eliminate cases where we have branch on a
1731   // phi of an icmp (branch on icmp is much better).
1732   // This is still beneficial when a frozen phi is used as the branch condition
1733   // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp))
1734   // to br(icmp(freeze ...)).
1735   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1736     BasicBlock *PredBB = PN->getIncomingBlock(i);
1737     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1738       if (PredBr->isUnconditional()) {
1739         PredBBs[0] = PredBB;
1740         // Try to duplicate BB into PredBB.
1741         if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1742           return true;
1743       }
1744   }
1745 
1746   return false;
1747 }
1748 
1749 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on
1750 /// a xor instruction in the current block.  See if there are any
1751 /// simplifications we can do based on inputs to the xor.
1752 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) {
1753   BasicBlock *BB = BO->getParent();
1754 
1755   // If either the LHS or RHS of the xor is a constant, don't do this
1756   // optimization.
1757   if (isa<ConstantInt>(BO->getOperand(0)) ||
1758       isa<ConstantInt>(BO->getOperand(1)))
1759     return false;
1760 
1761   // If the first instruction in BB isn't a phi, we won't be able to infer
1762   // anything special about any particular predecessor.
1763   if (!isa<PHINode>(BB->front()))
1764     return false;
1765 
1766   // If this BB is a landing pad, we won't be able to split the edge into it.
1767   if (BB->isEHPad())
1768     return false;
1769 
1770   // If we have a xor as the branch input to this block, and we know that the
1771   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1772   // the condition into the predecessor and fix that value to true, saving some
1773   // logical ops on that path and encouraging other paths to simplify.
1774   //
1775   // This copies something like this:
1776   //
1777   //  BB:
1778   //    %X = phi i1 [1],  [%X']
1779   //    %Y = icmp eq i32 %A, %B
1780   //    %Z = xor i1 %X, %Y
1781   //    br i1 %Z, ...
1782   //
1783   // Into:
1784   //  BB':
1785   //    %Y = icmp ne i32 %A, %B
1786   //    br i1 %Y, ...
1787 
1788   PredValueInfoTy XorOpValues;
1789   bool isLHS = true;
1790   if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1791                                        WantInteger, BO)) {
1792     assert(XorOpValues.empty());
1793     if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1794                                          WantInteger, BO))
1795       return false;
1796     isLHS = false;
1797   }
1798 
1799   assert(!XorOpValues.empty() &&
1800          "computeValueKnownInPredecessors returned true with no values");
1801 
1802   // Scan the information to see which is most popular: true or false.  The
1803   // predecessors can be of the set true, false, or undef.
1804   unsigned NumTrue = 0, NumFalse = 0;
1805   for (const auto &XorOpValue : XorOpValues) {
1806     if (isa<UndefValue>(XorOpValue.first))
1807       // Ignore undefs for the count.
1808       continue;
1809     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1810       ++NumFalse;
1811     else
1812       ++NumTrue;
1813   }
1814 
1815   // Determine which value to split on, true, false, or undef if neither.
1816   ConstantInt *SplitVal = nullptr;
1817   if (NumTrue > NumFalse)
1818     SplitVal = ConstantInt::getTrue(BB->getContext());
1819   else if (NumTrue != 0 || NumFalse != 0)
1820     SplitVal = ConstantInt::getFalse(BB->getContext());
1821 
1822   // Collect all of the blocks that this can be folded into so that we can
1823   // factor this once and clone it once.
1824   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1825   for (const auto &XorOpValue : XorOpValues) {
1826     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1827       continue;
1828 
1829     BlocksToFoldInto.push_back(XorOpValue.second);
1830   }
1831 
1832   // If we inferred a value for all of the predecessors, then duplication won't
1833   // help us.  However, we can just replace the LHS or RHS with the constant.
1834   if (BlocksToFoldInto.size() ==
1835       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1836     if (!SplitVal) {
1837       // If all preds provide undef, just nuke the xor, because it is undef too.
1838       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1839       BO->eraseFromParent();
1840     } else if (SplitVal->isZero() && BO != BO->getOperand(isLHS)) {
1841       // If all preds provide 0, replace the xor with the other input.
1842       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1843       BO->eraseFromParent();
1844     } else {
1845       // If all preds provide 1, set the computed value to 1.
1846       BO->setOperand(!isLHS, SplitVal);
1847     }
1848 
1849     return true;
1850   }
1851 
1852   // If any of predecessors end with an indirect goto, we can't change its
1853   // destination.
1854   if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) {
1855         return isa<IndirectBrInst>(Pred->getTerminator());
1856       }))
1857     return false;
1858 
1859   // Try to duplicate BB into PredBB.
1860   return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1861 }
1862 
1863 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1864 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1865 /// NewPred using the entries from OldPred (suitably mapped).
1866 static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1867                                             BasicBlock *OldPred,
1868                                             BasicBlock *NewPred,
1869                                             ValueToValueMapTy &ValueMap) {
1870   for (PHINode &PN : PHIBB->phis()) {
1871     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1872     // DestBlock.
1873     Value *IV = PN.getIncomingValueForBlock(OldPred);
1874 
1875     // Remap the value if necessary.
1876     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1877       ValueToValueMapTy::iterator I = ValueMap.find(Inst);
1878       if (I != ValueMap.end())
1879         IV = I->second;
1880     }
1881 
1882     PN.addIncoming(IV, NewPred);
1883   }
1884 }
1885 
1886 /// Merge basic block BB into its sole predecessor if possible.
1887 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) {
1888   BasicBlock *SinglePred = BB->getSinglePredecessor();
1889   if (!SinglePred)
1890     return false;
1891 
1892   const Instruction *TI = SinglePred->getTerminator();
1893   if (TI->isSpecialTerminator() || TI->getNumSuccessors() != 1 ||
1894       SinglePred == BB || hasAddressTakenAndUsed(BB))
1895     return false;
1896 
1897   // If SinglePred was a loop header, BB becomes one.
1898   if (LoopHeaders.erase(SinglePred))
1899     LoopHeaders.insert(BB);
1900 
1901   LVI->eraseBlock(SinglePred);
1902   MergeBasicBlockIntoOnlyPred(BB, DTU.get());
1903 
1904   // Now that BB is merged into SinglePred (i.e. SinglePred code followed by
1905   // BB code within one basic block `BB`), we need to invalidate the LVI
1906   // information associated with BB, because the LVI information need not be
1907   // true for all of BB after the merge. For example,
1908   // Before the merge, LVI info and code is as follows:
1909   // SinglePred: <LVI info1 for %p val>
1910   // %y = use of %p
1911   // call @exit() // need not transfer execution to successor.
1912   // assume(%p) // from this point on %p is true
1913   // br label %BB
1914   // BB: <LVI info2 for %p val, i.e. %p is true>
1915   // %x = use of %p
1916   // br label exit
1917   //
1918   // Note that this LVI info for blocks BB and SinglPred is correct for %p
1919   // (info2 and info1 respectively). After the merge and the deletion of the
1920   // LVI info1 for SinglePred. We have the following code:
1921   // BB: <LVI info2 for %p val>
1922   // %y = use of %p
1923   // call @exit()
1924   // assume(%p)
1925   // %x = use of %p <-- LVI info2 is correct from here onwards.
