xref: /llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp (revision 3c9aca907970255d37da45528e6578f436de6e22)
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "jump-threading"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/IntrinsicInst.h"
17 #include "llvm/LLVMContext.h"
18 #include "llvm/Pass.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LazyValueInfo.h"
21 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
22 #include "llvm/Transforms/Utils/Local.h"
23 #include "llvm/Transforms/Utils/SSAUpdater.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 using namespace llvm;
34 
35 STATISTIC(NumThreads, "Number of jumps threaded");
36 STATISTIC(NumFolds,   "Number of terminators folded");
37 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
38 
39 static cl::opt<unsigned>
40 Threshold("jump-threading-threshold",
41           cl::desc("Max block size to duplicate for jump threading"),
42           cl::init(6), cl::Hidden);
43 
44 // Turn on use of LazyValueInfo.
45 static cl::opt<bool>
46 EnableLVI("enable-jump-threading-lvi", cl::ReallyHidden);
47 
48 
49 
50 namespace {
51   /// This pass performs 'jump threading', which looks at blocks that have
52   /// multiple predecessors and multiple successors.  If one or more of the
53   /// predecessors of the block can be proven to always jump to one of the
54   /// successors, we forward the edge from the predecessor to the successor by
55   /// duplicating the contents of this block.
56   ///
57   /// An example of when this can occur is code like this:
58   ///
59   ///   if () { ...
60   ///     X = 4;
61   ///   }
62   ///   if (X < 3) {
63   ///
64   /// In this case, the unconditional branch at the end of the first if can be
65   /// revectored to the false side of the second if.
66   ///
67   class JumpThreading : public FunctionPass {
68     TargetData *TD;
69     LazyValueInfo *LVI;
70 #ifdef NDEBUG
71     SmallPtrSet<BasicBlock*, 16> LoopHeaders;
72 #else
73     SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
74 #endif
75   public:
76     static char ID; // Pass identification
77     JumpThreading() : FunctionPass(&ID) {}
78 
79     bool runOnFunction(Function &F);
80 
81     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
82       if (EnableLVI)
83         AU.addRequired<LazyValueInfo>();
84     }
85 
86     void FindLoopHeaders(Function &F);
87     bool ProcessBlock(BasicBlock *BB);
88     bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
89                     BasicBlock *SuccBB);
90     bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
91                                           BasicBlock *PredBB);
92 
93     typedef SmallVectorImpl<std::pair<ConstantInt*,
94                                       BasicBlock*> > PredValueInfo;
95 
96     bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
97                                          PredValueInfo &Result);
98     bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB);
99 
100 
101     bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
102     bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
103 
104     bool ProcessJumpOnPHI(PHINode *PN);
105 
106     bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
107   };
108 }
109 
110 char JumpThreading::ID = 0;
111 static RegisterPass<JumpThreading>
112 X("jump-threading", "Jump Threading");
113 
114 // Public interface to the Jump Threading pass
115 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
116 
117 /// runOnFunction - Top level algorithm.
118 ///
119 bool JumpThreading::runOnFunction(Function &F) {
120   DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n");
121   TD = getAnalysisIfAvailable<TargetData>();
122   LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0;
123 
124   FindLoopHeaders(F);
125 
126   bool AnotherIteration = true, EverChanged = false;
127   while (AnotherIteration) {
128     AnotherIteration = false;
129     bool Changed = false;
130     for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
131       BasicBlock *BB = I;
132       // Thread all of the branches we can over this block.
133       while (ProcessBlock(BB))
134         Changed = true;
135 
136       ++I;
137 
138       // If the block is trivially dead, zap it.  This eliminates the successor
139       // edges which simplifies the CFG.
140       if (pred_begin(BB) == pred_end(BB) &&
141           BB != &BB->getParent()->getEntryBlock()) {
142         DEBUG(errs() << "  JT: Deleting dead block '" << BB->getName()
143               << "' with terminator: " << *BB->getTerminator() << '\n');
144         LoopHeaders.erase(BB);
145         DeleteDeadBlock(BB);
146         Changed = true;
147       } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
148         // Can't thread an unconditional jump, but if the block is "almost
149         // empty", we can replace uses of it with uses of the successor and make
150         // this dead.
151         if (BI->isUnconditional() &&
152             BB != &BB->getParent()->getEntryBlock()) {
153           BasicBlock::iterator BBI = BB->getFirstNonPHI();
154           // Ignore dbg intrinsics.
155           while (isa<DbgInfoIntrinsic>(BBI))
156             ++BBI;
157           // If the terminator is the only non-phi instruction, try to nuke it.
158           if (BBI->isTerminator()) {
159             // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
160             // block, we have to make sure it isn't in the LoopHeaders set.  We
161             // reinsert afterward if needed.
162             bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
163             BasicBlock *Succ = BI->getSuccessor(0);
164 
165             if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
166               Changed = true;
167               // If we deleted BB and BB was the header of a loop, then the
168               // successor is now the header of the loop.
169               BB = Succ;
170             }
171 
172             if (ErasedFromLoopHeaders)
173               LoopHeaders.insert(BB);
174           }
175         }
176       }
177     }
178     AnotherIteration = Changed;
179     EverChanged |= Changed;
180   }
181 
182   LoopHeaders.clear();
183   return EverChanged;
184 }
185 
186 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
187 /// thread across it.
188 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
189   /// Ignore PHI nodes, these will be flattened when duplication happens.
190   BasicBlock::const_iterator I = BB->getFirstNonPHI();
191 
192   // FIXME: THREADING will delete values that are just used to compute the
193   // branch, so they shouldn't count against the duplication cost.
194 
195 
196   // Sum up the cost of each instruction until we get to the terminator.  Don't
197   // include the terminator because the copy won't include it.
198   unsigned Size = 0;
199   for (; !isa<TerminatorInst>(I); ++I) {
200     // Debugger intrinsics don't incur code size.
