1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "jump-threading" 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/IntrinsicInst.h" 17 #include "llvm/LLVMContext.h" 18 #include "llvm/Pass.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LazyValueInfo.h" 21 #include "llvm/Analysis/Loads.h" 22 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 23 #include "llvm/Transforms/Utils/Local.h" 24 #include "llvm/Transforms/Utils/SSAUpdater.h" 25 #include "llvm/Target/TargetData.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ValueHandle.h" 35 #include "llvm/Support/raw_ostream.h" 36 using namespace llvm; 37 38 STATISTIC(NumThreads, "Number of jumps threaded"); 39 STATISTIC(NumFolds, "Number of terminators folded"); 40 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 41 42 static cl::opt<unsigned> 43 Threshold("jump-threading-threshold", 44 cl::desc("Max block size to duplicate for jump threading"), 45 cl::init(6), cl::Hidden); 46 47 // Turn on use of LazyValueInfo. 48 static cl::opt<bool> 49 EnableLVI("enable-jump-threading-lvi", 50 cl::desc("Use LVI for jump threading"), 51 cl::init(true), 52 cl::ReallyHidden); 53 54 55 56 namespace { 57 /// This pass performs 'jump threading', which looks at blocks that have 58 /// multiple predecessors and multiple successors. If one or more of the 59 /// predecessors of the block can be proven to always jump to one of the 60 /// successors, we forward the edge from the predecessor to the successor by 61 /// duplicating the contents of this block. 62 /// 63 /// An example of when this can occur is code like this: 64 /// 65 /// if () { ... 66 /// X = 4; 67 /// } 68 /// if (X < 3) { 69 /// 70 /// In this case, the unconditional branch at the end of the first if can be 71 /// revectored to the false side of the second if. 72 /// 73 class JumpThreading : public FunctionPass { 74 TargetData *TD; 75 LazyValueInfo *LVI; 76 #ifdef NDEBUG 77 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 78 #else 79 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 80 #endif 81 DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet; 82 83 // RAII helper for updating the recursion stack. 84 struct RecursionSetRemover { 85 DenseSet<std::pair<Value*, BasicBlock*> > &TheSet; 86 std::pair<Value*, BasicBlock*> ThePair; 87 88 RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S, 89 std::pair<Value*, BasicBlock*> P) 90 : TheSet(S), ThePair(P) { } 91 92 ~RecursionSetRemover() { 93 TheSet.erase(ThePair); 94 } 95 }; 96 public: 97 static char ID; // Pass identification 98 JumpThreading() : FunctionPass(ID) {} 99 100 bool runOnFunction(Function &F); 101 102 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 103 if (EnableLVI) 104 AU.addRequired<LazyValueInfo>(); 105 } 106 107 void FindLoopHeaders(Function &F); 108 bool ProcessBlock(BasicBlock *BB); 109 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 110 BasicBlock *SuccBB); 111 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 112 const SmallVectorImpl<BasicBlock *> &PredBBs); 113 114 typedef SmallVectorImpl<std::pair<ConstantInt*, 115 BasicBlock*> > PredValueInfo; 116 117 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 118 PredValueInfo &Result); 119 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB); 120 121 122 bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 123 bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 124 125 bool ProcessBranchOnPHI(PHINode *PN); 126 bool ProcessBranchOnXOR(BinaryOperator *BO); 127 128 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 129 }; 130 } 131 132 char JumpThreading::ID = 0; 133 INITIALIZE_PASS(JumpThreading, "jump-threading", 134 "Jump Threading", false, false); 135 136 // Public interface to the Jump Threading pass 137 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); } 138 139 /// runOnFunction - Top level algorithm. 140 /// 141 bool JumpThreading::runOnFunction(Function &F) { 142 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 143 TD = getAnalysisIfAvailable<TargetData>(); 144 LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0; 145 146 FindLoopHeaders(F); 147 148 bool Changed, EverChanged = false; 149 do { 150 Changed = false; 151 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 152 BasicBlock *BB = I; 153 // Thread all of the branches we can over this block. 154 while (ProcessBlock(BB)) 155 Changed = true; 156 157 ++I; 158 159 // If the block is trivially dead, zap it. This eliminates the successor 160 // edges which simplifies the CFG. 161 if (pred_begin(BB) == pred_end(BB) && 162 BB != &BB->getParent()->getEntryBlock()) { 163 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 164 << "' with terminator: " << *BB->getTerminator() << '\n'); 165 LoopHeaders.erase(BB); 166 if (LVI) LVI->eraseBlock(BB); 167 DeleteDeadBlock(BB); 168 Changed = true; 169 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 170 // Can't thread an unconditional jump, but if the block is "almost 171 // empty", we can replace uses of it with uses of the successor and make 172 // this dead. 173 if (BI->isUnconditional() && 174 BB != &BB->getParent()->getEntryBlock()) { 175 BasicBlock::iterator BBI = BB->getFirstNonPHI(); 176 // Ignore dbg intrinsics. 177 while (isa<DbgInfoIntrinsic>(BBI)) 178 ++BBI; 179 // If the terminator is the only non-phi instruction, try to nuke it. 180 if (BBI->isTerminator()) { 181 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 182 // block, we have to make sure it isn't in the LoopHeaders set. We 183 // reinsert afterward if needed. 184 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 185 BasicBlock *Succ = BI->getSuccessor(0); 186 187 // FIXME: It is always conservatively correct to drop the info 188 // for a block even if it doesn't get erased. This isn't totally 189 // awesome, but it allows us to use AssertingVH to prevent nasty 190 // dangling pointer issues within LazyValueInfo. 191 if (LVI) LVI->eraseBlock(BB); 192 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { 193 Changed = true; 194 // If we deleted BB and BB was the header of a loop, then the 195 // successor is now the header of the loop. 196 BB = Succ; 197 } 198 199 if (ErasedFromLoopHeaders) 200 LoopHeaders.insert(BB); 201 } 202 } 203 } 204 } 205 EverChanged |= Changed; 206 } while (Changed); 207 208 LoopHeaders.clear(); 209 return EverChanged; 210 } 211 212 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 213 /// thread across it. 214 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) { 215 /// Ignore PHI nodes, these will be flattened when duplication happens. 216 BasicBlock::const_iterator I = BB->getFirstNonPHI(); 217 218 // FIXME: THREADING will delete values that are just used to compute the 219 // branch, so they shouldn't count against the duplication cost. 220 221 222 // Sum up the cost of each instruction until we get to the terminator. Don't 223 // include the terminator because the copy won't include it. 224 unsigned Size = 0; 225 for (; !isa<TerminatorInst>(I); ++I) { 226 // Debugger intrinsics don't incur code size. 227 if (isa<DbgInfoIntrinsic>(I)) continue; 228 229 // If this is a pointer->pointer bitcast, it is free. 230 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 231 continue; 232 233 // All other instructions count for at least one unit. 234 ++Size; 235 236 // Calls are more expensive. If they are non-intrinsic calls, we model them 237 // as having cost of 4. If they are a non-vector intrinsic, we model them 238 // as having cost of 2 total, and if they are a vector intrinsic, we model 239 // them as having cost 1. 240 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 241 if (!isa<IntrinsicInst>(CI)) 242 Size += 3; 243 else if (!CI->getType()->isVectorTy()) 244 Size += 1; 245 } 246 } 247 248 // Threading through a switch statement is particularly profitable. If this 249 // block ends in a switch, decrease its cost to make it more likely to happen. 