1926   // br label exit
1927   // LVI info2 for BB is incorrect at the beginning of BB.
1928 
1929   // Invalidate LVI information for BB if the LVI is not provably true for
1930   // all of BB.
1931   if (!isGuaranteedToTransferExecutionToSuccessor(BB))
1932     LVI->eraseBlock(BB);
1933   return true;
1934 }
1935 
1936 /// Update the SSA form.  NewBB contains instructions that are copied from BB.
1937 /// ValueMapping maps old values in BB to new ones in NewBB.
1938 void JumpThreadingPass::updateSSA(BasicBlock *BB, BasicBlock *NewBB,
1939                                   ValueToValueMapTy &ValueMapping) {
1940   // If there were values defined in BB that are used outside the block, then we
1941   // now have to update all uses of the value to use either the original value,
1942   // the cloned value, or some PHI derived value.  This can require arbitrary
1943   // PHI insertion, of which we are prepared to do, clean these up now.
1944   SSAUpdater SSAUpdate;
1945   SmallVector<Use *, 16> UsesToRename;
1946   SmallVector<DbgValueInst *, 4> DbgValues;
1947   SmallVector<DbgVariableRecord *, 4> DbgVariableRecords;
1948 
1949   for (Instruction &I : *BB) {
1950     // Scan all uses of this instruction to see if it is used outside of its
1951     // block, and if so, record them in UsesToRename.
1952     for (Use &U : I.uses()) {
1953       Instruction *User = cast<Instruction>(U.getUser());
1954       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1955         if (UserPN->getIncomingBlock(U) == BB)
1956           continue;
1957       } else if (User->getParent() == BB)
1958         continue;
1959 
1960       UsesToRename.push_back(&U);
1961     }
1962 
1963     // Find debug values outside of the block
1964     findDbgValues(DbgValues, &I, &DbgVariableRecords);
1965     llvm::erase_if(DbgValues, [&](const DbgValueInst *DbgVal) {
1966       return DbgVal->getParent() == BB;
1967     });
1968     llvm::erase_if(DbgVariableRecords, [&](const DbgVariableRecord *DbgVarRec) {
1969       return DbgVarRec->getParent() == BB;
1970     });
1971 
1972     // If there are no uses outside the block, we're done with this instruction.
1973     if (UsesToRename.empty() && DbgValues.empty() && DbgVariableRecords.empty())
1974       continue;
1975     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
1976 
1977     // We found a use of I outside of BB.  Rename all uses of I that are outside
1978     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1979     // with the two values we know.
1980     SSAUpdate.Initialize(I.getType(), I.getName());
1981     SSAUpdate.AddAvailableValue(BB, &I);
1982     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
1983 
1984     while (!UsesToRename.empty())
1985       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1986     if (!DbgValues.empty() || !DbgVariableRecords.empty()) {
1987       SSAUpdate.UpdateDebugValues(&I, DbgValues);
1988       SSAUpdate.UpdateDebugValues(&I, DbgVariableRecords);
1989       DbgValues.clear();
1990       DbgVariableRecords.clear();
1991     }
1992 
1993     LLVM_DEBUG(dbgs() << "\n");
1994   }
1995 }
1996 
1997 /// Clone instructions in range [BI, BE) to NewBB.  For PHI nodes, we only clone
1998 /// arguments that come from PredBB.  Return the map from the variables in the
1999 /// source basic block to the variables in the newly created basic block.
2000 
2001 void JumpThreadingPass::cloneInstructions(ValueToValueMapTy &ValueMapping,
2002                                           BasicBlock::iterator BI,
2003                                           BasicBlock::iterator BE,
2004                                           BasicBlock *NewBB,
2005                                           BasicBlock *PredBB) {
2006   // We are going to have to map operands from the source basic block to the new
2007   // copy of the block 'NewBB'.  If there are PHI nodes in the source basic
2008   // block, evaluate them to account for entry from PredBB.
2009 
2010   // Retargets llvm.dbg.value to any renamed variables.
2011   auto RetargetDbgValueIfPossible = [&](Instruction *NewInst) -> bool {
2012     auto DbgInstruction = dyn_cast<DbgValueInst>(NewInst);
2013     if (!DbgInstruction)
2014       return false;
2015 
2016     SmallSet<std::pair<Value *, Value *>, 16> OperandsToRemap;
2017     for (auto DbgOperand : DbgInstruction->location_ops()) {
2018       auto DbgOperandInstruction = dyn_cast<Instruction>(DbgOperand);
2019       if (!DbgOperandInstruction)
2020         continue;
2021 
2022       auto I = ValueMapping.find(DbgOperandInstruction);
2023       if (I != ValueMapping.end()) {
2024         OperandsToRemap.insert(
2025             std::pair<Value *, Value *>(DbgOperand, I->second));
2026       }
2027     }
2028 
2029     for (auto &[OldOp, MappedOp] : OperandsToRemap)
2030       DbgInstruction->replaceVariableLocationOp(OldOp, MappedOp);
2031     return true;
2032   };
2033 
2034   // Duplicate implementation of the above dbg.value code, using
2035   // DbgVariableRecords instead.
2036   auto RetargetDbgVariableRecordIfPossible = [&](DbgVariableRecord *DVR) {
2037     SmallSet<std::pair<Value *, Value *>, 16> OperandsToRemap;
2038     for (auto *Op : DVR->location_ops()) {
2039       Instruction *OpInst = dyn_cast<Instruction>(Op);
2040       if (!OpInst)
2041         continue;
2042 
2043       auto I = ValueMapping.find(OpInst);
2044       if (I != ValueMapping.end())
2045         OperandsToRemap.insert({OpInst, I->second});
2046     }
2047 
2048     for (auto &[OldOp, MappedOp] : OperandsToRemap)
2049       DVR->replaceVariableLocationOp(OldOp, MappedOp);
2050   };
2051 
2052   BasicBlock *RangeBB = BI->getParent();
2053 
2054   // Clone the phi nodes of the source basic block into NewBB.  The resulting
2055   // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater
2056   // might need to rewrite the operand of the cloned phi.
2057   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2058     PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB);
2059     NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB);
2060     ValueMapping[PN] = NewPN;
2061   }
2062 
2063   // Clone noalias scope declarations in the threaded block. When threading a
2064   // loop exit, we would otherwise end up with two idential scope declarations
2065   // visible at the same time.
2066   SmallVector<MDNode *> NoAliasScopes;
2067   DenseMap<MDNode *, MDNode *> ClonedScopes;
2068   LLVMContext &Context = PredBB->getContext();
2069   identifyNoAliasScopesToClone(BI, BE, NoAliasScopes);
2070   cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context);
2071 
2072   auto CloneAndRemapDbgInfo = [&](Instruction *NewInst, Instruction *From) {
2073     auto DVRRange = NewInst->cloneDebugInfoFrom(From);
2074     for (DbgVariableRecord &DVR : filterDbgVars(DVRRange))
2075       RetargetDbgVariableRecordIfPossible(&DVR);
2076   };
2077 
2078   // Clone the non-phi instructions of the source basic block into NewBB,
2079   // keeping track of the mapping and using it to remap operands in the cloned
2080   // instructions.
