xref: /llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp (revision 3b3e954ea2a48d0d466dec383f6bfa40a90dd0e1)
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/JumpThreading.h"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/CFG.h"
22 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
23 #include "llvm/Analysis/ConstantFolding.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/Loads.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
38 #include "llvm/Transforms/Utils/Local.h"
39 #include "llvm/Transforms/Utils/SSAUpdater.h"
40 #include <algorithm>
41 #include <memory>
42 using namespace llvm;
43 using namespace jumpthreading;
44 
45 #define DEBUG_TYPE "jump-threading"
46 
47 STATISTIC(NumThreads, "Number of jumps threaded");
48 STATISTIC(NumFolds,   "Number of terminators folded");
49 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
50 
51 static cl::opt<unsigned>
52 BBDuplicateThreshold("jump-threading-threshold",
53           cl::desc("Max block size to duplicate for jump threading"),
54           cl::init(6), cl::Hidden);
55 
56 static cl::opt<unsigned>
57 ImplicationSearchThreshold(
58   "jump-threading-implication-search-threshold",
59   cl::desc("The number of predecessors to search for a stronger "
60            "condition to use to thread over a weaker condition"),
61   cl::init(3), cl::Hidden);
62 
63 namespace {
64   /// This pass performs 'jump threading', which looks at blocks that have
65   /// multiple predecessors and multiple successors.  If one or more of the
66   /// predecessors of the block can be proven to always jump to one of the
67   /// successors, we forward the edge from the predecessor to the successor by
68   /// duplicating the contents of this block.
69   ///
70   /// An example of when this can occur is code like this:
71   ///
72   ///   if () { ...
73   ///     X = 4;
74   ///   }
75   ///   if (X < 3) {
76   ///
77   /// In this case, the unconditional branch at the end of the first if can be
78   /// revectored to the false side of the second if.
79   ///
80   class JumpThreading : public FunctionPass {
81     JumpThreadingPass Impl;
82 
83   public:
84     static char ID; // Pass identification
85     JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
86       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
87     }
88 
89     bool runOnFunction(Function &F) override;
90 
91     void getAnalysisUsage(AnalysisUsage &AU) const override {
92       AU.addRequired<LazyValueInfoWrapperPass>();
93       AU.addPreserved<LazyValueInfoWrapperPass>();
94       AU.addPreserved<GlobalsAAWrapperPass>();
95       AU.addRequired<TargetLibraryInfoWrapperPass>();
96     }
97 
98     void releaseMemory() override { Impl.releaseMemory(); }
99   };
100 }
101 
102 char JumpThreading::ID = 0;
103 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
104                 "Jump Threading", false, false)
105 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
106 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
107 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
108                 "Jump Threading", false, false)
109 
110 // Public interface to the Jump Threading pass
111 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); }
112 
113 JumpThreadingPass::JumpThreadingPass(int T) {
114   BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
115 }
116 
117 /// runOnFunction - Top level algorithm.
118 ///
119 bool JumpThreading::runOnFunction(Function &F) {
120   if (skipFunction(F))
121     return false;
122   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
123   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
124   std::unique_ptr<BlockFrequencyInfo> BFI;
125   std::unique_ptr<BranchProbabilityInfo> BPI;
126   bool HasProfileData = F.getEntryCount().hasValue();
127   if (HasProfileData) {
128     LoopInfo LI{DominatorTree(F)};
129     BPI.reset(new BranchProbabilityInfo(F, LI));
130     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
131   }
132   return Impl.runImpl(F, TLI, LVI, HasProfileData, std::move(BFI),
133                       std::move(BPI));
134 }
135 
136 PreservedAnalyses JumpThreadingPass::run(Function &F,
137                                          AnalysisManager<Function> &AM) {
138 
139   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
140   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
141   std::unique_ptr<BlockFrequencyInfo> BFI;
142   std::unique_ptr<BranchProbabilityInfo> BPI;
143   bool HasProfileData = F.getEntryCount().hasValue();
144   if (HasProfileData) {
145     LoopInfo LI{DominatorTree(F)};
146     BPI.reset(new BranchProbabilityInfo(F, LI));
147     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
148   }
149   bool Changed =
150       runImpl(F, &TLI, &LVI, HasProfileData, std::move(BFI), std::move(BPI));
151   if (!Changed)
152     return PreservedAnalyses::all();
153   PreservedAnalyses PA;
154   PA.preserve<LazyValueAnalysis>();
155   PA.preserve<GlobalsAA>();
156   return PreservedAnalyses::none();
157 }
158 
159 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
160                                 LazyValueInfo *LVI_, bool HasProfileData_,
161                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
162                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
163 
164   DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
165   TLI = TLI_;
166   LVI = LVI_;
167   BFI.reset();
168   BPI.reset();
169   // When profile data is available, we need to update edge weights after
170   // successful jump threading, which requires both BPI and BFI being available.
171   HasProfileData = HasProfileData_;
172   if (HasProfileData) {
173     BPI = std::move(BPI_);
174     BFI = std::move(BFI_);
175   }
176 
177   // Remove unreachable blocks from function as they may result in infinite
178   // loop. We do threading if we found something profitable. Jump threading a
179   // branch can create other opportunities. If these opportunities form a cycle
180   // i.e. if any jump threading is undoing previous threading in the path, then
181   // we will loop forever. We take care of this issue by not jump threading for
182   // back edges. This works for normal cases but not for unreachable blocks as
183   // they may have cycle with no back edge.
184   bool EverChanged = false;
185   EverChanged |= removeUnreachableBlocks(F, LVI);
186 
187   FindLoopHeaders(F);
188 
189   bool Changed;
190   do {
191     Changed = false;
192     for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
193       BasicBlock *BB = &*I;
194       // Thread all of the branches we can over this block.
195       while (ProcessBlock(BB))
196         Changed = true;
197 
198       ++I;
199 
200       // If the block is trivially dead, zap it.  This eliminates the successor
201       // edges which simplifies the CFG.
202       if (pred_empty(BB) &&
203           BB != &BB->getParent()->getEntryBlock()) {
204         DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
205               << "' with terminator: " << *BB->getTerminator() << '\n');
206         LoopHeaders.erase(BB);
207         LVI->eraseBlock(BB);
208         DeleteDeadBlock(BB);
209         Changed = true;
210         continue;
211       }
212 
213       BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
214 
215       // Can't thread an unconditional jump, but if the block is "almost
216       // empty", we can replace uses of it with uses of the successor and make
217       // this dead.
218       // We should not eliminate the loop header either, because eliminating
219       // a loop header might later prevent LoopSimplify from transforming nested
220       // loops into simplified form.
221       if (BI && BI->isUnconditional() &&
222           BB != &BB->getParent()->getEntryBlock() &&
223           // If the terminator is the only non-phi instruction, try to nuke it.
224           BB->getFirstNonPHIOrDbg()->isTerminator() && !LoopHeaders.count(BB)) {
225         // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
226         // block, we have to make sure it isn't in the LoopHeaders set.  We
227         // reinsert afterward if needed.
228         bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
229         BasicBlock *Succ = BI->getSuccessor(0);
230 
231         // FIXME: It is always conservatively correct to drop the info
232         // for a block even if it doesn't get erased.  This isn't totally
233         // awesome, but it allows us to use AssertingVH to prevent nasty
234         // dangling pointer issues within LazyValueInfo.
235         LVI->eraseBlock(BB);
236         if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
237           Changed = true;
238           // If we deleted BB and BB was the header of a loop, then the
239           // successor is now the header of the loop.
240           BB = Succ;
241         }
242 
243         if (ErasedFromLoopHeaders)
244           LoopHeaders.insert(BB);
245       }
246     }
247     EverChanged |= Changed;
248   } while (Changed);
249 
250   LoopHeaders.clear();
251   return EverChanged;
252 }
253 
254 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
255 /// thread across it. Stop scanning the block when passing the threshold.
256 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB,
257                                              unsigned Threshold) {
258   /// Ignore PHI nodes, these will be flattened when duplication happens.
259   BasicBlock::const_iterator I(BB->getFirstNonPHI());
260 
261   // FIXME: THREADING will delete values that are just used to compute the
262   // branch, so they shouldn't count against the duplication cost.
263 
264   unsigned Bonus = 0;
265   const TerminatorInst *BBTerm = BB->getTerminator();
266   // Threading through a switch statement is particularly profitable.  If this
267   // block ends in a switch, decrease its cost to make it more likely to happen.