250 if (isa<SwitchInst>(I)) 251 Size = Size > 6 ? Size-6 : 0; 252 253 return Size; 254 } 255 256 /// FindLoopHeaders - We do not want jump threading to turn proper loop 257 /// structures into irreducible loops. Doing this breaks up the loop nesting 258 /// hierarchy and pessimizes later transformations. To prevent this from 259 /// happening, we first have to find the loop headers. Here we approximate this 260 /// by finding targets of backedges in the CFG. 261 /// 262 /// Note that there definitely are cases when we want to allow threading of 263 /// edges across a loop header. For example, threading a jump from outside the 264 /// loop (the preheader) to an exit block of the loop is definitely profitable. 265 /// It is also almost always profitable to thread backedges from within the loop 266 /// to exit blocks, and is often profitable to thread backedges to other blocks 267 /// within the loop (forming a nested loop). This simple analysis is not rich 268 /// enough to track all of these properties and keep it up-to-date as the CFG 269 /// mutates, so we don't allow any of these transformations. 270 /// 271 void JumpThreading::FindLoopHeaders(Function &F) { 272 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 273 FindFunctionBackedges(F, Edges); 274 275 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 276 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 277 } 278 279 // Helper method for ComputeValueKnownInPredecessors. If Value is a 280 // ConstantInt, push it. If it's an undef, push 0. Otherwise, do nothing. 281 static void PushConstantIntOrUndef(SmallVectorImpl<std::pair<ConstantInt*, 282 BasicBlock*> > &Result, 283 Constant *Value, BasicBlock* BB){ 284 if (ConstantInt *FoldedCInt = dyn_cast<ConstantInt>(Value)) 285 Result.push_back(std::make_pair(FoldedCInt, BB)); 286 else if (isa<UndefValue>(Value)) 287 Result.push_back(std::make_pair((ConstantInt*)0, BB)); 288 } 289 290 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 291 /// if we can infer that the value is a known ConstantInt in any of our 292 /// predecessors. If so, return the known list of value and pred BB in the 293 /// result vector. If a value is known to be undef, it is returned as null. 294 /// 295 /// This returns true if there were any known values. 296 /// 297 bool JumpThreading:: 298 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){ 299 // This method walks up use-def chains recursively. Because of this, we could 300 // get into an infinite loop going around loops in the use-def chain. To 301 // prevent this, keep track of what (value, block) pairs we've already visited 302 // and terminate the search if we loop back to them 303 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 304 return false; 305 306 // An RAII help to remove this pair from the recursion set once the recursion 307 // stack pops back out again. 308 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 309 310 // If V is a constantint, then it is known in all predecessors. 311 if (isa<ConstantInt>(V) || isa<UndefValue>(V)) { 312 ConstantInt *CI = dyn_cast<ConstantInt>(V); 313 314 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 315 Result.push_back(std::make_pair(CI, *PI)); 316 317 return true; 318 } 319 320 // If V is a non-instruction value, or an instruction in a different block, 321 // then it can't be derived from a PHI. 322 Instruction *I = dyn_cast<Instruction>(V); 323 if (I == 0 || I->getParent() != BB) { 324 325 // Okay, if this is a live-in value, see if it has a known value at the end 326 // of any of our predecessors. 327 // 328 // FIXME: This should be an edge property, not a block end property. 329 /// TODO: Per PR2563, we could infer value range information about a 330 /// predecessor based on its terminator. 331 // 332 if (LVI) { 333 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 334 // "I" is a non-local compare-with-a-constant instruction. This would be 335 // able to handle value inequalities better, for example if the compare is 336 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 337 // Perhaps getConstantOnEdge should be smart enough to do this? 338 339 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 340 BasicBlock *P = *PI; 341 // If the value is known by LazyValueInfo to be a constant in a 342 // predecessor, use that information to try to thread this block. 343 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB); 344 if (PredCst == 0 || 345 (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst))) 346 continue; 347 348 Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), P)); 349 } 350 351 return !Result.empty(); 352 } 353 354 return false; 355 } 356 357 /// If I is a PHI node, then we know the incoming values for any constants. 358 if (PHINode *PN = dyn_cast<PHINode>(I)) { 359 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 360 Value *InVal = PN->getIncomingValue(i); 361 if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) { 362 ConstantInt *CI = dyn_cast<ConstantInt>(InVal); 363 Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i))); 364 } else if (LVI) { 365 Constant *CI = LVI->getConstantOnEdge(InVal, 366 PN->getIncomingBlock(i), BB); 367 // LVI returns null is no value could be determined. 368 if (!CI) continue; 369 PushConstantIntOrUndef(Result, CI, PN->getIncomingBlock(i)); 370 } 371 } 372 373 return !Result.empty(); 374 } 375 376 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals; 377 378 // Handle some boolean conditions. 379 if (I->getType()->getPrimitiveSizeInBits() == 1) { 380 // X | true -> true 381 // X & false -> false 382 if (I->getOpcode() == Instruction::Or || 383 I->getOpcode() == Instruction::And) { 384 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals); 385 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals); 386 387 if (LHSVals.empty() && RHSVals.empty()) 388 return false; 389 390 ConstantInt *InterestingVal; 391 if (I->getOpcode() == Instruction::Or) 392 InterestingVal = ConstantInt::getTrue(I->getContext()); 393 else 394 InterestingVal = ConstantInt::getFalse(I->getContext()); 395 396 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 397 398 // Scan for the sentinel. If we find an undef, force it to the 399 // interesting value: x|undef -> true and x&undef -> false. 400 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 401 if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) { 402 Result.push_back(LHSVals[i]); 403 Result.back().first = InterestingVal; 404 LHSKnownBBs.insert(LHSVals[i].second); 405 } 406 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 407 if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) { 408 // If we already inferred a value for this block on the LHS, don't 409 // re-add it. 410 if (!LHSKnownBBs.count(RHSVals[i].second)) { 411 Result.push_back(RHSVals[i]); 412 Result.back().first = InterestingVal; 413 } 414 } 415 416 return !Result.empty(); 417 } 418 419 // Handle the NOT form of XOR. 420 if (I->getOpcode() == Instruction::Xor && 421 isa<ConstantInt>(I->getOperand(1)) && 422 cast<ConstantInt>(I->getOperand(1))->isOne()) { 423 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result); 424 if (Result.empty()) 425 return false; 426 427 // Invert the known values. 428 for (unsigned i = 0, e = Result.size(); i != e; ++i) 429 if (Result[i].first) 430 Result[i].first = 431 cast<ConstantInt>(ConstantExpr::getNot(Result[i].first)); 432 433 return true; 434 } 435 436 // Try to simplify some other binary operator values. 437 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 438 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 439 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals; 440 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals); 441 442 // Try to use constant folding to simplify the binary operator. 443 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 444 Constant *V = LHSVals[i].first ? LHSVals[i].first : 445 cast<Constant>(UndefValue::get(BO->getType())); 446 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 447 448 PushConstantIntOrUndef(Result, Folded, LHSVals[i].second); 449 } 450 } 451 452 return !Result.empty(); 453 } 454 455 // Handle compare with phi operand, where the PHI is defined in this block. 