1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "jump-threading" 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/IntrinsicInst.h" 17 #include "llvm/LLVMContext.h" 18 #include "llvm/Pass.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LazyValueInfo.h" 21 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 22 #include "llvm/Transforms/Utils/Local.h" 23 #include "llvm/Transforms/Utils/SSAUpdater.h" 24 #include "llvm/Target/TargetData.h" 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 using namespace llvm; 34 35 STATISTIC(NumThreads, "Number of jumps threaded"); 36 STATISTIC(NumFolds, "Number of terminators folded"); 37 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 38 39 static cl::opt<unsigned> 40 Threshold("jump-threading-threshold", 41 cl::desc("Max block size to duplicate for jump threading"), 42 cl::init(6), cl::Hidden); 43 44 // Turn on use of LazyValueInfo. 45 static cl::opt<bool> 46 EnableLVI("enable-jump-threading-lvi", cl::ReallyHidden); 47 48 49 50 namespace { 51 /// This pass performs 'jump threading', which looks at blocks that have 52 /// multiple predecessors and multiple successors. If one or more of the 53 /// predecessors of the block can be proven to always jump to one of the 54 /// successors, we forward the edge from the predecessor to the successor by 55 /// duplicating the contents of this block. 56 /// 57 /// An example of when this can occur is code like this: 58 /// 59 /// if () { ... 60 /// X = 4; 61 /// } 62 /// if (X < 3) { 63 /// 64 /// In this case, the unconditional branch at the end of the first if can be 65 /// revectored to the false side of the second if. 66 /// 67 class JumpThreading : public FunctionPass { 68 TargetData *TD; 69 LazyValueInfo *LVI; 70 #ifdef NDEBUG 71 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 72 #else 73 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 74 #endif 75 public: 76 static char ID; // Pass identification 77 JumpThreading() : FunctionPass(&ID) {} 78 79 bool runOnFunction(Function &F); 80 81 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 82 if (EnableLVI) 83 AU.addRequired<LazyValueInfo>(); 84 } 85 86 void FindLoopHeaders(Function &F); 87 bool ProcessBlock(BasicBlock *BB); 88 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 89 BasicBlock *SuccBB); 90 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 91 BasicBlock *PredBB); 92 93 typedef SmallVectorImpl<std::pair<ConstantInt*, 94 BasicBlock*> > PredValueInfo; 95 96 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 97 PredValueInfo &Result); 98 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB); 99 100 101 bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 102 bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 103 104 bool ProcessJumpOnPHI(PHINode *PN); 105 106 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 107 }; 108 } 109 110 char JumpThreading::ID = 0; 111 static RegisterPass<JumpThreading> 112 X("jump-threading", "Jump Threading"); 113 114 // Public interface to the Jump Threading pass 115 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); } 116 117 /// runOnFunction - Top level algorithm. 118 /// 119 bool JumpThreading::runOnFunction(Function &F) { 120 DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n"); 121 TD = getAnalysisIfAvailable<TargetData>(); 122 LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0; 123 124 FindLoopHeaders(F); 125 126 bool AnotherIteration = true, EverChanged = false; 127 while (AnotherIteration) { 128 AnotherIteration = false; 129 bool Changed = false; 130 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 131 BasicBlock *BB = I; 132 // Thread all of the branches we can over this block. 133 while (ProcessBlock(BB)) 134 Changed = true; 135 136 ++I; 137 138 // If the block is trivially dead, zap it. This eliminates the successor 139 // edges which simplifies the CFG. 140 if (pred_begin(BB) == pred_end(BB) && 141 BB != &BB->getParent()->getEntryBlock()) { 142 DEBUG(errs() << " JT: Deleting dead block '" << BB->getName() 143 << "' with terminator: " << *BB->getTerminator() << '\n'); 144 LoopHeaders.erase(BB); 145 DeleteDeadBlock(BB); 146 Changed = true; 147 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 148 // Can't thread an unconditional jump, but if the block is "almost 149 // empty", we can replace uses of it with uses of the successor and make 150 // this dead. 151 if (BI->isUnconditional() && 152 BB != &BB->getParent()->getEntryBlock()) { 153 BasicBlock::iterator BBI = BB->getFirstNonPHI(); 154 // Ignore dbg intrinsics. 155 while (isa<DbgInfoIntrinsic>(BBI)) 156 ++BBI; 157 // If the terminator is the only non-phi instruction, try to nuke it. 158 if (BBI->isTerminator()) { 159 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 160 // block, we have to make sure it isn't in the LoopHeaders set. We 161 // reinsert afterward if needed. 162 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 163 BasicBlock *Succ = BI->getSuccessor(0); 164 165 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { 166 Changed = true; 167 // If we deleted BB and BB was the header of a loop, then the 168 // successor is now the header of the loop. 169 BB = Succ; 170 } 171 172 if (ErasedFromLoopHeaders) 173 LoopHeaders.insert(BB); 174 } 175 } 176 } 177 } 178 AnotherIteration = Changed; 179 EverChanged |= Changed; 180 } 181 182 LoopHeaders.clear(); 183 return EverChanged; 184 } 185 186 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 187 /// thread across it. 188 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) { 189 /// Ignore PHI nodes, these will be flattened when duplication happens. 190 BasicBlock::const_iterator I = BB->getFirstNonPHI(); 191 192 // FIXME: THREADING will delete values that are just used to compute the 193 // branch, so they shouldn't count against the duplication cost. 194 195 196 // Sum up the cost of each instruction until we get to the terminator. Don't 197 // include the terminator because the copy won't include it. 198 unsigned Size = 0; 199 for (; !isa<TerminatorInst>(I); ++I) { 200 // Debugger intrinsics don't incur code size. 201 if (isa<DbgInfoIntrinsic>(I)) continue; 202 203 // If this is a pointer->pointer bitcast, it is free. 204 if (isa<BitCastInst>(I) && isa<PointerType>(I->getType())) 205 continue; 206 207 // All other instructions count for at least one unit. 208 ++Size; 209 210 // Calls are more expensive. If they are non-intrinsic calls, we model them 211 // as having cost of 4. If they are a non-vector intrinsic, we model them 212 // as having cost of 2 total, and if they are a vector intrinsic, we model 213 // them as having cost 1. 