2081   for (; BI != BE; ++BI) {
2082     Instruction *New = BI->clone();
2083     New->setName(BI->getName());
2084     New->insertInto(NewBB, NewBB->end());
2085     ValueMapping[&*BI] = New;
2086     adaptNoAliasScopes(New, ClonedScopes, Context);
2087 
2088     CloneAndRemapDbgInfo(New, &*BI);
2089 
2090     if (RetargetDbgValueIfPossible(New))
2091       continue;
2092 
2093     // Remap operands to patch up intra-block references.
2094     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2095       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2096         ValueToValueMapTy::iterator I = ValueMapping.find(Inst);
2097         if (I != ValueMapping.end())
2098           New->setOperand(i, I->second);
2099       }
2100   }
2101 
2102   // There may be DbgVariableRecords on the terminator, clone directly from
2103   // marker to marker as there isn't an instruction there.
2104   if (BE != RangeBB->end() && BE->hasDbgRecords()) {
2105     // Dump them at the end.
2106     DbgMarker *Marker = RangeBB->getMarker(BE);
2107     DbgMarker *EndMarker = NewBB->createMarker(NewBB->end());
2108     auto DVRRange = EndMarker->cloneDebugInfoFrom(Marker, std::nullopt);
2109     for (DbgVariableRecord &DVR : filterDbgVars(DVRRange))
2110       RetargetDbgVariableRecordIfPossible(&DVR);
2111   }
2112 }
2113 
2114 /// Attempt to thread through two successive basic blocks.
2115 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB,
2116                                                          Value *Cond) {
2117   // Consider:
2118   //
2119   // PredBB:
2120   //   %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ]
2121   //   %tobool = icmp eq i32 %cond, 0
2122   //   br i1 %tobool, label %BB, label ...
2123   //
2124   // BB:
2125   //   %cmp = icmp eq i32* %var, null
2126   //   br i1 %cmp, label ..., label ...
2127   //
2128   // We don't know the value of %var at BB even if we know which incoming edge
2129   // we take to BB.  However, once we duplicate PredBB for each of its incoming
2130   // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of
2131   // PredBB.  Then we can thread edges PredBB1->BB and PredBB2->BB through BB.
2132 
2133   // Require that BB end with a Branch for simplicity.
2134   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2135   if (!CondBr)
2136     return false;
2137 
2138   // BB must have exactly one predecessor.
2139   BasicBlock *PredBB = BB->getSinglePredecessor();
2140   if (!PredBB)
2141     return false;
2142 
2143   // Require that PredBB end with a conditional Branch. If PredBB ends with an
2144   // unconditional branch, we should be merging PredBB and BB instead. For
2145   // simplicity, we don't deal with a switch.
2146   BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2147   if (!PredBBBranch || PredBBBranch->isUnconditional())
2148     return false;
2149 
2150   // If PredBB has exactly one incoming edge, we don't gain anything by copying
2151   // PredBB.
2152   if (PredBB->getSinglePredecessor())
2153     return false;
2154 
2155   // Don't thread through PredBB if it contains a successor edge to itself, in
2156   // which case we would infinite loop.  Suppose we are threading an edge from
2157   // PredPredBB through PredBB and BB to SuccBB with PredBB containing a
2158   // successor edge to itself.  If we allowed jump threading in this case, we
2159   // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread.  Since
2160   // PredBB.thread has a successor edge to PredBB, we would immediately come up
2161   // with another jump threading opportunity from PredBB.thread through PredBB
2162   // and BB to SuccBB.  This jump threading would repeatedly occur.  That is, we
2163   // would keep peeling one iteration from PredBB.
2164   if (llvm::is_contained(successors(PredBB), PredBB))
2165     return false;
2166 
2167   // Don't thread across a loop header.
2168   if (LoopHeaders.count(PredBB))
2169     return false;
2170 
2171   // Avoid complication with duplicating EH pads.
2172   if (PredBB->isEHPad())
2173     return false;
2174 
2175   // Find a predecessor that we can thread.  For simplicity, we only consider a
2176   // successor edge out of BB to which we thread exactly one incoming edge into
2177   // PredBB.
2178   unsigned ZeroCount = 0;
2179   unsigned OneCount = 0;
2180   BasicBlock *ZeroPred = nullptr;
2181   BasicBlock *OnePred = nullptr;
2182   const DataLayout &DL = BB->getDataLayout();
2183   for (BasicBlock *P : predecessors(PredBB)) {
2184     // If PredPred ends with IndirectBrInst, we can't handle it.
2185     if (isa<IndirectBrInst>(P->getTerminator()))
2186       continue;
2187     if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(
2188             evaluateOnPredecessorEdge(BB, P, Cond, DL))) {
2189       if (CI->isZero()) {
2190         ZeroCount++;
2191         ZeroPred = P;
2192       } else if (CI->isOne()) {
2193         OneCount++;
2194         OnePred = P;
2195       }
2196     }
2197   }
2198 
2199   // Disregard complicated cases where we have to thread multiple edges.
2200   BasicBlock *PredPredBB;
2201   if (ZeroCount == 1) {
2202     PredPredBB = ZeroPred;
2203   } else if (OneCount == 1) {
2204     PredPredBB = OnePred;
2205   } else {
2206     return false;
2207   }
2208 
2209   BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred);
2210 
2211   // If threading to the same block as we come from, we would infinite loop.
2212   if (SuccBB == BB) {
2213     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2214                       << "' - would thread to self!\n");
2215     return false;
2216   }
2217 
2218   // If threading this would thread across a loop header, don't thread the edge.
2219   // See the comments above findLoopHeaders for justifications and caveats.
2220   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2221     LLVM_DEBUG({
2222       bool BBIsHeader = LoopHeaders.count(BB);
2223       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2224       dbgs() << "  Not threading across "
2225              << (BBIsHeader ? "loop header BB '" : "block BB '")
2226              << BB->getName() << "' to dest "
2227              << (SuccIsHeader ? "loop header BB '" : "block BB '")
2228              << SuccBB->getName()
2229              << "' - it might create an irreducible loop!\n";
2230     });
2231     return false;
2232   }
2233 
2234   // Compute the cost of duplicating BB and PredBB.
2235   unsigned BBCost = getJumpThreadDuplicationCost(
2236       TTI, BB, BB->getTerminator(), BBDupThreshold);
2237   unsigned PredBBCost = getJumpThreadDuplicationCost(
2238       TTI, PredBB, PredBB->getTerminator(), BBDupThreshold);
2239 
2240   // Give up if costs are too high.  We need to check BBCost and PredBBCost
2241   // individually before checking their sum because getJumpThreadDuplicationCost
2242   // return (unsigned)~0 for those basic blocks that cannot be duplicated.
2243   if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold ||
2244       BBCost + PredBBCost > BBDupThreshold) {
2245     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2246                       << "' - Cost is too high: " << PredBBCost
2247                       << " for PredBB, " << BBCost << "for BB\n");
2248     return false;
2249   }
2250 
2251   // Now we are ready to duplicate PredBB.
2252   threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB);
2253   return true;
2254 }
2255 
2256 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB,
2257                                                     BasicBlock *PredBB,
2258                                                     BasicBlock *BB,
2259                                                     BasicBlock *SuccBB) {
2260   LLVM_DEBUG(dbgs() << "  Threading through '" << PredBB->getName() << "' and '"
2261                     << BB->getName() << "'\n");
2262 
2263   // Build BPI/BFI before any changes are made to IR.