201     if (isa<DbgInfoIntrinsic>(I)) continue;
202 
203     // If this is a pointer->pointer bitcast, it is free.
204     if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
205       continue;
206 
207     // All other instructions count for at least one unit.
208     ++Size;
209 
210     // Calls are more expensive.  If they are non-intrinsic calls, we model them
211     // as having cost of 4.  If they are a non-vector intrinsic, we model them
212     // as having cost of 2 total, and if they are a vector intrinsic, we model
213     // them as having cost 1.
214     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
215       if (!isa<IntrinsicInst>(CI))
216         Size += 3;
217       else if (!isa<VectorType>(CI->getType()))
218         Size += 1;
219     }
220   }
221 
222   // Threading through a switch statement is particularly profitable.  If this
223   // block ends in a switch, decrease its cost to make it more likely to happen.
224   if (isa<SwitchInst>(I))
225     Size = Size > 6 ? Size-6 : 0;
226 
227   return Size;
228 }
229 
230 /// FindLoopHeaders - We do not want jump threading to turn proper loop
231 /// structures into irreducible loops.  Doing this breaks up the loop nesting
232 /// hierarchy and pessimizes later transformations.  To prevent this from
233 /// happening, we first have to find the loop headers.  Here we approximate this
234 /// by finding targets of backedges in the CFG.
235 ///
236 /// Note that there definitely are cases when we want to allow threading of
237 /// edges across a loop header.  For example, threading a jump from outside the
238 /// loop (the preheader) to an exit block of the loop is definitely profitable.
239 /// It is also almost always profitable to thread backedges from within the loop
240 /// to exit blocks, and is often profitable to thread backedges to other blocks
241 /// within the loop (forming a nested loop).  This simple analysis is not rich
242 /// enough to track all of these properties and keep it up-to-date as the CFG
243 /// mutates, so we don't allow any of these transformations.
244 ///
245 void JumpThreading::FindLoopHeaders(Function &F) {
246   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
247   FindFunctionBackedges(F, Edges);
248 
249   for (unsigned i = 0, e = Edges.size(); i != e; ++i)
250     LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
251 }
252 
253 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
254 /// if we can infer that the value is a known ConstantInt in any of our
255 /// predecessors.  If so, return the known list of value and pred BB in the
256 /// result vector.  If a value is known to be undef, it is returned as null.
257 ///
258 /// This returns true if there were any known values.
259 ///
260 bool JumpThreading::
261 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
262   // If V is a constantint, then it is known in all predecessors.
263   if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
264     ConstantInt *CI = dyn_cast<ConstantInt>(V);
265 
266     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
267       Result.push_back(std::make_pair(CI, *PI));
268     return true;
269   }
270 
271   // If V is a non-instruction value, or an instruction in a different block,
272   // then it can't be derived from a PHI.
273   Instruction *I = dyn_cast<Instruction>(V);
274   if (I == 0 || I->getParent() != BB) {
275 
276     // Okay, if this is a live-in value, see if it has a known value at the end
277     // of any of our predecessors.
278     //
279     // FIXME: This should be an edge property, not a block end property.
280     /// TODO: Per PR2563, we could infer value range information about a
281     /// predecessor based on its terminator.
282     //
283     if (LVI) {
284       // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
285       // "I" is a non-local compare-with-a-constant instruction.  This would be
286       // able to handle value inequalities better, for example if the compare is
287       // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
288       // Perhaps getConstantOnEdge should be smart enough to do this?
289 
290       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
291         // If the value is known by LazyValueInfo to be a constant in a
292         // predecessor, use that information to try to thread this block.
293         Constant *PredCst = LVI->getConstantOnEdge(V, *PI, BB);
294         if (PredCst == 0 ||
295             (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst)))
296           continue;
297 
298         Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), *PI));
299       }
300 
301       return !Result.empty();
302     }
303 
304     return false;
305   }
306 
307   /// If I is a PHI node, then we know the incoming values for any constants.
308   if (PHINode *PN = dyn_cast<PHINode>(I)) {
309     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
310       Value *InVal = PN->getIncomingValue(i);
311       if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
312         ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
313         Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
314       }
315     }
316     return !Result.empty();
317   }
318 
319   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
320 
321   // Handle some boolean conditions.
322   if (I->getType()->getPrimitiveSizeInBits() == 1) {
323     // X | true -> true
324     // X & false -> false
325     if (I->getOpcode() == Instruction::Or ||
326         I->getOpcode() == Instruction::And) {
327       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
328       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
329 
330       if (LHSVals.empty() && RHSVals.empty())
331         return false;
332 
333       ConstantInt *InterestingVal;
334       if (I->getOpcode() == Instruction::Or)
335         InterestingVal = ConstantInt::getTrue(I->getContext());
336       else
337         InterestingVal = ConstantInt::getFalse(I->getContext());
338 
339       // Scan for the sentinel.
340       for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
341         if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0)
342           Result.push_back(LHSVals[i]);
343       for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
344         if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0)
345           Result.push_back(RHSVals[i]);
346       return !Result.empty();
347     }
348 
349     // Handle the NOT form of XOR.
350     if (I->getOpcode() == Instruction::Xor &&
351         isa<ConstantInt>(I->getOperand(1)) &&
352         cast<ConstantInt>(I->getOperand(1))->isOne()) {
353       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result);
354       if (Result.empty())
355         return false;
356 
357       // Invert the known values.
358       for (unsigned i = 0, e = Result.size(); i != e; ++i)
359         if (Result[i].first)
360           Result[i].first =
361             cast<ConstantInt>(ConstantExpr::getNot(Result[i].first));
362       return true;
363     }
364   }
365 
366   // Handle compare with phi operand, where the PHI is defined in this block.
367   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
368     PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
369     if (PN && PN->getParent() == BB) {
370       // We can do this simplification if any comparisons fold to true or false.
371       // See if any do.
