xref: /llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp (revision 3a42e7ac65e4b9cd885e256fbcafa3f0af4f4624)
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "jump-threading"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/IntrinsicInst.h"
17 #include "llvm/LLVMContext.h"
18 #include "llvm/Pass.h"
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
21 #include "llvm/Transforms/Utils/Local.h"
22 #include "llvm/Transforms/Utils/SSAUpdater.h"
23 #include "llvm/Target/TargetData.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 using namespace llvm;
33 
34 STATISTIC(NumThreads, "Number of jumps threaded");
35 STATISTIC(NumFolds,   "Number of terminators folded");
36 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
37 
38 static cl::opt<unsigned>
39 Threshold("jump-threading-threshold",
40           cl::desc("Max block size to duplicate for jump threading"),
41           cl::init(6), cl::Hidden);
42 
43 namespace {
44   /// This pass performs 'jump threading', which looks at blocks that have
45   /// multiple predecessors and multiple successors.  If one or more of the
46   /// predecessors of the block can be proven to always jump to one of the
47   /// successors, we forward the edge from the predecessor to the successor by
48   /// duplicating the contents of this block.
49   ///
50   /// An example of when this can occur is code like this:
51   ///
52   ///   if () { ...
53   ///     X = 4;
54   ///   }
55   ///   if (X < 3) {
56   ///
57   /// In this case, the unconditional branch at the end of the first if can be
58   /// revectored to the false side of the second if.
59   ///
60   class JumpThreading : public FunctionPass {
61     TargetData *TD;
62 #ifdef NDEBUG
63     SmallPtrSet<BasicBlock*, 16> LoopHeaders;
64 #else
65     SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
66 #endif
67   public:
68     static char ID; // Pass identification
69     JumpThreading() : FunctionPass(&ID) {}
70 
71     bool runOnFunction(Function &F);
72     void FindLoopHeaders(Function &F);
73 
74     bool ProcessBlock(BasicBlock *BB);
75     bool ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, BasicBlock *SuccBB);
76     bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
77                                           BasicBlock *PredBB);
78 
79     BasicBlock *FactorCommonPHIPreds(PHINode *PN, Value *Val);
80     bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
81     bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
82 
83     bool ProcessJumpOnPHI(PHINode *PN);
84     bool ProcessBranchOnLogical(Value *V, BasicBlock *BB, bool isAnd);
85     bool ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB);
86 
87     bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
88   };
89 }
90 
91 char JumpThreading::ID = 0;
92 static RegisterPass<JumpThreading>
93 X("jump-threading", "Jump Threading");
94 
95 // Public interface to the Jump Threading pass
96 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
97 
98 /// runOnFunction - Top level algorithm.
99 ///
100 bool JumpThreading::runOnFunction(Function &F) {
101   DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n");
102   TD = getAnalysisIfAvailable<TargetData>();
103 
104   FindLoopHeaders(F);
105 
106   bool AnotherIteration = true, EverChanged = false;
107   while (AnotherIteration) {
108     AnotherIteration = false;
109     bool Changed = false;
110     for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
111       BasicBlock *BB = I;
112       while (ProcessBlock(BB))
113         Changed = true;
114 
115       ++I;
116 
117       // If the block is trivially dead, zap it.  This eliminates the successor
118       // edges which simplifies the CFG.
119       if (pred_begin(BB) == pred_end(BB) &&
120           BB != &BB->getParent()->getEntryBlock()) {
121         DEBUG(errs() << "  JT: Deleting dead block '" << BB->getName()
122               << "' with terminator: " << *BB->getTerminator() << '\n');
123         LoopHeaders.erase(BB);
124         DeleteDeadBlock(BB);
125         Changed = true;
126       }
127     }
128     AnotherIteration = Changed;
129     EverChanged |= Changed;
130   }
131 
132   LoopHeaders.clear();
133   return EverChanged;
134 }
135 
136 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
137 /// thread across it.
138 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
139   /// Ignore PHI nodes, these will be flattened when duplication happens.
140   BasicBlock::const_iterator I = BB->getFirstNonPHI();
141 
142   // Sum up the cost of each instruction until we get to the terminator.  Don't
143   // include the terminator because the copy won't include it.
144   unsigned Size = 0;
145   for (; !isa<TerminatorInst>(I); ++I) {
146     // Debugger intrinsics don't incur code size.
147     if (isa<DbgInfoIntrinsic>(I)) continue;
148 
149     // If this is a pointer->pointer bitcast, it is free.
150     if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
151       continue;
152 
153     // All other instructions count for at least one unit.
154     ++Size;
155 
156     // Calls are more expensive.  If they are non-intrinsic calls, we model them
157     // as having cost of 4.  If they are a non-vector intrinsic, we model them
158     // as having cost of 2 total, and if they are a vector intrinsic, we model
159     // them as having cost 1.
160     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
161       if (!isa<IntrinsicInst>(CI))
162         Size += 3;
163       else if (!isa<VectorType>(CI->getType()))
164         Size += 1;
165     }
166   }
167 
168   // Threading through a switch statement is particularly profitable.  If this
169   // block ends in a switch, decrease its cost to make it more likely to happen.
170   if (isa<SwitchInst>(I))
171     Size = Size > 6 ? Size-6 : 0;
172 
173   return Size;
174 }
175 
176 
177 
178 /// FindLoopHeaders - We do not want jump threading to turn proper loop
179 /// structures into irreducible loops.  Doing this breaks up the loop nesting
180 /// hierarchy and pessimizes later transformations.  To prevent this from
181 /// happening, we first have to find the loop headers.  Here we approximate this
182 /// by finding targets of backedges in the CFG.