268   if (isa<SwitchInst>(BBTerm))
269     Bonus = 6;
270 
271   // The same holds for indirect branches, but slightly more so.
272   if (isa<IndirectBrInst>(BBTerm))
273     Bonus = 8;
274 
275   // Bump the threshold up so the early exit from the loop doesn't skip the
276   // terminator-based Size adjustment at the end.
277   Threshold += Bonus;
278 
279   // Sum up the cost of each instruction until we get to the terminator.  Don't
280   // include the terminator because the copy won't include it.
281   unsigned Size = 0;
282   for (; !isa<TerminatorInst>(I); ++I) {
283 
284     // Stop scanning the block if we've reached the threshold.
285     if (Size > Threshold)
286       return Size;
287 
288     // Debugger intrinsics don't incur code size.
289     if (isa<DbgInfoIntrinsic>(I)) continue;
290 
291     // If this is a pointer->pointer bitcast, it is free.
292     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
293       continue;
294 
295     // Bail out if this instruction gives back a token type, it is not possible
296     // to duplicate it if it is used outside this BB.
297     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
298       return ~0U;
299 
300     // All other instructions count for at least one unit.
301     ++Size;
302 
303     // Calls are more expensive.  If they are non-intrinsic calls, we model them
304     // as having cost of 4.  If they are a non-vector intrinsic, we model them
305     // as having cost of 2 total, and if they are a vector intrinsic, we model
306     // them as having cost 1.
307     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
308       if (CI->cannotDuplicate() || CI->isConvergent())
309         // Blocks with NoDuplicate are modelled as having infinite cost, so they
310         // are never duplicated.
311         return ~0U;
312       else if (!isa<IntrinsicInst>(CI))
313         Size += 3;
314       else if (!CI->getType()->isVectorTy())
315         Size += 1;
316     }
317   }
318 
319   return Size > Bonus ? Size - Bonus : 0;
320 }
321 
322 /// FindLoopHeaders - We do not want jump threading to turn proper loop
323 /// structures into irreducible loops.  Doing this breaks up the loop nesting
324 /// hierarchy and pessimizes later transformations.  To prevent this from
325 /// happening, we first have to find the loop headers.  Here we approximate this
326 /// by finding targets of backedges in the CFG.
327 ///
328 /// Note that there definitely are cases when we want to allow threading of
329 /// edges across a loop header.  For example, threading a jump from outside the
330 /// loop (the preheader) to an exit block of the loop is definitely profitable.
331 /// It is also almost always profitable to thread backedges from within the loop
332 /// to exit blocks, and is often profitable to thread backedges to other blocks
333 /// within the loop (forming a nested loop).  This simple analysis is not rich
334 /// enough to track all of these properties and keep it up-to-date as the CFG
335 /// mutates, so we don't allow any of these transformations.
336 ///
337 void JumpThreadingPass::FindLoopHeaders(Function &F) {
338   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
339   FindFunctionBackedges(F, Edges);
340 
341   for (const auto &Edge : Edges)
342     LoopHeaders.insert(Edge.second);
343 }
344 
345 /// getKnownConstant - Helper method to determine if we can thread over a
346 /// terminator with the given value as its condition, and if so what value to
347 /// use for that. What kind of value this is depends on whether we want an
348 /// integer or a block address, but an undef is always accepted.
349 /// Returns null if Val is null or not an appropriate constant.
350 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
351   if (!Val)
352     return nullptr;
353 
354   // Undef is "known" enough.
355   if (UndefValue *U = dyn_cast<UndefValue>(Val))
356     return U;
357 
358   if (Preference == WantBlockAddress)
359     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
360 
361   return dyn_cast<ConstantInt>(Val);
362 }
363 
364 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
365 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
366 /// in any of our predecessors.  If so, return the known list of value and pred
367 /// BB in the result vector.
368 ///
369 /// This returns true if there were any known values.
370 ///
371 bool JumpThreadingPass::ComputeValueKnownInPredecessors(
372     Value *V, BasicBlock *BB, PredValueInfo &Result,
373     ConstantPreference Preference, Instruction *CxtI) {
374   // This method walks up use-def chains recursively.  Because of this, we could
375   // get into an infinite loop going around loops in the use-def chain.  To
376   // prevent this, keep track of what (value, block) pairs we've already visited
377   // and terminate the search if we loop back to them
378   if (!RecursionSet.insert(std::make_pair(V, BB)).second)
379     return false;
380 
381   // An RAII help to remove this pair from the recursion set once the recursion
382   // stack pops back out again.
383   RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
384 
385   // If V is a constant, then it is known in all predecessors.
386   if (Constant *KC = getKnownConstant(V, Preference)) {
387     for (BasicBlock *Pred : predecessors(BB))
388       Result.push_back(std::make_pair(KC, Pred));
389 
390     return !Result.empty();
391   }
392 
393   // If V is a non-instruction value, or an instruction in a different block,
394   // then it can't be derived from a PHI.
395   Instruction *I = dyn_cast<Instruction>(V);
396   if (!I || I->getParent() != BB) {
397 
398     // Okay, if this is a live-in value, see if it has a known value at the end
399     // of any of our predecessors.
400     //
401     // FIXME: This should be an edge property, not a block end property.
402     /// TODO: Per PR2563, we could infer value range information about a
403     /// predecessor based on its terminator.
404     //
405     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
406     // "I" is a non-local compare-with-a-constant instruction.  This would be
407     // able to handle value inequalities better, for example if the compare is
408     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
409     // Perhaps getConstantOnEdge should be smart enough to do this?
410 
411     for (BasicBlock *P : predecessors(BB)) {
412       // If the value is known by LazyValueInfo to be a constant in a
413       // predecessor, use that information to try to thread this block.
414       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
415       if (Constant *KC = getKnownConstant(PredCst, Preference))
416         Result.push_back(std::make_pair(KC, P));
417     }
418 
419     return !Result.empty();
420   }
421 
422   /// If I is a PHI node, then we know the incoming values for any constants.
423   if (PHINode *PN = dyn_cast<PHINode>(I)) {
424     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
425       Value *InVal = PN->getIncomingValue(i);
426       if (Constant *KC = getKnownConstant(InVal, Preference)) {
427         Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
428       } else {
429         Constant *CI = LVI->getConstantOnEdge(InVal,
430                                               PN->getIncomingBlock(i),
431                                               BB, CxtI);
432         if (Constant *KC = getKnownConstant(CI, Preference))
433           Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
434       }
435     }
436 
437     return !Result.empty();
438   }
439 
440   // Handle Cast instructions.  Only see through Cast when the source operand is
441   // PHI or Cmp and the source type is i1 to save the compilation time.
442   if (CastInst *CI = dyn_cast<CastInst>(I)) {
443     Value *Source = CI->getOperand(0);
444     if (!Source->getType()->isIntegerTy(1))
445       return false;
446     if (!isa<PHINode>(Source) && !isa<CmpInst>(Source))
447       return false;
448     ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI);
449     if (Result.empty())
450       return false;
451 
452     // Convert the known values.
453     for (auto &R : Result)
454       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
455 
456     return true;
457   }
458 
459   PredValueInfoTy LHSVals, RHSVals;
460 
461   // Handle some boolean conditions.
462   if (I->getType()->getPrimitiveSizeInBits() == 1) {
463     assert(Preference == WantInteger && "One-bit non-integer type?");
464     // X | true -> true
465     // X & false -> false
466     if (I->getOpcode() == Instruction::Or ||
467         I->getOpcode() == Instruction::And) {
468       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
469                                       WantInteger, CxtI);
470       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
471                                       WantInteger, CxtI);
472 
473       if (LHSVals.empty() && RHSVals.empty())
474         return false;
475 
476       ConstantInt *InterestingVal;
477       if (I->getOpcode() == Instruction::Or)
478         InterestingVal = ConstantInt::getTrue(I->getContext());
479       else
480         InterestingVal = ConstantInt::getFalse(I->getContext());
481 
482       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
483 
484       // Scan for the sentinel.  If we find an undef, force it to the
485       // interesting value: x|undef -> true and x&undef -> false.
486       for (const auto &LHSVal : LHSVals)
487         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
488           Result.emplace_back(InterestingVal, LHSVal.second);
489           LHSKnownBBs.insert(LHSVal.second);
490         }
491       for (const auto &RHSVal : RHSVals)
492         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
493           // If we already inferred a value for this block on the LHS, don't
494           // re-add it.