2264   bool HasProfile = doesBlockHaveProfileData(BB);
2265   auto *BFI = getOrCreateBFI(HasProfile);
2266   auto *BPI = getOrCreateBPI(BFI != nullptr);
2267 
2268   BranchInst *CondBr = cast<BranchInst>(BB->getTerminator());
2269   BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator());
2270 
2271   BasicBlock *NewBB =
2272       BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread",
2273                          PredBB->getParent(), PredBB);
2274   NewBB->moveAfter(PredBB);
2275 
2276   // Set the block frequency of NewBB.
2277   if (BFI) {
2278     assert(BPI && "It's expected BPI to exist along with BFI");
2279     auto NewBBFreq = BFI->getBlockFreq(PredPredBB) *
2280                      BPI->getEdgeProbability(PredPredBB, PredBB);
2281     BFI->setBlockFreq(NewBB, NewBBFreq);
2282   }
2283 
2284   // We are going to have to map operands from the original BB block to the new
2285   // copy of the block 'NewBB'.  If there are PHI nodes in PredBB, evaluate them
2286   // to account for entry from PredPredBB.
2287   ValueToValueMapTy ValueMapping;
2288   cloneInstructions(ValueMapping, PredBB->begin(), PredBB->end(), NewBB,
2289                     PredPredBB);
2290 
2291   // Copy the edge probabilities from PredBB to NewBB.
2292   if (BPI)
2293     BPI->copyEdgeProbabilities(PredBB, NewBB);
2294 
2295   // Update the terminator of PredPredBB to jump to NewBB instead of PredBB.
2296   // This eliminates predecessors from PredPredBB, which requires us to simplify
2297   // any PHI nodes in PredBB.
2298   Instruction *PredPredTerm = PredPredBB->getTerminator();
2299   for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i)
2300     if (PredPredTerm->getSuccessor(i) == PredBB) {
2301       PredBB->removePredecessor(PredPredBB, true);
2302       PredPredTerm->setSuccessor(i, NewBB);
2303     }
2304 
2305   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB,
2306                                   ValueMapping);
2307   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB,
2308                                   ValueMapping);
2309 
2310   DTU->applyUpdatesPermissive(
2311       {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)},
2312        {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)},
2313        {DominatorTree::Insert, PredPredBB, NewBB},
2314        {DominatorTree::Delete, PredPredBB, PredBB}});
2315 
2316   updateSSA(PredBB, NewBB, ValueMapping);
2317 
2318   // Clean up things like PHI nodes with single operands, dead instructions,
2319   // etc.
2320   SimplifyInstructionsInBlock(NewBB, TLI);
2321   SimplifyInstructionsInBlock(PredBB, TLI);
2322 
2323   SmallVector<BasicBlock *, 1> PredsToFactor;
2324   PredsToFactor.push_back(NewBB);
2325   threadEdge(BB, PredsToFactor, SuccBB);
2326 }
2327 
2328 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so.
2329 bool JumpThreadingPass::tryThreadEdge(
2330     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs,
2331     BasicBlock *SuccBB) {
2332   // If threading to the same block as we come from, we would infinite loop.
2333   if (SuccBB == BB) {
2334     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2335                       << "' - would thread to self!\n");
2336     return false;
2337   }
2338 
2339   // If threading this would thread across a loop header, don't thread the edge.
2340   // See the comments above findLoopHeaders for justifications and caveats.
2341   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2342     LLVM_DEBUG({
2343       bool BBIsHeader = LoopHeaders.count(BB);
2344       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2345       dbgs() << "  Not threading across "
2346           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
2347           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
2348           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
2349     });
2350     return false;
2351   }
2352 
2353   unsigned JumpThreadCost = getJumpThreadDuplicationCost(
2354       TTI, BB, BB->getTerminator(), BBDupThreshold);
2355   if (JumpThreadCost > BBDupThreshold) {
2356     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2357                       << "' - Cost is too high: " << JumpThreadCost << "\n");
2358     return false;
2359   }
2360 
2361   threadEdge(BB, PredBBs, SuccBB);
2362   return true;
2363 }
2364 
2365 /// threadEdge - We have decided that it is safe and profitable to factor the
2366 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
2367 /// across BB.  Transform the IR to reflect this change.
2368 void JumpThreadingPass::threadEdge(BasicBlock *BB,
2369                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
2370                                    BasicBlock *SuccBB) {
2371   assert(SuccBB != BB && "Don't create an infinite loop");
2372 
2373   assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) &&
2374          "Don't thread across loop headers");
2375 
2376   // Build BPI/BFI before any changes are made to IR.
2377   bool HasProfile = doesBlockHaveProfileData(BB);
2378   auto *BFI = getOrCreateBFI(HasProfile);
2379   auto *BPI = getOrCreateBPI(BFI != nullptr);
2380 
2381   // And finally, do it!  Start by factoring the predecessors if needed.
2382   BasicBlock *PredBB;
2383   if (PredBBs.size() == 1)
2384     PredBB = PredBBs[0];
2385   else {
2386     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2387                       << " common predecessors.\n");
2388     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2389   }
2390 
2391   // And finally, do it!
2392   LLVM_DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName()
2393                     << "' to '" << SuccBB->getName()
2394                     << ", across block:\n    " << *BB << "\n");
2395 
2396   LVI->threadEdge(PredBB, BB, SuccBB);
2397 
2398   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
2399                                          BB->getName()+".thread",
2400                                          BB->getParent(), BB);
2401   NewBB->moveAfter(PredBB);
2402 
2403   // Set the block frequency of NewBB.
2404   if (BFI) {
2405     assert(BPI && "It's expected BPI to exist along with BFI");
2406     auto NewBBFreq =
2407         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
2408     BFI->setBlockFreq(NewBB, NewBBFreq);
2409   }
2410 
2411   // Copy all the instructions from BB to NewBB except the terminator.
2412   ValueToValueMapTy ValueMapping;
2413   cloneInstructions(ValueMapping, BB->begin(), std::prev(BB->end()), NewBB,
2414                     PredBB);
2415 
2416   // We didn't copy the terminator from BB over to NewBB, because there is now
2417   // an unconditional jump to SuccBB.  Insert the unconditional jump.
2418   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
2419   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2420 
2421   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2422   // PHI nodes for NewBB now.
2423   addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2424 
2425   // Update the terminator of PredBB to jump to NewBB instead of BB.  This
2426   // eliminates predecessors from BB, which requires us to simplify any PHI
2427   // nodes in BB.
2428   Instruction *PredTerm = PredBB->getTerminator();
2429   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2430     if (PredTerm->getSuccessor(i) == BB) {
2431       BB->removePredecessor(PredBB, true);
2432       PredTerm->setSuccessor(i, NewBB);
2433     }
2434 
2435   // Enqueue required DT updates.
2436   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB},
2437                                {DominatorTree::Insert, PredBB, NewBB},
2438                                {DominatorTree::Delete, PredBB, BB}});
2439 
2440   updateSSA(BB, NewBB, ValueMapping);
2441 
2442   // At this point, the IR is fully up to date and consistent.  Do a quick scan
2443   // over the new instructions and zap any that are constants or dead.  This
2444   // frequently happens because of phi translation.