456 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 457 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 458 if (PN && PN->getParent() == BB) { 459 // We can do this simplification if any comparisons fold to true or false. 460 // See if any do. 461 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 462 BasicBlock *PredBB = PN->getIncomingBlock(i); 463 Value *LHS = PN->getIncomingValue(i); 464 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 465 466 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD); 467 if (Res == 0) { 468 if (!LVI || !isa<Constant>(RHS)) 469 continue; 470 471 LazyValueInfo::Tristate 472 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 473 cast<Constant>(RHS), PredBB, BB); 474 if (ResT == LazyValueInfo::Unknown) 475 continue; 476 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 477 } 478 479 if (Constant *ConstRes = dyn_cast<Constant>(Res)) 480 PushConstantIntOrUndef(Result, ConstRes, PredBB); 481 } 482 483 return !Result.empty(); 484 } 485 486 487 // If comparing a live-in value against a constant, see if we know the 488 // live-in value on any predecessors. 489 if (LVI && isa<Constant>(Cmp->getOperand(1)) && 490 Cmp->getType()->isIntegerTy()) { 491 if (!isa<Instruction>(Cmp->getOperand(0)) || 492 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) { 493 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 494 495 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){ 496 BasicBlock *P = *PI; 497 // If the value is known by LazyValueInfo to be a constant in a 498 // predecessor, use that information to try to thread this block. 499 LazyValueInfo::Tristate Res = 500 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 501 RHSCst, P, BB); 502 if (Res == LazyValueInfo::Unknown) 503 continue; 504 505 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 506 Result.push_back(std::make_pair(cast<ConstantInt>(ResC), P)); 507 } 508 509 return !Result.empty(); 510 } 511 512 // Try to find a constant value for the LHS of a comparison, 513 // and evaluate it statically if we can. 514 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) { 515 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals; 516 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals); 517 518 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 519 Constant *V = LHSVals[i].first ? LHSVals[i].first : 520 cast<Constant>(UndefValue::get(CmpConst->getType())); 521 Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(), 522 V, CmpConst); 523 PushConstantIntOrUndef(Result, Folded, LHSVals[i].second); 524 } 525 526 return !Result.empty(); 527 } 528 } 529 } 530 531 if (LVI) { 532 // If all else fails, see if LVI can figure out a constant value for us. 533 Constant *CI = LVI->getConstant(V, BB); 534 ConstantInt *CInt = dyn_cast_or_null<ConstantInt>(CI); 535 if (CInt) { 536 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 537 Result.push_back(std::make_pair(CInt, *PI)); 538 } 539 540 return !Result.empty(); 541 } 542 543 return false; 544 } 545 546 547 548 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 549 /// in an undefined jump, decide which block is best to revector to. 550 /// 551 /// Since we can pick an arbitrary destination, we pick the successor with the 552 /// fewest predecessors. This should reduce the in-degree of the others. 553 /// 554 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 555 TerminatorInst *BBTerm = BB->getTerminator(); 556 unsigned MinSucc = 0; 557 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 558 // Compute the successor with the minimum number of predecessors. 559 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 560 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 561 TestBB = BBTerm->getSuccessor(i); 562 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 563 if (NumPreds < MinNumPreds) 564 MinSucc = i; 565 } 566 567 return MinSucc; 568 } 569 570 /// ProcessBlock - If there are any predecessors whose control can be threaded 571 /// through to a successor, transform them now. 572 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 573 // If the block is trivially dead, just return and let the caller nuke it. 574 // This simplifies other transformations. 575 if (pred_begin(BB) == pred_end(BB) && 576 BB != &BB->getParent()->getEntryBlock()) 577 return false; 578 579 // If this block has a single predecessor, and if that pred has a single 580 // successor, merge the blocks. This encourages recursive jump threading 581 // because now the condition in this block can be threaded through 582 // predecessors of our predecessor block. 583 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 584 if (SinglePred->getTerminator()->getNumSuccessors() == 1 && 585 SinglePred != BB) { 586 // If SinglePred was a loop header, BB becomes one. 587 if (LoopHeaders.erase(SinglePred)) 588 LoopHeaders.insert(BB); 589 590 // Remember if SinglePred was the entry block of the function. If so, we 591 // will need to move BB back to the entry position. 592 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 593 if (LVI) LVI->eraseBlock(SinglePred); 594 MergeBasicBlockIntoOnlyPred(BB); 595 596 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 597 BB->moveBefore(&BB->getParent()->getEntryBlock()); 598 return true; 599 } 600 } 601 602 // Look to see if the terminator is a branch of switch, if not we can't thread 603 // it. 604 Value *Condition; 605 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 606 // Can't thread an unconditional jump. 607 if (BI->isUnconditional()) return false; 608 Condition = BI->getCondition(); 609 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 610 Condition = SI->getCondition(); 611 else 612 return false; // Must be an invoke. 613 614 // If the terminator of this block is branching on a constant, simplify the 615 // terminator to an unconditional branch. This can occur due to threading in 616 // other blocks. 617 if (isa<ConstantInt>(Condition)) { 618 DEBUG(dbgs() << " In block '" << BB->getName() 619 << "' folding terminator: " << *BB->getTerminator() << '\n'); 620 ++NumFolds; 621 ConstantFoldTerminator(BB); 622 return true; 623 } 624 625 // If the terminator is branching on an undef, we can pick any of the 626 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 627 if (isa<UndefValue>(Condition)) { 628 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 629 630 // Fold the branch/switch. 631 TerminatorInst *BBTerm = BB->getTerminator(); 632 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 633 if (i == BestSucc) continue; 634 RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD); 635 } 636 637 DEBUG(dbgs() << " In block '" << BB->getName() 638 << "' folding undef terminator: " << *BBTerm << '\n'); 639 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 640 BBTerm->eraseFromParent(); 641 return true; 642 } 643 644 Instruction *CondInst = dyn_cast<Instruction>(Condition); 645 646 // If the condition is an instruction defined in another block, see if a 647 // predecessor has the same condition: 648 // br COND, BBX, BBY 649 // BBX: 650 // br COND, BBZ, BBW 651 if (!LVI && 652 !Condition->hasOneUse() && // Multiple uses. 653 (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition. 654 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 655 if (isa<BranchInst>(BB->getTerminator())) { 656 for (; PI != E; ++PI) { 657 BasicBlock *P = *PI; 658 if (BranchInst *PBI = dyn_cast<BranchInst>(P->getTerminator())) 659 if (PBI->isConditional() && PBI->getCondition() == Condition && 660 ProcessBranchOnDuplicateCond(P, BB)) 661 return true; 662 } 663 } else { 664 assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator"); 665 for (; PI != E; ++PI) { 666 BasicBlock *P = *PI; 667 if (SwitchInst *PSI = dyn_cast<SwitchInst>(P->getTerminator())) 668 if (PSI->getCondition() == Condition && 669 ProcessSwitchOnDuplicateCond(P, BB)) 670 return true; 671 } 672 } 673 } 674 675 // All the rest of our checks depend on the condition being an instruction. 