1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/JumpThreading.h" 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 23 #include "llvm/Analysis/ConstantFolding.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/Loads.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/MDBuilder.h" 32 #include "llvm/IR/Metadata.h" 33 #include "llvm/Pass.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 38 #include "llvm/Transforms/Utils/Local.h" 39 #include "llvm/Transforms/Utils/SSAUpdater.h" 40 #include <algorithm> 41 #include <memory> 42 using namespace llvm; 43 using namespace jumpthreading; 44 45 #define DEBUG_TYPE "jump-threading" 46 47 STATISTIC(NumThreads, "Number of jumps threaded"); 48 STATISTIC(NumFolds, "Number of terminators folded"); 49 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 50 51 static cl::opt<unsigned> 52 BBDuplicateThreshold("jump-threading-threshold", 53 cl::desc("Max block size to duplicate for jump threading"), 54 cl::init(6), cl::Hidden); 55 56 static cl::opt<unsigned> 57 ImplicationSearchThreshold( 58 "jump-threading-implication-search-threshold", 59 cl::desc("The number of predecessors to search for a stronger " 60 "condition to use to thread over a weaker condition"), 61 cl::init(3), cl::Hidden); 62 63 namespace { 64 /// This pass performs 'jump threading', which looks at blocks that have 65 /// multiple predecessors and multiple successors. If one or more of the 66 /// predecessors of the block can be proven to always jump to one of the 67 /// successors, we forward the edge from the predecessor to the successor by 68 /// duplicating the contents of this block. 69 /// 70 /// An example of when this can occur is code like this: 71 /// 72 /// if () { ... 73 /// X = 4; 74 /// } 75 /// if (X < 3) { 76 /// 77 /// In this case, the unconditional branch at the end of the first if can be 78 /// revectored to the false side of the second if. 79 /// 80 class JumpThreading : public FunctionPass { 81 JumpThreadingPass Impl; 82 83 public: 84 static char ID; // Pass identification 85 JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) { 86 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 87 } 88 89 bool runOnFunction(Function &F) override; 90 91 void getAnalysisUsage(AnalysisUsage &AU) const override { 92 AU.addRequired<LazyValueInfoWrapperPass>(); 93 AU.addPreserved<LazyValueInfoWrapperPass>(); 94 AU.addPreserved<GlobalsAAWrapperPass>(); 95 AU.addRequired<TargetLibraryInfoWrapperPass>(); 96 } 97 98 void releaseMemory() override { Impl.releaseMemory(); } 99 }; 100 } 101 102 char JumpThreading::ID = 0; 103 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 104 "Jump Threading", false, false) 105 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 106 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 107 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 108 "Jump Threading", false, false) 109 110 // Public interface to the Jump Threading pass 111 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); } 112 113 JumpThreadingPass::JumpThreadingPass(int T) { 114 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 115 } 116 117 /// runOnFunction - Top level algorithm. 118 /// 119 bool JumpThreading::runOnFunction(Function &F) { 120 if (skipFunction(F)) 121 return false; 122 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 123 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 124 std::unique_ptr<BlockFrequencyInfo> BFI; 125 std::unique_ptr<BranchProbabilityInfo> BPI; 126 bool HasProfileData = F.getEntryCount().hasValue(); 127 if (HasProfileData) { 128 LoopInfo LI{DominatorTree(F)}; 129 BPI.reset(new BranchProbabilityInfo(F, LI)); 130 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 131 } 132 return Impl.runImpl(F, TLI, LVI, HasProfileData, std::move(BFI), 133 std::move(BPI)); 134 } 135 136 PreservedAnalyses JumpThreadingPass::run(Function &F, 137 AnalysisManager<Function> &AM) { 138 139 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 140 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 141 std::unique_ptr<BlockFrequencyInfo> BFI; 142 std::unique_ptr<BranchProbabilityInfo> BPI; 143 bool HasProfileData = F.getEntryCount().hasValue(); 144 if (HasProfileData) { 145 LoopInfo LI{DominatorTree(F)}; 146 BPI.reset(new BranchProbabilityInfo(F, LI)); 147 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 148 } 149 bool Changed = 150 runImpl(F, &TLI, &LVI, HasProfileData, std::move(BFI), std::move(BPI)); 151 if (!Changed) 152 return PreservedAnalyses::all(); 153 PreservedAnalyses PA; 154 PA.preserve<LazyValueAnalysis>(); 155 PA.preserve<GlobalsAA>(); 156 return PreservedAnalyses::none(); 157 } 158 159 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 160 LazyValueInfo *LVI_, bool HasProfileData_, 161 std::unique_ptr<BlockFrequencyInfo> BFI_, 162 std::unique_ptr<BranchProbabilityInfo> BPI_) { 163 164 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 165 TLI = TLI_; 166 LVI = LVI_; 167 BFI.reset(); 168 BPI.reset(); 169 // When profile data is available, we need to update edge weights after 170 // successful jump threading, which requires both BPI and BFI being available. 171 HasProfileData = HasProfileData_; 172 if (HasProfileData) { 173 BPI = std::move(BPI_); 174 BFI = std::move(BFI_); 175 } 176 177 // Remove unreachable blocks from function as they may result in infinite 178 // loop. We do threading if we found something profitable. Jump threading a 179 // branch can create other opportunities. If these opportunities form a cycle 180 // i.e. if any jump threading is undoing previous threading in the path, then 181 // we will loop forever. We take care of this issue by not jump threading for 182 // back edges. This works for normal cases but not for unreachable blocks as 183 // they may have cycle with no back edge. 184 bool EverChanged = false; 185 EverChanged |= removeUnreachableBlocks(F, LVI); 186 187 FindLoopHeaders(F); 188 189 bool Changed; 190 do { 191 Changed = false; 192 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 193 BasicBlock *BB = &*I; 194 // Thread all of the branches we can over this block. 195 while (ProcessBlock(BB)) 196 Changed = true; 197 198 ++I; 199 200 // If the block is trivially dead, zap it. This eliminates the successor 201 // edges which simplifies the CFG. 202 if (pred_empty(BB) && 203 BB != &BB->getParent()->getEntryBlock()) { 204 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 205 << "' with terminator: " << *BB->getTerminator() << '\n'); 206 LoopHeaders.erase(BB); 207 LVI->eraseBlock(BB); 208 DeleteDeadBlock(BB); 209 Changed = true; 210 continue; 211 } 212 213 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 214 215 // Can't thread an unconditional jump, but if the block is "almost 216 // empty", we can replace uses of it with uses of the successor and make 217 // this dead. 218 // We should not eliminate the loop header either, because eliminating 219 // a loop header might later prevent LoopSimplify from transforming nested 220 // loops into simplified form. 221 if (BI && BI->isUnconditional() && 222 BB != &BB->getParent()->getEntryBlock() && 223 // If the terminator is the only non-phi instruction, try to nuke it. 224 BB->getFirstNonPHIOrDbg()->isTerminator() && !LoopHeaders.count(BB)) { 225 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 226 // block, we have to make sure it isn't in the LoopHeaders set. We 227 // reinsert afterward if needed. 228 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 229 BasicBlock *Succ = BI->getSuccessor(0); 230 231 // FIXME: It is always conservatively correct to drop the info 232 // for a block even if it doesn't get erased. This isn't totally 233 // awesome, but it allows us to use AssertingVH to prevent nasty 234 // dangling pointer issues within LazyValueInfo. 235 LVI->eraseBlock(BB); 236 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { 237 Changed = true; 238 // If we deleted BB and BB was the header of a loop, then the 239 // successor is now the header of the loop. 240 BB = Succ; 241 } 242 243 if (ErasedFromLoopHeaders) 244 LoopHeaders.insert(BB); 245 } 246 } 247 EverChanged |= Changed; 248 } while (Changed); 249 250 LoopHeaders.clear(); 251 return EverChanged; 252 } 253 254 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 255 /// thread across it. Stop scanning the block when passing the threshold. 256 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB, 257 unsigned Threshold) { 258 /// Ignore PHI nodes, these will be flattened when duplication happens. 259 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 260 261 // FIXME: THREADING will delete values that are just used to compute the 262 // branch, so they shouldn't count against the duplication cost. 263 264 unsigned Bonus = 0; 265 const TerminatorInst *BBTerm = BB->getTerminator(); 266 // Threading through a switch statement is particularly profitable. If this 267 // block ends in a switch, decrease its cost to make it more likely to happen. 