2445   SimplifyInstructionsInBlock(NewBB, TLI);
2446 
2447   // Update the edge weight from BB to SuccBB, which should be less than before.
2448   updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB, BFI, BPI, HasProfile);
2449 
2450   // Threaded an edge!
2451   ++NumThreads;
2452 }
2453 
2454 /// Create a new basic block that will be the predecessor of BB and successor of
2455 /// all blocks in Preds. When profile data is available, update the frequency of
2456 /// this new block.
2457 BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB,
2458                                                ArrayRef<BasicBlock *> Preds,
2459                                                const char *Suffix) {
2460   SmallVector<BasicBlock *, 2> NewBBs;
2461 
2462   // Collect the frequencies of all predecessors of BB, which will be used to
2463   // update the edge weight of the result of splitting predecessors.
2464   DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2465   auto *BFI = getBFI();
2466   if (BFI) {
2467     auto *BPI = getOrCreateBPI(true);
2468     for (auto *Pred : Preds)
2469       FreqMap.insert(std::make_pair(
2470           Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2471   }
2472 
2473   // In the case when BB is a LandingPad block we create 2 new predecessors
2474   // instead of just one.
2475   if (BB->isLandingPad()) {
2476     std::string NewName = std::string(Suffix) + ".split-lp";
2477     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2478   } else {
2479     NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2480   }
2481 
2482   std::vector<DominatorTree::UpdateType> Updates;
2483   Updates.reserve((2 * Preds.size()) + NewBBs.size());
2484   for (auto *NewBB : NewBBs) {
2485     BlockFrequency NewBBFreq(0);
2486     Updates.push_back({DominatorTree::Insert, NewBB, BB});
2487     for (auto *Pred : predecessors(NewBB)) {
2488       Updates.push_back({DominatorTree::Delete, Pred, BB});
2489       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2490       if (BFI) // Update frequencies between Pred -> NewBB.
2491         NewBBFreq += FreqMap.lookup(Pred);
2492     }
2493     if (BFI) // Apply the summed frequency to NewBB.
2494       BFI->setBlockFreq(NewBB, NewBBFreq);
2495   }
2496 
2497   DTU->applyUpdatesPermissive(Updates);
2498   return NewBBs[0];
2499 }
2500 
2501 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2502   const Instruction *TI = BB->getTerminator();
2503   if (!TI || TI->getNumSuccessors() < 2)
2504     return false;
2505 
2506   return hasValidBranchWeightMD(*TI);
2507 }
2508 
2509 /// Update the block frequency of BB and branch weight and the metadata on the
2510 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2511 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2512 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2513                                                      BasicBlock *BB,
2514                                                      BasicBlock *NewBB,
2515                                                      BasicBlock *SuccBB,
2516                                                      BlockFrequencyInfo *BFI,
2517                                                      BranchProbabilityInfo *BPI,
2518                                                      bool HasProfile) {
2519   assert(((BFI && BPI) || (!BFI && !BFI)) &&
2520          "Both BFI & BPI should either be set or unset");
2521 
2522   if (!BFI) {
2523     assert(!HasProfile &&
2524            "It's expected to have BFI/BPI when profile info exists");
2525     return;
2526   }
2527 
2528   // As the edge from PredBB to BB is deleted, we have to update the block
2529   // frequency of BB.
2530   auto BBOrigFreq = BFI->getBlockFreq(BB);
2531   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2532   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2533   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2534   BFI->setBlockFreq(BB, BBNewFreq);
2535 
2536   // Collect updated outgoing edges' frequencies from BB and use them to update
2537   // edge probabilities.
2538   SmallVector<uint64_t, 4> BBSuccFreq;
2539   for (BasicBlock *Succ : successors(BB)) {
2540     auto SuccFreq = (Succ == SuccBB)
2541                         ? BB2SuccBBFreq - NewBBFreq
2542                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2543     BBSuccFreq.push_back(SuccFreq.getFrequency());
2544   }
2545 
2546   uint64_t MaxBBSuccFreq = *llvm::max_element(BBSuccFreq);
2547 
2548   SmallVector<BranchProbability, 4> BBSuccProbs;
2549   if (MaxBBSuccFreq == 0)
2550     BBSuccProbs.assign(BBSuccFreq.size(),
2551                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2552   else {
2553     for (uint64_t Freq : BBSuccFreq)
2554       BBSuccProbs.push_back(
2555           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2556     // Normalize edge probabilities so that they sum up to one.
2557     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2558                                               BBSuccProbs.end());
2559   }
2560 
2561   // Update edge probabilities in BPI.
2562   BPI->setEdgeProbability(BB, BBSuccProbs);
2563 
2564   // Update the profile metadata as well.
2565   //
2566   // Don't do this if the profile of the transformed blocks was statically
2567   // estimated.  (This could occur despite the function having an entry
2568   // frequency in completely cold parts of the CFG.)
2569   //
2570   // In this case we don't want to suggest to subsequent passes that the
2571   // calculated weights are fully consistent.  Consider this graph:
2572   //
2573   //                 check_1
2574   //             50% /  |
2575   //             eq_1   | 50%
2576   //                 \  |
2577   //                 check_2
2578   //             50% /  |
2579   //             eq_2   | 50%
2580   //                 \  |
2581   //                 check_3
2582   //             50% /  |
2583   //             eq_3   | 50%
2584   //                 \  |
2585   //
2586   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2587   // the overall probabilities are inconsistent; the total probability that the
2588   // value is either 1, 2 or 3 is 150%.
2589   //
2590   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2591   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2592   // the loop exit edge.  Then based solely on static estimation we would assume
2593   // the loop was extremely hot.
2594   //
2595   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2596   // shouldn't make edges extremely likely or unlikely based solely on static
2597   // estimation.
2598   if (BBSuccProbs.size() >= 2 && HasProfile) {
2599     SmallVector<uint32_t, 4> Weights;
2600     for (auto Prob : BBSuccProbs)
2601       Weights.push_back(Prob.getNumerator());
2602 
2603     auto TI = BB->getTerminator();
2604     setBranchWeights(*TI, Weights, hasBranchWeightOrigin(*TI));
2605   }
2606 }
2607 
2608 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2609 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2610 /// If we can duplicate the contents of BB up into PredBB do so now, this
2611 /// improves the odds that the branch will be on an analyzable instruction like
2612 /// a compare.
2613 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred(
2614     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2615   assert(!PredBBs.empty() && "Can't handle an empty set");
2616 
2617   // If BB is a loop header, then duplicating this block outside the loop would
2618   // cause us to transform this into an irreducible loop, don't do this.
2619   // See the comments above findLoopHeaders for justifications and caveats.
2620   if (LoopHeaders.count(BB)) {
2621     LLVM_DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2622                       << "' into predecessor block '" << PredBBs[0]->getName()
2623                       << "' - it might create an irreducible loop!\n");
2624     return false;
2625   }
2626 
2627   unsigned DuplicationCost = getJumpThreadDuplicationCost(
2628       TTI, BB, BB->getTerminator(), BBDupThreshold);
2629   if (DuplicationCost > BBDupThreshold) {
2630     LLVM_DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2631                       << "' - Cost is too high: " << DuplicationCost << "\n");
2632     return false;
2633   }
2634 
2635   // And finally, do it!  Start by factoring the predecessors if needed.