676 if (CondInst == 0) { 677 // FIXME: Unify this with code below. 678 if (LVI && ProcessThreadableEdges(Condition, BB)) 679 return true; 680 return false; 681 } 682 683 684 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 685 if (!LVI && 686 (!isa<PHINode>(CondCmp->getOperand(0)) || 687 cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) { 688 // If we have a comparison, loop over the predecessors to see if there is 689 // a condition with a lexically identical value. 690 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 691 for (; PI != E; ++PI) { 692 BasicBlock *P = *PI; 693 if (BranchInst *PBI = dyn_cast<BranchInst>(P->getTerminator())) 694 if (PBI->isConditional() && P != BB) { 695 if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) { 696 if (CI->getOperand(0) == CondCmp->getOperand(0) && 697 CI->getOperand(1) == CondCmp->getOperand(1) && 698 CI->getPredicate() == CondCmp->getPredicate()) { 699 // TODO: Could handle things like (x != 4) --> (x == 17) 700 if (ProcessBranchOnDuplicateCond(P, BB)) 701 return true; 702 } 703 } 704 } 705 } 706 } 707 708 // For a comparison where the LHS is outside this block, it's possible 709 // that we've branched on it before. Used LVI to see if we can simplify 710 // the branch based on that. 711 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 712 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 713 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 714 if (LVI && CondBr && CondConst && CondBr->isConditional() && PI != PE && 715 (!isa<Instruction>(CondCmp->getOperand(0)) || 716 cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) { 717 // For predecessor edge, determine if the comparison is true or false 718 // on that edge. If they're all true or all false, we can simplify the 719 // branch. 720 // FIXME: We could handle mixed true/false by duplicating code. 721 LazyValueInfo::Tristate Baseline = 722 LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0), 723 CondConst, *PI, BB); 724 if (Baseline != LazyValueInfo::Unknown) { 725 // Check that all remaining incoming values match the first one. 726 while (++PI != PE) { 727 LazyValueInfo::Tristate Ret = LVI->getPredicateOnEdge( 728 CondCmp->getPredicate(), 729 CondCmp->getOperand(0), 730 CondConst, *PI, BB); 731 if (Ret != Baseline) break; 732 } 733 734 // If we terminated early, then one of the values didn't match. 735 if (PI == PE) { 736 unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0; 737 unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1; 738 RemovePredecessorAndSimplify(CondBr->getSuccessor(ToRemove), BB, TD); 739 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 740 CondBr->eraseFromParent(); 741 return true; 742 } 743 } 744 } 745 } 746 747 // Check for some cases that are worth simplifying. Right now we want to look 748 // for loads that are used by a switch or by the condition for the branch. If 749 // we see one, check to see if it's partially redundant. If so, insert a PHI 750 // which can then be used to thread the values. 751 // 752 Value *SimplifyValue = CondInst; 753 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 754 if (isa<Constant>(CondCmp->getOperand(1))) 755 SimplifyValue = CondCmp->getOperand(0); 756 757 // TODO: There are other places where load PRE would be profitable, such as 758 // more complex comparisons. 759 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 760 if (SimplifyPartiallyRedundantLoad(LI)) 761 return true; 762 763 764 // Handle a variety of cases where we are branching on something derived from 765 // a PHI node in the current block. If we can prove that any predecessors 766 // compute a predictable value based on a PHI node, thread those predecessors. 767 // 768 if (ProcessThreadableEdges(CondInst, BB)) 769 return true; 770 771 // If this is an otherwise-unfoldable branch on a phi node in the current 772 // block, see if we can simplify. 773 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 774 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 775 return ProcessBranchOnPHI(PN); 776 777 778 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 779 if (CondInst->getOpcode() == Instruction::Xor && 780 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 781 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 782 783 784 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 785 // "(X == 4)", thread through this block. 786 787 return false; 788 } 789 790 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that 791 /// block that jump on exactly the same condition. This means that we almost 792 /// always know the direction of the edge in the DESTBB: 793 /// PREDBB: 794 /// br COND, DESTBB, BBY 795 /// DESTBB: 796 /// br COND, BBZ, BBW 797 /// 798 /// If DESTBB has multiple predecessors, we can't just constant fold the branch 799 /// in DESTBB, we have to thread over it. 800 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB, 801 BasicBlock *BB) { 802 BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator()); 803 804 // If both successors of PredBB go to DESTBB, we don't know anything. We can 805 // fold the branch to an unconditional one, which allows other recursive 806 // simplifications. 807 bool BranchDir; 808 if (PredBI->getSuccessor(1) != BB) 809 BranchDir = true; 810 else if (PredBI->getSuccessor(0) != BB) 811 BranchDir = false; 812 else { 813 DEBUG(dbgs() << " In block '" << PredBB->getName() 814 << "' folding terminator: " << *PredBB->getTerminator() << '\n'); 815 ++NumFolds; 816 ConstantFoldTerminator(PredBB); 817 return true; 818 } 819 820 BranchInst *DestBI = cast<BranchInst>(BB->getTerminator()); 821 822 // If the dest block has one predecessor, just fix the branch condition to a 823 // constant and fold it. 824 if (BB->getSinglePredecessor()) { 825 DEBUG(dbgs() << " In block '" << BB->getName() 826 << "' folding condition to '" << BranchDir << "': " 827 << *BB->getTerminator() << '\n'); 828 ++NumFolds; 829 Value *OldCond = DestBI->getCondition(); 830 DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 831 BranchDir)); 832 // Delete dead instructions before we fold the branch. Folding the branch 833 // can eliminate edges from the CFG which can end up deleting OldCond. 834 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 835 ConstantFoldTerminator(BB); 836 return true; 837 } 838 839 840 // Next, figure out which successor we are threading to. 841 BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir); 842 843 SmallVector<BasicBlock*, 2> Preds; 844 Preds.push_back(PredBB); 845 846 // Ok, try to thread it! 847 return ThreadEdge(BB, Preds, SuccBB); 848 } 849 850 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that 851 /// block that switch on exactly the same condition. This means that we almost 852 /// always know the direction of the edge in the DESTBB: 853 /// PREDBB: 854 /// switch COND [... DESTBB, BBY ... ] 855 /// DESTBB: 856 /// switch COND [... BBZ, BBW ] 857 /// 858 /// Optimizing switches like this is very important, because simplifycfg builds 859 /// switches out of repeated 'if' conditions. 860 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, 861 BasicBlock *DestBB) { 862 // Can't thread edge to self. 863 if (PredBB == DestBB) 864 return false; 865 866 SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator()); 867 SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator()); 868 869 // There are a variety of optimizations that we can potentially do on these 870 // blocks: we order them from most to least preferable. 871 872 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB 873 // directly to their destination. This does not introduce *any* code size 874 // growth. Skip debug info first. 