268 if (isa<SwitchInst>(BBTerm)) 269 Bonus = 6; 270 271 // The same holds for indirect branches, but slightly more so. 272 if (isa<IndirectBrInst>(BBTerm)) 273 Bonus = 8; 274 275 // Bump the threshold up so the early exit from the loop doesn't skip the 276 // terminator-based Size adjustment at the end. 277 Threshold += Bonus; 278 279 // Sum up the cost of each instruction until we get to the terminator. Don't 280 // include the terminator because the copy won't include it. 281 unsigned Size = 0; 282 for (; !isa<TerminatorInst>(I); ++I) { 283 284 // Stop scanning the block if we've reached the threshold. 285 if (Size > Threshold) 286 return Size; 287 288 // Debugger intrinsics don't incur code size. 289 if (isa<DbgInfoIntrinsic>(I)) continue; 290 291 // If this is a pointer->pointer bitcast, it is free. 292 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 293 continue; 294 295 // Bail out if this instruction gives back a token type, it is not possible 296 // to duplicate it if it is used outside this BB. 297 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 298 return ~0U; 299 300 // All other instructions count for at least one unit. 301 ++Size; 302 303 // Calls are more expensive. If they are non-intrinsic calls, we model them 304 // as having cost of 4. If they are a non-vector intrinsic, we model them 305 // as having cost of 2 total, and if they are a vector intrinsic, we model 306 // them as having cost 1. 307 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 308 if (CI->cannotDuplicate() || CI->isConvergent()) 309 // Blocks with NoDuplicate are modelled as having infinite cost, so they 310 // are never duplicated. 311 return ~0U; 312 else if (!isa<IntrinsicInst>(CI)) 313 Size += 3; 314 else if (!CI->getType()->isVectorTy()) 315 Size += 1; 316 } 317 } 318 319 return Size > Bonus ? Size - Bonus : 0; 320 } 321 322 /// FindLoopHeaders - We do not want jump threading to turn proper loop 323 /// structures into irreducible loops. Doing this breaks up the loop nesting 324 /// hierarchy and pessimizes later transformations. To prevent this from 325 /// happening, we first have to find the loop headers. Here we approximate this 326 /// by finding targets of backedges in the CFG. 327 /// 328 /// Note that there definitely are cases when we want to allow threading of 329 /// edges across a loop header. For example, threading a jump from outside the 330 /// loop (the preheader) to an exit block of the loop is definitely profitable. 331 /// It is also almost always profitable to thread backedges from within the loop 332 /// to exit blocks, and is often profitable to thread backedges to other blocks 333 /// within the loop (forming a nested loop). This simple analysis is not rich 334 /// enough to track all of these properties and keep it up-to-date as the CFG 335 /// mutates, so we don't allow any of these transformations. 336 /// 337 void JumpThreadingPass::FindLoopHeaders(Function &F) { 338 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 339 FindFunctionBackedges(F, Edges); 340 341 for (const auto &Edge : Edges) 342 LoopHeaders.insert(Edge.second); 343 } 344 345 /// getKnownConstant - Helper method to determine if we can thread over a 346 /// terminator with the given value as its condition, and if so what value to 347 /// use for that. What kind of value this is depends on whether we want an 348 /// integer or a block address, but an undef is always accepted. 349 /// Returns null if Val is null or not an appropriate constant. 350 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 351 if (!Val) 352 return nullptr; 353 354 // Undef is "known" enough. 355 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 356 return U; 357 358 if (Preference == WantBlockAddress) 359 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 360 361 return dyn_cast<ConstantInt>(Val); 362 } 363 364 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 365 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 366 /// in any of our predecessors. If so, return the known list of value and pred 367 /// BB in the result vector. 368 /// 369 /// This returns true if there were any known values. 370 /// 371 bool JumpThreadingPass::ComputeValueKnownInPredecessors( 372 Value *V, BasicBlock *BB, PredValueInfo &Result, 373 ConstantPreference Preference, Instruction *CxtI) { 374 // This method walks up use-def chains recursively. Because of this, we could 375 // get into an infinite loop going around loops in the use-def chain. To 376 // prevent this, keep track of what (value, block) pairs we've already visited 377 // and terminate the search if we loop back to them 378 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 379 return false; 380 381 // An RAII help to remove this pair from the recursion set once the recursion 382 // stack pops back out again. 383 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 384 385 // If V is a constant, then it is known in all predecessors. 386 if (Constant *KC = getKnownConstant(V, Preference)) { 387 for (BasicBlock *Pred : predecessors(BB)) 388 Result.push_back(std::make_pair(KC, Pred)); 389 390 return !Result.empty(); 391 } 392 393 // If V is a non-instruction value, or an instruction in a different block, 394 // then it can't be derived from a PHI. 395 Instruction *I = dyn_cast<Instruction>(V); 396 if (!I || I->getParent() != BB) { 397 398 // Okay, if this is a live-in value, see if it has a known value at the end 399 // of any of our predecessors. 400 // 401 // FIXME: This should be an edge property, not a block end property. 402 /// TODO: Per PR2563, we could infer value range information about a 403 /// predecessor based on its terminator. 404 // 405 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 406 // "I" is a non-local compare-with-a-constant instruction. This would be 407 // able to handle value inequalities better, for example if the compare is 408 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 409 // Perhaps getConstantOnEdge should be smart enough to do this? 410 411 for (BasicBlock *P : predecessors(BB)) { 412 // If the value is known by LazyValueInfo to be a constant in a 413 // predecessor, use that information to try to thread this block. 414 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 415 if (Constant *KC = getKnownConstant(PredCst, Preference)) 416 Result.push_back(std::make_pair(KC, P)); 417 } 418 419 return !Result.empty(); 420 } 421 422 /// If I is a PHI node, then we know the incoming values for any constants. 423 if (PHINode *PN = dyn_cast<PHINode>(I)) { 424 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 425 Value *InVal = PN->getIncomingValue(i); 426 if (Constant *KC = getKnownConstant(InVal, Preference)) { 427 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 428 } else { 429 Constant *CI = LVI->getConstantOnEdge(InVal, 430 PN->getIncomingBlock(i), 431 BB, CxtI); 432 if (Constant *KC = getKnownConstant(CI, Preference)) 433 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 434 } 435 } 436 437 return !Result.empty(); 438 } 439 440 // Handle Cast instructions. Only see through Cast when the source operand is 441 // PHI or Cmp and the source type is i1 to save the compilation time. 442 if (CastInst *CI = dyn_cast<CastInst>(I)) { 443 Value *Source = CI->getOperand(0); 444 if (!Source->getType()->isIntegerTy(1)) 445 return false; 446 if (!isa<PHINode>(Source) && !isa<CmpInst>(Source)) 447 return false; 448 ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI); 449 if (Result.empty()) 450 return false; 451 452 // Convert the known values. 453 for (auto &R : Result) 454 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 455 456 return true; 457 } 458 459 PredValueInfoTy LHSVals, RHSVals; 460 461 // Handle some boolean conditions. 462 if (I->getType()->getPrimitiveSizeInBits() == 1) { 463 assert(Preference == WantInteger && "One-bit non-integer type?"); 464 // X | true -> true 465 // X & false -> false 466 if (I->getOpcode() == Instruction::Or || 467 I->getOpcode() == Instruction::And) { 468 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 469 WantInteger, CxtI); 470 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 471 WantInteger, CxtI); 472 473 if (LHSVals.empty() && RHSVals.empty()) 474 return false; 475 476 ConstantInt *InterestingVal; 477 if (I->getOpcode() == Instruction::Or) 478 InterestingVal = ConstantInt::getTrue(I->getContext()); 479 else 480 InterestingVal = ConstantInt::getFalse(I->getContext()); 481 482 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 483 484 // Scan for the sentinel. If we find an undef, force it to the 485 // interesting value: x|undef -> true and x&undef -> false. 486 for (const auto &LHSVal : LHSVals) 487 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 488 Result.emplace_back(InterestingVal, LHSVal.second); 489 LHSKnownBBs.insert(LHSVal.second); 490 } 491 for (const auto &RHSVal : RHSVals) 492 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 493 // If we already inferred a value for this block on the LHS, don't 494 // re-add it. 495 if (!LHSKnownBBs.count(RHSVal.second)) 496 Result.emplace_back(InterestingVal, RHSVal.second); 497 } 498 499 return !Result.empty(); 500 } 501 502 // Handle the NOT form of XOR. 503 if (I->getOpcode() == Instruction::Xor && 504 isa<ConstantInt>(I->getOperand(1)) && 505 cast<ConstantInt>(I->getOperand(1))->isOne()) { 506 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 507 WantInteger, CxtI); 508 if (Result.empty()) 509 return false; 510 511 // Invert the known values. 