495           if (!LHSKnownBBs.count(RHSVal.second))
496             Result.emplace_back(InterestingVal, RHSVal.second);
497         }
498 
499       return !Result.empty();
500     }
501 
502     // Handle the NOT form of XOR.
503     if (I->getOpcode() == Instruction::Xor &&
504         isa<ConstantInt>(I->getOperand(1)) &&
505         cast<ConstantInt>(I->getOperand(1))->isOne()) {
506       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
507                                       WantInteger, CxtI);
508       if (Result.empty())
509         return false;
510 
511       // Invert the known values.
512       for (auto &R : Result)
513         R.first = ConstantExpr::getNot(R.first);
514 
515       return true;
516     }
517 
518   // Try to simplify some other binary operator values.
519   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
520     assert(Preference != WantBlockAddress
521             && "A binary operator creating a block address?");
522     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
523       PredValueInfoTy LHSVals;
524       ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
525                                       WantInteger, CxtI);
526 
527       // Try to use constant folding to simplify the binary operator.
528       for (const auto &LHSVal : LHSVals) {
529         Constant *V = LHSVal.first;
530         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
531 
532         if (Constant *KC = getKnownConstant(Folded, WantInteger))
533           Result.push_back(std::make_pair(KC, LHSVal.second));
534       }
535     }
536 
537     return !Result.empty();
538   }
539 
540   // Handle compare with phi operand, where the PHI is defined in this block.
541   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
542     assert(Preference == WantInteger && "Compares only produce integers");
543     PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
544     if (PN && PN->getParent() == BB) {
545       const DataLayout &DL = PN->getModule()->getDataLayout();
546       // We can do this simplification if any comparisons fold to true or false.
547       // See if any do.
548       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
549         BasicBlock *PredBB = PN->getIncomingBlock(i);
550         Value *LHS = PN->getIncomingValue(i);
551         Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
552 
553         Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL);
554         if (!Res) {
555           if (!isa<Constant>(RHS))
556             continue;
557 
558           LazyValueInfo::Tristate
559             ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
560                                            cast<Constant>(RHS), PredBB, BB,
561                                            CxtI ? CxtI : Cmp);
562           if (ResT == LazyValueInfo::Unknown)
563             continue;
564           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
565         }
566 
567         if (Constant *KC = getKnownConstant(Res, WantInteger))
568           Result.push_back(std::make_pair(KC, PredBB));
569       }
570 
571       return !Result.empty();
572     }
573 
574     // If comparing a live-in value against a constant, see if we know the
575     // live-in value on any predecessors.
576     if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
577       if (!isa<Instruction>(Cmp->getOperand(0)) ||
578           cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
579         Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
580 
581         for (BasicBlock *P : predecessors(BB)) {
582           // If the value is known by LazyValueInfo to be a constant in a
583           // predecessor, use that information to try to thread this block.
584           LazyValueInfo::Tristate Res =
585             LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
586                                     RHSCst, P, BB, CxtI ? CxtI : Cmp);
587           if (Res == LazyValueInfo::Unknown)
588             continue;
589 
590           Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
591           Result.push_back(std::make_pair(ResC, P));
592         }
593 
594         return !Result.empty();
595       }
596 
597       // Try to find a constant value for the LHS of a comparison,
598       // and evaluate it statically if we can.
599       if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
600         PredValueInfoTy LHSVals;
601         ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
602                                         WantInteger, CxtI);
603 
604         for (const auto &LHSVal : LHSVals) {
605           Constant *V = LHSVal.first;
606           Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
607                                                       V, CmpConst);
608           if (Constant *KC = getKnownConstant(Folded, WantInteger))
609             Result.push_back(std::make_pair(KC, LHSVal.second));
610         }
611 
612         return !Result.empty();
613       }
614     }
615   }
616 
617   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
618     // Handle select instructions where at least one operand is a known constant
619     // and we can figure out the condition value for any predecessor block.
620     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
621     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
622     PredValueInfoTy Conds;
623     if ((TrueVal || FalseVal) &&
624         ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
625                                         WantInteger, CxtI)) {
626       for (auto &C : Conds) {
627         Constant *Cond = C.first;
628 
629         // Figure out what value to use for the condition.
630         bool KnownCond;
631         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
632           // A known boolean.
633           KnownCond = CI->isOne();
634         } else {
635           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
636           // Either operand will do, so be sure to pick the one that's a known
637           // constant.
638           // FIXME: Do this more cleverly if both values are known constants?
639           KnownCond = (TrueVal != nullptr);
640         }
641 
642         // See if the select has a known constant value for this predecessor.
643         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
644           Result.push_back(std::make_pair(Val, C.second));
645       }
646 
647       return !Result.empty();
648     }
649   }
650 
651   // If all else fails, see if LVI can figure out a constant value for us.
652   Constant *CI = LVI->getConstant(V, BB, CxtI);
653   if (Constant *KC = getKnownConstant(CI, Preference)) {
654     for (BasicBlock *Pred : predecessors(BB))
655       Result.push_back(std::make_pair(KC, Pred));
656   }
657 
658   return !Result.empty();
659 }
660 
661 
662 
663 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
664 /// in an undefined jump, decide which block is best to revector to.
665 ///
666 /// Since we can pick an arbitrary destination, we pick the successor with the
667 /// fewest predecessors.  This should reduce the in-degree of the others.
668 ///
669 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
670   TerminatorInst *BBTerm = BB->getTerminator();
671   unsigned MinSucc = 0;
672   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
673   // Compute the successor with the minimum number of predecessors.
674   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
675   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
676     TestBB = BBTerm->getSuccessor(i);
677     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
678     if (NumPreds < MinNumPreds) {
679       MinSucc = i;
680       MinNumPreds = NumPreds;
681     }
682   }
683 
684   return MinSucc;
685 }
686 
687 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
688   if (!BB->hasAddressTaken()) return false;
689 
690   // If the block has its address taken, it may be a tree of dead constants
691   // hanging off of it.  These shouldn't keep the block alive.
692   BlockAddress *BA = BlockAddress::get(BB);
693   BA->removeDeadConstantUsers();
694   return !BA->use_empty();
695 }
696 
697 /// ProcessBlock - If there are any predecessors whose control can be threaded
698 /// through to a successor, transform them now.
699 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) {
700   // If the block is trivially dead, just return and let the caller nuke it.
701   // This simplifies other transformations.
702   if (pred_empty(BB) &&
703       BB != &BB->getParent()->getEntryBlock())
704     return false;
705 
706   // If this block has a single predecessor, and if that pred has a single
707   // successor, merge the blocks.  This encourages recursive jump threading
708   // because now the condition in this block can be threaded through
709   // predecessors of our predecessor block.
710   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
711     const TerminatorInst *TI = SinglePred->getTerminator();
712     if (!TI->isExceptional() && TI->getNumSuccessors() == 1 &&
713         SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
714       // If SinglePred was a loop header, BB becomes one.
715       if (LoopHeaders.erase(SinglePred))
716         LoopHeaders.insert(BB);
717 
718       LVI->eraseBlock(SinglePred);
719       MergeBasicBlockIntoOnlyPred(BB);
720 
721       return true;
722     }
723   }
724 
725   if (TryToUnfoldSelectInCurrBB(BB))
726     return true;
727 
728   // What kind of constant we're looking for.
729   ConstantPreference Preference = WantInteger;
730 
731   // Look to see if the terminator is a conditional branch, switch or indirect
732   // branch, if not we can't thread it.
733   Value *Condition;
734   Instruction *Terminator = BB->getTerminator();
735   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
736     // Can't thread an unconditional jump.
737     if (BI->isUnconditional()) return false;
738     Condition = BI->getCondition();
739   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
740     Condition = SI->getCondition();
741   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
742     // Can't thread indirect branch with no successors.
743     if (IB->getNumSuccessors() == 0) return false;
744     Condition = IB->getAddress()->stripPointerCasts();
745     Preference = WantBlockAddress;
746   } else {
747     return false; // Must be an invoke.
748   }
749 
750   // Run constant folding to see if we can reduce the condition to a simple
751   // constant.