214 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 215 if (!isa<IntrinsicInst>(CI)) 216 Size += 3; 217 else if (!isa<VectorType>(CI->getType())) 218 Size += 1; 219 } 220 } 221 222 // Threading through a switch statement is particularly profitable. If this 223 // block ends in a switch, decrease its cost to make it more likely to happen. 224 if (isa<SwitchInst>(I)) 225 Size = Size > 6 ? Size-6 : 0; 226 227 return Size; 228 } 229 230 /// FindLoopHeaders - We do not want jump threading to turn proper loop 231 /// structures into irreducible loops. Doing this breaks up the loop nesting 232 /// hierarchy and pessimizes later transformations. To prevent this from 233 /// happening, we first have to find the loop headers. Here we approximate this 234 /// by finding targets of backedges in the CFG. 235 /// 236 /// Note that there definitely are cases when we want to allow threading of 237 /// edges across a loop header. For example, threading a jump from outside the 238 /// loop (the preheader) to an exit block of the loop is definitely profitable. 239 /// It is also almost always profitable to thread backedges from within the loop 240 /// to exit blocks, and is often profitable to thread backedges to other blocks 241 /// within the loop (forming a nested loop). This simple analysis is not rich 242 /// enough to track all of these properties and keep it up-to-date as the CFG 243 /// mutates, so we don't allow any of these transformations. 244 /// 245 void JumpThreading::FindLoopHeaders(Function &F) { 246 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 247 FindFunctionBackedges(F, Edges); 248 249 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 250 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 251 } 252 253 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 254 /// if we can infer that the value is a known ConstantInt in any of our 255 /// predecessors. If so, return the known list of value and pred BB in the 256 /// result vector. If a value is known to be undef, it is returned as null. 257 /// 258 /// This returns true if there were any known values. 259 /// 260 bool JumpThreading:: 261 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){ 262 // If V is a constantint, then it is known in all predecessors. 263 if (isa<ConstantInt>(V) || isa<UndefValue>(V)) { 264 ConstantInt *CI = dyn_cast<ConstantInt>(V); 265 266 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 267 Result.push_back(std::make_pair(CI, *PI)); 268 return true; 269 } 270 271 // If V is a non-instruction value, or an instruction in a different block, 272 // then it can't be derived from a PHI. 273 Instruction *I = dyn_cast<Instruction>(V); 274 if (I == 0 || I->getParent() != BB) { 275 276 // Okay, if this is a live-in value, see if it has a known value at the end 277 // of any of our predecessors. 278 // 279 // FIXME: This should be an edge property, not a block end property. 280 /// TODO: Per PR2563, we could infer value range information about a 281 /// predecessor based on its terminator. 282 // 283 if (LVI) { 284 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 285 // "I" is a non-local compare-with-a-constant instruction. This would be 286 // able to handle value inequalities better, for example if the compare is 287 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 288 // Perhaps getConstantOnEdge should be smart enough to do this? 289 290 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 291 // If the value is known by LazyValueInfo to be a constant in a 292 // predecessor, use that information to try to thread this block. 293 Constant *PredCst = LVI->getConstantOnEdge(V, *PI, BB); 294 if (PredCst == 0 || 295 (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst))) 296 continue; 297 298 Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), *PI)); 299 } 300 301 return !Result.empty(); 302 } 303 304 return false; 305 } 306 307 /// If I is a PHI node, then we know the incoming values for any constants. 308 if (PHINode *PN = dyn_cast<PHINode>(I)) { 309 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 310 Value *InVal = PN->getIncomingValue(i); 311 if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) { 312 ConstantInt *CI = dyn_cast<ConstantInt>(InVal); 313 Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i))); 314 } 315 } 316 return !Result.empty(); 317 } 318 319 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals; 320 321 // Handle some boolean conditions. 322 if (I->getType()->getPrimitiveSizeInBits() == 1) { 323 // X | true -> true 324 // X & false -> false 325 if (I->getOpcode() == Instruction::Or || 326 I->getOpcode() == Instruction::And) { 327 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals); 328 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals); 329 330 if (LHSVals.empty() && RHSVals.empty()) 331 return false; 332 333 ConstantInt *InterestingVal; 334 if (I->getOpcode() == Instruction::Or) 335 InterestingVal = ConstantInt::getTrue(I->getContext()); 336 else 337 InterestingVal = ConstantInt::getFalse(I->getContext()); 338 339 // Scan for the sentinel. 340 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 341 if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) 342 Result.push_back(LHSVals[i]); 343 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 344 if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) 345 Result.push_back(RHSVals[i]); 346 return !Result.empty(); 347 } 348 349 // Handle the NOT form of XOR. 350 if (I->getOpcode() == Instruction::Xor && 351 isa<ConstantInt>(I->getOperand(1)) && 352 cast<ConstantInt>(I->getOperand(1))->isOne()) { 353 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result); 354 if (Result.empty()) 355 return false; 356 357 // Invert the known values. 358 for (unsigned i = 0, e = Result.size(); i != e; ++i) 359 if (Result[i].first) 360 Result[i].first = 361 cast<ConstantInt>(ConstantExpr::getNot(Result[i].first)); 362 return true; 363 } 364 } 365 366 // Handle compare with phi operand, where the PHI is defined in this block. 367 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 368 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 369 if (PN && PN->getParent() == BB) { 370 // We can do this simplification if any comparisons fold to true or false. 