875 BasicBlock::iterator BBI = DestBB->begin(); 876 while (isa<DbgInfoIntrinsic>(BBI)) 877 BBI++; 878 879 // FIXME: Thread if it just contains a PHI. 880 if (isa<SwitchInst>(BBI)) { 881 bool MadeChange = false; 882 // Ignore the default edge for now. 883 for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) { 884 ConstantInt *DestVal = DestSI->getCaseValue(i); 885 BasicBlock *DestSucc = DestSI->getSuccessor(i); 886 887 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if 888 // PredSI has an explicit case for it. If so, forward. If it is covered 889 // by the default case, we can't update PredSI. 890 unsigned PredCase = PredSI->findCaseValue(DestVal); 891 if (PredCase == 0) continue; 892 893 // If PredSI doesn't go to DestBB on this value, then it won't reach the 894 // case on this condition. 895 if (PredSI->getSuccessor(PredCase) != DestBB && 896 DestSI->getSuccessor(i) != DestBB) 897 continue; 898 899 // Do not forward this if it already goes to this destination, this would 900 // be an infinite loop. 901 if (PredSI->getSuccessor(PredCase) == DestSucc) 902 continue; 903 904 // Otherwise, we're safe to make the change. Make sure that the edge from 905 // DestSI to DestSucc is not critical and has no PHI nodes. 906 DEBUG(dbgs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI); 907 DEBUG(dbgs() << "THROUGH: " << *DestSI); 908 909 // If the destination has PHI nodes, just split the edge for updating 910 // simplicity. 911 if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){ 912 SplitCriticalEdge(DestSI, i, this); 913 DestSucc = DestSI->getSuccessor(i); 914 } 915 FoldSingleEntryPHINodes(DestSucc); 916 PredSI->setSuccessor(PredCase, DestSucc); 917 MadeChange = true; 918 } 919 920 if (MadeChange) 921 return true; 922 } 923 924 return false; 925 } 926 927 928 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 929 /// load instruction, eliminate it by replacing it with a PHI node. This is an 930 /// important optimization that encourages jump threading, and needs to be run 931 /// interlaced with other jump threading tasks. 932 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 933 // Don't hack volatile loads. 934 if (LI->isVolatile()) return false; 935 936 // If the load is defined in a block with exactly one predecessor, it can't be 937 // partially redundant. 938 BasicBlock *LoadBB = LI->getParent(); 939 if (LoadBB->getSinglePredecessor()) 940 return false; 941 942 Value *LoadedPtr = LI->getOperand(0); 943 944 // If the loaded operand is defined in the LoadBB, it can't be available. 945 // TODO: Could do simple PHI translation, that would be fun :) 946 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 947 if (PtrOp->getParent() == LoadBB) 948 return false; 949 950 // Scan a few instructions up from the load, to see if it is obviously live at 951 // the entry to its block. 952 BasicBlock::iterator BBIt = LI; 953 954 if (Value *AvailableVal = 955 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) { 956 // If the value if the load is locally available within the block, just use 957 // it. This frequently occurs for reg2mem'd allocas. 958 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 959 960 // If the returned value is the load itself, replace with an undef. This can 961 // only happen in dead loops. 962 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 963 LI->replaceAllUsesWith(AvailableVal); 964 LI->eraseFromParent(); 965 return true; 966 } 967 968 // Otherwise, if we scanned the whole block and got to the top of the block, 969 // we know the block is locally transparent to the load. If not, something 970 // might clobber its value. 971 if (BBIt != LoadBB->begin()) 972 return false; 973 974 975 SmallPtrSet<BasicBlock*, 8> PredsScanned; 976 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 977 AvailablePredsTy AvailablePreds; 978 BasicBlock *OneUnavailablePred = 0; 979 980 // If we got here, the loaded value is transparent through to the start of the 981 // block. Check to see if it is available in any of the predecessor blocks. 982 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 983 PI != PE; ++PI) { 984 BasicBlock *PredBB = *PI; 985 986 // If we already scanned this predecessor, skip it. 987 if (!PredsScanned.insert(PredBB)) 988 continue; 989 990 // Scan the predecessor to see if the value is available in the pred. 991 BBIt = PredBB->end(); 992 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6); 993 if (!PredAvailable) { 994 OneUnavailablePred = PredBB; 995 continue; 996 } 997 998 // If so, this load is partially redundant. Remember this info so that we 999 // can create a PHI node. 1000 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 1001 } 1002 1003 // If the loaded value isn't available in any predecessor, it isn't partially 1004 // redundant. 1005 if (AvailablePreds.empty()) return false; 1006 1007 // Okay, the loaded value is available in at least one (and maybe all!) 1008 // predecessors. If the value is unavailable in more than one unique 1009 // predecessor, we want to insert a merge block for those common predecessors. 1010 // This ensures that we only have to insert one reload, thus not increasing 1011 // code size. 1012 BasicBlock *UnavailablePred = 0; 1013 1014 // If there is exactly one predecessor where the value is unavailable, the 1015 // already computed 'OneUnavailablePred' block is it. If it ends in an 1016 // unconditional branch, we know that it isn't a critical edge. 1017 if (PredsScanned.size() == AvailablePreds.size()+1 && 1018 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1019 UnavailablePred = OneUnavailablePred; 1020 } else if (PredsScanned.size() != AvailablePreds.size()) { 1021 // Otherwise, we had multiple unavailable predecessors or we had a critical 1022 // edge from the one. 1023 SmallVector<BasicBlock*, 8> PredsToSplit; 1024 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1025 1026 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 1027 AvailablePredSet.insert(AvailablePreds[i].first); 1028 1029 // Add all the unavailable predecessors to the PredsToSplit list. 1030 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 1031 PI != PE; ++PI) { 1032 BasicBlock *P = *PI; 1033 // If the predecessor is an indirect goto, we can't split the edge. 1034 if (isa<IndirectBrInst>(P->getTerminator())) 1035 return false; 1036 1037 if (!AvailablePredSet.count(P)) 1038 PredsToSplit.push_back(P); 1039 } 1040 1041 // Split them out to their own block. 1042 UnavailablePred = 1043 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(), 1044 "thread-pre-split", this); 1045 } 1046 1047 // If the value isn't available in all predecessors, then there will be 1048 // exactly one where it isn't available. Insert a load on that edge and add 1049 // it to the AvailablePreds list. 1050 if (UnavailablePred) { 1051 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1052 "Can't handle critical edge here!"); 1053 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, 1054 LI->getAlignment(), 1055 UnavailablePred->getTerminator()); 1056 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1057 } 1058 1059 // Now we know that each predecessor of this block has a value in 1060 // AvailablePreds, sort them for efficient access as we're walking the preds. 1061 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1062 1063 // Create a PHI node at the start of the block for the PRE'd load value. 