752   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
753     Value *SimpleVal =
754         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
755     if (SimpleVal) {
756       I->replaceAllUsesWith(SimpleVal);
757       I->eraseFromParent();
758       Condition = SimpleVal;
759     }
760   }
761 
762   // If the terminator is branching on an undef, we can pick any of the
763   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
764   if (isa<UndefValue>(Condition)) {
765     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
766 
767     // Fold the branch/switch.
768     TerminatorInst *BBTerm = BB->getTerminator();
769     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
770       if (i == BestSucc) continue;
771       BBTerm->getSuccessor(i)->removePredecessor(BB, true);
772     }
773 
774     DEBUG(dbgs() << "  In block '" << BB->getName()
775           << "' folding undef terminator: " << *BBTerm << '\n');
776     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
777     BBTerm->eraseFromParent();
778     return true;
779   }
780 
781   // If the terminator of this block is branching on a constant, simplify the
782   // terminator to an unconditional branch.  This can occur due to threading in
783   // other blocks.
784   if (getKnownConstant(Condition, Preference)) {
785     DEBUG(dbgs() << "  In block '" << BB->getName()
786           << "' folding terminator: " << *BB->getTerminator() << '\n');
787     ++NumFolds;
788     ConstantFoldTerminator(BB, true);
789     return true;
790   }
791 
792   Instruction *CondInst = dyn_cast<Instruction>(Condition);
793 
794   // All the rest of our checks depend on the condition being an instruction.
795   if (!CondInst) {
796     // FIXME: Unify this with code below.
797     if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
798       return true;
799     return false;
800   }
801 
802 
803   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
804     // If we're branching on a conditional, LVI might be able to determine
805     // it's value at the branch instruction.  We only handle comparisons
806     // against a constant at this time.
807     // TODO: This should be extended to handle switches as well.
808     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
809     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
810     if (CondBr && CondConst && CondBr->isConditional()) {
811       LazyValueInfo::Tristate Ret =
812         LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
813                             CondConst, CondBr);
814       if (Ret != LazyValueInfo::Unknown) {
815         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
816         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
817         CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
818         BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
819         CondBr->eraseFromParent();
820         if (CondCmp->use_empty())
821           CondCmp->eraseFromParent();
822         else if (CondCmp->getParent() == BB) {
823           // If the fact we just learned is true for all uses of the
824           // condition, replace it with a constant value
825           auto *CI = Ret == LazyValueInfo::True ?
826             ConstantInt::getTrue(CondCmp->getType()) :
827             ConstantInt::getFalse(CondCmp->getType());
828           CondCmp->replaceAllUsesWith(CI);
829           CondCmp->eraseFromParent();
830         }
831         return true;
832       }
833     }
834 
835     if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB))
836       return true;
837   }
838 
839   // Check for some cases that are worth simplifying.  Right now we want to look
840   // for loads that are used by a switch or by the condition for the branch.  If
841   // we see one, check to see if it's partially redundant.  If so, insert a PHI
842   // which can then be used to thread the values.
843   //
844   Value *SimplifyValue = CondInst;
845   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
846     if (isa<Constant>(CondCmp->getOperand(1)))
847       SimplifyValue = CondCmp->getOperand(0);
848 
849   // TODO: There are other places where load PRE would be profitable, such as
850   // more complex comparisons.
851   if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
852     if (SimplifyPartiallyRedundantLoad(LI))
853       return true;
854 
855 
856   // Handle a variety of cases where we are branching on something derived from
857   // a PHI node in the current block.  If we can prove that any predecessors
858   // compute a predictable value based on a PHI node, thread those predecessors.
859   //
860   if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
861     return true;
862 
863   // If this is an otherwise-unfoldable branch on a phi node in the current
864   // block, see if we can simplify.
865   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
866     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
867       return ProcessBranchOnPHI(PN);
868 
869 
870   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
871   if (CondInst->getOpcode() == Instruction::Xor &&
872       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
873     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
874 
875   // Search for a stronger dominating condition that can be used to simplify a
876   // conditional branch leaving BB.
877   if (ProcessImpliedCondition(BB))
878     return true;
879 
880   return false;
881 }
882 
883 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) {
884   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
885   if (!BI || !BI->isConditional())
886     return false;
887 
888   Value *Cond = BI->getCondition();
889   BasicBlock *CurrentBB = BB;
890   BasicBlock *CurrentPred = BB->getSinglePredecessor();
891   unsigned Iter = 0;
892 
893   auto &DL = BB->getModule()->getDataLayout();
894 
895   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
896     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
897     if (!PBI || !PBI->isConditional())
898       return false;
899     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
900       return false;
901 
902     bool FalseDest = PBI->getSuccessor(1) == CurrentBB;
903     Optional<bool> Implication =
904       isImpliedCondition(PBI->getCondition(), Cond, DL, FalseDest);
905     if (Implication) {
906       BI->getSuccessor(*Implication ? 1 : 0)->removePredecessor(BB);
907       BranchInst::Create(BI->getSuccessor(*Implication ? 0 : 1), BI);
908       BI->eraseFromParent();
909       return true;
910     }
911     CurrentBB = CurrentPred;
912     CurrentPred = CurrentBB->getSinglePredecessor();
913   }
914 
915   return false;
916 }
917 
918 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
919 /// load instruction, eliminate it by replacing it with a PHI node.  This is an
920 /// important optimization that encourages jump threading, and needs to be run
921 /// interlaced with other jump threading tasks.
922 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
923   // Don't hack volatile/atomic loads.
924   if (!LI->isSimple()) return false;
925 
926   // If the load is defined in a block with exactly one predecessor, it can't be
927   // partially redundant.
928   BasicBlock *LoadBB = LI->getParent();
929   if (LoadBB->getSinglePredecessor())
930     return false;
931 
932   // If the load is defined in an EH pad, it can't be partially redundant,
933   // because the edges between the invoke and the EH pad cannot have other
934   // instructions between them.
935   if (LoadBB->isEHPad())
936     return false;
937 
938   Value *LoadedPtr = LI->getOperand(0);
939 
940   // If the loaded operand is defined in the LoadBB, it can't be available.
941   // TODO: Could do simple PHI translation, that would be fun :)
942   if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
943     if (PtrOp->getParent() == LoadBB)
944       return false;
945 
946   // Scan a few instructions up from the load, to see if it is obviously live at
947   // the entry to its block.
948   BasicBlock::iterator BBIt(LI);
949 
950   if (Value *AvailableVal =
951         FindAvailableLoadedValue(LI, LoadBB, BBIt, DefMaxInstsToScan)) {
952     // If the value of the load is locally available within the block, just use
953     // it.  This frequently occurs for reg2mem'd allocas.
954     //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
955 
956     // If the returned value is the load itself, replace with an undef. This can
957     // only happen in dead loops.
958     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
959     if (AvailableVal->getType() != LI->getType())
960       AvailableVal =
961           CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI);
962     LI->replaceAllUsesWith(AvailableVal);
963     LI->eraseFromParent();
964     return true;
965   }
966 
967   // Otherwise, if we scanned the whole block and got to the top of the block,
968   // we know the block is locally transparent to the load.  If not, something
969   // might clobber its value.
970   if (BBIt != LoadBB->begin())
971     return false;
972 
973   // If all of the loads and stores that feed the value have the same AA tags,
974   // then we can propagate them onto any newly inserted loads.
975   AAMDNodes AATags;
976   LI->getAAMetadata(AATags);
977 
978   SmallPtrSet<BasicBlock*, 8> PredsScanned;
979   typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
980   AvailablePredsTy AvailablePreds;
981   BasicBlock *OneUnavailablePred = nullptr;
982 
983   // If we got here, the loaded value is transparent through to the start of the
984   // block.  Check to see if it is available in any of the predecessor blocks.
985   for (BasicBlock *PredBB : predecessors(LoadBB)) {
986     // If we already scanned this predecessor, skip it.
987     if (!PredsScanned.insert(PredBB).second)
988       continue;
989 
990     // Scan the predecessor to see if the value is available in the pred.
991     BBIt = PredBB->end();
992     AAMDNodes ThisAATags;
993     Value *PredAvailable = FindAvailableLoadedValue(LI, PredBB, BBIt,
994                                                     DefMaxInstsToScan,
995                                                     nullptr, &ThisAATags);
996     if (!PredAvailable) {
997       OneUnavailablePred = PredBB;
998       continue;
999     }
1000 
1001     // If AA tags disagree or are not present, forget about them.