2636   std::vector<DominatorTree::UpdateType> Updates;
2637   BasicBlock *PredBB;
2638   if (PredBBs.size() == 1)
2639     PredBB = PredBBs[0];
2640   else {
2641     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2642                       << " common predecessors.\n");
2643     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2644   }
2645   Updates.push_back({DominatorTree::Delete, PredBB, BB});
2646 
2647   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2648   // of PredBB.
2649   LLVM_DEBUG(dbgs() << "  Duplicating block '" << BB->getName()
2650                     << "' into end of '" << PredBB->getName()
2651                     << "' to eliminate branch on phi.  Cost: "
2652                     << DuplicationCost << " block is:" << *BB << "\n");
2653 
2654   // Unless PredBB ends with an unconditional branch, split the edge so that we
2655   // can just clone the bits from BB into the end of the new PredBB.
2656   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2657 
2658   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2659     BasicBlock *OldPredBB = PredBB;
2660     PredBB = SplitEdge(OldPredBB, BB);
2661     Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2662     Updates.push_back({DominatorTree::Insert, PredBB, BB});
2663     Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2664     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2665   }
2666 
2667   // We are going to have to map operands from the original BB block into the
2668   // PredBB block.  Evaluate PHI nodes in BB.
2669   ValueToValueMapTy ValueMapping;
2670 
2671   BasicBlock::iterator BI = BB->begin();
2672   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2673     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2674   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2675   // mapping and using it to remap operands in the cloned instructions.
2676   for (; BI != BB->end(); ++BI) {
2677     Instruction *New = BI->clone();
2678     New->insertInto(PredBB, OldPredBranch->getIterator());
2679 
2680     // Remap operands to patch up intra-block references.
2681     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2682       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2683         ValueToValueMapTy::iterator I = ValueMapping.find(Inst);
2684         if (I != ValueMapping.end())
2685           New->setOperand(i, I->second);
2686       }
2687 
2688     // Remap debug variable operands.
2689     remapDebugVariable(ValueMapping, New);
2690 
2691     // If this instruction can be simplified after the operands are updated,
2692     // just use the simplified value instead.  This frequently happens due to
2693     // phi translation.
2694     if (Value *IV = simplifyInstruction(
2695             New,
2696             {BB->getDataLayout(), TLI, nullptr, nullptr, New})) {
2697       ValueMapping[&*BI] = IV;
2698       if (!New->mayHaveSideEffects()) {
2699         New->eraseFromParent();
2700         New = nullptr;
2701         // Clone debug-info on the elided instruction to the destination
2702         // position.
2703         OldPredBranch->cloneDebugInfoFrom(&*BI, std::nullopt, true);
2704       }
2705     } else {
2706       ValueMapping[&*BI] = New;
2707     }
2708     if (New) {
2709       // Otherwise, insert the new instruction into the block.
2710       New->setName(BI->getName());
2711       // Clone across any debug-info attached to the old instruction.
2712       New->cloneDebugInfoFrom(&*BI);
2713       // Update Dominance from simplified New instruction operands.
2714       for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2715         if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2716           Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2717     }
2718   }
2719 
2720   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2721   // add entries to the PHI nodes for branch from PredBB now.
2722   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2723   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2724                                   ValueMapping);
2725   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2726                                   ValueMapping);
2727 
2728   updateSSA(BB, PredBB, ValueMapping);
2729 
2730   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2731   // that we nuked.
2732   BB->removePredecessor(PredBB, true);
2733 
2734   // Remove the unconditional branch at the end of the PredBB block.
2735   OldPredBranch->eraseFromParent();
2736   if (auto *BPI = getBPI())
2737     BPI->copyEdgeProbabilities(BB, PredBB);
2738   DTU->applyUpdatesPermissive(Updates);
2739 
2740   ++NumDupes;
2741   return true;
2742 }
2743 
2744 // Pred is a predecessor of BB with an unconditional branch to BB. SI is
2745 // a Select instruction in Pred. BB has other predecessors and SI is used in
2746 // a PHI node in BB. SI has no other use.
2747 // A new basic block, NewBB, is created and SI is converted to compare and
2748 // conditional branch. SI is erased from parent.
2749 void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
2750                                           SelectInst *SI, PHINode *SIUse,
2751                                           unsigned Idx) {
2752   // Expand the select.
2753   //
2754   // Pred --
2755   //  |    v
2756   //  |  NewBB
2757   //  |    |
2758   //  |-----
2759   //  v
2760   // BB
2761   BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator());
2762   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2763                                          BB->getParent(), BB);
2764   // Move the unconditional branch to NewBB.
2765   PredTerm->removeFromParent();
2766   PredTerm->insertInto(NewBB, NewBB->end());
2767   // Create a conditional branch and update PHI nodes.
2768   auto *BI = BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2769   BI->applyMergedLocation(PredTerm->getDebugLoc(), SI->getDebugLoc());
2770   BI->copyMetadata(*SI, {LLVMContext::MD_prof});
2771   SIUse->setIncomingValue(Idx, SI->getFalseValue());
2772   SIUse->addIncoming(SI->getTrueValue(), NewBB);
2773 
2774   uint64_t TrueWeight = 1;
2775   uint64_t FalseWeight = 1;
2776   // Copy probabilities from 'SI' to created conditional branch in 'Pred'.
2777   if (extractBranchWeights(*SI, TrueWeight, FalseWeight) &&
2778       (TrueWeight + FalseWeight) != 0) {
2779     SmallVector<BranchProbability, 2> BP;
2780     BP.emplace_back(BranchProbability::getBranchProbability(
2781         TrueWeight, TrueWeight + FalseWeight));
2782     BP.emplace_back(BranchProbability::getBranchProbability(
2783         FalseWeight, TrueWeight + FalseWeight));
2784     // Update BPI if exists.
2785     if (auto *BPI = getBPI())
2786       BPI->setEdgeProbability(Pred, BP);
2787   }
2788   // Set the block frequency of NewBB.
2789   if (auto *BFI = getBFI()) {
2790     if ((TrueWeight + FalseWeight) == 0) {
2791       TrueWeight = 1;
2792       FalseWeight = 1;
2793     }
2794     BranchProbability PredToNewBBProb = BranchProbability::getBranchProbability(
2795         TrueWeight, TrueWeight + FalseWeight);
2796     auto NewBBFreq = BFI->getBlockFreq(Pred) * PredToNewBBProb;
2797     BFI->setBlockFreq(NewBB, NewBBFreq);
2798   }
2799 
2800   // The select is now dead.
2801   SI->eraseFromParent();
2802   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB},
2803                                {DominatorTree::Insert, Pred, NewBB}});
2804 
2805   // Update any other PHI nodes in BB.