371 // See if any do. 372 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 373 BasicBlock *PredBB = PN->getIncomingBlock(i); 374 Value *LHS = PN->getIncomingValue(i); 375 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 376 377 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD); 378 if (Res == 0) { 379 if (!LVI || !isa<Constant>(RHS)) 380 continue; 381 382 LazyValueInfo::Tristate 383 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 384 cast<Constant>(RHS), PredBB, BB); 385 if (ResT == LazyValueInfo::Unknown) 386 continue; 387 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 388 } 389 390 if (isa<UndefValue>(Res)) 391 Result.push_back(std::make_pair((ConstantInt*)0, PredBB)); 392 else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res)) 393 Result.push_back(std::make_pair(CI, PredBB)); 394 } 395 396 return !Result.empty(); 397 } 398 399 400 // If comparing a live-in value against a constant, see if we know the 401 // live-in value on any predecessors. 402 if (LVI && isa<Constant>(Cmp->getOperand(1)) && 403 Cmp->getType()->isInteger() && // Not vector compare. 404 (!isa<Instruction>(Cmp->getOperand(0)) || 405 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB)) { 406 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 407 408 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 409 // If the value is known by LazyValueInfo to be a constant in a 410 // predecessor, use that information to try to thread this block. 411 LazyValueInfo::Tristate 412 Res = LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 413 RHSCst, *PI, BB); 414 if (Res == LazyValueInfo::Unknown) 415 continue; 416 417 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 418 Result.push_back(std::make_pair(cast<ConstantInt>(ResC), *PI)); 419 } 420 421 return !Result.empty(); 422 } 423 } 424 return false; 425 } 426 427 428 429 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 430 /// in an undefined jump, decide which block is best to revector to. 431 /// 432 /// Since we can pick an arbitrary destination, we pick the successor with the 433 /// fewest predecessors. This should reduce the in-degree of the others. 434 /// 435 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 436 TerminatorInst *BBTerm = BB->getTerminator(); 437 unsigned MinSucc = 0; 438 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 439 // Compute the successor with the minimum number of predecessors. 440 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 441 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 442 TestBB = BBTerm->getSuccessor(i); 443 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 444 if (NumPreds < MinNumPreds) 445 MinSucc = i; 446 } 447 448 return MinSucc; 449 } 450 451 /// ProcessBlock - If there are any predecessors whose control can be threaded 452 /// through to a successor, transform them now. 453 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 454 // If this block has a single predecessor, and if that pred has a single 455 // successor, merge the blocks. This encourages recursive jump threading 456 // because now the condition in this block can be threaded through 457 // predecessors of our predecessor block. 458 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 459 if (SinglePred->getTerminator()->getNumSuccessors() == 1 && 460 SinglePred != BB) { 461 // If SinglePred was a loop header, BB becomes one. 462 if (LoopHeaders.erase(SinglePred)) 463 LoopHeaders.insert(BB); 464 465 // Remember if SinglePred was the entry block of the function. If so, we 466 // will need to move BB back to the entry position. 467 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 468 MergeBasicBlockIntoOnlyPred(BB); 469 470 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 471 BB->moveBefore(&BB->getParent()->getEntryBlock()); 472 return true; 473 } 474 } 475 476 // Look to see if the terminator is a branch of switch, if not we can't thread 477 // it. 478 Value *Condition; 479 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 480 // Can't thread an unconditional jump. 481 if (BI->isUnconditional()) return false; 482 Condition = BI->getCondition(); 483 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 484 Condition = SI->getCondition(); 485 else 486 return false; // Must be an invoke. 487 488 // If the terminator of this block is branching on a constant, simplify the 489 // terminator to an unconditional branch. This can occur due to threading in 490 // other blocks. 491 if (isa<ConstantInt>(Condition)) { 492 DEBUG(errs() << " In block '" << BB->getName() 493 << "' folding terminator: " << *BB->getTerminator() << '\n'); 494 ++NumFolds; 495 ConstantFoldTerminator(BB); 496 return true; 497 } 498 499 // If the terminator is branching on an undef, we can pick any of the 500 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 501 if (isa<UndefValue>(Condition)) { 502 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 503 504 // Fold the branch/switch. 505 TerminatorInst *BBTerm = BB->getTerminator(); 506 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 507 if (i == BestSucc) continue; 508 RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD); 509 } 510 511 DEBUG(errs() << " In block '" << BB->getName() 512 << "' folding undef terminator: " << *BBTerm << '\n'); 513 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 514 BBTerm->eraseFromParent(); 515 return true; 516 } 517 518 Instruction *CondInst = dyn_cast<Instruction>(Condition); 519 520 // If the condition is an instruction defined in another block, see if a 521 // predecessor has the same condition: 522 // br COND, BBX, BBY 523 // BBX: 524 // br COND, BBZ, BBW 525 if (!LVI && 526 !Condition->hasOneUse() && // Multiple uses. 527 (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition. 528 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 529 if (isa<BranchInst>(BB->getTerminator())) { 530 for (; PI != E; ++PI) 531 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 532 if (PBI->isConditional() && PBI->getCondition() == Condition && 533 ProcessBranchOnDuplicateCond(*PI, BB)) 534 return true; 535 } else { 536 assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator"); 537 for (; PI != E; ++PI) 538 if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator())) 539 if (PSI->getCondition() == Condition && 540 ProcessSwitchOnDuplicateCond(*PI, BB)) 541 return true; 542 } 543 } 544 545 // All the rest of our checks depend on the condition being an instruction. 546 if (CondInst == 0) { 547 // FIXME: Unify this with code below. 