1002     if (AATags != ThisAATags) AATags = AAMDNodes();
1003 
1004     // If so, this load is partially redundant.  Remember this info so that we
1005     // can create a PHI node.
1006     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
1007   }
1008 
1009   // If the loaded value isn't available in any predecessor, it isn't partially
1010   // redundant.
1011   if (AvailablePreds.empty()) return false;
1012 
1013   // Okay, the loaded value is available in at least one (and maybe all!)
1014   // predecessors.  If the value is unavailable in more than one unique
1015   // predecessor, we want to insert a merge block for those common predecessors.
1016   // This ensures that we only have to insert one reload, thus not increasing
1017   // code size.
1018   BasicBlock *UnavailablePred = nullptr;
1019 
1020   // If there is exactly one predecessor where the value is unavailable, the
1021   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1022   // unconditional branch, we know that it isn't a critical edge.
1023   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1024       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1025     UnavailablePred = OneUnavailablePred;
1026   } else if (PredsScanned.size() != AvailablePreds.size()) {
1027     // Otherwise, we had multiple unavailable predecessors or we had a critical
1028     // edge from the one.
1029     SmallVector<BasicBlock*, 8> PredsToSplit;
1030     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1031 
1032     for (const auto &AvailablePred : AvailablePreds)
1033       AvailablePredSet.insert(AvailablePred.first);
1034 
1035     // Add all the unavailable predecessors to the PredsToSplit list.
1036     for (BasicBlock *P : predecessors(LoadBB)) {
1037       // If the predecessor is an indirect goto, we can't split the edge.
1038       if (isa<IndirectBrInst>(P->getTerminator()))
1039         return false;
1040 
1041       if (!AvailablePredSet.count(P))
1042         PredsToSplit.push_back(P);
1043     }
1044 
1045     // Split them out to their own block.
1046     UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1047   }
1048 
1049   // If the value isn't available in all predecessors, then there will be
1050   // exactly one where it isn't available.  Insert a load on that edge and add
1051   // it to the AvailablePreds list.
1052   if (UnavailablePred) {
1053     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1054            "Can't handle critical edge here!");
1055     LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
1056                                  LI->getAlignment(),
1057                                  UnavailablePred->getTerminator());
1058     NewVal->setDebugLoc(LI->getDebugLoc());
1059     if (AATags)
1060       NewVal->setAAMetadata(AATags);
1061 
1062     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
1063   }
1064 
1065   // Now we know that each predecessor of this block has a value in
1066   // AvailablePreds, sort them for efficient access as we're walking the preds.
1067   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1068 
1069   // Create a PHI node at the start of the block for the PRE'd load value.
1070   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1071   PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "",
1072                                 &LoadBB->front());
1073   PN->takeName(LI);
1074   PN->setDebugLoc(LI->getDebugLoc());
1075 
1076   // Insert new entries into the PHI for each predecessor.  A single block may
1077   // have multiple entries here.
1078   for (pred_iterator PI = PB; PI != PE; ++PI) {
1079     BasicBlock *P = *PI;
1080     AvailablePredsTy::iterator I =
1081       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
1082                        std::make_pair(P, (Value*)nullptr));
1083 
1084     assert(I != AvailablePreds.end() && I->first == P &&
1085            "Didn't find entry for predecessor!");
1086 
1087     // If we have an available predecessor but it requires casting, insert the
1088     // cast in the predecessor and use the cast. Note that we have to update the
1089     // AvailablePreds vector as we go so that all of the PHI entries for this
1090     // predecessor use the same bitcast.
1091     Value *&PredV = I->second;
1092     if (PredV->getType() != LI->getType())
1093       PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "",
1094                                                P->getTerminator());
1095 
1096     PN->addIncoming(PredV, I->first);
1097   }
1098 
1099   //cerr << "PRE: " << *LI << *PN << "\n";
1100 
1101   LI->replaceAllUsesWith(PN);
1102   LI->eraseFromParent();
1103 
1104   return true;
1105 }
1106 
1107 /// FindMostPopularDest - The specified list contains multiple possible
1108 /// threadable destinations.  Pick the one that occurs the most frequently in
1109 /// the list.
1110 static BasicBlock *
1111 FindMostPopularDest(BasicBlock *BB,
1112                     const SmallVectorImpl<std::pair<BasicBlock*,
1113                                   BasicBlock*> > &PredToDestList) {
1114   assert(!PredToDestList.empty());
1115 
1116   // Determine popularity.  If there are multiple possible destinations, we
1117   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1118   // blocks with known and real destinations to threading undef.  We'll handle
1119   // them later if interesting.
1120   DenseMap<BasicBlock*, unsigned> DestPopularity;
1121   for (const auto &PredToDest : PredToDestList)
1122     if (PredToDest.second)
1123       DestPopularity[PredToDest.second]++;
1124 
1125   // Find the most popular dest.
1126   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1127   BasicBlock *MostPopularDest = DPI->first;
1128   unsigned Popularity = DPI->second;
1129   SmallVector<BasicBlock*, 4> SamePopularity;
1130 
1131   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1132     // If the popularity of this entry isn't higher than the popularity we've
1133     // seen so far, ignore it.
1134     if (DPI->second < Popularity)
1135       ; // ignore.
1136     else if (DPI->second == Popularity) {
1137       // If it is the same as what we've seen so far, keep track of it.
1138       SamePopularity.push_back(DPI->first);
1139     } else {
1140       // If it is more popular, remember it.
1141       SamePopularity.clear();
1142       MostPopularDest = DPI->first;
1143       Popularity = DPI->second;
1144     }
1145   }
1146 
1147   // Okay, now we know the most popular destination.  If there is more than one
1148   // destination, we need to determine one.  This is arbitrary, but we need
1149   // to make a deterministic decision.  Pick the first one that appears in the
1150   // successor list.
1151   if (!SamePopularity.empty()) {
1152     SamePopularity.push_back(MostPopularDest);
1153     TerminatorInst *TI = BB->getTerminator();
1154     for (unsigned i = 0; ; ++i) {
1155       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1156 
1157       if (std::find(SamePopularity.begin(), SamePopularity.end(),
1158                     TI->getSuccessor(i)) == SamePopularity.end())
1159         continue;
1160 
1161       MostPopularDest = TI->getSuccessor(i);
1162       break;
1163     }
1164   }
1165 
1166   // Okay, we have finally picked the most popular destination.
1167   return MostPopularDest;
1168 }
1169 
1170 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1171                                                ConstantPreference Preference,
1172                                                Instruction *CxtI) {
1173   // If threading this would thread across a loop header, don't even try to
1174   // thread the edge.
1175   if (LoopHeaders.count(BB))
1176     return false;
1177 
1178   PredValueInfoTy PredValues;
1179   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
1180     return false;
1181 
1182   assert(!PredValues.empty() &&
1183          "ComputeValueKnownInPredecessors returned true with no values");
1184 
1185   DEBUG(dbgs() << "IN BB: " << *BB;
1186         for (const auto &PredValue : PredValues) {
1187           dbgs() << "  BB '" << BB->getName() << "': FOUND condition = "
1188             << *PredValue.first
1189             << " for pred '" << PredValue.second->getName() << "'.\n";
1190         });
1191 
1192   // Decide what we want to thread through.  Convert our list of known values to
1193   // a list of known destinations for each pred.  This also discards duplicate
1194   // predecessors and keeps track of the undefined inputs (which are represented
1195   // as a null dest in the PredToDestList).
1196   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1197   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1198 
1199   BasicBlock *OnlyDest = nullptr;
1200   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1201 
1202   for (const auto &PredValue : PredValues) {
1203     BasicBlock *Pred = PredValue.second;
1204     if (!SeenPreds.insert(Pred).second)
1205       continue;  // Duplicate predecessor entry.
1206 
1207     // If the predecessor ends with an indirect goto, we can't change its
1208     // destination.
1209     if (isa<IndirectBrInst>(Pred->getTerminator()))
1210       continue;
1211 
1212     Constant *Val = PredValue.first;
1213 
1214     BasicBlock *DestBB;
1215     if (isa<UndefValue>(Val))
1216       DestBB = nullptr;
1217     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1218       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1219     else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1220       DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor();
1221     } else {
1222       assert(isa<IndirectBrInst>(BB->getTerminator())
1223               && "Unexpected terminator");
1224       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1225     }
1226 
1227     // If we have exactly one destination, remember it for efficiency below.