512 for (auto &R : Result) 513 R.first = ConstantExpr::getNot(R.first); 514 515 return true; 516 } 517 518 // Try to simplify some other binary operator values. 519 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 520 assert(Preference != WantBlockAddress 521 && "A binary operator creating a block address?"); 522 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 523 PredValueInfoTy LHSVals; 524 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 525 WantInteger, CxtI); 526 527 // Try to use constant folding to simplify the binary operator. 528 for (const auto &LHSVal : LHSVals) { 529 Constant *V = LHSVal.first; 530 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 531 532 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 533 Result.push_back(std::make_pair(KC, LHSVal.second)); 534 } 535 } 536 537 return !Result.empty(); 538 } 539 540 // Handle compare with phi operand, where the PHI is defined in this block. 541 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 542 assert(Preference == WantInteger && "Compares only produce integers"); 543 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 544 if (PN && PN->getParent() == BB) { 545 const DataLayout &DL = PN->getModule()->getDataLayout(); 546 // We can do this simplification if any comparisons fold to true or false. 547 // See if any do. 548 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 549 BasicBlock *PredBB = PN->getIncomingBlock(i); 550 Value *LHS = PN->getIncomingValue(i); 551 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 552 553 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL); 554 if (!Res) { 555 if (!isa<Constant>(RHS)) 556 continue; 557 558 LazyValueInfo::Tristate 559 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 560 cast<Constant>(RHS), PredBB, BB, 561 CxtI ? CxtI : Cmp); 562 if (ResT == LazyValueInfo::Unknown) 563 continue; 564 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 565 } 566 567 if (Constant *KC = getKnownConstant(Res, WantInteger)) 568 Result.push_back(std::make_pair(KC, PredBB)); 569 } 570 571 return !Result.empty(); 572 } 573 574 // If comparing a live-in value against a constant, see if we know the 575 // live-in value on any predecessors. 576 if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) { 577 if (!isa<Instruction>(Cmp->getOperand(0)) || 578 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) { 579 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 580 581 for (BasicBlock *P : predecessors(BB)) { 582 // If the value is known by LazyValueInfo to be a constant in a 583 // predecessor, use that information to try to thread this block. 584 LazyValueInfo::Tristate Res = 585 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 586 RHSCst, P, BB, CxtI ? CxtI : Cmp); 587 if (Res == LazyValueInfo::Unknown) 588 continue; 589 590 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 591 Result.push_back(std::make_pair(ResC, P)); 592 } 593 594 return !Result.empty(); 595 } 596 597 // Try to find a constant value for the LHS of a comparison, 598 // and evaluate it statically if we can. 599 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) { 600 PredValueInfoTy LHSVals; 601 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 602 WantInteger, CxtI); 603 604 for (const auto &LHSVal : LHSVals) { 605 Constant *V = LHSVal.first; 606 Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(), 607 V, CmpConst); 608 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 609 Result.push_back(std::make_pair(KC, LHSVal.second)); 610 } 611 612 return !Result.empty(); 613 } 614 } 615 } 616 617 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 618 // Handle select instructions where at least one operand is a known constant 619 // and we can figure out the condition value for any predecessor block. 620 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 621 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 622 PredValueInfoTy Conds; 623 if ((TrueVal || FalseVal) && 624 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 625 WantInteger, CxtI)) { 626 for (auto &C : Conds) { 627 Constant *Cond = C.first; 628 629 // Figure out what value to use for the condition. 630 bool KnownCond; 631 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 632 // A known boolean. 633 KnownCond = CI->isOne(); 634 } else { 635 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 636 // Either operand will do, so be sure to pick the one that's a known 637 // constant. 638 // FIXME: Do this more cleverly if both values are known constants? 639 KnownCond = (TrueVal != nullptr); 640 } 641 642 // See if the select has a known constant value for this predecessor. 643 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 644 Result.push_back(std::make_pair(Val, C.second)); 645 } 646 647 return !Result.empty(); 648 } 649 } 650 651 // If all else fails, see if LVI can figure out a constant value for us. 652 Constant *CI = LVI->getConstant(V, BB, CxtI); 653 if (Constant *KC = getKnownConstant(CI, Preference)) { 654 for (BasicBlock *Pred : predecessors(BB)) 655 Result.push_back(std::make_pair(KC, Pred)); 656 } 657 658 return !Result.empty(); 659 } 660 661 662 663 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 664 /// in an undefined jump, decide which block is best to revector to. 665 /// 666 /// Since we can pick an arbitrary destination, we pick the successor with the 667 /// fewest predecessors. This should reduce the in-degree of the others. 668 /// 669 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 670 TerminatorInst *BBTerm = BB->getTerminator(); 671 unsigned MinSucc = 0; 672 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 673 // Compute the successor with the minimum number of predecessors. 674 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 675 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 676 TestBB = BBTerm->getSuccessor(i); 677 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 678 if (NumPreds < MinNumPreds) { 679 MinSucc = i; 680 MinNumPreds = NumPreds; 681 } 682 } 683 684 return MinSucc; 685 } 686 687 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 688 if (!BB->hasAddressTaken()) return false; 689 690 // If the block has its address taken, it may be a tree of dead constants 691 // hanging off of it. These shouldn't keep the block alive. 692 BlockAddress *BA = BlockAddress::get(BB); 693 BA->removeDeadConstantUsers(); 694 return !BA->use_empty(); 695 } 696 697 /// ProcessBlock - If there are any predecessors whose control can be threaded 698 /// through to a successor, transform them now. 699 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) { 700 // If the block is trivially dead, just return and let the caller nuke it. 701 // This simplifies other transformations. 702 if (pred_empty(BB) && 703 BB != &BB->getParent()->getEntryBlock()) 704 return false; 705 706 // If this block has a single predecessor, and if that pred has a single 707 // successor, merge the blocks. This encourages recursive jump threading 708 // because now the condition in this block can be threaded through 709 // predecessors of our predecessor block. 710 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 711 const TerminatorInst *TI = SinglePred->getTerminator(); 712 if (!TI->isExceptional() && TI->getNumSuccessors() == 1 && 713 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 714 // If SinglePred was a loop header, BB becomes one. 715 if (LoopHeaders.erase(SinglePred)) 716 LoopHeaders.insert(BB); 717 718 LVI->eraseBlock(SinglePred); 719 MergeBasicBlockIntoOnlyPred(BB); 720 721 return true; 722 } 723 } 724 725 if (TryToUnfoldSelectInCurrBB(BB)) 726 return true; 727 728 // What kind of constant we're looking for. 729 ConstantPreference Preference = WantInteger; 730 731 // Look to see if the terminator is a conditional branch, switch or indirect 732 // branch, if not we can't thread it. 733 Value *Condition; 734 Instruction *Terminator = BB->getTerminator(); 735 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 736 // Can't thread an unconditional jump. 737 if (BI->isUnconditional()) return false; 738 Condition = BI->getCondition(); 739 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 740 Condition = SI->getCondition(); 741 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 742 // Can't thread indirect branch with no successors. 743 if (IB->getNumSuccessors() == 0) return false; 744 Condition = IB->getAddress()->stripPointerCasts(); 745 Preference = WantBlockAddress; 746 } else { 747 return false; // Must be an invoke. 748 } 749 750 // Run constant folding to see if we can reduce the condition to a simple 751 // constant. 752 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 753 Value *SimpleVal = 754 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 755 if (SimpleVal) { 756 I->replaceAllUsesWith(SimpleVal); 757 I->eraseFromParent(); 758 Condition = SimpleVal; 759 } 760 } 761 762 // If the terminator is branching on an undef, we can pick any of the 763 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 764 if (isa<UndefValue>(Condition)) { 765 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 766 767 // Fold the branch/switch. 