548 if (LVI && ProcessThreadableEdges(Condition, BB)) 549 return true; 550 return false; 551 } 552 553 554 // See if this is a phi node in the current block. 555 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 556 if (PN->getParent() == BB) 557 return ProcessJumpOnPHI(PN); 558 559 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 560 if (!LVI && 561 (!isa<PHINode>(CondCmp->getOperand(0)) || 562 cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) { 563 // If we have a comparison, loop over the predecessors to see if there is 564 // a condition with a lexically identical value. 565 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 566 for (; PI != E; ++PI) 567 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 568 if (PBI->isConditional() && *PI != BB) { 569 if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) { 570 if (CI->getOperand(0) == CondCmp->getOperand(0) && 571 CI->getOperand(1) == CondCmp->getOperand(1) && 572 CI->getPredicate() == CondCmp->getPredicate()) { 573 // TODO: Could handle things like (x != 4) --> (x == 17) 574 if (ProcessBranchOnDuplicateCond(*PI, BB)) 575 return true; 576 } 577 } 578 } 579 } 580 } 581 582 // Check for some cases that are worth simplifying. Right now we want to look 583 // for loads that are used by a switch or by the condition for the branch. If 584 // we see one, check to see if it's partially redundant. If so, insert a PHI 585 // which can then be used to thread the values. 586 // 587 // This is particularly important because reg2mem inserts loads and stores all 588 // over the place, and this blocks jump threading if we don't zap them. 589 Value *SimplifyValue = CondInst; 590 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 591 if (isa<Constant>(CondCmp->getOperand(1))) 592 SimplifyValue = CondCmp->getOperand(0); 593 594 // TODO: There are other places where load PRE would be profitable, such as 595 // more complex comparisons. 596 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 597 if (SimplifyPartiallyRedundantLoad(LI)) 598 return true; 599 600 601 // Handle a variety of cases where we are branching on something derived from 602 // a PHI node in the current block. If we can prove that any predecessors 603 // compute a predictable value based on a PHI node, thread those predecessors. 604 // 605 if (ProcessThreadableEdges(CondInst, BB)) 606 return true; 607 608 609 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 610 // "(X == 4)" thread through this block. 611 612 return false; 613 } 614 615 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that 616 /// block that jump on exactly the same condition. This means that we almost 617 /// always know the direction of the edge in the DESTBB: 618 /// PREDBB: 619 /// br COND, DESTBB, BBY 620 /// DESTBB: 621 /// br COND, BBZ, BBW 622 /// 623 /// If DESTBB has multiple predecessors, we can't just constant fold the branch 624 /// in DESTBB, we have to thread over it. 625 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB, 626 BasicBlock *BB) { 627 BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator()); 628 629 // If both successors of PredBB go to DESTBB, we don't know anything. We can 630 // fold the branch to an unconditional one, which allows other recursive 631 // simplifications. 632 bool BranchDir; 633 if (PredBI->getSuccessor(1) != BB) 634 BranchDir = true; 635 else if (PredBI->getSuccessor(0) != BB) 636 BranchDir = false; 637 else { 638 DEBUG(errs() << " In block '" << PredBB->getName() 639 << "' folding terminator: " << *PredBB->getTerminator() << '\n'); 640 ++NumFolds; 641 ConstantFoldTerminator(PredBB); 642 return true; 643 } 644 645 BranchInst *DestBI = cast<BranchInst>(BB->getTerminator()); 646 647 // If the dest block has one predecessor, just fix the branch condition to a 648 // constant and fold it. 649 if (BB->getSinglePredecessor()) { 650 DEBUG(errs() << " In block '" << BB->getName() 651 << "' folding condition to '" << BranchDir << "': " 652 << *BB->getTerminator() << '\n'); 653 ++NumFolds; 654 Value *OldCond = DestBI->getCondition(); 655 DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 656 BranchDir)); 657 ConstantFoldTerminator(BB); 658 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 659 return true; 660 } 661 662 663 // Next, figure out which successor we are threading to. 664 BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir); 665 666 SmallVector<BasicBlock*, 2> Preds; 667 Preds.push_back(PredBB); 668 669 // Ok, try to thread it! 670 return ThreadEdge(BB, Preds, SuccBB); 671 } 672 673 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that 674 /// block that switch on exactly the same condition. This means that we almost 675 /// always know the direction of the edge in the DESTBB: 676 /// PREDBB: 677 /// switch COND [... DESTBB, BBY ... ] 678 /// DESTBB: 679 /// switch COND [... BBZ, BBW ] 680 /// 681 /// Optimizing switches like this is very important, because simplifycfg builds 682 /// switches out of repeated 'if' conditions. 683 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, 684 BasicBlock *DestBB) { 685 // Can't thread edge to self. 686 if (PredBB == DestBB) 687 return false; 688 689 SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator()); 690 SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator()); 691 692 // There are a variety of optimizations that we can potentially do on these 693 // blocks: we order them from most to least preferable. 694 695 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB 696 // directly to their destination. This does not introduce *any* code size 697 // growth. Skip debug info first. 698 BasicBlock::iterator BBI = DestBB->begin(); 699 while (isa<DbgInfoIntrinsic>(BBI)) 700 BBI++; 701 702 // FIXME: Thread if it just contains a PHI. 703 if (isa<SwitchInst>(BBI)) { 704 bool MadeChange = false; 705 // Ignore the default edge for now. 706 for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) { 707 ConstantInt *DestVal = DestSI->getCaseValue(i); 708 BasicBlock *DestSucc = DestSI->getSuccessor(i); 709 710 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if 711 // PredSI has an explicit case for it. If so, forward. If it is covered 712 // by the default case, we can't update PredSI. 713 unsigned PredCase = PredSI->findCaseValue(DestVal); 714 if (PredCase == 0) continue; 715 716 // If PredSI doesn't go to DestBB on this value, then it won't reach the 717 // case on this condition. 