372       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
373         BasicBlock *PredBB = PN->getIncomingBlock(i);
374         Value *LHS = PN->getIncomingValue(i);
375         Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
376 
377         Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
378         if (Res == 0) {
379           if (!LVI || !isa<Constant>(RHS))
380             continue;
381 
382           LazyValueInfo::Tristate
383             ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
384                                            cast<Constant>(RHS), PredBB, BB);
385           if (ResT == LazyValueInfo::Unknown)
386             continue;
387           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
388         }
389 
390         if (isa<UndefValue>(Res))
391           Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
392         else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
393           Result.push_back(std::make_pair(CI, PredBB));
394       }
395 
396       return !Result.empty();
397     }
398 
399 
400     // If comparing a live-in value against a constant, see if we know the
401     // live-in value on any predecessors.
402     if (LVI && isa<Constant>(Cmp->getOperand(1)) &&
403         Cmp->getType()->isInteger() && // Not vector compare.
404         (!isa<Instruction>(Cmp->getOperand(0)) ||
405          cast<Instruction>(Cmp->getOperand(0))->getParent() != BB)) {
406       Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
407 
408       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
409         // If the value is known by LazyValueInfo to be a constant in a
410         // predecessor, use that information to try to thread this block.
411         LazyValueInfo::Tristate
412           Res = LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
413                                         RHSCst, *PI, BB);
414         if (Res == LazyValueInfo::Unknown)
415           continue;
416 
417         Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
418         Result.push_back(std::make_pair(cast<ConstantInt>(ResC), *PI));
419       }
420 
421       return !Result.empty();
422     }
423   }
424   return false;
425 }
426 
427 
428 
429 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
430 /// in an undefined jump, decide which block is best to revector to.
431 ///
432 /// Since we can pick an arbitrary destination, we pick the successor with the
433 /// fewest predecessors.  This should reduce the in-degree of the others.
434 ///
435 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
436   TerminatorInst *BBTerm = BB->getTerminator();
437   unsigned MinSucc = 0;
438   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
439   // Compute the successor with the minimum number of predecessors.
440   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
441   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
442     TestBB = BBTerm->getSuccessor(i);
443     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
444     if (NumPreds < MinNumPreds)
445       MinSucc = i;
446   }
447 
448   return MinSucc;
449 }
450 
451 /// ProcessBlock - If there are any predecessors whose control can be threaded
452 /// through to a successor, transform them now.
453 bool JumpThreading::ProcessBlock(BasicBlock *BB) {
454   // If this block has a single predecessor, and if that pred has a single
455   // successor, merge the blocks.  This encourages recursive jump threading
456   // because now the condition in this block can be threaded through
457   // predecessors of our predecessor block.
458   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
459     if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
460         SinglePred != BB) {
461       // If SinglePred was a loop header, BB becomes one.
462       if (LoopHeaders.erase(SinglePred))
463         LoopHeaders.insert(BB);
464 
465       // Remember if SinglePred was the entry block of the function.  If so, we
466       // will need to move BB back to the entry position.
467       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
468       MergeBasicBlockIntoOnlyPred(BB);
469 
470       if (isEntry && BB != &BB->getParent()->getEntryBlock())
471         BB->moveBefore(&BB->getParent()->getEntryBlock());
472       return true;
473     }
474   }
475 
476   // Look to see if the terminator is a branch of switch, if not we can't thread
477   // it.
478   Value *Condition;
479   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
480     // Can't thread an unconditional jump.
481     if (BI->isUnconditional()) return false;
482     Condition = BI->getCondition();
483   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
484     Condition = SI->getCondition();
485   else
486     return false; // Must be an invoke.
487 
488   // If the terminator of this block is branching on a constant, simplify the
489   // terminator to an unconditional branch.  This can occur due to threading in
490   // other blocks.
491   if (isa<ConstantInt>(Condition)) {
492     DEBUG(errs() << "  In block '" << BB->getName()
493           << "' folding terminator: " << *BB->getTerminator() << '\n');
494     ++NumFolds;
495     ConstantFoldTerminator(BB);
496     return true;
497   }
498 
499   // If the terminator is branching on an undef, we can pick any of the
500   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
501   if (isa<UndefValue>(Condition)) {
502     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
503 
504     // Fold the branch/switch.
505     TerminatorInst *BBTerm = BB->getTerminator();
506     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
507       if (i == BestSucc) continue;
508       RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
509     }
510 
511     DEBUG(errs() << "  In block '" << BB->getName()
512           << "' folding undef terminator: " << *BBTerm << '\n');
513     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
514     BBTerm->eraseFromParent();
515     return true;
516   }
517 
518   Instruction *CondInst = dyn_cast<Instruction>(Condition);
519 
520   // If the condition is an instruction defined in another block, see if a
521   // predecessor has the same condition:
522   //     br COND, BBX, BBY
523   //  BBX:
524   //     br COND, BBZ, BBW
525   if (!LVI &&
526       !Condition->hasOneUse() && // Multiple uses.
527       (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
528     pred_iterator PI = pred_begin(BB), E = pred_end(BB);
529     if (isa<BranchInst>(BB->getTerminator())) {
530       for (; PI != E; ++PI)
531         if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
532           if (PBI->isConditional() && PBI->getCondition() == Condition &&
533               ProcessBranchOnDuplicateCond(*PI, BB))
534             return true;
535     } else {
536       assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
537       for (; PI != E; ++PI)
538         if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
539           if (PSI->getCondition() == Condition &&
540               ProcessSwitchOnDuplicateCond(*PI, BB))
541             return true;
542     }
543   }
544 
545   // All the rest of our checks depend on the condition being an instruction.
546   if (CondInst == 0) {
547     // FIXME: Unify this with code below.
548     if (LVI && ProcessThreadableEdges(Condition, BB))
549       return true;
550     return false;
551   }
552 
553 
554   // See if this is a phi node in the current block.