2806   for (BasicBlock::iterator BI = BB->begin();
2807        PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2808     if (Phi != SIUse)
2809       Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2810 }
2811 
2812 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
2813   PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
2814 
2815   if (!CondPHI || CondPHI->getParent() != BB)
2816     return false;
2817 
2818   for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
2819     BasicBlock *Pred = CondPHI->getIncomingBlock(I);
2820     SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
2821 
2822     // The second and third condition can be potentially relaxed. Currently
2823     // the conditions help to simplify the code and allow us to reuse existing
2824     // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *)
2825     if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
2826       continue;
2827 
2828     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2829     if (!PredTerm || !PredTerm->isUnconditional())
2830       continue;
2831 
2832     unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
2833     return true;
2834   }
2835   return false;
2836 }
2837 
2838 /// tryToUnfoldSelect - Look for blocks of the form
2839 /// bb1:
2840 ///   %a = select
2841 ///   br bb2
2842 ///
2843 /// bb2:
2844 ///   %p = phi [%a, %bb1] ...
2845 ///   %c = icmp %p
2846 ///   br i1 %c
2847 ///
2848 /// And expand the select into a branch structure if one of its arms allows %c
2849 /// to be folded. This later enables threading from bb1 over bb2.
2850 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2851   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2852   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2853   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2854 
2855   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2856       CondLHS->getParent() != BB)
2857     return false;
2858 
2859   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2860     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2861     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2862 
2863     // Look if one of the incoming values is a select in the corresponding
2864     // predecessor.
2865     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2866       continue;
2867 
2868     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2869     if (!PredTerm || !PredTerm->isUnconditional())
2870       continue;
2871 
2872     // Now check if one of the select values would allow us to constant fold the
2873     // terminator in BB. We don't do the transform if both sides fold, those
2874     // cases will be threaded in any case.
2875     Constant *LHSRes =
2876         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2877                                 CondRHS, Pred, BB, CondCmp);
2878     Constant *RHSRes =
2879         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2880                                 CondRHS, Pred, BB, CondCmp);
2881     if ((LHSRes || RHSRes) && LHSRes != RHSRes) {
2882       unfoldSelectInstr(Pred, BB, SI, CondLHS, I);
2883       return true;
2884     }
2885   }
2886   return false;
2887 }
2888 
2889 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2890 /// same BB in the form
2891 /// bb:
2892 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2893 ///   %s = select %p, trueval, falseval
2894 ///
2895 /// or
2896 ///
2897 /// bb:
2898 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2899 ///   %c = cmp %p, 0
2900 ///   %s = select %c, trueval, falseval
2901 ///
2902 /// And expand the select into a branch structure. This later enables
2903 /// jump-threading over bb in this pass.
2904 ///
2905 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2906 /// select if the associated PHI has at least one constant.  If the unfolded
2907 /// select is not jump-threaded, it will be folded again in the later
2908 /// optimizations.
2909 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2910   // This transform would reduce the quality of msan diagnostics.
2911   // Disable this transform under MemorySanitizer.
2912   if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
2913     return false;
2914 
2915   // If threading this would thread across a loop header, don't thread the edge.
2916   // See the comments above findLoopHeaders for justifications and caveats.
2917   if (LoopHeaders.count(BB))
2918     return false;
2919 
2920   for (BasicBlock::iterator BI = BB->begin();
2921        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2922     // Look for a Phi having at least one constant incoming value.
2923     if (llvm::all_of(PN->incoming_values(),
2924                      [](Value *V) { return !isa<ConstantInt>(V); }))
2925       continue;
2926 
2927     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2928       using namespace PatternMatch;
2929 
2930       // Check if SI is in BB and use V as condition.
2931       if (SI->getParent() != BB)
2932         return false;
2933       Value *Cond = SI->getCondition();
2934       bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()));
2935       return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr;
2936     };
2937 
2938     SelectInst *SI = nullptr;
2939     for (Use &U : PN->uses()) {
2940       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2941         // Look for a ICmp in BB that compares PN with a constant and is the
2942         // condition of a Select.
2943         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2944             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2945           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2946             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2947               SI = SelectI;
2948               break;
2949             }
2950       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2951         // Look for a Select in BB that uses PN as condition.
2952         if (isUnfoldCandidate(SelectI, U.get())) {
2953           SI = SelectI;
2954           break;
2955         }
2956       }
2957     }
2958 
2959     if (!SI)
2960       continue;
2961     // Expand the select.
2962     Value *Cond = SI->getCondition();
2963     if (!isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI))
2964       Cond = new FreezeInst(Cond, "cond.fr", SI->getIterator());
2965     MDNode *BranchWeights = getBranchWeightMDNode(*SI);
2966     Instruction *Term =
2967         SplitBlockAndInsertIfThen(Cond, SI, false, BranchWeights);
2968     BasicBlock *SplitBB = SI->getParent();
2969     BasicBlock *NewBB = Term->getParent();
2970     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI->getIterator());
2971     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2972     NewPN->addIncoming(SI->getFalseValue(), BB);
2973     NewPN->setDebugLoc(SI->getDebugLoc());
2974     SI->replaceAllUsesWith(NewPN);
2975     SI->eraseFromParent();
2976     // NewBB and SplitBB are newly created blocks which require insertion.
2977     std::vector<DominatorTree::UpdateType> Updates;
2978     Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2979     Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2980     Updates.push_back({DominatorTree::Insert, BB, NewBB});
2981     Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2982     // BB's successors were moved to SplitBB, update DTU accordingly.
2983     for (auto *Succ : successors(SplitBB)) {
2984       Updates.push_back({DominatorTree::Delete, BB, Succ});
2985       Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2986     }
2987     DTU->applyUpdatesPermissive(Updates);
2988     return true;
2989   }
2990   return false;
2991 }
2992 
2993 /// Try to propagate a guard from the current BB into one of its predecessors
2994 /// in case if another branch of execution implies that the condition of this
2995 /// guard is always true. Currently we only process the simplest case that
2996 /// looks like:
2997 ///
2998 /// Start:
2999 ///   %cond = ...
3000 ///   br i1 %cond, label %T1, label %F1
3001 /// T1:
3002 ///   br label %Merge
3003 /// F1:
3004 ///   br label %Merge
3005 /// Merge:
3006 ///   %condGuard = ...
3007 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
3008 ///
3009 /// And cond either implies condGuard or !condGuard. In this case all the
3010 /// instructions before the guard can be duplicated in both branches, and the
3011 /// guard is then threaded to one of them.
3012 bool JumpThreadingPass::processGuards(BasicBlock *BB) {
3013   using namespace PatternMatch;
3014 
3015   // We only want to deal with two predecessors.
3016   BasicBlock *Pred1, *Pred2;
3017   auto PI = pred_begin(BB), PE = pred_end(BB);
3018   if (PI == PE)
3019     return false;
3020   Pred1 = *PI++;
3021   if (PI == PE)
3022     return false;
3023   Pred2 = *PI++;
3024   if (PI != PE)
3025     return false;
3026   if (Pred1 == Pred2)
3027     return false;
3028 
3029   // Try to thread one of the guards of the block.
3030   // TODO: Look up deeper than to immediate predecessor?
3031   auto *Parent = Pred1->getSinglePredecessor();
3032   if (!Parent || Parent != Pred2->getSinglePredecessor())
3033     return false;
3034 
3035   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
3036     for (auto &I : *BB)
3037       if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI))
3038         return true;
3039 
3040   return false;
3041 }
3042 
3043 /// Try to propagate the guard from BB which is the lower block of a diamond
3044 /// to one of its branches, in case if diamond's condition implies guard's
3045 /// condition.