718 if (PredSI->getSuccessor(PredCase) != DestBB && 719 DestSI->getSuccessor(i) != DestBB) 720 continue; 721 722 // Otherwise, we're safe to make the change. Make sure that the edge from 723 // DestSI to DestSucc is not critical and has no PHI nodes. 724 DEBUG(errs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI); 725 DEBUG(errs() << "THROUGH: " << *DestSI); 726 727 // If the destination has PHI nodes, just split the edge for updating 728 // simplicity. 729 if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){ 730 SplitCriticalEdge(DestSI, i, this); 731 DestSucc = DestSI->getSuccessor(i); 732 } 733 FoldSingleEntryPHINodes(DestSucc); 734 PredSI->setSuccessor(PredCase, DestSucc); 735 MadeChange = true; 736 } 737 738 if (MadeChange) 739 return true; 740 } 741 742 return false; 743 } 744 745 746 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 747 /// load instruction, eliminate it by replacing it with a PHI node. This is an 748 /// important optimization that encourages jump threading, and needs to be run 749 /// interlaced with other jump threading tasks. 750 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 751 // Don't hack volatile loads. 752 if (LI->isVolatile()) return false; 753 754 // If the load is defined in a block with exactly one predecessor, it can't be 755 // partially redundant. 756 BasicBlock *LoadBB = LI->getParent(); 757 if (LoadBB->getSinglePredecessor()) 758 return false; 759 760 Value *LoadedPtr = LI->getOperand(0); 761 762 // If the loaded operand is defined in the LoadBB, it can't be available. 763 // TODO: Could do simple PHI translation, that would be fun :) 764 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 765 if (PtrOp->getParent() == LoadBB) 766 return false; 767 768 // Scan a few instructions up from the load, to see if it is obviously live at 769 // the entry to its block. 770 BasicBlock::iterator BBIt = LI; 771 772 if (Value *AvailableVal = 773 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) { 774 // If the value if the load is locally available within the block, just use 775 // it. This frequently occurs for reg2mem'd allocas. 776 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 777 778 // If the returned value is the load itself, replace with an undef. This can 779 // only happen in dead loops. 780 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 781 LI->replaceAllUsesWith(AvailableVal); 782 LI->eraseFromParent(); 783 return true; 784 } 785 786 // Otherwise, if we scanned the whole block and got to the top of the block, 787 // we know the block is locally transparent to the load. If not, something 788 // might clobber its value. 789 if (BBIt != LoadBB->begin()) 790 return false; 791 792 793 SmallPtrSet<BasicBlock*, 8> PredsScanned; 794 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 795 AvailablePredsTy AvailablePreds; 796 BasicBlock *OneUnavailablePred = 0; 797 798 // If we got here, the loaded value is transparent through to the start of the 799 // block. Check to see if it is available in any of the predecessor blocks. 800 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 801 PI != PE; ++PI) { 802 BasicBlock *PredBB = *PI; 803 804 // If we already scanned this predecessor, skip it. 805 if (!PredsScanned.insert(PredBB)) 806 continue; 807 808 // Scan the predecessor to see if the value is available in the pred. 809 BBIt = PredBB->end(); 810 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6); 811 if (!PredAvailable) { 812 OneUnavailablePred = PredBB; 813 continue; 814 } 815 816 // If so, this load is partially redundant. Remember this info so that we 817 // can create a PHI node. 818 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 819 } 820 821 // If the loaded value isn't available in any predecessor, it isn't partially 822 // redundant. 823 if (AvailablePreds.empty()) return false; 824 825 // Okay, the loaded value is available in at least one (and maybe all!) 826 // predecessors. If the value is unavailable in more than one unique 827 // predecessor, we want to insert a merge block for those common predecessors. 828 // This ensures that we only have to insert one reload, thus not increasing 829 // code size. 830 BasicBlock *UnavailablePred = 0; 831 832 // If there is exactly one predecessor where the value is unavailable, the 833 // already computed 'OneUnavailablePred' block is it. If it ends in an 834 // unconditional branch, we know that it isn't a critical edge. 835 if (PredsScanned.size() == AvailablePreds.size()+1 && 836 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 837 UnavailablePred = OneUnavailablePred; 838 } else if (PredsScanned.size() != AvailablePreds.size()) { 839 // Otherwise, we had multiple unavailable predecessors or we had a critical 840 // edge from the one. 841 SmallVector<BasicBlock*, 8> PredsToSplit; 842 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 843 844 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 845 AvailablePredSet.insert(AvailablePreds[i].first); 846 847 // Add all the unavailable predecessors to the PredsToSplit list. 848 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 849 PI != PE; ++PI) 850 if (!AvailablePredSet.count(*PI)) 851 PredsToSplit.push_back(*PI); 852 853 // Split them out to their own block. 854 UnavailablePred = 855 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(), 856 "thread-pre-split", this); 857 } 858 859 // If the value isn't available in all predecessors, then there will be 860 // exactly one where it isn't available. Insert a load on that edge and add 861 // it to the AvailablePreds list. 862 if (UnavailablePred) { 863 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 864 "Can't handle critical edge here!"); 865 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, 866 LI->getAlignment(), 867 UnavailablePred->getTerminator()); 868 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 869 } 870 871 // Now we know that each predecessor of this block has a value in 872 // AvailablePreds, sort them for efficient access as we're walking the preds. 873 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 874 875 // Create a PHI node at the start of the block for the PRE'd load value. 