555   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
556     if (PN->getParent() == BB)
557       return ProcessJumpOnPHI(PN);
558 
559   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
560     if (!LVI &&
561         (!isa<PHINode>(CondCmp->getOperand(0)) ||
562          cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) {
563       // If we have a comparison, loop over the predecessors to see if there is
564       // a condition with a lexically identical value.
565       pred_iterator PI = pred_begin(BB), E = pred_end(BB);
566       for (; PI != E; ++PI)
567         if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
568           if (PBI->isConditional() && *PI != BB) {
569             if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
570               if (CI->getOperand(0) == CondCmp->getOperand(0) &&
571                   CI->getOperand(1) == CondCmp->getOperand(1) &&
572                   CI->getPredicate() == CondCmp->getPredicate()) {
573                 // TODO: Could handle things like (x != 4) --> (x == 17)
574                 if (ProcessBranchOnDuplicateCond(*PI, BB))
575                   return true;
576               }
577             }
578           }
579     }
580   }
581 
582   // Check for some cases that are worth simplifying.  Right now we want to look
583   // for loads that are used by a switch or by the condition for the branch.  If
584   // we see one, check to see if it's partially redundant.  If so, insert a PHI
585   // which can then be used to thread the values.
586   //
587   // This is particularly important because reg2mem inserts loads and stores all
588   // over the place, and this blocks jump threading if we don't zap them.
589   Value *SimplifyValue = CondInst;
590   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
591     if (isa<Constant>(CondCmp->getOperand(1)))
592       SimplifyValue = CondCmp->getOperand(0);
593 
594   // TODO: There are other places where load PRE would be profitable, such as
595   // more complex comparisons.
596   if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
597     if (SimplifyPartiallyRedundantLoad(LI))
598       return true;
599 
600 
601   // Handle a variety of cases where we are branching on something derived from
602   // a PHI node in the current block.  If we can prove that any predecessors
603   // compute a predictable value based on a PHI node, thread those predecessors.
604   //
605   if (ProcessThreadableEdges(CondInst, BB))
606     return true;
607 
608 
609   // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
610   // "(X == 4)" thread through this block.
611 
612   return false;
613 }
614 
615 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
616 /// block that jump on exactly the same condition.  This means that we almost
617 /// always know the direction of the edge in the DESTBB:
618 ///  PREDBB:
619 ///     br COND, DESTBB, BBY
620 ///  DESTBB:
621 ///     br COND, BBZ, BBW
622 ///
623 /// If DESTBB has multiple predecessors, we can't just constant fold the branch
624 /// in DESTBB, we have to thread over it.
625 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
626                                                  BasicBlock *BB) {
627   BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
628 
629   // If both successors of PredBB go to DESTBB, we don't know anything.  We can
630   // fold the branch to an unconditional one, which allows other recursive
631   // simplifications.
632   bool BranchDir;
633   if (PredBI->getSuccessor(1) != BB)
634     BranchDir = true;
635   else if (PredBI->getSuccessor(0) != BB)
636     BranchDir = false;
637   else {
638     DEBUG(errs() << "  In block '" << PredBB->getName()
639           << "' folding terminator: " << *PredBB->getTerminator() << '\n');
640     ++NumFolds;
641     ConstantFoldTerminator(PredBB);
642     return true;
643   }
644 
645   BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
646 
647   // If the dest block has one predecessor, just fix the branch condition to a
648   // constant and fold it.
649   if (BB->getSinglePredecessor()) {
650     DEBUG(errs() << "  In block '" << BB->getName()
651           << "' folding condition to '" << BranchDir << "': "
652           << *BB->getTerminator() << '\n');
653     ++NumFolds;
654     Value *OldCond = DestBI->getCondition();
655     DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
656                                           BranchDir));
657     ConstantFoldTerminator(BB);
658     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
659     return true;
660   }
661 
662 
663   // Next, figure out which successor we are threading to.
664   BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
665 
666   SmallVector<BasicBlock*, 2> Preds;
667   Preds.push_back(PredBB);
668 
669   // Ok, try to thread it!
670   return ThreadEdge(BB, Preds, SuccBB);
671 }
672 
673 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
674 /// block that switch on exactly the same condition.  This means that we almost
675 /// always know the direction of the edge in the DESTBB:
676 ///  PREDBB:
677 ///     switch COND [... DESTBB, BBY ... ]
678 ///  DESTBB:
679 ///     switch COND [... BBZ, BBW ]
680 ///
681 /// Optimizing switches like this is very important, because simplifycfg builds
682 /// switches out of repeated 'if' conditions.
683 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
684                                                  BasicBlock *DestBB) {
685   // Can't thread edge to self.
686   if (PredBB == DestBB)
687     return false;
688 
689   SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
690   SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
691 
692   // There are a variety of optimizations that we can potentially do on these
693   // blocks: we order them from most to least preferable.
694 
695   // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
696   // directly to their destination.  This does not introduce *any* code size
697   // growth.  Skip debug info first.
698   BasicBlock::iterator BBI = DestBB->begin();
699   while (isa<DbgInfoIntrinsic>(BBI))
700     BBI++;
701 
702   // FIXME: Thread if it just contains a PHI.
703   if (isa<SwitchInst>(BBI)) {
704     bool MadeChange = false;
705     // Ignore the default edge for now.
706     for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
707       ConstantInt *DestVal = DestSI->getCaseValue(i);
708       BasicBlock *DestSucc = DestSI->getSuccessor(i);
709 
710       // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
711       // PredSI has an explicit case for it.  If so, forward.  If it is covered
712       // by the default case, we can't update PredSI.
713       unsigned PredCase = PredSI->findCaseValue(DestVal);
714       if (PredCase == 0) continue;
715 
716       // If PredSI doesn't go to DestBB on this value, then it won't reach the
717       // case on this condition.