1228     if (PredToDestList.empty())
1229       OnlyDest = DestBB;
1230     else if (OnlyDest != DestBB)
1231       OnlyDest = MultipleDestSentinel;
1232 
1233     PredToDestList.push_back(std::make_pair(Pred, DestBB));
1234   }
1235 
1236   // If all edges were unthreadable, we fail.
1237   if (PredToDestList.empty())
1238     return false;
1239 
1240   // Determine which is the most common successor.  If we have many inputs and
1241   // this block is a switch, we want to start by threading the batch that goes
1242   // to the most popular destination first.  If we only know about one
1243   // threadable destination (the common case) we can avoid this.
1244   BasicBlock *MostPopularDest = OnlyDest;
1245 
1246   if (MostPopularDest == MultipleDestSentinel)
1247     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1248 
1249   // Now that we know what the most popular destination is, factor all
1250   // predecessors that will jump to it into a single predecessor.
1251   SmallVector<BasicBlock*, 16> PredsToFactor;
1252   for (const auto &PredToDest : PredToDestList)
1253     if (PredToDest.second == MostPopularDest) {
1254       BasicBlock *Pred = PredToDest.first;
1255 
1256       // This predecessor may be a switch or something else that has multiple
1257       // edges to the block.  Factor each of these edges by listing them
1258       // according to # occurrences in PredsToFactor.
1259       for (BasicBlock *Succ : successors(Pred))
1260         if (Succ == BB)
1261           PredsToFactor.push_back(Pred);
1262     }
1263 
1264   // If the threadable edges are branching on an undefined value, we get to pick
1265   // the destination that these predecessors should get to.
1266   if (!MostPopularDest)
1267     MostPopularDest = BB->getTerminator()->
1268                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1269 
1270   // Ok, try to thread it!
1271   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1272 }
1273 
1274 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1275 /// a PHI node in the current block.  See if there are any simplifications we
1276 /// can do based on inputs to the phi node.
1277 ///
1278 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) {
1279   BasicBlock *BB = PN->getParent();
1280 
1281   // TODO: We could make use of this to do it once for blocks with common PHI
1282   // values.
1283   SmallVector<BasicBlock*, 1> PredBBs;
1284   PredBBs.resize(1);
1285 
1286   // If any of the predecessor blocks end in an unconditional branch, we can
1287   // *duplicate* the conditional branch into that block in order to further
1288   // encourage jump threading and to eliminate cases where we have branch on a
1289   // phi of an icmp (branch on icmp is much better).
1290   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1291     BasicBlock *PredBB = PN->getIncomingBlock(i);
1292     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1293       if (PredBr->isUnconditional()) {
1294         PredBBs[0] = PredBB;
1295         // Try to duplicate BB into PredBB.
1296         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1297           return true;
1298       }
1299   }
1300 
1301   return false;
1302 }
1303 
1304 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1305 /// a xor instruction in the current block.  See if there are any
1306 /// simplifications we can do based on inputs to the xor.
1307 ///
1308 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) {
1309   BasicBlock *BB = BO->getParent();
1310 
1311   // If either the LHS or RHS of the xor is a constant, don't do this
1312   // optimization.
1313   if (isa<ConstantInt>(BO->getOperand(0)) ||
1314       isa<ConstantInt>(BO->getOperand(1)))
1315     return false;
1316 
1317   // If the first instruction in BB isn't a phi, we won't be able to infer
1318   // anything special about any particular predecessor.
1319   if (!isa<PHINode>(BB->front()))
1320     return false;
1321 
1322   // If we have a xor as the branch input to this block, and we know that the
1323   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1324   // the condition into the predecessor and fix that value to true, saving some
1325   // logical ops on that path and encouraging other paths to simplify.
1326   //
1327   // This copies something like this:
1328   //
1329   //  BB:
1330   //    %X = phi i1 [1],  [%X']
1331   //    %Y = icmp eq i32 %A, %B
1332   //    %Z = xor i1 %X, %Y
1333   //    br i1 %Z, ...
1334   //
1335   // Into:
1336   //  BB':
1337   //    %Y = icmp ne i32 %A, %B
1338   //    br i1 %Y, ...
1339 
1340   PredValueInfoTy XorOpValues;
1341   bool isLHS = true;
1342   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1343                                        WantInteger, BO)) {
1344     assert(XorOpValues.empty());
1345     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1346                                          WantInteger, BO))
1347       return false;
1348     isLHS = false;
1349   }
1350 
1351   assert(!XorOpValues.empty() &&
1352          "ComputeValueKnownInPredecessors returned true with no values");
1353 
1354   // Scan the information to see which is most popular: true or false.  The
1355   // predecessors can be of the set true, false, or undef.
1356   unsigned NumTrue = 0, NumFalse = 0;
1357   for (const auto &XorOpValue : XorOpValues) {
1358     if (isa<UndefValue>(XorOpValue.first))
1359       // Ignore undefs for the count.
1360       continue;
1361     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1362       ++NumFalse;
1363     else
1364       ++NumTrue;
1365   }
1366 
1367   // Determine which value to split on, true, false, or undef if neither.
1368   ConstantInt *SplitVal = nullptr;
1369   if (NumTrue > NumFalse)
1370     SplitVal = ConstantInt::getTrue(BB->getContext());
1371   else if (NumTrue != 0 || NumFalse != 0)
1372     SplitVal = ConstantInt::getFalse(BB->getContext());
1373 
1374   // Collect all of the blocks that this can be folded into so that we can
1375   // factor this once and clone it once.
1376   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1377   for (const auto &XorOpValue : XorOpValues) {
1378     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1379       continue;
1380 
1381     BlocksToFoldInto.push_back(XorOpValue.second);
1382   }
1383 
1384   // If we inferred a value for all of the predecessors, then duplication won't
1385   // help us.  However, we can just replace the LHS or RHS with the constant.
1386   if (BlocksToFoldInto.size() ==
1387       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1388     if (!SplitVal) {
1389       // If all preds provide undef, just nuke the xor, because it is undef too.
1390       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1391       BO->eraseFromParent();
1392     } else if (SplitVal->isZero()) {
1393       // If all preds provide 0, replace the xor with the other input.
1394       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1395       BO->eraseFromParent();
1396     } else {
1397       // If all preds provide 1, set the computed value to 1.
1398       BO->setOperand(!isLHS, SplitVal);
1399     }
1400 
1401     return true;
1402   }
1403 
1404   // Try to duplicate BB into PredBB.
1405   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1406 }
1407 
1408 
1409 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1410 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1411 /// NewPred using the entries from OldPred (suitably mapped).
1412 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1413                                             BasicBlock *OldPred,
1414                                             BasicBlock *NewPred,
1415                                      DenseMap<Instruction*, Value*> &ValueMap) {
1416   for (BasicBlock::iterator PNI = PHIBB->begin();
1417        PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1418     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1419     // DestBlock.
1420     Value *IV = PN->getIncomingValueForBlock(OldPred);
1421 
1422     // Remap the value if necessary.
1423     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1424       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1425       if (I != ValueMap.end())
1426         IV = I->second;
1427     }
1428 
1429     PN->addIncoming(IV, NewPred);
1430   }
1431 }
1432 
1433 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1434 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1435 /// across BB.  Transform the IR to reflect this change.
1436 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB,
1437                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
1438                                    BasicBlock *SuccBB) {
1439   // If threading to the same block as we come from, we would infinite loop.
1440   if (SuccBB == BB) {
1441     DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1442           << "' - would thread to self!\n");
1443     return false;
1444   }
1445 
1446   // If threading this would thread across a loop header, don't thread the edge.
1447   // See the comments above FindLoopHeaders for justifications and caveats.
1448   if (LoopHeaders.count(BB)) {
1449     DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
1450           << "' to dest BB '" << SuccBB->getName()
1451           << "' - it might create an irreducible loop!\n");
1452     return false;
1453   }
1454 
1455   unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, BBDupThreshold);
1456   if (JumpThreadCost > BBDupThreshold) {
1457     DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1458           << "' - Cost is too high: " << JumpThreadCost << "\n");
1459     return false;
1460   }
1461 
1462   // And finally, do it!  Start by factoring the predecessors if needed.
1463   BasicBlock *PredBB;
1464   if (PredBBs.size() == 1)
1465     PredBB = PredBBs[0];
1466   else {
1467     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1468           << " common predecessors.\n");
1469     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1470   }
1471 
1472   // And finally, do it!