876 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin()); 877 PN->takeName(LI); 878 879 // Insert new entries into the PHI for each predecessor. A single block may 880 // have multiple entries here. 881 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E; 882 ++PI) { 883 AvailablePredsTy::iterator I = 884 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 885 std::make_pair(*PI, (Value*)0)); 886 887 assert(I != AvailablePreds.end() && I->first == *PI && 888 "Didn't find entry for predecessor!"); 889 890 PN->addIncoming(I->second, I->first); 891 } 892 893 //cerr << "PRE: " << *LI << *PN << "\n"; 894 895 LI->replaceAllUsesWith(PN); 896 LI->eraseFromParent(); 897 898 return true; 899 } 900 901 /// FindMostPopularDest - The specified list contains multiple possible 902 /// threadable destinations. Pick the one that occurs the most frequently in 903 /// the list. 904 static BasicBlock * 905 FindMostPopularDest(BasicBlock *BB, 906 const SmallVectorImpl<std::pair<BasicBlock*, 907 BasicBlock*> > &PredToDestList) { 908 assert(!PredToDestList.empty()); 909 910 // Determine popularity. If there are multiple possible destinations, we 911 // explicitly choose to ignore 'undef' destinations. We prefer to thread 912 // blocks with known and real destinations to threading undef. We'll handle 913 // them later if interesting. 914 DenseMap<BasicBlock*, unsigned> DestPopularity; 915 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 916 if (PredToDestList[i].second) 917 DestPopularity[PredToDestList[i].second]++; 918 919 // Find the most popular dest. 920 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 921 BasicBlock *MostPopularDest = DPI->first; 922 unsigned Popularity = DPI->second; 923 SmallVector<BasicBlock*, 4> SamePopularity; 924 925 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 926 // If the popularity of this entry isn't higher than the popularity we've 927 // seen so far, ignore it. 928 if (DPI->second < Popularity) 929 ; // ignore. 930 else if (DPI->second == Popularity) { 931 // If it is the same as what we've seen so far, keep track of it. 932 SamePopularity.push_back(DPI->first); 933 } else { 934 // If it is more popular, remember it. 935 SamePopularity.clear(); 936 MostPopularDest = DPI->first; 937 Popularity = DPI->second; 938 } 939 } 940 941 // Okay, now we know the most popular destination. If there is more than 942 // destination, we need to determine one. This is arbitrary, but we need 943 // to make a deterministic decision. Pick the first one that appears in the 944 // successor list. 945 if (!SamePopularity.empty()) { 946 SamePopularity.push_back(MostPopularDest); 947 TerminatorInst *TI = BB->getTerminator(); 948 for (unsigned i = 0; ; ++i) { 949 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 950 951 if (std::find(SamePopularity.begin(), SamePopularity.end(), 952 TI->getSuccessor(i)) == SamePopularity.end()) 953 continue; 954 955 MostPopularDest = TI->getSuccessor(i); 956 break; 957 } 958 } 959 960 // Okay, we have finally picked the most popular destination. 961 return MostPopularDest; 962 } 963 964 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) { 965 // If threading this would thread across a loop header, don't even try to 966 // thread the edge. 967 if (LoopHeaders.count(BB)) 968 return false; 969 970 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues; 971 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues)) 972 return false; 973 assert(!PredValues.empty() && 974 "ComputeValueKnownInPredecessors returned true with no values"); 975 976 DEBUG(errs() << "IN BB: " << *BB; 977 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 978 errs() << " BB '" << BB->getName() << "': FOUND condition = "; 979 if (PredValues[i].first) 980 errs() << *PredValues[i].first; 981 else 982 errs() << "UNDEF"; 983 errs() << " for pred '" << PredValues[i].second->getName() 984 << "'.\n"; 985 }); 986 987 // Decide what we want to thread through. Convert our list of known values to 988 // a list of known destinations for each pred. This also discards duplicate 989 // predecessors and keeps track of the undefined inputs (which are represented 990 // as a null dest in the PredToDestList). 991 SmallPtrSet<BasicBlock*, 16> SeenPreds; 992 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 993 994 BasicBlock *OnlyDest = 0; 995 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 996 997 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 998 BasicBlock *Pred = PredValues[i].second; 999 if (!SeenPreds.insert(Pred)) 1000 continue; // Duplicate predecessor entry. 1001 1002 // If the predecessor ends with an indirect goto, we can't change its 1003 // destination. 1004 if (isa<IndirectBrInst>(Pred->getTerminator())) 1005 continue; 1006 1007 ConstantInt *Val = PredValues[i].first; 1008 1009 BasicBlock *DestBB; 1010 if (Val == 0) // Undef. 1011 DestBB = 0; 1012 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1013 DestBB = BI->getSuccessor(Val->isZero()); 1014 else { 1015 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator()); 1016 DestBB = SI->getSuccessor(SI->findCaseValue(Val)); 1017 } 1018 1019 // If we have exactly one destination, remember it for efficiency below. 1020 if (i == 0) 1021 OnlyDest = DestBB; 1022 else if (OnlyDest != DestBB) 1023 OnlyDest = MultipleDestSentinel; 1024 1025 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1026 } 1027 1028 // If all edges were unthreadable, we fail. 1029 if (PredToDestList.empty()) 1030 return false; 1031 1032 // Determine which is the most common successor. If we have many inputs and 1033 // this block is a switch, we want to start by threading the batch that goes 1034 // to the most popular destination first. If we only know about one 1035 // threadable destination (the common case) we can avoid this. 1036 BasicBlock *MostPopularDest = OnlyDest; 1037 1038 if (MostPopularDest == MultipleDestSentinel) 1039 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1040 1041 // Now that we know what the most popular destination is, factor all 1042 // predecessors that will jump to it into a single predecessor. 1043 SmallVector<BasicBlock*, 16> PredsToFactor; 1044 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1045 if (PredToDestList[i].second == MostPopularDest) { 1046 BasicBlock *Pred = PredToDestList[i].first; 1047 1048 // This predecessor may be a switch or something else that has multiple 1049 // edges to the block. Factor each of these edges by listing them 1050 // according to # occurrences in PredsToFactor. 