768 TerminatorInst *BBTerm = BB->getTerminator(); 769 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 770 if (i == BestSucc) continue; 771 BBTerm->getSuccessor(i)->removePredecessor(BB, true); 772 } 773 774 DEBUG(dbgs() << " In block '" << BB->getName() 775 << "' folding undef terminator: " << *BBTerm << '\n'); 776 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 777 BBTerm->eraseFromParent(); 778 return true; 779 } 780 781 // If the terminator of this block is branching on a constant, simplify the 782 // terminator to an unconditional branch. This can occur due to threading in 783 // other blocks. 784 if (getKnownConstant(Condition, Preference)) { 785 DEBUG(dbgs() << " In block '" << BB->getName() 786 << "' folding terminator: " << *BB->getTerminator() << '\n'); 787 ++NumFolds; 788 ConstantFoldTerminator(BB, true); 789 return true; 790 } 791 792 Instruction *CondInst = dyn_cast<Instruction>(Condition); 793 794 // All the rest of our checks depend on the condition being an instruction. 795 if (!CondInst) { 796 // FIXME: Unify this with code below. 797 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 798 return true; 799 return false; 800 } 801 802 803 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 804 // If we're branching on a conditional, LVI might be able to determine 805 // it's value at the branch instruction. We only handle comparisons 806 // against a constant at this time. 807 // TODO: This should be extended to handle switches as well. 808 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 809 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 810 if (CondBr && CondConst && CondBr->isConditional()) { 811 LazyValueInfo::Tristate Ret = 812 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 813 CondConst, CondBr); 814 if (Ret != LazyValueInfo::Unknown) { 815 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 816 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 817 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 818 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 819 CondBr->eraseFromParent(); 820 if (CondCmp->use_empty()) 821 CondCmp->eraseFromParent(); 822 else if (CondCmp->getParent() == BB) { 823 // If the fact we just learned is true for all uses of the 824 // condition, replace it with a constant value 825 auto *CI = Ret == LazyValueInfo::True ? 826 ConstantInt::getTrue(CondCmp->getType()) : 827 ConstantInt::getFalse(CondCmp->getType()); 828 CondCmp->replaceAllUsesWith(CI); 829 CondCmp->eraseFromParent(); 830 } 831 return true; 832 } 833 } 834 835 if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB)) 836 return true; 837 } 838 839 // Check for some cases that are worth simplifying. Right now we want to look 840 // for loads that are used by a switch or by the condition for the branch. If 841 // we see one, check to see if it's partially redundant. If so, insert a PHI 842 // which can then be used to thread the values. 843 // 844 Value *SimplifyValue = CondInst; 845 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 846 if (isa<Constant>(CondCmp->getOperand(1))) 847 SimplifyValue = CondCmp->getOperand(0); 848 849 // TODO: There are other places where load PRE would be profitable, such as 850 // more complex comparisons. 851 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 852 if (SimplifyPartiallyRedundantLoad(LI)) 853 return true; 854 855 856 // Handle a variety of cases where we are branching on something derived from 857 // a PHI node in the current block. If we can prove that any predecessors 858 // compute a predictable value based on a PHI node, thread those predecessors. 859 // 860 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 861 return true; 862 863 // If this is an otherwise-unfoldable branch on a phi node in the current 864 // block, see if we can simplify. 865 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 866 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 867 return ProcessBranchOnPHI(PN); 868 869 870 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 871 if (CondInst->getOpcode() == Instruction::Xor && 872 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 873 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 874 875 // Search for a stronger dominating condition that can be used to simplify a 876 // conditional branch leaving BB. 877 if (ProcessImpliedCondition(BB)) 878 return true; 879 880 return false; 881 } 882 883 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) { 884 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 885 if (!BI || !BI->isConditional()) 886 return false; 887 888 Value *Cond = BI->getCondition(); 889 BasicBlock *CurrentBB = BB; 890 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 891 unsigned Iter = 0; 892 893 auto &DL = BB->getModule()->getDataLayout(); 894 895 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 896 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 897 if (!PBI || !PBI->isConditional()) 898 return false; 899 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 900 return false; 901 902 bool FalseDest = PBI->getSuccessor(1) == CurrentBB; 903 Optional<bool> Implication = 904 isImpliedCondition(PBI->getCondition(), Cond, DL, FalseDest); 905 if (Implication) { 906 BI->getSuccessor(*Implication ? 1 : 0)->removePredecessor(BB); 907 BranchInst::Create(BI->getSuccessor(*Implication ? 0 : 1), BI); 908 BI->eraseFromParent(); 909 return true; 910 } 911 CurrentBB = CurrentPred; 912 CurrentPred = CurrentBB->getSinglePredecessor(); 913 } 914 915 return false; 916 } 917 918 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 919 /// load instruction, eliminate it by replacing it with a PHI node. This is an 920 /// important optimization that encourages jump threading, and needs to be run 921 /// interlaced with other jump threading tasks. 922 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 923 // Don't hack volatile/atomic loads. 924 if (!LI->isSimple()) return false; 925 926 // If the load is defined in a block with exactly one predecessor, it can't be 927 // partially redundant. 928 BasicBlock *LoadBB = LI->getParent(); 929 if (LoadBB->getSinglePredecessor()) 930 return false; 931 932 // If the load is defined in an EH pad, it can't be partially redundant, 933 // because the edges between the invoke and the EH pad cannot have other 934 // instructions between them. 935 if (LoadBB->isEHPad()) 936 return false; 937 938 Value *LoadedPtr = LI->getOperand(0); 939 940 // If the loaded operand is defined in the LoadBB, it can't be available. 941 // TODO: Could do simple PHI translation, that would be fun :) 942 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 943 if (PtrOp->getParent() == LoadBB) 944 return false; 945 946 // Scan a few instructions up from the load, to see if it is obviously live at 947 // the entry to its block. 948 BasicBlock::iterator BBIt(LI); 949 950 if (Value *AvailableVal = 951 FindAvailableLoadedValue(LI, LoadBB, BBIt, DefMaxInstsToScan)) { 952 // If the value of the load is locally available within the block, just use 953 // it. This frequently occurs for reg2mem'd allocas. 954 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 955 956 // If the returned value is the load itself, replace with an undef. This can 957 // only happen in dead loops. 958 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 959 if (AvailableVal->getType() != LI->getType()) 960 AvailableVal = 961 CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI); 962 LI->replaceAllUsesWith(AvailableVal); 963 LI->eraseFromParent(); 964 return true; 965 } 966 967 // Otherwise, if we scanned the whole block and got to the top of the block, 968 // we know the block is locally transparent to the load. If not, something 969 // might clobber its value. 970 if (BBIt != LoadBB->begin()) 971 return false; 972 973 // If all of the loads and stores that feed the value have the same AA tags, 974 // then we can propagate them onto any newly inserted loads. 975 AAMDNodes AATags; 976 LI->getAAMetadata(AATags); 977 978 SmallPtrSet<BasicBlock*, 8> PredsScanned; 979 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 980 AvailablePredsTy AvailablePreds; 981 BasicBlock *OneUnavailablePred = nullptr; 982 983 // If we got here, the loaded value is transparent through to the start of the 984 // block. Check to see if it is available in any of the predecessor blocks. 985 for (BasicBlock *PredBB : predecessors(LoadBB)) { 986 // If we already scanned this predecessor, skip it. 987 if (!PredsScanned.insert(PredBB).second) 988 continue; 989 990 // Scan the predecessor to see if the value is available in the pred. 991 BBIt = PredBB->end(); 992 AAMDNodes ThisAATags; 993 Value *PredAvailable = FindAvailableLoadedValue(LI, PredBB, BBIt, 994 DefMaxInstsToScan, 995 nullptr, &ThisAATags); 996 if (!PredAvailable) { 997 OneUnavailablePred = PredBB; 998 continue; 999 } 1000 1001 // If AA tags disagree or are not present, forget about them. 1002 if (AATags != ThisAATags) AATags = AAMDNodes(); 1003 1004 // If so, this load is partially redundant. Remember this info so that we 1005 // can create a PHI node. 1006 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 1007 } 1008 1009 // If the loaded value isn't available in any predecessor, it isn't partially 1010 // redundant. 