3046 bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard,
3047                                     BranchInst *BI) {
3048   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
3049   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
3050   Value *GuardCond = Guard->getArgOperand(0);
3051   Value *BranchCond = BI->getCondition();
3052   BasicBlock *TrueDest = BI->getSuccessor(0);
3053   BasicBlock *FalseDest = BI->getSuccessor(1);
3054 
3055   auto &DL = BB->getDataLayout();
3056   bool TrueDestIsSafe = false;
3057   bool FalseDestIsSafe = false;
3058 
3059   // True dest is safe if BranchCond => GuardCond.
3060   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
3061   if (Impl && *Impl)
3062     TrueDestIsSafe = true;
3063   else {
3064     // False dest is safe if !BranchCond => GuardCond.
3065     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
3066     if (Impl && *Impl)
3067       FalseDestIsSafe = true;
3068   }
3069 
3070   if (!TrueDestIsSafe && !FalseDestIsSafe)
3071     return false;
3072 
3073   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
3074   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
3075 
3076   ValueToValueMapTy UnguardedMapping, GuardedMapping;
3077   Instruction *AfterGuard = Guard->getNextNode();
3078   unsigned Cost =
3079       getJumpThreadDuplicationCost(TTI, BB, AfterGuard, BBDupThreshold);
3080   if (Cost > BBDupThreshold)
3081     return false;
3082   // Duplicate all instructions before the guard and the guard itself to the
3083   // branch where implication is not proved.
3084   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
3085       BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
3086   assert(GuardedBlock && "Could not create the guarded block?");
3087   // Duplicate all instructions before the guard in the unguarded branch.
3088   // Since we have successfully duplicated the guarded block and this block
3089   // has fewer instructions, we expect it to succeed.
3090   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
3091       BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
3092   assert(UnguardedBlock && "Could not create the unguarded block?");
3093   LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
3094                     << GuardedBlock->getName() << "\n");
3095   // Some instructions before the guard may still have uses. For them, we need
3096   // to create Phi nodes merging their copies in both guarded and unguarded
3097   // branches. Those instructions that have no uses can be just removed.
3098   SmallVector<Instruction *, 4> ToRemove;
3099   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
3100     if (!isa<PHINode>(&*BI))
3101       ToRemove.push_back(&*BI);
3102 
3103   BasicBlock::iterator InsertionPoint = BB->getFirstInsertionPt();
3104   assert(InsertionPoint != BB->end() && "Empty block?");
3105   // Substitute with Phis & remove.
3106   for (auto *Inst : reverse(ToRemove)) {
3107     if (!Inst->use_empty()) {
3108       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
3109       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
3110       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
3111       NewPN->setDebugLoc(Inst->getDebugLoc());
3112       NewPN->insertBefore(InsertionPoint);
3113       Inst->replaceAllUsesWith(NewPN);
3114     }
3115     Inst->dropDbgRecords();
3116     Inst->eraseFromParent();
3117   }
3118   return true;
3119 }
3120 
3121 PreservedAnalyses JumpThreadingPass::getPreservedAnalysis() const {
3122   PreservedAnalyses PA;
3123   PA.preserve<LazyValueAnalysis>();
3124   PA.preserve<DominatorTreeAnalysis>();
3125 
3126   // TODO: We would like to preserve BPI/BFI. Enable once all paths update them.
3127   // TODO: Would be nice to verify BPI/BFI consistency as well.
3128   return PA;
3129 }
3130 
3131 template <typename AnalysisT>
3132 typename AnalysisT::Result *JumpThreadingPass::runExternalAnalysis() {
3133   assert(FAM && "Can't run external analysis without FunctionAnalysisManager");
3134 
3135   // If there were no changes since last call to 'runExternalAnalysis' then all
3136   // analysis is either up to date or explicitly invalidated. Just go ahead and
3137   // run the "external" analysis.
3138   if (!ChangedSinceLastAnalysisUpdate) {
3139     assert(!DTU->hasPendingUpdates() &&
3140            "Lost update of 'ChangedSinceLastAnalysisUpdate'?");
3141     // Run the "external" analysis.
3142     return &FAM->getResult<AnalysisT>(*F);
3143   }
3144   ChangedSinceLastAnalysisUpdate = false;
3145 
3146   auto PA = getPreservedAnalysis();
3147   // TODO: This shouldn't be needed once 'getPreservedAnalysis' reports BPI/BFI
3148   // as preserved.
3149   PA.preserve<BranchProbabilityAnalysis>();
3150   PA.preserve<BlockFrequencyAnalysis>();
3151   // Report everything except explicitly preserved as invalid.
3152   FAM->invalidate(*F, PA);
3153   // Update DT/PDT.
3154   DTU->flush();
3155   // Make sure DT/PDT are valid before running "external" analysis.
3156   assert(DTU->getDomTree().verify(DominatorTree::VerificationLevel::Fast));
3157   assert((!DTU->hasPostDomTree() ||
3158           DTU->getPostDomTree().verify(
3159               PostDominatorTree::VerificationLevel::Fast)));
3160   // Run the "external" analysis.
3161   auto *Result = &FAM->getResult<AnalysisT>(*F);
3162   // Update analysis JumpThreading depends on and not explicitly preserved.
3163   TTI = &FAM->getResult<TargetIRAnalysis>(*F);
3164   TLI = &FAM->getResult<TargetLibraryAnalysis>(*F);
3165   AA = &FAM->getResult<AAManager>(*F);
3166 
3167   return Result;
3168 }
3169 
3170 BranchProbabilityInfo *JumpThreadingPass::getBPI() {
3171   if (!BPI) {
3172     assert(FAM && "Can't create BPI without FunctionAnalysisManager");
3173     BPI = FAM->getCachedResult<BranchProbabilityAnalysis>(*F);
3174   }
3175   return *BPI;
3176 }
3177 
3178 BlockFrequencyInfo *JumpThreadingPass::getBFI() {
3179   if (!BFI) {
3180     assert(FAM && "Can't create BFI without FunctionAnalysisManager");
3181     BFI = FAM->getCachedResult<BlockFrequencyAnalysis>(*F);
3182   }
3183   return *BFI;
3184 }
3185 
3186 // Important note on validity of BPI/BFI. JumpThreading tries to preserve
3187 // BPI/BFI as it goes. Thus if cached instance exists it will be updated.
3188 // Otherwise, new instance of BPI/BFI is created (up to date by definition).
3189 BranchProbabilityInfo *JumpThreadingPass::getOrCreateBPI(bool Force) {
3190   auto *Res = getBPI();
3191   if (Res)
3192     return Res;
3193 
3194   if (Force)
3195     BPI = runExternalAnalysis<BranchProbabilityAnalysis>();
3196 
3197   return *BPI;
3198 }
3199 
3200 BlockFrequencyInfo *JumpThreadingPass::getOrCreateBFI(bool Force) {
3201   auto *Res = getBFI();
3202   if (Res)
3203     return Res;
3204 
3205   if (Force)
3206     BFI = runExternalAnalysis<BlockFrequencyAnalysis>();
3207 
3208   return *BFI;
3209 }
3210