1051 TerminatorInst *PredTI = Pred->getTerminator(); 1052 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 1053 if (PredTI->getSuccessor(i) == BB) 1054 PredsToFactor.push_back(Pred); 1055 } 1056 1057 // If the threadable edges are branching on an undefined value, we get to pick 1058 // the destination that these predecessors should get to. 1059 if (MostPopularDest == 0) 1060 MostPopularDest = BB->getTerminator()-> 1061 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1062 1063 // Ok, try to thread it! 1064 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1065 } 1066 1067 /// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in 1068 /// the current block. See if there are any simplifications we can do based on 1069 /// inputs to the phi node. 1070 /// 1071 bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) { 1072 BasicBlock *BB = PN->getParent(); 1073 1074 // If any of the predecessor blocks end in an unconditional branch, we can 1075 // *duplicate* the jump into that block in order to further encourage jump 1076 // threading and to eliminate cases where we have branch on a phi of an icmp 1077 // (branch on icmp is much better). 1078 1079 // We don't want to do this tranformation for switches, because we don't 1080 // really want to duplicate a switch. 1081 if (isa<SwitchInst>(BB->getTerminator())) 1082 return false; 1083 1084 // Look for unconditional branch predecessors. 1085 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1086 BasicBlock *PredBB = PN->getIncomingBlock(i); 1087 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1088 if (PredBr->isUnconditional() && 1089 // Try to duplicate BB into PredBB. 1090 DuplicateCondBranchOnPHIIntoPred(BB, PredBB)) 1091 return true; 1092 } 1093 1094 return false; 1095 } 1096 1097 1098 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1099 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1100 /// NewPred using the entries from OldPred (suitably mapped). 1101 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1102 BasicBlock *OldPred, 1103 BasicBlock *NewPred, 1104 DenseMap<Instruction*, Value*> &ValueMap) { 1105 for (BasicBlock::iterator PNI = PHIBB->begin(); 1106 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1107 // Ok, we have a PHI node. Figure out what the incoming value was for the 1108 // DestBlock. 1109 Value *IV = PN->getIncomingValueForBlock(OldPred); 1110 1111 // Remap the value if necessary. 1112 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1113 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1114 if (I != ValueMap.end()) 1115 IV = I->second; 1116 } 1117 1118 PN->addIncoming(IV, NewPred); 1119 } 1120 } 1121 1122 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1123 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1124 /// across BB. Transform the IR to reflect this change. 1125 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1126 const SmallVectorImpl<BasicBlock*> &PredBBs, 1127 BasicBlock *SuccBB) { 1128 // If threading to the same block as we come from, we would infinite loop. 1129 if (SuccBB == BB) { 1130 DEBUG(errs() << " Not threading across BB '" << BB->getName() 1131 << "' - would thread to self!\n"); 1132 return false; 1133 } 1134 1135 // If threading this would thread across a loop header, don't thread the edge. 1136 // See the comments above FindLoopHeaders for justifications and caveats. 1137 if (LoopHeaders.count(BB)) { 1138 DEBUG(errs() << " Not threading across loop header BB '" << BB->getName() 1139 << "' to dest BB '" << SuccBB->getName() 1140 << "' - it might create an irreducible loop!\n"); 1141 return false; 1142 } 1143 1144 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB); 1145 if (JumpThreadCost > Threshold) { 1146 DEBUG(errs() << " Not threading BB '" << BB->getName() 1147 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1148 return false; 1149 } 1150 1151 // And finally, do it! Start by factoring the predecessors is needed. 1152 BasicBlock *PredBB; 1153 if (PredBBs.size() == 1) 1154 PredBB = PredBBs[0]; 1155 else { 1156 DEBUG(errs() << " Factoring out " << PredBBs.size() 1157 << " common predecessors.\n"); 1158 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), 1159 ".thr_comm", this); 1160 } 1161 1162 // And finally, do it! 1163 DEBUG(errs() << " Threading edge from '" << PredBB->getName() << "' to '" 1164 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1165 << ", across block:\n " 1166 << *BB << "\n"); 1167 1168 // We are going to have to map operands from the original BB block to the new 1169 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1170 // account for entry from PredBB. 1171 DenseMap<Instruction*, Value*> ValueMapping; 1172 1173 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1174 BB->getName()+".thread", 1175 BB->getParent(), BB); 1176 NewBB->moveAfter(PredBB); 1177 1178 BasicBlock::iterator BI = BB->begin(); 1179 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1180 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1181 1182 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1183 // mapping and using it to remap operands in the cloned instructions. 1184 for (; !isa<TerminatorInst>(BI); ++BI) { 1185 Instruction *New = BI->clone(); 1186 New->setName(BI->getName()); 1187 NewBB->getInstList().push_back(New); 1188 ValueMapping[BI] = New; 1189 1190 // Remap operands to patch up intra-block references. 1191 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1192 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1193 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1194 if (I != ValueMapping.end()) 1195 New->setOperand(i, I->second); 1196 } 1197 } 1198 1199 // We didn't copy the terminator from BB over to NewBB, because there is now 1200 // an unconditional jump to SuccBB. Insert the unconditional jump. 1201 BranchInst::Create(SuccBB, NewBB); 1202 1203 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1204 // PHI nodes for NewBB now. 1205 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1206 1207 // If there were values defined in BB that are used outside the block, then we 1208 // now have to update all uses of the value to use either the original value, 1209 // the cloned value, or some PHI derived value. This can require arbitrary 1210 // PHI insertion, of which we are prepared to do, clean these up now. 1211 SSAUpdater SSAUpdate; 1212 SmallVector<Use*, 16> UsesToRename; 1213 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1214 // Scan all uses of this instruction to see if it is used outside of its 1215 // block, and if so, record them in UsesToRename. 1216 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1217 ++UI) { 1218 Instruction *User = cast<Instruction>(*UI); 1219 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1220 if (UserPN->getIncomingBlock(UI) == BB) 1221 continue; 1222 } else if (User->getParent() == BB) 1223 continue; 1224 1225 UsesToRename.push_back(&UI.getUse()); 1226 } 1227 1228 // If there are no uses outside the block, we're done with this instruction. 