1011 if (AvailablePreds.empty()) return false; 1012 1013 // Okay, the loaded value is available in at least one (and maybe all!) 1014 // predecessors. If the value is unavailable in more than one unique 1015 // predecessor, we want to insert a merge block for those common predecessors. 1016 // This ensures that we only have to insert one reload, thus not increasing 1017 // code size. 1018 BasicBlock *UnavailablePred = nullptr; 1019 1020 // If there is exactly one predecessor where the value is unavailable, the 1021 // already computed 'OneUnavailablePred' block is it. If it ends in an 1022 // unconditional branch, we know that it isn't a critical edge. 1023 if (PredsScanned.size() == AvailablePreds.size()+1 && 1024 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1025 UnavailablePred = OneUnavailablePred; 1026 } else if (PredsScanned.size() != AvailablePreds.size()) { 1027 // Otherwise, we had multiple unavailable predecessors or we had a critical 1028 // edge from the one. 1029 SmallVector<BasicBlock*, 8> PredsToSplit; 1030 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1031 1032 for (const auto &AvailablePred : AvailablePreds) 1033 AvailablePredSet.insert(AvailablePred.first); 1034 1035 // Add all the unavailable predecessors to the PredsToSplit list. 1036 for (BasicBlock *P : predecessors(LoadBB)) { 1037 // If the predecessor is an indirect goto, we can't split the edge. 1038 if (isa<IndirectBrInst>(P->getTerminator())) 1039 return false; 1040 1041 if (!AvailablePredSet.count(P)) 1042 PredsToSplit.push_back(P); 1043 } 1044 1045 // Split them out to their own block. 1046 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1047 } 1048 1049 // If the value isn't available in all predecessors, then there will be 1050 // exactly one where it isn't available. Insert a load on that edge and add 1051 // it to the AvailablePreds list. 1052 if (UnavailablePred) { 1053 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1054 "Can't handle critical edge here!"); 1055 LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, 1056 LI->getAlignment(), 1057 UnavailablePred->getTerminator()); 1058 NewVal->setDebugLoc(LI->getDebugLoc()); 1059 if (AATags) 1060 NewVal->setAAMetadata(AATags); 1061 1062 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1063 } 1064 1065 // Now we know that each predecessor of this block has a value in 1066 // AvailablePreds, sort them for efficient access as we're walking the preds. 1067 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1068 1069 // Create a PHI node at the start of the block for the PRE'd load value. 1070 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1071 PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "", 1072 &LoadBB->front()); 1073 PN->takeName(LI); 1074 PN->setDebugLoc(LI->getDebugLoc()); 1075 1076 // Insert new entries into the PHI for each predecessor. A single block may 1077 // have multiple entries here. 1078 for (pred_iterator PI = PB; PI != PE; ++PI) { 1079 BasicBlock *P = *PI; 1080 AvailablePredsTy::iterator I = 1081 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1082 std::make_pair(P, (Value*)nullptr)); 1083 1084 assert(I != AvailablePreds.end() && I->first == P && 1085 "Didn't find entry for predecessor!"); 1086 1087 // If we have an available predecessor but it requires casting, insert the 1088 // cast in the predecessor and use the cast. Note that we have to update the 1089 // AvailablePreds vector as we go so that all of the PHI entries for this 1090 // predecessor use the same bitcast. 1091 Value *&PredV = I->second; 1092 if (PredV->getType() != LI->getType()) 1093 PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "", 1094 P->getTerminator()); 1095 1096 PN->addIncoming(PredV, I->first); 1097 } 1098 1099 //cerr << "PRE: " << *LI << *PN << "\n"; 1100 1101 LI->replaceAllUsesWith(PN); 1102 LI->eraseFromParent(); 1103 1104 return true; 1105 } 1106 1107 /// FindMostPopularDest - The specified list contains multiple possible 1108 /// threadable destinations. Pick the one that occurs the most frequently in 1109 /// the list. 1110 static BasicBlock * 1111 FindMostPopularDest(BasicBlock *BB, 1112 const SmallVectorImpl<std::pair<BasicBlock*, 1113 BasicBlock*> > &PredToDestList) { 1114 assert(!PredToDestList.empty()); 1115 1116 // Determine popularity. If there are multiple possible destinations, we 1117 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1118 // blocks with known and real destinations to threading undef. We'll handle 1119 // them later if interesting. 1120 DenseMap<BasicBlock*, unsigned> DestPopularity; 1121 for (const auto &PredToDest : PredToDestList) 1122 if (PredToDest.second) 1123 DestPopularity[PredToDest.second]++; 1124 1125 // Find the most popular dest. 1126 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1127 BasicBlock *MostPopularDest = DPI->first; 1128 unsigned Popularity = DPI->second; 1129 SmallVector<BasicBlock*, 4> SamePopularity; 1130 1131 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1132 // If the popularity of this entry isn't higher than the popularity we've 1133 // seen so far, ignore it. 1134 if (DPI->second < Popularity) 1135 ; // ignore. 1136 else if (DPI->second == Popularity) { 1137 // If it is the same as what we've seen so far, keep track of it. 1138 SamePopularity.push_back(DPI->first); 1139 } else { 1140 // If it is more popular, remember it. 1141 SamePopularity.clear(); 1142 MostPopularDest = DPI->first; 1143 Popularity = DPI->second; 1144 } 1145 } 1146 1147 // Okay, now we know the most popular destination. If there is more than one 1148 // destination, we need to determine one. This is arbitrary, but we need 1149 // to make a deterministic decision. Pick the first one that appears in the 1150 // successor list. 1151 if (!SamePopularity.empty()) { 1152 SamePopularity.push_back(MostPopularDest); 1153 TerminatorInst *TI = BB->getTerminator(); 1154 for (unsigned i = 0; ; ++i) { 1155 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1156 1157 if (std::find(SamePopularity.begin(), SamePopularity.end(), 1158 TI->getSuccessor(i)) == SamePopularity.end()) 1159 continue; 1160 1161 MostPopularDest = TI->getSuccessor(i); 1162 break; 1163 } 1164 } 1165 1166 // Okay, we have finally picked the most popular destination. 1167 return MostPopularDest; 1168 } 1169 1170 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1171 ConstantPreference Preference, 1172 Instruction *CxtI) { 1173 // If threading this would thread across a loop header, don't even try to 1174 // thread the edge. 1175 if (LoopHeaders.count(BB)) 1176 return false; 1177 1178 PredValueInfoTy PredValues; 1179 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1180 return false; 1181 1182 assert(!PredValues.empty() && 1183 "ComputeValueKnownInPredecessors returned true with no values"); 1184 1185 DEBUG(dbgs() << "IN BB: " << *BB; 1186 for (const auto &PredValue : PredValues) { 1187 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1188 << *PredValue.first 1189 << " for pred '" << PredValue.second->getName() << "'.\n"; 1190 }); 1191 1192 // Decide what we want to thread through. Convert our list of known values to 1193 // a list of known destinations for each pred. This also discards duplicate 1194 // predecessors and keeps track of the undefined inputs (which are represented 1195 // as a null dest in the PredToDestList). 1196 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1197 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1198 1199 BasicBlock *OnlyDest = nullptr; 1200 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1201 1202 for (const auto &PredValue : PredValues) { 1203 BasicBlock *Pred = PredValue.second; 1204 if (!SeenPreds.insert(Pred).second) 1205 continue; // Duplicate predecessor entry. 1206 1207 // If the predecessor ends with an indirect goto, we can't change its 1208 // destination. 1209 if (isa<IndirectBrInst>(Pred->getTerminator())) 1210 continue; 1211 1212 Constant *Val = PredValue.first; 1213 1214 BasicBlock *DestBB; 1215 if (isa<UndefValue>(Val)) 1216 DestBB = nullptr; 1217 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1218 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1219 else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1220 DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor(); 1221 } else { 1222 assert(isa<IndirectBrInst>(BB->getTerminator()) 1223 && "Unexpected terminator"); 1224 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1225 } 1226 1227 // If we have exactly one destination, remember it for efficiency below. 