718       if (PredSI->getSuccessor(PredCase) != DestBB &&
719           DestSI->getSuccessor(i) != DestBB)
720         continue;
721 
722       // Otherwise, we're safe to make the change.  Make sure that the edge from
723       // DestSI to DestSucc is not critical and has no PHI nodes.
724       DEBUG(errs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
725       DEBUG(errs() << "THROUGH: " << *DestSI);
726 
727       // If the destination has PHI nodes, just split the edge for updating
728       // simplicity.
729       if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
730         SplitCriticalEdge(DestSI, i, this);
731         DestSucc = DestSI->getSuccessor(i);
732       }
733       FoldSingleEntryPHINodes(DestSucc);
734       PredSI->setSuccessor(PredCase, DestSucc);
735       MadeChange = true;
736     }
737 
738     if (MadeChange)
739       return true;
740   }
741 
742   return false;
743 }
744 
745 
746 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
747 /// load instruction, eliminate it by replacing it with a PHI node.  This is an
748 /// important optimization that encourages jump threading, and needs to be run
749 /// interlaced with other jump threading tasks.
750 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
751   // Don't hack volatile loads.
752   if (LI->isVolatile()) return false;
753 
754   // If the load is defined in a block with exactly one predecessor, it can't be
755   // partially redundant.
756   BasicBlock *LoadBB = LI->getParent();
757   if (LoadBB->getSinglePredecessor())
758     return false;
759 
760   Value *LoadedPtr = LI->getOperand(0);
761 
762   // If the loaded operand is defined in the LoadBB, it can't be available.
763   // TODO: Could do simple PHI translation, that would be fun :)
764   if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
765     if (PtrOp->getParent() == LoadBB)
766       return false;
767 
768   // Scan a few instructions up from the load, to see if it is obviously live at
769   // the entry to its block.
770   BasicBlock::iterator BBIt = LI;
771 
772   if (Value *AvailableVal =
773         FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
774     // If the value if the load is locally available within the block, just use
775     // it.  This frequently occurs for reg2mem'd allocas.
776     //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
777 
778     // If the returned value is the load itself, replace with an undef. This can
779     // only happen in dead loops.
780     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
781     LI->replaceAllUsesWith(AvailableVal);
782     LI->eraseFromParent();
783     return true;
784   }
785 
786   // Otherwise, if we scanned the whole block and got to the top of the block,
787   // we know the block is locally transparent to the load.  If not, something
788   // might clobber its value.
789   if (BBIt != LoadBB->begin())
790     return false;
791 
792 
793   SmallPtrSet<BasicBlock*, 8> PredsScanned;
794   typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
795   AvailablePredsTy AvailablePreds;
796   BasicBlock *OneUnavailablePred = 0;
797 
798   // If we got here, the loaded value is transparent through to the start of the
799   // block.  Check to see if it is available in any of the predecessor blocks.
800   for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
801        PI != PE; ++PI) {
802     BasicBlock *PredBB = *PI;
803 
804     // If we already scanned this predecessor, skip it.
805     if (!PredsScanned.insert(PredBB))
806       continue;
807 
808     // Scan the predecessor to see if the value is available in the pred.
809     BBIt = PredBB->end();
810     Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
811     if (!PredAvailable) {
812       OneUnavailablePred = PredBB;
813       continue;
814     }
815 
816     // If so, this load is partially redundant.  Remember this info so that we
817     // can create a PHI node.
818     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
819   }
820 
821   // If the loaded value isn't available in any predecessor, it isn't partially
822   // redundant.
823   if (AvailablePreds.empty()) return false;
824 
825   // Okay, the loaded value is available in at least one (and maybe all!)
826   // predecessors.  If the value is unavailable in more than one unique
827   // predecessor, we want to insert a merge block for those common predecessors.
828   // This ensures that we only have to insert one reload, thus not increasing
829   // code size.
830   BasicBlock *UnavailablePred = 0;
831 
832   // If there is exactly one predecessor where the value is unavailable, the
833   // already computed 'OneUnavailablePred' block is it.  If it ends in an
834   // unconditional branch, we know that it isn't a critical edge.
835   if (PredsScanned.size() == AvailablePreds.size()+1 &&
836       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
837     UnavailablePred = OneUnavailablePred;
838   } else if (PredsScanned.size() != AvailablePreds.size()) {
839     // Otherwise, we had multiple unavailable predecessors or we had a critical
840     // edge from the one.
841     SmallVector<BasicBlock*, 8> PredsToSplit;
842     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
843 
844     for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
845       AvailablePredSet.insert(AvailablePreds[i].first);
846 
847     // Add all the unavailable predecessors to the PredsToSplit list.
848     for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
849          PI != PE; ++PI)
850       if (!AvailablePredSet.count(*PI))
851         PredsToSplit.push_back(*PI);
852 
853     // Split them out to their own block.
854     UnavailablePred =
855       SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
856                              "thread-pre-split", this);
857   }
858 
859   // If the value isn't available in all predecessors, then there will be
860   // exactly one where it isn't available.  Insert a load on that edge and add
861   // it to the AvailablePreds list.
862   if (UnavailablePred) {
863     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
864            "Can't handle critical edge here!");
865     Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
866                                  LI->getAlignment(),
867                                  UnavailablePred->getTerminator());
868     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
869   }
870 
871   // Now we know that each predecessor of this block has a value in
872   // AvailablePreds, sort them for efficient access as we're walking the preds.
873   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
874 
875   // Create a PHI node at the start of the block for the PRE'd load value.
876   PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
877   PN->takeName(LI);
878 
879   // Insert new entries into the PHI for each predecessor.  A single block may
880   // have multiple entries here.
881   for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
882        ++PI) {
883     AvailablePredsTy::iterator I =
884       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
885                        std::make_pair(*PI, (Value*)0));
886 
887     assert(I != AvailablePreds.end() && I->first == *PI &&
888            "Didn't find entry for predecessor!");
889 
890     PN->addIncoming(I->second, I->first);
891   }
892 
893   //cerr << "PRE: " << *LI << *PN << "\n";
894 
895   LI->replaceAllUsesWith(PN);
896   LI->eraseFromParent();
897 
898   return true;
899 }
900 
901 /// FindMostPopularDest - The specified list contains multiple possible
902 /// threadable destinations.  Pick the one that occurs the most frequently in
903 /// the list.