1064 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin()); 1065 PN->takeName(LI); 1066 1067 // Insert new entries into the PHI for each predecessor. A single block may 1068 // have multiple entries here. 1069 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E; 1070 ++PI) { 1071 BasicBlock *P = *PI; 1072 AvailablePredsTy::iterator I = 1073 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1074 std::make_pair(P, (Value*)0)); 1075 1076 assert(I != AvailablePreds.end() && I->first == P && 1077 "Didn't find entry for predecessor!"); 1078 1079 PN->addIncoming(I->second, I->first); 1080 } 1081 1082 //cerr << "PRE: " << *LI << *PN << "\n"; 1083 1084 LI->replaceAllUsesWith(PN); 1085 LI->eraseFromParent(); 1086 1087 return true; 1088 } 1089 1090 /// FindMostPopularDest - The specified list contains multiple possible 1091 /// threadable destinations. Pick the one that occurs the most frequently in 1092 /// the list. 1093 static BasicBlock * 1094 FindMostPopularDest(BasicBlock *BB, 1095 const SmallVectorImpl<std::pair<BasicBlock*, 1096 BasicBlock*> > &PredToDestList) { 1097 assert(!PredToDestList.empty()); 1098 1099 // Determine popularity. If there are multiple possible destinations, we 1100 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1101 // blocks with known and real destinations to threading undef. We'll handle 1102 // them later if interesting. 1103 DenseMap<BasicBlock*, unsigned> DestPopularity; 1104 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1105 if (PredToDestList[i].second) 1106 DestPopularity[PredToDestList[i].second]++; 1107 1108 // Find the most popular dest. 1109 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1110 BasicBlock *MostPopularDest = DPI->first; 1111 unsigned Popularity = DPI->second; 1112 SmallVector<BasicBlock*, 4> SamePopularity; 1113 1114 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1115 // If the popularity of this entry isn't higher than the popularity we've 1116 // seen so far, ignore it. 1117 if (DPI->second < Popularity) 1118 ; // ignore. 1119 else if (DPI->second == Popularity) { 1120 // If it is the same as what we've seen so far, keep track of it. 1121 SamePopularity.push_back(DPI->first); 1122 } else { 1123 // If it is more popular, remember it. 1124 SamePopularity.clear(); 1125 MostPopularDest = DPI->first; 1126 Popularity = DPI->second; 1127 } 1128 } 1129 1130 // Okay, now we know the most popular destination. If there is more than 1131 // destination, we need to determine one. This is arbitrary, but we need 1132 // to make a deterministic decision. Pick the first one that appears in the 1133 // successor list. 1134 if (!SamePopularity.empty()) { 1135 SamePopularity.push_back(MostPopularDest); 1136 TerminatorInst *TI = BB->getTerminator(); 1137 for (unsigned i = 0; ; ++i) { 1138 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1139 1140 if (std::find(SamePopularity.begin(), SamePopularity.end(), 1141 TI->getSuccessor(i)) == SamePopularity.end()) 1142 continue; 1143 1144 MostPopularDest = TI->getSuccessor(i); 1145 break; 1146 } 1147 } 1148 1149 // Okay, we have finally picked the most popular destination. 1150 return MostPopularDest; 1151 } 1152 1153 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) { 1154 // If threading this would thread across a loop header, don't even try to 1155 // thread the edge. 1156 if (LoopHeaders.count(BB)) 1157 return false; 1158 1159 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues; 1160 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues)) 1161 return false; 1162 1163 assert(!PredValues.empty() && 1164 "ComputeValueKnownInPredecessors returned true with no values"); 1165 1166 DEBUG(dbgs() << "IN BB: " << *BB; 1167 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1168 dbgs() << " BB '" << BB->getName() << "': FOUND condition = "; 1169 if (PredValues[i].first) 1170 dbgs() << *PredValues[i].first; 1171 else 1172 dbgs() << "UNDEF"; 1173 dbgs() << " for pred '" << PredValues[i].second->getName() 1174 << "'.\n"; 1175 }); 1176 1177 // Decide what we want to thread through. Convert our list of known values to 1178 // a list of known destinations for each pred. This also discards duplicate 1179 // predecessors and keeps track of the undefined inputs (which are represented 1180 // as a null dest in the PredToDestList). 1181 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1182 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1183 1184 BasicBlock *OnlyDest = 0; 1185 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1186 1187 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1188 BasicBlock *Pred = PredValues[i].second; 1189 if (!SeenPreds.insert(Pred)) 1190 continue; // Duplicate predecessor entry. 1191 1192 // If the predecessor ends with an indirect goto, we can't change its 1193 // destination. 1194 if (isa<IndirectBrInst>(Pred->getTerminator())) 1195 continue; 1196 1197 ConstantInt *Val = PredValues[i].first; 1198 1199 BasicBlock *DestBB; 1200 if (Val == 0) // Undef. 1201 DestBB = 0; 1202 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1203 DestBB = BI->getSuccessor(Val->isZero()); 1204 else { 1205 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator()); 1206 DestBB = SI->getSuccessor(SI->findCaseValue(Val)); 1207 } 1208 1209 // If we have exactly one destination, remember it for efficiency below. 1210 if (i == 0) 1211 OnlyDest = DestBB; 1212 else if (OnlyDest != DestBB) 1213 OnlyDest = MultipleDestSentinel; 1214 1215 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1216 } 1217 1218 // If all edges were unthreadable, we fail. 1219 if (PredToDestList.empty()) 1220 return false; 1221 1222 // Determine which is the most common successor. If we have many inputs and 1223 // this block is a switch, we want to start by threading the batch that goes 1224 // to the most popular destination first. If we only know about one 1225 // threadable destination (the common case) we can avoid this. 1226 BasicBlock *MostPopularDest = OnlyDest; 1227 1228 if (MostPopularDest == MultipleDestSentinel) 1229 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1230 1231 // Now that we know what the most popular destination is, factor all 1232 // predecessors that will jump to it into a single predecessor. 1233 SmallVector<BasicBlock*, 16> PredsToFactor; 1234 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1235 if (PredToDestList[i].second == MostPopularDest) { 1236 BasicBlock *Pred = PredToDestList[i].first; 1237 1238 // This predecessor may be a switch or something else that has multiple 1239 // edges to the block. Factor each of these edges by listing them 1240 // according to # occurrences in PredsToFactor. 1241 TerminatorInst *PredTI = Pred->getTerminator(); 1242 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 1243 if (PredTI->getSuccessor(i) == BB) 1244 PredsToFactor.push_back(Pred); 1245 } 1246 1247 // If the threadable edges are branching on an undefined value, we get to pick 1248 // the destination that these predecessors should get to. 1249 if (MostPopularDest == 0) 1250 MostPopularDest = BB->getTerminator()-> 1251 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1252 1253 // Ok, try to thread it! 1254 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1255 } 1256 1257 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1258 /// a PHI node in the current block. See if there are any simplifications we 1259 /// can do based on inputs to the phi node. 1260 /// 1261 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) { 1262 BasicBlock *BB = PN->getParent(); 1263 1264 // TODO: We could make use of this to do it once for blocks with common PHI 1265 // values. 1266 SmallVector<BasicBlock*, 1> PredBBs; 1267 PredBBs.resize(1); 1268 1269 // If any of the predecessor blocks end in an unconditional branch, we can 1270 // *duplicate* the conditional branch into that block in order to further 1271 // encourage jump threading and to eliminate cases where we have branch on a 1272 // phi of an icmp (branch on icmp is much better). 1273 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1274 BasicBlock *PredBB = PN->getIncomingBlock(i); 1275 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1276 if (PredBr->isUnconditional()) { 1277 PredBBs[0] = PredBB; 1278 // Try to duplicate BB into PredBB. 1279 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1280 return true; 1281 } 1282 } 1283 1284 return false; 1285 } 1286 1287 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1288 /// a xor instruction in the current block. See if there are any 1289 /// simplifications we can do based on inputs to the xor. 1290 /// 1291 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) { 1292 BasicBlock *BB = BO->getParent(); 1293 1294 // If either the LHS or RHS of the xor is a constant, don't do this 1295 // optimization. 