1228 if (PredToDestList.empty()) 1229 OnlyDest = DestBB; 1230 else if (OnlyDest != DestBB) 1231 OnlyDest = MultipleDestSentinel; 1232 1233 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1234 } 1235 1236 // If all edges were unthreadable, we fail. 1237 if (PredToDestList.empty()) 1238 return false; 1239 1240 // Determine which is the most common successor. If we have many inputs and 1241 // this block is a switch, we want to start by threading the batch that goes 1242 // to the most popular destination first. If we only know about one 1243 // threadable destination (the common case) we can avoid this. 1244 BasicBlock *MostPopularDest = OnlyDest; 1245 1246 if (MostPopularDest == MultipleDestSentinel) 1247 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1248 1249 // Now that we know what the most popular destination is, factor all 1250 // predecessors that will jump to it into a single predecessor. 1251 SmallVector<BasicBlock*, 16> PredsToFactor; 1252 for (const auto &PredToDest : PredToDestList) 1253 if (PredToDest.second == MostPopularDest) { 1254 BasicBlock *Pred = PredToDest.first; 1255 1256 // This predecessor may be a switch or something else that has multiple 1257 // edges to the block. Factor each of these edges by listing them 1258 // according to # occurrences in PredsToFactor. 1259 for (BasicBlock *Succ : successors(Pred)) 1260 if (Succ == BB) 1261 PredsToFactor.push_back(Pred); 1262 } 1263 1264 // If the threadable edges are branching on an undefined value, we get to pick 1265 // the destination that these predecessors should get to. 1266 if (!MostPopularDest) 1267 MostPopularDest = BB->getTerminator()-> 1268 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1269 1270 // Ok, try to thread it! 1271 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1272 } 1273 1274 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1275 /// a PHI node in the current block. See if there are any simplifications we 1276 /// can do based on inputs to the phi node. 1277 /// 1278 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) { 1279 BasicBlock *BB = PN->getParent(); 1280 1281 // TODO: We could make use of this to do it once for blocks with common PHI 1282 // values. 1283 SmallVector<BasicBlock*, 1> PredBBs; 1284 PredBBs.resize(1); 1285 1286 // If any of the predecessor blocks end in an unconditional branch, we can 1287 // *duplicate* the conditional branch into that block in order to further 1288 // encourage jump threading and to eliminate cases where we have branch on a 1289 // phi of an icmp (branch on icmp is much better). 1290 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1291 BasicBlock *PredBB = PN->getIncomingBlock(i); 1292 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1293 if (PredBr->isUnconditional()) { 1294 PredBBs[0] = PredBB; 1295 // Try to duplicate BB into PredBB. 1296 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1297 return true; 1298 } 1299 } 1300 1301 return false; 1302 } 1303 1304 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1305 /// a xor instruction in the current block. See if there are any 1306 /// simplifications we can do based on inputs to the xor. 1307 /// 1308 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) { 1309 BasicBlock *BB = BO->getParent(); 1310 1311 // If either the LHS or RHS of the xor is a constant, don't do this 1312 // optimization. 1313 if (isa<ConstantInt>(BO->getOperand(0)) || 1314 isa<ConstantInt>(BO->getOperand(1))) 1315 return false; 1316 1317 // If the first instruction in BB isn't a phi, we won't be able to infer 1318 // anything special about any particular predecessor. 1319 if (!isa<PHINode>(BB->front())) 1320 return false; 1321 1322 // If we have a xor as the branch input to this block, and we know that the 1323 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1324 // the condition into the predecessor and fix that value to true, saving some 1325 // logical ops on that path and encouraging other paths to simplify. 1326 // 1327 // This copies something like this: 1328 // 1329 // BB: 1330 // %X = phi i1 [1], [%X'] 1331 // %Y = icmp eq i32 %A, %B 1332 // %Z = xor i1 %X, %Y 1333 // br i1 %Z, ... 1334 // 1335 // Into: 1336 // BB': 1337 // %Y = icmp ne i32 %A, %B 1338 // br i1 %Y, ... 1339 1340 PredValueInfoTy XorOpValues; 1341 bool isLHS = true; 1342 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1343 WantInteger, BO)) { 1344 assert(XorOpValues.empty()); 1345 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1346 WantInteger, BO)) 1347 return false; 1348 isLHS = false; 1349 } 1350 1351 assert(!XorOpValues.empty() && 1352 "ComputeValueKnownInPredecessors returned true with no values"); 1353 1354 // Scan the information to see which is most popular: true or false. The 1355 // predecessors can be of the set true, false, or undef. 1356 unsigned NumTrue = 0, NumFalse = 0; 1357 for (const auto &XorOpValue : XorOpValues) { 1358 if (isa<UndefValue>(XorOpValue.first)) 1359 // Ignore undefs for the count. 1360 continue; 1361 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1362 ++NumFalse; 1363 else 1364 ++NumTrue; 1365 } 1366 1367 // Determine which value to split on, true, false, or undef if neither. 1368 ConstantInt *SplitVal = nullptr; 1369 if (NumTrue > NumFalse) 1370 SplitVal = ConstantInt::getTrue(BB->getContext()); 1371 else if (NumTrue != 0 || NumFalse != 0) 1372 SplitVal = ConstantInt::getFalse(BB->getContext()); 1373 1374 // Collect all of the blocks that this can be folded into so that we can 1375 // factor this once and clone it once. 1376 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1377 for (const auto &XorOpValue : XorOpValues) { 1378 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1379 continue; 1380 1381 BlocksToFoldInto.push_back(XorOpValue.second); 1382 } 1383 1384 // If we inferred a value for all of the predecessors, then duplication won't 1385 // help us. However, we can just replace the LHS or RHS with the constant. 1386 if (BlocksToFoldInto.size() == 1387 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1388 if (!SplitVal) { 1389 // If all preds provide undef, just nuke the xor, because it is undef too. 1390 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1391 BO->eraseFromParent(); 1392 } else if (SplitVal->isZero()) { 1393 // If all preds provide 0, replace the xor with the other input. 1394 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1395 BO->eraseFromParent(); 1396 } else { 1397 // If all preds provide 1, set the computed value to 1. 1398 BO->setOperand(!isLHS, SplitVal); 1399 } 1400 1401 return true; 1402 } 1403 1404 // Try to duplicate BB into PredBB. 1405 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1406 } 1407 1408 1409 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1410 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1411 /// NewPred using the entries from OldPred (suitably mapped). 1412 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1413 BasicBlock *OldPred, 1414 BasicBlock *NewPred, 1415 DenseMap<Instruction*, Value*> &ValueMap) { 1416 for (BasicBlock::iterator PNI = PHIBB->begin(); 1417 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1418 // Ok, we have a PHI node. Figure out what the incoming value was for the 1419 // DestBlock. 1420 Value *IV = PN->getIncomingValueForBlock(OldPred); 1421 1422 // Remap the value if necessary. 1423 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1424 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1425 if (I != ValueMap.end()) 1426 IV = I->second; 1427 } 1428 1429 PN->addIncoming(IV, NewPred); 1430 } 1431 } 1432 1433 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1434 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1435 /// across BB. Transform the IR to reflect this change. 1436 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB, 1437 const SmallVectorImpl<BasicBlock *> &PredBBs, 1438 BasicBlock *SuccBB) { 1439 // If threading to the same block as we come from, we would infinite loop. 1440 if (SuccBB == BB) { 1441 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1442 << "' - would thread to self!\n"); 1443 return false; 1444 } 1445 1446 // If threading this would thread across a loop header, don't thread the edge. 1447 // See the comments above FindLoopHeaders for justifications and caveats. 1448 if (LoopHeaders.count(BB)) { 1449 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1450 << "' to dest BB '" << SuccBB->getName() 1451 << "' - it might create an irreducible loop!\n"); 1452 return false; 1453 } 1454 1455 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, BBDupThreshold); 1456 if (JumpThreadCost > BBDupThreshold) { 1457 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1458 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1459 return false; 1460 } 1461 1462 // And finally, do it! Start by factoring the predecessors if needed. 1463 BasicBlock *PredBB; 1464 if (PredBBs.size() == 1) 1465 PredBB = PredBBs[0]; 1466 else { 1467 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1468 << " common predecessors.\n"); 1469 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1470 } 1471 1472 // And finally, do it! 1473 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1474 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1475 << ", across block:\n " 1476 << *BB << "\n"); 1477 1478 LVI->threadEdge(PredBB, BB, SuccBB); 1479 1480 // We are going to have to map operands from the original BB block to the new 1481 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1482 // account for entry from PredBB. 