904 static BasicBlock *
905 FindMostPopularDest(BasicBlock *BB,
906                     const SmallVectorImpl<std::pair<BasicBlock*,
907                                   BasicBlock*> > &PredToDestList) {
908   assert(!PredToDestList.empty());
909 
910   // Determine popularity.  If there are multiple possible destinations, we
911   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
912   // blocks with known and real destinations to threading undef.  We'll handle
913   // them later if interesting.
914   DenseMap<BasicBlock*, unsigned> DestPopularity;
915   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
916     if (PredToDestList[i].second)
917       DestPopularity[PredToDestList[i].second]++;
918 
919   // Find the most popular dest.
920   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
921   BasicBlock *MostPopularDest = DPI->first;
922   unsigned Popularity = DPI->second;
923   SmallVector<BasicBlock*, 4> SamePopularity;
924 
925   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
926     // If the popularity of this entry isn't higher than the popularity we've
927     // seen so far, ignore it.
928     if (DPI->second < Popularity)
929       ; // ignore.
930     else if (DPI->second == Popularity) {
931       // If it is the same as what we've seen so far, keep track of it.
932       SamePopularity.push_back(DPI->first);
933     } else {
934       // If it is more popular, remember it.
935       SamePopularity.clear();
936       MostPopularDest = DPI->first;
937       Popularity = DPI->second;
938     }
939   }
940 
941   // Okay, now we know the most popular destination.  If there is more than
942   // destination, we need to determine one.  This is arbitrary, but we need
943   // to make a deterministic decision.  Pick the first one that appears in the
944   // successor list.
945   if (!SamePopularity.empty()) {
946     SamePopularity.push_back(MostPopularDest);
947     TerminatorInst *TI = BB->getTerminator();
948     for (unsigned i = 0; ; ++i) {
949       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
950 
951       if (std::find(SamePopularity.begin(), SamePopularity.end(),
952                     TI->getSuccessor(i)) == SamePopularity.end())
953         continue;
954 
955       MostPopularDest = TI->getSuccessor(i);
956       break;
957     }
958   }
959 
960   // Okay, we have finally picked the most popular destination.
961   return MostPopularDest;
962 }
963 
964 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) {
965   // If threading this would thread across a loop header, don't even try to
966   // thread the edge.
967   if (LoopHeaders.count(BB))
968     return false;
969 
970   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
971   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues))
972     return false;
973   assert(!PredValues.empty() &&
974          "ComputeValueKnownInPredecessors returned true with no values");
975 
976   DEBUG(errs() << "IN BB: " << *BB;
977         for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
978           errs() << "  BB '" << BB->getName() << "': FOUND condition = ";
979           if (PredValues[i].first)
980             errs() << *PredValues[i].first;
981           else
982             errs() << "UNDEF";
983           errs() << " for pred '" << PredValues[i].second->getName()
984           << "'.\n";
985         });
986 
987   // Decide what we want to thread through.  Convert our list of known values to
988   // a list of known destinations for each pred.  This also discards duplicate
989   // predecessors and keeps track of the undefined inputs (which are represented
990   // as a null dest in the PredToDestList).
991   SmallPtrSet<BasicBlock*, 16> SeenPreds;
992   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
993 
994   BasicBlock *OnlyDest = 0;
995   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
996 
997   for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
998     BasicBlock *Pred = PredValues[i].second;
999     if (!SeenPreds.insert(Pred))
1000       continue;  // Duplicate predecessor entry.
1001 
1002     // If the predecessor ends with an indirect goto, we can't change its
1003     // destination.
1004     if (isa<IndirectBrInst>(Pred->getTerminator()))
1005       continue;
1006 
1007     ConstantInt *Val = PredValues[i].first;
1008 
1009     BasicBlock *DestBB;
1010     if (Val == 0)      // Undef.
1011       DestBB = 0;
1012     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1013       DestBB = BI->getSuccessor(Val->isZero());
1014     else {
1015       SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
1016       DestBB = SI->getSuccessor(SI->findCaseValue(Val));
1017     }
1018 
1019     // If we have exactly one destination, remember it for efficiency below.
1020     if (i == 0)
1021       OnlyDest = DestBB;
1022     else if (OnlyDest != DestBB)
1023       OnlyDest = MultipleDestSentinel;
1024 
1025     PredToDestList.push_back(std::make_pair(Pred, DestBB));
1026   }
1027 
1028   // If all edges were unthreadable, we fail.
1029   if (PredToDestList.empty())
1030     return false;
1031 
1032   // Determine which is the most common successor.  If we have many inputs and
1033   // this block is a switch, we want to start by threading the batch that goes
1034   // to the most popular destination first.  If we only know about one
1035   // threadable destination (the common case) we can avoid this.
1036   BasicBlock *MostPopularDest = OnlyDest;
1037 
1038   if (MostPopularDest == MultipleDestSentinel)
1039     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1040 
1041   // Now that we know what the most popular destination is, factor all
1042   // predecessors that will jump to it into a single predecessor.
1043   SmallVector<BasicBlock*, 16> PredsToFactor;
1044   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1045     if (PredToDestList[i].second == MostPopularDest) {
1046       BasicBlock *Pred = PredToDestList[i].first;
1047 
1048       // This predecessor may be a switch or something else that has multiple
1049       // edges to the block.  Factor each of these edges by listing them
1050       // according to # occurrences in PredsToFactor.
1051       TerminatorInst *PredTI = Pred->getTerminator();
1052       for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1053         if (PredTI->getSuccessor(i) == BB)
1054           PredsToFactor.push_back(Pred);
1055     }
1056 
1057   // If the threadable edges are branching on an undefined value, we get to pick
1058   // the destination that these predecessors should get to.