1296 if (isa<ConstantInt>(BO->getOperand(0)) || 1297 isa<ConstantInt>(BO->getOperand(1))) 1298 return false; 1299 1300 // If the first instruction in BB isn't a phi, we won't be able to infer 1301 // anything special about any particular predecessor. 1302 if (!isa<PHINode>(BB->front())) 1303 return false; 1304 1305 // If we have a xor as the branch input to this block, and we know that the 1306 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1307 // the condition into the predecessor and fix that value to true, saving some 1308 // logical ops on that path and encouraging other paths to simplify. 1309 // 1310 // This copies something like this: 1311 // 1312 // BB: 1313 // %X = phi i1 [1], [%X'] 1314 // %Y = icmp eq i32 %A, %B 1315 // %Z = xor i1 %X, %Y 1316 // br i1 %Z, ... 1317 // 1318 // Into: 1319 // BB': 1320 // %Y = icmp ne i32 %A, %B 1321 // br i1 %Z, ... 1322 1323 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> XorOpValues; 1324 bool isLHS = true; 1325 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues)) { 1326 assert(XorOpValues.empty()); 1327 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues)) 1328 return false; 1329 isLHS = false; 1330 } 1331 1332 assert(!XorOpValues.empty() && 1333 "ComputeValueKnownInPredecessors returned true with no values"); 1334 1335 // Scan the information to see which is most popular: true or false. The 1336 // predecessors can be of the set true, false, or undef. 1337 unsigned NumTrue = 0, NumFalse = 0; 1338 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1339 if (!XorOpValues[i].first) continue; // Ignore undefs for the count. 1340 if (XorOpValues[i].first->isZero()) 1341 ++NumFalse; 1342 else 1343 ++NumTrue; 1344 } 1345 1346 // Determine which value to split on, true, false, or undef if neither. 1347 ConstantInt *SplitVal = 0; 1348 if (NumTrue > NumFalse) 1349 SplitVal = ConstantInt::getTrue(BB->getContext()); 1350 else if (NumTrue != 0 || NumFalse != 0) 1351 SplitVal = ConstantInt::getFalse(BB->getContext()); 1352 1353 // Collect all of the blocks that this can be folded into so that we can 1354 // factor this once and clone it once. 1355 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1356 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1357 if (XorOpValues[i].first != SplitVal && XorOpValues[i].first != 0) continue; 1358 1359 BlocksToFoldInto.push_back(XorOpValues[i].second); 1360 } 1361 1362 // If we inferred a value for all of the predecessors, then duplication won't 1363 // help us. However, we can just replace the LHS or RHS with the constant. 1364 if (BlocksToFoldInto.size() == 1365 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1366 if (SplitVal == 0) { 1367 // If all preds provide undef, just nuke the xor, because it is undef too. 1368 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1369 BO->eraseFromParent(); 1370 } else if (SplitVal->isZero()) { 1371 // If all preds provide 0, replace the xor with the other input. 1372 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1373 BO->eraseFromParent(); 1374 } else { 1375 // If all preds provide 1, set the computed value to 1. 1376 BO->setOperand(!isLHS, SplitVal); 1377 } 1378 1379 return true; 1380 } 1381 1382 // Try to duplicate BB into PredBB. 1383 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1384 } 1385 1386 1387 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1388 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1389 /// NewPred using the entries from OldPred (suitably mapped). 1390 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1391 BasicBlock *OldPred, 1392 BasicBlock *NewPred, 1393 DenseMap<Instruction*, Value*> &ValueMap) { 1394 for (BasicBlock::iterator PNI = PHIBB->begin(); 1395 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1396 // Ok, we have a PHI node. Figure out what the incoming value was for the 1397 // DestBlock. 1398 Value *IV = PN->getIncomingValueForBlock(OldPred); 1399 1400 // Remap the value if necessary. 1401 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1402 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1403 if (I != ValueMap.end()) 1404 IV = I->second; 1405 } 1406 1407 PN->addIncoming(IV, NewPred); 1408 } 1409 } 1410 1411 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1412 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1413 /// across BB. Transform the IR to reflect this change. 1414 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1415 const SmallVectorImpl<BasicBlock*> &PredBBs, 1416 BasicBlock *SuccBB) { 1417 // If threading to the same block as we come from, we would infinite loop. 1418 if (SuccBB == BB) { 1419 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1420 << "' - would thread to self!\n"); 1421 return false; 1422 } 1423 1424 // If threading this would thread across a loop header, don't thread the edge. 1425 // See the comments above FindLoopHeaders for justifications and caveats. 1426 if (LoopHeaders.count(BB)) { 1427 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1428 << "' to dest BB '" << SuccBB->getName() 1429 << "' - it might create an irreducible loop!\n"); 1430 return false; 1431 } 1432 1433 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB); 1434 if (JumpThreadCost > Threshold) { 1435 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1436 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1437 return false; 1438 } 1439 1440 // And finally, do it! Start by factoring the predecessors is needed. 1441 BasicBlock *PredBB; 1442 if (PredBBs.size() == 1) 1443 PredBB = PredBBs[0]; 1444 else { 1445 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1446 << " common predecessors.\n"); 1447 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), 1448 ".thr_comm", this); 1449 } 1450 1451 // And finally, do it! 1452 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1453 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1454 << ", across block:\n " 1455 << *BB << "\n"); 1456 1457 if (LVI) 1458 LVI->threadEdge(PredBB, BB, SuccBB); 1459 1460 // We are going to have to map operands from the original BB block to the new 1461 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1462 // account for entry from PredBB. 1463 DenseMap<Instruction*, Value*> ValueMapping; 1464 1465 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1466 BB->getName()+".thread", 1467 BB->getParent(), BB); 1468 NewBB->moveAfter(PredBB); 1469 1470 BasicBlock::iterator BI = BB->begin(); 1471 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1472 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1473 1474 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1475 // mapping and using it to remap operands in the cloned instructions. 1476 for (; !isa<TerminatorInst>(BI); ++BI) { 1477 Instruction *New = BI->clone(); 1478 New->setName(BI->getName()); 1479 NewBB->getInstList().push_back(New); 1480 ValueMapping[BI] = New; 1481 1482 // Remap operands to patch up intra-block references. 1483 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1484 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1485 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1486 if (I != ValueMapping.end()) 1487 New->setOperand(i, I->second); 1488 } 1489 } 1490 1491 // We didn't copy the terminator from BB over to NewBB, because there is now 1492 // an unconditional jump to SuccBB. Insert the unconditional jump. 1493 BranchInst::Create(SuccBB, NewBB); 1494 1495 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1496 // PHI nodes for NewBB now. 1497 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1498 1499 // If there were values defined in BB that are used outside the block, then we 1500 // now have to update all uses of the value to use either the original value, 1501 // the cloned value, or some PHI derived value. This can require arbitrary 1502 // PHI insertion, of which we are prepared to do, clean these up now. 1503 SSAUpdater SSAUpdate; 1504 SmallVector<Use*, 16> UsesToRename; 1505 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1506 // Scan all uses of this instruction to see if it is used outside of its 1507 // block, and if so, record them in UsesToRename. 