1483 DenseMap<Instruction*, Value*> ValueMapping; 1484 1485 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1486 BB->getName()+".thread", 1487 BB->getParent(), BB); 1488 NewBB->moveAfter(PredBB); 1489 1490 // Set the block frequency of NewBB. 1491 if (HasProfileData) { 1492 auto NewBBFreq = 1493 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 1494 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 1495 } 1496 1497 BasicBlock::iterator BI = BB->begin(); 1498 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1499 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1500 1501 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1502 // mapping and using it to remap operands in the cloned instructions. 1503 for (; !isa<TerminatorInst>(BI); ++BI) { 1504 Instruction *New = BI->clone(); 1505 New->setName(BI->getName()); 1506 NewBB->getInstList().push_back(New); 1507 ValueMapping[&*BI] = New; 1508 1509 // Remap operands to patch up intra-block references. 1510 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1511 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1512 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1513 if (I != ValueMapping.end()) 1514 New->setOperand(i, I->second); 1515 } 1516 } 1517 1518 // We didn't copy the terminator from BB over to NewBB, because there is now 1519 // an unconditional jump to SuccBB. Insert the unconditional jump. 1520 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 1521 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1522 1523 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1524 // PHI nodes for NewBB now. 1525 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1526 1527 // If there were values defined in BB that are used outside the block, then we 1528 // now have to update all uses of the value to use either the original value, 1529 // the cloned value, or some PHI derived value. This can require arbitrary 1530 // PHI insertion, of which we are prepared to do, clean these up now. 1531 SSAUpdater SSAUpdate; 1532 SmallVector<Use*, 16> UsesToRename; 1533 for (Instruction &I : *BB) { 1534 // Scan all uses of this instruction to see if it is used outside of its 1535 // block, and if so, record them in UsesToRename. 1536 for (Use &U : I.uses()) { 1537 Instruction *User = cast<Instruction>(U.getUser()); 1538 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1539 if (UserPN->getIncomingBlock(U) == BB) 1540 continue; 1541 } else if (User->getParent() == BB) 1542 continue; 1543 1544 UsesToRename.push_back(&U); 1545 } 1546 1547 // If there are no uses outside the block, we're done with this instruction. 1548 if (UsesToRename.empty()) 1549 continue; 1550 1551 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 1552 1553 // We found a use of I outside of BB. Rename all uses of I that are outside 1554 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1555 // with the two values we know. 1556 SSAUpdate.Initialize(I.getType(), I.getName()); 1557 SSAUpdate.AddAvailableValue(BB, &I); 1558 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 1559 1560 while (!UsesToRename.empty()) 1561 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1562 DEBUG(dbgs() << "\n"); 1563 } 1564 1565 1566 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1567 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1568 // us to simplify any PHI nodes in BB. 1569 TerminatorInst *PredTerm = PredBB->getTerminator(); 1570 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1571 if (PredTerm->getSuccessor(i) == BB) { 1572 BB->removePredecessor(PredBB, true); 1573 PredTerm->setSuccessor(i, NewBB); 1574 } 1575 1576 // At this point, the IR is fully up to date and consistent. Do a quick scan 1577 // over the new instructions and zap any that are constants or dead. This 1578 // frequently happens because of phi translation. 1579 SimplifyInstructionsInBlock(NewBB, TLI); 1580 1581 // Update the edge weight from BB to SuccBB, which should be less than before. 1582 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 1583 1584 // Threaded an edge! 1585 ++NumThreads; 1586 return true; 1587 } 1588 1589 /// Create a new basic block that will be the predecessor of BB and successor of 1590 /// all blocks in Preds. When profile data is availble, update the frequency of 1591 /// this new block. 1592 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB, 1593 ArrayRef<BasicBlock *> Preds, 1594 const char *Suffix) { 1595 // Collect the frequencies of all predecessors of BB, which will be used to 1596 // update the edge weight on BB->SuccBB. 1597 BlockFrequency PredBBFreq(0); 1598 if (HasProfileData) 1599 for (auto Pred : Preds) 1600 PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB); 1601 1602 BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix); 1603 1604 // Set the block frequency of the newly created PredBB, which is the sum of 1605 // frequencies of Preds. 1606 if (HasProfileData) 1607 BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency()); 1608 return PredBB; 1609 } 1610 1611 /// Update the block frequency of BB and branch weight and the metadata on the 1612 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 1613 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 1614 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 1615 BasicBlock *BB, 1616 BasicBlock *NewBB, 1617 BasicBlock *SuccBB) { 1618 if (!HasProfileData) 1619 return; 1620 1621 assert(BFI && BPI && "BFI & BPI should have been created here"); 1622 1623 // As the edge from PredBB to BB is deleted, we have to update the block 1624 // frequency of BB. 1625 auto BBOrigFreq = BFI->getBlockFreq(BB); 1626 auto NewBBFreq = BFI->getBlockFreq(NewBB); 1627 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 1628 auto BBNewFreq = BBOrigFreq - NewBBFreq; 1629 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 1630 1631 // Collect updated outgoing edges' frequencies from BB and use them to update 1632 // edge probabilities. 1633 SmallVector<uint64_t, 4> BBSuccFreq; 1634 for (BasicBlock *Succ : successors(BB)) { 1635 auto SuccFreq = (Succ == SuccBB) 1636 ? BB2SuccBBFreq - NewBBFreq 1637 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 1638 BBSuccFreq.push_back(SuccFreq.getFrequency()); 1639 } 1640 1641 uint64_t MaxBBSuccFreq = 1642 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 1643 1644 SmallVector<BranchProbability, 4> BBSuccProbs; 1645 if (MaxBBSuccFreq == 0) 1646 BBSuccProbs.assign(BBSuccFreq.size(), 1647 {1, static_cast<unsigned>(BBSuccFreq.size())}); 1648 else { 1649 for (uint64_t Freq : BBSuccFreq) 1650 BBSuccProbs.push_back( 1651 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 1652 // Normalize edge probabilities so that they sum up to one. 1653 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 1654 BBSuccProbs.end()); 1655 } 1656 1657 // Update edge probabilities in BPI. 1658 for (int I = 0, E = BBSuccProbs.size(); I < E; I++) 1659 BPI->setEdgeProbability(BB, I, BBSuccProbs[I]); 1660 1661 if (BBSuccProbs.size() >= 2) { 1662 SmallVector<uint32_t, 4> Weights; 1663 for (auto Prob : BBSuccProbs) 1664 Weights.push_back(Prob.getNumerator()); 1665 1666 auto TI = BB->getTerminator(); 1667 TI->setMetadata( 1668 LLVMContext::MD_prof, 1669 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 1670 } 1671 } 1672 1673 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1674 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1675 /// If we can duplicate the contents of BB up into PredBB do so now, this 1676 /// improves the odds that the branch will be on an analyzable instruction like 1677 /// a compare. 1678 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred( 1679 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 1680 assert(!PredBBs.empty() && "Can't handle an empty set"); 1681 1682 // If BB is a loop header, then duplicating this block outside the loop would 1683 // cause us to transform this into an irreducible loop, don't do this. 1684 // See the comments above FindLoopHeaders for justifications and caveats. 1685 if (LoopHeaders.count(BB)) { 1686 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1687 << "' into predecessor block '" << PredBBs[0]->getName() 1688 << "' - it might create an irreducible loop!\n"); 1689 return false; 1690 } 1691 1692 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, BBDupThreshold); 1693 if (DuplicationCost > BBDupThreshold) { 1694 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1695 << "' - Cost is too high: " << DuplicationCost << "\n"); 1696 return false; 1697 } 1698 1699 // And finally, do it! Start by factoring the predecessors if needed. 1700 BasicBlock *PredBB; 1701 if (PredBBs.size() == 1) 1702 PredBB = PredBBs[0]; 1703 else { 1704 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1705 << " common predecessors.\n"); 1706 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1707 } 1708 1709 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1710 // of PredBB. 