1473   DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1474         << SuccBB->getName() << "' with cost: " << JumpThreadCost
1475         << ", across block:\n    "
1476         << *BB << "\n");
1477 
1478   LVI->threadEdge(PredBB, BB, SuccBB);
1479 
1480   // We are going to have to map operands from the original BB block to the new
1481   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1482   // account for entry from PredBB.
1483   DenseMap<Instruction*, Value*> ValueMapping;
1484 
1485   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1486                                          BB->getName()+".thread",
1487                                          BB->getParent(), BB);
1488   NewBB->moveAfter(PredBB);
1489 
1490   // Set the block frequency of NewBB.
1491   if (HasProfileData) {
1492     auto NewBBFreq =
1493         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
1494     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
1495   }
1496 
1497   BasicBlock::iterator BI = BB->begin();
1498   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1499     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1500 
1501   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1502   // mapping and using it to remap operands in the cloned instructions.
1503   for (; !isa<TerminatorInst>(BI); ++BI) {
1504     Instruction *New = BI->clone();
1505     New->setName(BI->getName());
1506     NewBB->getInstList().push_back(New);
1507     ValueMapping[&*BI] = New;
1508 
1509     // Remap operands to patch up intra-block references.
1510     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1511       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1512         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1513         if (I != ValueMapping.end())
1514           New->setOperand(i, I->second);
1515       }
1516   }
1517 
1518   // We didn't copy the terminator from BB over to NewBB, because there is now
1519   // an unconditional jump to SuccBB.  Insert the unconditional jump.
1520   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
1521   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
1522 
1523   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1524   // PHI nodes for NewBB now.
1525   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1526 
1527   // If there were values defined in BB that are used outside the block, then we
1528   // now have to update all uses of the value to use either the original value,
1529   // the cloned value, or some PHI derived value.  This can require arbitrary
1530   // PHI insertion, of which we are prepared to do, clean these up now.
1531   SSAUpdater SSAUpdate;
1532   SmallVector<Use*, 16> UsesToRename;
1533   for (Instruction &I : *BB) {
1534     // Scan all uses of this instruction to see if it is used outside of its
1535     // block, and if so, record them in UsesToRename.
1536     for (Use &U : I.uses()) {
1537       Instruction *User = cast<Instruction>(U.getUser());
1538       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1539         if (UserPN->getIncomingBlock(U) == BB)
1540           continue;
1541       } else if (User->getParent() == BB)
1542         continue;
1543 
1544       UsesToRename.push_back(&U);
1545     }
1546 
1547     // If there are no uses outside the block, we're done with this instruction.
1548     if (UsesToRename.empty())
1549       continue;
1550 
1551     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
1552 
1553     // We found a use of I outside of BB.  Rename all uses of I that are outside
1554     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1555     // with the two values we know.
1556     SSAUpdate.Initialize(I.getType(), I.getName());
1557     SSAUpdate.AddAvailableValue(BB, &I);
1558     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
1559 
1560     while (!UsesToRename.empty())
1561       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1562     DEBUG(dbgs() << "\n");
1563   }
1564 
1565 
1566   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1567   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1568   // us to simplify any PHI nodes in BB.
1569   TerminatorInst *PredTerm = PredBB->getTerminator();
1570   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1571     if (PredTerm->getSuccessor(i) == BB) {
1572       BB->removePredecessor(PredBB, true);
1573       PredTerm->setSuccessor(i, NewBB);
1574     }
1575 
1576   // At this point, the IR is fully up to date and consistent.  Do a quick scan
1577   // over the new instructions and zap any that are constants or dead.  This
1578   // frequently happens because of phi translation.
1579   SimplifyInstructionsInBlock(NewBB, TLI);
1580 
1581   // Update the edge weight from BB to SuccBB, which should be less than before.
1582   UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
1583 
1584   // Threaded an edge!
1585   ++NumThreads;
1586   return true;
1587 }
1588 
1589 /// Create a new basic block that will be the predecessor of BB and successor of
1590 /// all blocks in Preds. When profile data is availble, update the frequency of
1591 /// this new block.
1592 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
1593                                                ArrayRef<BasicBlock *> Preds,
1594                                                const char *Suffix) {
1595   // Collect the frequencies of all predecessors of BB, which will be used to
1596   // update the edge weight on BB->SuccBB.
1597   BlockFrequency PredBBFreq(0);
1598   if (HasProfileData)
1599     for (auto Pred : Preds)
1600       PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB);
1601 
1602   BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix);
1603 
1604   // Set the block frequency of the newly created PredBB, which is the sum of
1605   // frequencies of Preds.
1606   if (HasProfileData)
1607     BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency());
1608   return PredBB;
1609 }
1610 
1611 /// Update the block frequency of BB and branch weight and the metadata on the
1612 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
1613 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
1614 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
1615                                                      BasicBlock *BB,
1616                                                      BasicBlock *NewBB,
1617                                                      BasicBlock *SuccBB) {
1618   if (!HasProfileData)
1619     return;
1620 
1621   assert(BFI && BPI && "BFI & BPI should have been created here");
1622 
1623   // As the edge from PredBB to BB is deleted, we have to update the block
1624   // frequency of BB.
1625   auto BBOrigFreq = BFI->getBlockFreq(BB);
1626   auto NewBBFreq = BFI->getBlockFreq(NewBB);
1627   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
1628   auto BBNewFreq = BBOrigFreq - NewBBFreq;
1629   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
1630 
1631   // Collect updated outgoing edges' frequencies from BB and use them to update
1632   // edge probabilities.
1633   SmallVector<uint64_t, 4> BBSuccFreq;
1634   for (BasicBlock *Succ : successors(BB)) {
1635     auto SuccFreq = (Succ == SuccBB)
1636                         ? BB2SuccBBFreq - NewBBFreq
1637                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
1638     BBSuccFreq.push_back(SuccFreq.getFrequency());
1639   }
1640 
1641   uint64_t MaxBBSuccFreq =
1642       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
1643 
1644   SmallVector<BranchProbability, 4> BBSuccProbs;
1645   if (MaxBBSuccFreq == 0)
1646     BBSuccProbs.assign(BBSuccFreq.size(),
1647                        {1, static_cast<unsigned>(BBSuccFreq.size())});
1648   else {
1649     for (uint64_t Freq : BBSuccFreq)
1650       BBSuccProbs.push_back(
1651           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
1652     // Normalize edge probabilities so that they sum up to one.
1653     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
1654                                               BBSuccProbs.end());
1655   }
1656 
1657   // Update edge probabilities in BPI.
1658   for (int I = 0, E = BBSuccProbs.size(); I < E; I++)
1659     BPI->setEdgeProbability(BB, I, BBSuccProbs[I]);
1660 
1661   if (BBSuccProbs.size() >= 2) {
1662     SmallVector<uint32_t, 4> Weights;
1663     for (auto Prob : BBSuccProbs)
1664       Weights.push_back(Prob.getNumerator());
1665 
1666     auto TI = BB->getTerminator();
1667     TI->setMetadata(
1668         LLVMContext::MD_prof,
1669         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
1670   }
1671 }
1672 
1673 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1674 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1675 /// If we can duplicate the contents of BB up into PredBB do so now, this
1676 /// improves the odds that the branch will be on an analyzable instruction like
1677 /// a compare.
1678 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred(
1679     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
1680   assert(!PredBBs.empty() && "Can't handle an empty set");
1681 
1682   // If BB is a loop header, then duplicating this block outside the loop would
1683   // cause us to transform this into an irreducible loop, don't do this.
1684   // See the comments above FindLoopHeaders for justifications and caveats.
1685   if (LoopHeaders.count(BB)) {
1686     DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
1687           << "' into predecessor block '" << PredBBs[0]->getName()
1688           << "' - it might create an irreducible loop!\n");
1689     return false;
1690   }
1691 
1692   unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, BBDupThreshold);
1693   if (DuplicationCost > BBDupThreshold) {
1694     DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
1695           << "' - Cost is too high: " << DuplicationCost << "\n");
1696     return false;
1697   }
1698 
1699   // And finally, do it!  Start by factoring the predecessors if needed.
1700   BasicBlock *PredBB;
1701   if (PredBBs.size() == 1)
1702     PredBB = PredBBs[0];
1703   else {
1704     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1705           << " common predecessors.\n");
1706     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1707   }
1708 
1709   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1710   // of PredBB.