1229 if (UsesToRename.empty()) 1230 continue; 1231 1232 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1233 1234 // We found a use of I outside of BB. Rename all uses of I that are outside 1235 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1236 // with the two values we know. 1237 SSAUpdate.Initialize(I); 1238 SSAUpdate.AddAvailableValue(BB, I); 1239 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); 1240 1241 while (!UsesToRename.empty()) 1242 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1243 DEBUG(errs() << "\n"); 1244 } 1245 1246 1247 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1248 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1249 // us to simplify any PHI nodes in BB. 1250 TerminatorInst *PredTerm = PredBB->getTerminator(); 1251 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1252 if (PredTerm->getSuccessor(i) == BB) { 1253 RemovePredecessorAndSimplify(BB, PredBB, TD); 1254 PredTerm->setSuccessor(i, NewBB); 1255 } 1256 1257 // At this point, the IR is fully up to date and consistent. Do a quick scan 1258 // over the new instructions and zap any that are constants or dead. This 1259 // frequently happens because of phi translation. 1260 BI = NewBB->begin(); 1261 for (BasicBlock::iterator E = NewBB->end(); BI != E; ) { 1262 Instruction *Inst = BI++; 1263 1264 if (Value *V = SimplifyInstruction(Inst, TD)) { 1265 WeakVH BIHandle(BI); 1266 ReplaceAndSimplifyAllUses(Inst, V, TD); 1267 if (BIHandle == 0) 1268 BI = NewBB->begin(); 1269 continue; 1270 } 1271 1272 RecursivelyDeleteTriviallyDeadInstructions(Inst); 1273 } 1274 1275 // Threaded an edge! 1276 ++NumThreads; 1277 return true; 1278 } 1279 1280 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1281 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1282 /// If we can duplicate the contents of BB up into PredBB do so now, this 1283 /// improves the odds that the branch will be on an analyzable instruction like 1284 /// a compare. 1285 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1286 BasicBlock *PredBB) { 1287 // If BB is a loop header, then duplicating this block outside the loop would 1288 // cause us to transform this into an irreducible loop, don't do this. 1289 // See the comments above FindLoopHeaders for justifications and caveats. 1290 if (LoopHeaders.count(BB)) { 1291 DEBUG(errs() << " Not duplicating loop header '" << BB->getName() 1292 << "' into predecessor block '" << PredBB->getName() 1293 << "' - it might create an irreducible loop!\n"); 1294 return false; 1295 } 1296 1297 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB); 1298 if (DuplicationCost > Threshold) { 1299 DEBUG(errs() << " Not duplicating BB '" << BB->getName() 1300 << "' - Cost is too high: " << DuplicationCost << "\n"); 1301 return false; 1302 } 1303 1304 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1305 // of PredBB. 1306 DEBUG(errs() << " Duplicating block '" << BB->getName() << "' into end of '" 1307 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1308 << DuplicationCost << " block is:" << *BB << "\n"); 1309 1310 // We are going to have to map operands from the original BB block into the 1311 // PredBB block. Evaluate PHI nodes in BB. 1312 DenseMap<Instruction*, Value*> ValueMapping; 1313 1314 BasicBlock::iterator BI = BB->begin(); 1315 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1316 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1317 1318 BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1319 1320 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1321 // mapping and using it to remap operands in the cloned instructions. 1322 for (; BI != BB->end(); ++BI) { 1323 Instruction *New = BI->clone(); 1324 New->setName(BI->getName()); 1325 PredBB->getInstList().insert(OldPredBranch, New); 1326 ValueMapping[BI] = New; 1327 1328 // Remap operands to patch up intra-block references. 1329 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1330 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1331 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1332 if (I != ValueMapping.end()) 1333 New->setOperand(i, I->second); 1334 } 1335 } 1336 1337 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1338 // add entries to the PHI nodes for branch from PredBB now. 1339 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1340 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1341 ValueMapping); 1342 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1343 ValueMapping); 1344 1345 // If there were values defined in BB that are used outside the block, then we 1346 // now have to update all uses of the value to use either the original value, 1347 // the cloned value, or some PHI derived value. This can require arbitrary 1348 // PHI insertion, of which we are prepared to do, clean these up now. 1349 SSAUpdater SSAUpdate; 1350 SmallVector<Use*, 16> UsesToRename; 1351 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1352 // Scan all uses of this instruction to see if it is used outside of its 1353 // block, and if so, record them in UsesToRename. 1354 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1355 ++UI) { 1356 Instruction *User = cast<Instruction>(*UI); 1357 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1358 if (UserPN->getIncomingBlock(UI) == BB) 1359 continue; 1360 } else if (User->getParent() == BB) 1361 continue; 1362 1363 UsesToRename.push_back(&UI.getUse()); 1364 } 1365 1366 // If there are no uses outside the block, we're done with this instruction. 1367 if (UsesToRename.empty()) 1368 continue; 1369 1370 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1371 1372 // We found a use of I outside of BB. Rename all uses of I that are outside 1373 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1374 // with the two values we know. 1375 SSAUpdate.Initialize(I); 1376 SSAUpdate.AddAvailableValue(BB, I); 1377 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); 1378 1379 while (!UsesToRename.empty()) 1380 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1381 DEBUG(errs() << "\n"); 1382 } 1383 1384 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1385 // that we nuked. 1386 RemovePredecessorAndSimplify(BB, PredBB, TD); 1387 1388 // Remove the unconditional branch at the end of the PredBB block. 1389 OldPredBranch->eraseFromParent(); 1390 1391 ++NumDupes; 1392 return true; 1393 } 1394 1395 1396