1711 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1712 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1713 << DuplicationCost << " block is:" << *BB << "\n"); 1714 1715 // Unless PredBB ends with an unconditional branch, split the edge so that we 1716 // can just clone the bits from BB into the end of the new PredBB. 1717 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 1718 1719 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 1720 PredBB = SplitEdge(PredBB, BB); 1721 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1722 } 1723 1724 // We are going to have to map operands from the original BB block into the 1725 // PredBB block. Evaluate PHI nodes in BB. 1726 DenseMap<Instruction*, Value*> ValueMapping; 1727 1728 BasicBlock::iterator BI = BB->begin(); 1729 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1730 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1731 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1732 // mapping and using it to remap operands in the cloned instructions. 1733 for (; BI != BB->end(); ++BI) { 1734 Instruction *New = BI->clone(); 1735 1736 // Remap operands to patch up intra-block references. 1737 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1738 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1739 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1740 if (I != ValueMapping.end()) 1741 New->setOperand(i, I->second); 1742 } 1743 1744 // If this instruction can be simplified after the operands are updated, 1745 // just use the simplified value instead. This frequently happens due to 1746 // phi translation. 1747 if (Value *IV = 1748 SimplifyInstruction(New, BB->getModule()->getDataLayout())) { 1749 ValueMapping[&*BI] = IV; 1750 if (!New->mayHaveSideEffects()) { 1751 delete New; 1752 New = nullptr; 1753 } 1754 } else { 1755 ValueMapping[&*BI] = New; 1756 } 1757 if (New) { 1758 // Otherwise, insert the new instruction into the block. 1759 New->setName(BI->getName()); 1760 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 1761 } 1762 } 1763 1764 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1765 // add entries to the PHI nodes for branch from PredBB now. 1766 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1767 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1768 ValueMapping); 1769 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1770 ValueMapping); 1771 1772 // If there were values defined in BB that are used outside the block, then we 1773 // now have to update all uses of the value to use either the original value, 1774 // the cloned value, or some PHI derived value. This can require arbitrary 1775 // PHI insertion, of which we are prepared to do, clean these up now. 1776 SSAUpdater SSAUpdate; 1777 SmallVector<Use*, 16> UsesToRename; 1778 for (Instruction &I : *BB) { 1779 // Scan all uses of this instruction to see if it is used outside of its 1780 // block, and if so, record them in UsesToRename. 1781 for (Use &U : I.uses()) { 1782 Instruction *User = cast<Instruction>(U.getUser()); 1783 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1784 if (UserPN->getIncomingBlock(U) == BB) 1785 continue; 1786 } else if (User->getParent() == BB) 1787 continue; 1788 1789 UsesToRename.push_back(&U); 1790 } 1791 1792 // If there are no uses outside the block, we're done with this instruction. 1793 if (UsesToRename.empty()) 1794 continue; 1795 1796 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 1797 1798 // We found a use of I outside of BB. Rename all uses of I that are outside 1799 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1800 // with the two values we know. 1801 SSAUpdate.Initialize(I.getType(), I.getName()); 1802 SSAUpdate.AddAvailableValue(BB, &I); 1803 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]); 1804 1805 while (!UsesToRename.empty()) 1806 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1807 DEBUG(dbgs() << "\n"); 1808 } 1809 1810 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1811 // that we nuked. 1812 BB->removePredecessor(PredBB, true); 1813 1814 // Remove the unconditional branch at the end of the PredBB block. 1815 OldPredBranch->eraseFromParent(); 1816 1817 ++NumDupes; 1818 return true; 1819 } 1820 1821 /// TryToUnfoldSelect - Look for blocks of the form 1822 /// bb1: 1823 /// %a = select 1824 /// br bb 1825 /// 1826 /// bb2: 1827 /// %p = phi [%a, %bb] ... 1828 /// %c = icmp %p 1829 /// br i1 %c 1830 /// 1831 /// And expand the select into a branch structure if one of its arms allows %c 1832 /// to be folded. This later enables threading from bb1 over bb2. 1833 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 1834 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1835 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 1836 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 1837 1838 if (!CondBr || !CondBr->isConditional() || !CondLHS || 1839 CondLHS->getParent() != BB) 1840 return false; 1841 1842 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 1843 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 1844 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 1845 1846 // Look if one of the incoming values is a select in the corresponding 1847 // predecessor. 1848 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 1849 continue; 1850 1851 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 1852 if (!PredTerm || !PredTerm->isUnconditional()) 1853 continue; 1854 1855 // Now check if one of the select values would allow us to constant fold the 1856 // terminator in BB. We don't do the transform if both sides fold, those 1857 // cases will be threaded in any case. 1858 LazyValueInfo::Tristate LHSFolds = 1859 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 1860 CondRHS, Pred, BB, CondCmp); 1861 LazyValueInfo::Tristate RHSFolds = 1862 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 1863 CondRHS, Pred, BB, CondCmp); 1864 if ((LHSFolds != LazyValueInfo::Unknown || 1865 RHSFolds != LazyValueInfo::Unknown) && 1866 LHSFolds != RHSFolds) { 1867 // Expand the select. 1868 // 1869 // Pred -- 1870 // | v 1871 // | NewBB 1872 // | | 1873 // |----- 1874 // v 1875 // BB 1876 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 1877 BB->getParent(), BB); 1878 // Move the unconditional branch to NewBB. 1879 PredTerm->removeFromParent(); 1880 NewBB->getInstList().insert(NewBB->end(), PredTerm); 1881 // Create a conditional branch and update PHI nodes. 1882 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 1883 CondLHS->setIncomingValue(I, SI->getFalseValue()); 1884 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 1885 // The select is now dead. 1886 SI->eraseFromParent(); 1887 1888 // Update any other PHI nodes in BB. 1889 for (BasicBlock::iterator BI = BB->begin(); 1890 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 1891 if (Phi != CondLHS) 1892 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 1893 return true; 1894 } 1895 } 1896 return false; 1897 } 1898 1899 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select in the same BB of the form 1900 /// bb: 1901 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 1902 /// %s = select p, trueval, falseval 1903 /// 1904 /// And expand the select into a branch structure. This later enables 1905 /// jump-threading over bb in this pass. 1906 /// 1907 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 1908 /// select if the associated PHI has at least one constant. If the unfolded 1909 /// select is not jump-threaded, it will be folded again in the later 1910 /// optimizations. 1911 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) { 1912 // If threading this would thread across a loop header, don't thread the edge. 1913 // See the comments above FindLoopHeaders for justifications and caveats. 1914 if (LoopHeaders.count(BB)) 1915 return false; 1916 1917 // Look for a Phi/Select pair in the same basic block. The Phi feeds the 1918 // condition of the Select and at least one of the incoming values is a 1919 // constant. 1920 for (BasicBlock::iterator BI = BB->begin(); 1921 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 1922 unsigned NumPHIValues = PN->getNumIncomingValues(); 1923 if (NumPHIValues == 0 || !PN->hasOneUse()) 1924 continue; 1925 1926 SelectInst *SI = dyn_cast<SelectInst>(PN->user_back()); 1927 if (!SI || SI->getParent() != BB) 1928 continue; 1929 1930 Value *Cond = SI->getCondition(); 1931 if (!Cond || Cond != PN || !Cond->getType()->isIntegerTy(1)) 1932 continue; 1933 1934 bool HasConst = false; 1935 for (unsigned i = 0; i != NumPHIValues; ++i) { 1936 if (PN->getIncomingBlock(i) == BB) 1937 return false; 1938 if (isa<ConstantInt>(PN->getIncomingValue(i))) 1939 HasConst = true; 1940 } 1941 1942 if (HasConst) { 1943 // Expand the select. 1944 TerminatorInst *Term = 1945 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false); 1946 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 1947 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 1948 NewPN->addIncoming(SI->getFalseValue(), BB); 1949 SI->replaceAllUsesWith(NewPN); 1950 SI->eraseFromParent(); 1951 return true; 1952 } 1953 } 1954 1955 return false; 1956 } 1957