1711   DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1712         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1713         << DuplicationCost << " block is:" << *BB << "\n");
1714 
1715   // Unless PredBB ends with an unconditional branch, split the edge so that we
1716   // can just clone the bits from BB into the end of the new PredBB.
1717   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1718 
1719   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
1720     PredBB = SplitEdge(PredBB, BB);
1721     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1722   }
1723 
1724   // We are going to have to map operands from the original BB block into the
1725   // PredBB block.  Evaluate PHI nodes in BB.
1726   DenseMap<Instruction*, Value*> ValueMapping;
1727 
1728   BasicBlock::iterator BI = BB->begin();
1729   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1730     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1731   // Clone the non-phi instructions of BB into PredBB, keeping track of the
1732   // mapping and using it to remap operands in the cloned instructions.
1733   for (; BI != BB->end(); ++BI) {
1734     Instruction *New = BI->clone();
1735 
1736     // Remap operands to patch up intra-block references.
1737     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1738       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1739         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1740         if (I != ValueMapping.end())
1741           New->setOperand(i, I->second);
1742       }
1743 
1744     // If this instruction can be simplified after the operands are updated,
1745     // just use the simplified value instead.  This frequently happens due to
1746     // phi translation.
1747     if (Value *IV =
1748             SimplifyInstruction(New, BB->getModule()->getDataLayout())) {
1749       ValueMapping[&*BI] = IV;
1750       if (!New->mayHaveSideEffects()) {
1751         delete New;
1752         New = nullptr;
1753       }
1754     } else {
1755       ValueMapping[&*BI] = New;
1756     }
1757     if (New) {
1758       // Otherwise, insert the new instruction into the block.
1759       New->setName(BI->getName());
1760       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
1761     }
1762   }
1763 
1764   // Check to see if the targets of the branch had PHI nodes. If so, we need to
1765   // add entries to the PHI nodes for branch from PredBB now.
1766   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1767   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1768                                   ValueMapping);
1769   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1770                                   ValueMapping);
1771 
1772   // If there were values defined in BB that are used outside the block, then we
1773   // now have to update all uses of the value to use either the original value,
1774   // the cloned value, or some PHI derived value.  This can require arbitrary
1775   // PHI insertion, of which we are prepared to do, clean these up now.
1776   SSAUpdater SSAUpdate;
1777   SmallVector<Use*, 16> UsesToRename;
1778   for (Instruction &I : *BB) {
1779     // Scan all uses of this instruction to see if it is used outside of its
1780     // block, and if so, record them in UsesToRename.
1781     for (Use &U : I.uses()) {
1782       Instruction *User = cast<Instruction>(U.getUser());
1783       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1784         if (UserPN->getIncomingBlock(U) == BB)
1785           continue;
1786       } else if (User->getParent() == BB)
1787         continue;
1788 
1789       UsesToRename.push_back(&U);
1790     }
1791 
1792     // If there are no uses outside the block, we're done with this instruction.
1793     if (UsesToRename.empty())
1794       continue;
1795 
1796     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
1797 
1798     // We found a use of I outside of BB.  Rename all uses of I that are outside
1799     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1800     // with the two values we know.
1801     SSAUpdate.Initialize(I.getType(), I.getName());
1802     SSAUpdate.AddAvailableValue(BB, &I);
1803     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]);
1804 
1805     while (!UsesToRename.empty())
1806       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1807     DEBUG(dbgs() << "\n");
1808   }
1809 
1810   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1811   // that we nuked.
1812   BB->removePredecessor(PredBB, true);
1813 
1814   // Remove the unconditional branch at the end of the PredBB block.
1815   OldPredBranch->eraseFromParent();
1816 
1817   ++NumDupes;
1818   return true;
1819 }
1820 
1821 /// TryToUnfoldSelect - Look for blocks of the form
1822 /// bb1:
1823 ///   %a = select
1824 ///   br bb
1825 ///
1826 /// bb2:
1827 ///   %p = phi [%a, %bb] ...
1828 ///   %c = icmp %p
1829 ///   br i1 %c
1830 ///
1831 /// And expand the select into a branch structure if one of its arms allows %c
1832 /// to be folded. This later enables threading from bb1 over bb2.
1833 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
1834   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1835   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
1836   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
1837 
1838   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
1839       CondLHS->getParent() != BB)
1840     return false;
1841 
1842   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
1843     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
1844     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
1845 
1846     // Look if one of the incoming values is a select in the corresponding
1847     // predecessor.
1848     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
1849       continue;
1850 
1851     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
1852     if (!PredTerm || !PredTerm->isUnconditional())
1853       continue;
1854 
1855     // Now check if one of the select values would allow us to constant fold the
1856     // terminator in BB. We don't do the transform if both sides fold, those
1857     // cases will be threaded in any case.
1858     LazyValueInfo::Tristate LHSFolds =
1859         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
1860                                 CondRHS, Pred, BB, CondCmp);
1861     LazyValueInfo::Tristate RHSFolds =
1862         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
1863                                 CondRHS, Pred, BB, CondCmp);
1864     if ((LHSFolds != LazyValueInfo::Unknown ||
1865          RHSFolds != LazyValueInfo::Unknown) &&
1866         LHSFolds != RHSFolds) {
1867       // Expand the select.
1868       //
1869       // Pred --
1870       //  |    v
1871       //  |  NewBB
1872       //  |    |
1873       //  |-----
1874       //  v
1875       // BB
1876       BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
1877                                              BB->getParent(), BB);
1878       // Move the unconditional branch to NewBB.
1879       PredTerm->removeFromParent();
1880       NewBB->getInstList().insert(NewBB->end(), PredTerm);
1881       // Create a conditional branch and update PHI nodes.
1882       BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
1883       CondLHS->setIncomingValue(I, SI->getFalseValue());
1884       CondLHS->addIncoming(SI->getTrueValue(), NewBB);
1885       // The select is now dead.
1886       SI->eraseFromParent();
1887 
1888       // Update any other PHI nodes in BB.
1889       for (BasicBlock::iterator BI = BB->begin();
1890            PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
1891         if (Phi != CondLHS)
1892           Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
1893       return true;
1894     }
1895   }
1896   return false;
1897 }
1898 
1899 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select in the same BB of the form
1900 /// bb:
1901 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
1902 ///   %s = select p, trueval, falseval
1903 ///
1904 /// And expand the select into a branch structure. This later enables
1905 /// jump-threading over bb in this pass.
1906 ///
1907 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
1908 /// select if the associated PHI has at least one constant.  If the unfolded
1909 /// select is not jump-threaded, it will be folded again in the later
1910 /// optimizations.
1911 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
1912   // If threading this would thread across a loop header, don't thread the edge.
1913   // See the comments above FindLoopHeaders for justifications and caveats.
1914   if (LoopHeaders.count(BB))
1915     return false;
1916 
1917   // Look for a Phi/Select pair in the same basic block.  The Phi feeds the
1918   // condition of the Select and at least one of the incoming values is a
1919   // constant.
1920   for (BasicBlock::iterator BI = BB->begin();
1921        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
1922     unsigned NumPHIValues = PN->getNumIncomingValues();
1923     if (NumPHIValues == 0 || !PN->hasOneUse())
1924       continue;
1925 
1926     SelectInst *SI = dyn_cast<SelectInst>(PN->user_back());
1927     if (!SI || SI->getParent() != BB)
1928       continue;
1929 
1930     Value *Cond = SI->getCondition();
1931     if (!Cond || Cond != PN || !Cond->getType()->isIntegerTy(1))
1932       continue;
1933 
1934     bool HasConst = false;
1935     for (unsigned i = 0; i != NumPHIValues; ++i) {
1936       if (PN->getIncomingBlock(i) == BB)
1937         return false;
1938       if (isa<ConstantInt>(PN->getIncomingValue(i)))
1939         HasConst = true;
1940     }
1941 
1942     if (HasConst) {
1943       // Expand the select.
1944       TerminatorInst *Term =
1945           SplitBlockAndInsertIfThen(SI->getCondition(), SI, false);
1946       PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
1947       NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
1948       NewPN->addIncoming(SI->getFalseValue(), BB);
1949       SI->replaceAllUsesWith(NewPN);
1950       SI->eraseFromParent();
1951       return true;
1952     }
1953   }
1954 
1955   return false;
1956 }
1957