1508 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1509 ++UI) { 1510 Instruction *User = cast<Instruction>(*UI); 1511 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1512 if (UserPN->getIncomingBlock(UI) == BB) 1513 continue; 1514 } else if (User->getParent() == BB) 1515 continue; 1516 1517 UsesToRename.push_back(&UI.getUse()); 1518 } 1519 1520 // If there are no uses outside the block, we're done with this instruction. 1521 if (UsesToRename.empty()) 1522 continue; 1523 1524 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1525 1526 // We found a use of I outside of BB. Rename all uses of I that are outside 1527 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1528 // with the two values we know. 1529 SSAUpdate.Initialize(I); 1530 SSAUpdate.AddAvailableValue(BB, I); 1531 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); 1532 1533 while (!UsesToRename.empty()) 1534 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1535 DEBUG(dbgs() << "\n"); 1536 } 1537 1538 1539 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1540 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1541 // us to simplify any PHI nodes in BB. 1542 TerminatorInst *PredTerm = PredBB->getTerminator(); 1543 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1544 if (PredTerm->getSuccessor(i) == BB) { 1545 RemovePredecessorAndSimplify(BB, PredBB, TD); 1546 PredTerm->setSuccessor(i, NewBB); 1547 } 1548 1549 // At this point, the IR is fully up to date and consistent. Do a quick scan 1550 // over the new instructions and zap any that are constants or dead. This 1551 // frequently happens because of phi translation. 1552 SimplifyInstructionsInBlock(NewBB, TD); 1553 1554 // Threaded an edge! 1555 ++NumThreads; 1556 return true; 1557 } 1558 1559 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1560 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1561 /// If we can duplicate the contents of BB up into PredBB do so now, this 1562 /// improves the odds that the branch will be on an analyzable instruction like 1563 /// a compare. 1564 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1565 const SmallVectorImpl<BasicBlock *> &PredBBs) { 1566 assert(!PredBBs.empty() && "Can't handle an empty set"); 1567 1568 // If BB is a loop header, then duplicating this block outside the loop would 1569 // cause us to transform this into an irreducible loop, don't do this. 1570 // See the comments above FindLoopHeaders for justifications and caveats. 1571 if (LoopHeaders.count(BB)) { 1572 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1573 << "' into predecessor block '" << PredBBs[0]->getName() 1574 << "' - it might create an irreducible loop!\n"); 1575 return false; 1576 } 1577 1578 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB); 1579 if (DuplicationCost > Threshold) { 1580 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1581 << "' - Cost is too high: " << DuplicationCost << "\n"); 1582 return false; 1583 } 1584 1585 // And finally, do it! Start by factoring the predecessors is needed. 1586 BasicBlock *PredBB; 1587 if (PredBBs.size() == 1) 1588 PredBB = PredBBs[0]; 1589 else { 1590 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1591 << " common predecessors.\n"); 1592 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), 1593 ".thr_comm", this); 1594 } 1595 1596 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1597 // of PredBB. 1598 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1599 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1600 << DuplicationCost << " block is:" << *BB << "\n"); 1601 1602 // Unless PredBB ends with an unconditional branch, split the edge so that we 1603 // can just clone the bits from BB into the end of the new PredBB. 1604 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 1605 1606 if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) { 1607 PredBB = SplitEdge(PredBB, BB, this); 1608 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1609 } 1610 1611 // We are going to have to map operands from the original BB block into the 1612 // PredBB block. Evaluate PHI nodes in BB. 1613 DenseMap<Instruction*, Value*> ValueMapping; 1614 1615 BasicBlock::iterator BI = BB->begin(); 1616 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1617 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1618 1619 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1620 // mapping and using it to remap operands in the cloned instructions. 1621 for (; BI != BB->end(); ++BI) { 1622 Instruction *New = BI->clone(); 1623 1624 // Remap operands to patch up intra-block references. 1625 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1626 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1627 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1628 if (I != ValueMapping.end()) 1629 New->setOperand(i, I->second); 1630 } 1631 1632 // If this instruction can be simplified after the operands are updated, 1633 // just use the simplified value instead. This frequently happens due to 1634 // phi translation. 1635 if (Value *IV = SimplifyInstruction(New, TD)) { 1636 delete New; 1637 ValueMapping[BI] = IV; 1638 } else { 1639 // Otherwise, insert the new instruction into the block. 1640 New->setName(BI->getName()); 1641 PredBB->getInstList().insert(OldPredBranch, New); 1642 ValueMapping[BI] = New; 1643 } 1644 } 1645 1646 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1647 // add entries to the PHI nodes for branch from PredBB now. 1648 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1649 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1650 ValueMapping); 1651 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1652 ValueMapping); 1653 1654 // If there were values defined in BB that are used outside the block, then we 1655 // now have to update all uses of the value to use either the original value, 1656 // the cloned value, or some PHI derived value. This can require arbitrary 1657 // PHI insertion, of which we are prepared to do, clean these up now. 1658 SSAUpdater SSAUpdate; 1659 SmallVector<Use*, 16> UsesToRename; 1660 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1661 // Scan all uses of this instruction to see if it is used outside of its 1662 // block, and if so, record them in UsesToRename. 1663 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1664 ++UI) { 1665 Instruction *User = cast<Instruction>(*UI); 1666 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1667 if (UserPN->getIncomingBlock(UI) == BB) 1668 continue; 1669 } else if (User->getParent() == BB) 1670 continue; 1671 1672 UsesToRename.push_back(&UI.getUse()); 1673 } 1674 1675 // If there are no uses outside the block, we're done with this instruction. 1676 if (UsesToRename.empty()) 1677 continue; 1678 1679 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1680 1681 // We found a use of I outside of BB. Rename all uses of I that are outside 1682 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1683 // with the two values we know. 1684 SSAUpdate.Initialize(I); 1685 SSAUpdate.AddAvailableValue(BB, I); 1686 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); 1687 1688 while (!UsesToRename.empty()) 1689 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1690 DEBUG(dbgs() << "\n"); 1691 } 1692 1693 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1694 // that we nuked. 1695 RemovePredecessorAndSimplify(BB, PredBB, TD); 1696 1697 // Remove the unconditional branch at the end of the PredBB block. 1698 OldPredBranch->eraseFromParent(); 1699 1700 ++NumDupes; 1701 return true; 1702 } 1703 1704 1705