1059   if (MostPopularDest == 0)
1060     MostPopularDest = BB->getTerminator()->
1061                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1062 
1063   // Ok, try to thread it!
1064   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1065 }
1066 
1067 /// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
1068 /// the current block.  See if there are any simplifications we can do based on
1069 /// inputs to the phi node.
1070 ///
1071 bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
1072   BasicBlock *BB = PN->getParent();
1073 
1074   // If any of the predecessor blocks end in an unconditional branch, we can
1075   // *duplicate* the jump into that block in order to further encourage jump
1076   // threading and to eliminate cases where we have branch on a phi of an icmp
1077   // (branch on icmp is much better).
1078 
1079   // We don't want to do this tranformation for switches, because we don't
1080   // really want to duplicate a switch.
1081   if (isa<SwitchInst>(BB->getTerminator()))
1082     return false;
1083 
1084   // Look for unconditional branch predecessors.
1085   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1086     BasicBlock *PredBB = PN->getIncomingBlock(i);
1087     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1088       if (PredBr->isUnconditional() &&
1089           // Try to duplicate BB into PredBB.
1090           DuplicateCondBranchOnPHIIntoPred(BB, PredBB))
1091         return true;
1092   }
1093 
1094   return false;
1095 }
1096 
1097 
1098 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1099 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1100 /// NewPred using the entries from OldPred (suitably mapped).
1101 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1102                                             BasicBlock *OldPred,
1103                                             BasicBlock *NewPred,
1104                                      DenseMap<Instruction*, Value*> &ValueMap) {
1105   for (BasicBlock::iterator PNI = PHIBB->begin();
1106        PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1107     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1108     // DestBlock.
1109     Value *IV = PN->getIncomingValueForBlock(OldPred);
1110 
1111     // Remap the value if necessary.
1112     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1113       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1114       if (I != ValueMap.end())
1115         IV = I->second;
1116     }
1117 
1118     PN->addIncoming(IV, NewPred);
1119   }
1120 }
1121 
1122 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1123 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1124 /// across BB.  Transform the IR to reflect this change.
1125 bool JumpThreading::ThreadEdge(BasicBlock *BB,
1126                                const SmallVectorImpl<BasicBlock*> &PredBBs,
1127                                BasicBlock *SuccBB) {
1128   // If threading to the same block as we come from, we would infinite loop.
1129   if (SuccBB == BB) {
1130     DEBUG(errs() << "  Not threading across BB '" << BB->getName()
1131           << "' - would thread to self!\n");
1132     return false;
1133   }
1134 
1135   // If threading this would thread across a loop header, don't thread the edge.
1136   // See the comments above FindLoopHeaders for justifications and caveats.
1137   if (LoopHeaders.count(BB)) {
1138     DEBUG(errs() << "  Not threading across loop header BB '" << BB->getName()
1139           << "' to dest BB '" << SuccBB->getName()
1140           << "' - it might create an irreducible loop!\n");
1141     return false;
1142   }
1143 
1144   unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1145   if (JumpThreadCost > Threshold) {
1146     DEBUG(errs() << "  Not threading BB '" << BB->getName()
1147           << "' - Cost is too high: " << JumpThreadCost << "\n");
1148     return false;
1149   }
1150 
1151   // And finally, do it!  Start by factoring the predecessors is needed.
1152   BasicBlock *PredBB;
1153   if (PredBBs.size() == 1)
1154     PredBB = PredBBs[0];
1155   else {
1156     DEBUG(errs() << "  Factoring out " << PredBBs.size()
1157           << " common predecessors.\n");
1158     PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1159                                     ".thr_comm", this);
1160   }
1161 
1162   // And finally, do it!
1163   DEBUG(errs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1164         << SuccBB->getName() << "' with cost: " << JumpThreadCost
1165         << ", across block:\n    "
1166         << *BB << "\n");
1167 
1168   // We are going to have to map operands from the original BB block to the new
1169   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1170   // account for entry from PredBB.
1171   DenseMap<Instruction*, Value*> ValueMapping;
1172 
1173   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1174                                          BB->getName()+".thread",
1175                                          BB->getParent(), BB);
1176   NewBB->moveAfter(PredBB);
1177 
1178   BasicBlock::iterator BI = BB->begin();
1179   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1180     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1181 
1182   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1183   // mapping and using it to remap operands in the cloned instructions.
1184   for (; !isa<TerminatorInst>(BI); ++BI) {
1185     Instruction *New = BI->clone();
1186     New->setName(BI->getName());
1187     NewBB->getInstList().push_back(New);
1188     ValueMapping[BI] = New;
1189 
1190     // Remap operands to patch up intra-block references.
1191     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1192       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1193         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1194         if (I != ValueMapping.end())
1195           New->setOperand(i, I->second);
1196       }
1197   }
1198 
1199   // We didn't copy the terminator from BB over to NewBB, because there is now
1200   // an unconditional jump to SuccBB.  Insert the unconditional jump.
1201   BranchInst::Create(SuccBB, NewBB);
1202 
1203   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1204   // PHI nodes for NewBB now.
1205   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1206 
1207   // If there were values defined in BB that are used outside the block, then we
1208   // now have to update all uses of the value to use either the original value,
1209   // the cloned value, or some PHI derived value.  This can require arbitrary
1210   // PHI insertion, of which we are prepared to do, clean these up now.
1211   SSAUpdater SSAUpdate;
1212   SmallVector<Use*, 16> UsesToRename;
1213   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1214     // Scan all uses of this instruction to see if it is used outside of its
1215     // block, and if so, record them in UsesToRename.
1216     for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1217          ++UI) {
1218       Instruction *User = cast<Instruction>(*UI);
1219       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1220         if (UserPN->getIncomingBlock(UI) == BB)
1221           continue;
1222       } else if (User->getParent() == BB)
1223         continue;
1224 
1225       UsesToRename.push_back(&UI.getUse());
1226     }
1227 
1228     // If there are no uses outside the block, we're done with this instruction.
1229     if (UsesToRename.empty())
1230       continue;
1231 
1232     DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1233 
1234     // We found a use of I outside of BB.  Rename all uses of I that are outside
1235     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1236     // with the two values we know.
1237     SSAUpdate.Initialize(I);
1238     SSAUpdate.AddAvailableValue(BB, I);
1239     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1240 
1241     while (!UsesToRename.empty())
1242       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1243     DEBUG(errs() << "\n");
1244   }
1245 
1246 
1247   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1248   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1249   // us to simplify any PHI nodes in BB.
1250   TerminatorInst *PredTerm = PredBB->getTerminator();
1251   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1252     if (PredTerm->getSuccessor(i) == BB) {
1253       RemovePredecessorAndSimplify(BB, PredBB, TD);
1254       PredTerm->setSuccessor(i, NewBB);
1255     }
1256 
1257   // At this point, the IR is fully up to date and consistent.  Do a quick scan
1258   // over the new instructions and zap any that are constants or dead.  This
1259   // frequently happens because of phi translation.
1260   BI = NewBB->begin();
1261   for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
1262     Instruction *Inst = BI++;
1263 
1264     if (Value *V = SimplifyInstruction(Inst, TD)) {
1265       WeakVH BIHandle(BI);
1266       ReplaceAndSimplifyAllUses(Inst, V, TD);
1267       if (BIHandle == 0)
1268         BI = NewBB->begin();
1269       continue;
1270     }
1271 
1272     RecursivelyDeleteTriviallyDeadInstructions(Inst);
1273   }
1274 
1275   // Threaded an edge!
1276   ++NumThreads;
1277   return true;
1278 }
1279 
1280 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1281 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1282 /// If we can duplicate the contents of BB up into PredBB do so now, this
1283 /// improves the odds that the branch will be on an analyzable instruction like
1284 /// a compare.
1285 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1286                                                      BasicBlock *PredBB) {
1287   // If BB is a loop header, then duplicating this block outside the loop would
1288   // cause us to transform this into an irreducible loop, don't do this.
1289   // See the comments above FindLoopHeaders for justifications and caveats.
1290   if (LoopHeaders.count(BB)) {
1291     DEBUG(errs() << "  Not duplicating loop header '" << BB->getName()
1292           << "' into predecessor block '" << PredBB->getName()
1293           << "' - it might create an irreducible loop!\n");
1294     return false;
1295   }
1296 
1297   unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1298   if (DuplicationCost > Threshold) {
1299     DEBUG(errs() << "  Not duplicating BB '" << BB->getName()
1300           << "' - Cost is too high: " << DuplicationCost << "\n");
1301     return false;
1302   }
1303 
1304   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1305   // of PredBB.
1306   DEBUG(errs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1307         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1308         << DuplicationCost << " block is:" << *BB << "\n");
1309 
1310   // We are going to have to map operands from the original BB block into the
1311   // PredBB block.  Evaluate PHI nodes in BB.
1312   DenseMap<Instruction*, Value*> ValueMapping;
1313 
1314   BasicBlock::iterator BI = BB->begin();
1315   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1316     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1317 
1318   BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1319 
1320   // Clone the non-phi instructions of BB into PredBB, keeping track of the
1321   // mapping and using it to remap operands in the cloned instructions.
1322   for (; BI != BB->end(); ++BI) {
1323     Instruction *New = BI->clone();
1324     New->setName(BI->getName());
1325     PredBB->getInstList().insert(OldPredBranch, New);
1326     ValueMapping[BI] = New;
1327 
1328     // Remap operands to patch up intra-block references.
1329     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1330       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1331         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1332         if (I != ValueMapping.end())
1333           New->setOperand(i, I->second);
1334       }
1335   }
1336 
1337   // Check to see if the targets of the branch had PHI nodes. If so, we need to
1338   // add entries to the PHI nodes for branch from PredBB now.
1339   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1340   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1341                                   ValueMapping);
1342   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1343                                   ValueMapping);
1344 
1345   // If there were values defined in BB that are used outside the block, then we
1346   // now have to update all uses of the value to use either the original value,
1347   // the cloned value, or some PHI derived value.  This can require arbitrary
1348   // PHI insertion, of which we are prepared to do, clean these up now.
1349   SSAUpdater SSAUpdate;
1350   SmallVector<Use*, 16> UsesToRename;
1351   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1352     // Scan all uses of this instruction to see if it is used outside of its
1353     // block, and if so, record them in UsesToRename.
1354     for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1355          ++UI) {
1356       Instruction *User = cast<Instruction>(*UI);
1357       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1358         if (UserPN->getIncomingBlock(UI) == BB)
1359           continue;
1360       } else if (User->getParent() == BB)
1361         continue;
1362 
1363       UsesToRename.push_back(&UI.getUse());
1364     }
1365 
1366     // If there are no uses outside the block, we're done with this instruction.
1367     if (UsesToRename.empty())
1368       continue;
1369 
1370     DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1371 
1372     // We found a use of I outside of BB.  Rename all uses of I that are outside
1373     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1374     // with the two values we know.
1375     SSAUpdate.Initialize(I);
1376     SSAUpdate.AddAvailableValue(BB, I);
1377     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1378 
1379     while (!UsesToRename.empty())
1380       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1381     DEBUG(errs() << "\n");
1382   }
1383 
1384   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1385   // that we nuked.
1386   RemovePredecessorAndSimplify(BB, PredBB, TD);
1387 
1388   // Remove the unconditional branch at the end of the PredBB block.
1389   OldPredBranch->eraseFromParent();
1390 
1391   ++NumDupes;
1392   return true;
1393 }
1394 
1395 
1396