183 ///
184 /// Note that there definitely are cases when we want to allow threading of
185 /// edges across a loop header.  For example, threading a jump from outside the
186 /// loop (the preheader) to an exit block of the loop is definitely profitable.
187 /// It is also almost always profitable to thread backedges from within the loop
188 /// to exit blocks, and is often profitable to thread backedges to other blocks
189 /// within the loop (forming a nested loop).  This simple analysis is not rich
190 /// enough to track all of these properties and keep it up-to-date as the CFG
191 /// mutates, so we don't allow any of these transformations.
192 ///
193 void JumpThreading::FindLoopHeaders(Function &F) {
194   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
195   FindFunctionBackedges(F, Edges);
196 
197   for (unsigned i = 0, e = Edges.size(); i != e; ++i)
198     LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
199 }
200 
201 /// FactorCommonPHIPreds - If there are multiple preds with the same incoming
202 /// value for the PHI, factor them together so we get one block to thread for
203 /// the whole group.
204 /// This is important for things like "phi i1 [true, true, false, true, x]"
205 /// where we only need to clone the block for the true blocks once.
206 ///
207 BasicBlock *JumpThreading::FactorCommonPHIPreds(PHINode *PN, Value *Val) {
208   SmallVector<BasicBlock*, 16> CommonPreds;
209   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
210     if (PN->getIncomingValue(i) == Val)
211       CommonPreds.push_back(PN->getIncomingBlock(i));
212 
213   if (CommonPreds.size() == 1)
214     return CommonPreds[0];
215 
216   DEBUG(errs() << "  Factoring out " << CommonPreds.size()
217         << " common predecessors.\n");
218   return SplitBlockPredecessors(PN->getParent(),
219                                 &CommonPreds[0], CommonPreds.size(),
220                                 ".thr_comm", this);
221 }
222 
223 
224 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
225 /// in an undefined jump, decide which block is best to revector to.
226 ///
227 /// Since we can pick an arbitrary destination, we pick the successor with the
228 /// fewest predecessors.  This should reduce the in-degree of the others.
229 ///
230 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
231   TerminatorInst *BBTerm = BB->getTerminator();
232   unsigned MinSucc = 0;
233   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
234   // Compute the successor with the minimum number of predecessors.
235   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
236   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
237     TestBB = BBTerm->getSuccessor(i);
238     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
239     if (NumPreds < MinNumPreds)
240       MinSucc = i;
241   }
242 
243   return MinSucc;
244 }
245 
246 /// ProcessBlock - If there are any predecessors whose control can be threaded
247 /// through to a successor, transform them now.
248 bool JumpThreading::ProcessBlock(BasicBlock *BB) {
249   // If this block has a single predecessor, and if that pred has a single
250   // successor, merge the blocks.  This encourages recursive jump threading
251   // because now the condition in this block can be threaded through
252   // predecessors of our predecessor block.
253   if (BasicBlock *SinglePred = BB->getSinglePredecessor())
254     if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
255         SinglePred != BB) {
256       // If SinglePred was a loop header, BB becomes one.
257       if (LoopHeaders.erase(SinglePred))
258         LoopHeaders.insert(BB);
259 
260       // Remember if SinglePred was the entry block of the function.  If so, we
261       // will need to move BB back to the entry position.
262       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
263       MergeBasicBlockIntoOnlyPred(BB);
264 
265       if (isEntry && BB != &BB->getParent()->getEntryBlock())
266         BB->moveBefore(&BB->getParent()->getEntryBlock());
267       return true;
268     }
269 
270   // See if this block ends with a branch or switch.  If so, see if the
271   // condition is a phi node.  If so, and if an entry of the phi node is a
272   // constant, we can thread the block.
273   Value *Condition;
274   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
275     // Can't thread an unconditional jump.
276     if (BI->isUnconditional()) return false;
277     Condition = BI->getCondition();
278   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
279     Condition = SI->getCondition();
280   else
281     return false; // Must be an invoke.
282 
283   // If the terminator of this block is branching on a constant, simplify the
284   // terminator to an unconditional branch.  This can occur due to threading in
285   // other blocks.
286   if (isa<ConstantInt>(Condition)) {
287     DEBUG(errs() << "  In block '" << BB->getName()
288           << "' folding terminator: " << *BB->getTerminator() << '\n');
289     ++NumFolds;
290     ConstantFoldTerminator(BB);
291     return true;
292   }
293 
294   // If the terminator is branching on an undef, we can pick any of the
295   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
296   if (isa<UndefValue>(Condition)) {
297     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
298 
299     // Fold the branch/switch.
300     TerminatorInst *BBTerm = BB->getTerminator();
301     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
302       if (i == BestSucc) continue;
303       BBTerm->getSuccessor(i)->removePredecessor(BB);
304     }
305 
306     DEBUG(errs() << "  In block '" << BB->getName()
307           << "' folding undef terminator: " << *BBTerm << '\n');
308     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
309     BBTerm->eraseFromParent();
310     return true;
311   }
312 
313   Instruction *CondInst = dyn_cast<Instruction>(Condition);
314 
315   // If the condition is an instruction defined in another block, see if a
316   // predecessor has the same condition:
317   //     br COND, BBX, BBY
318   //  BBX:
319   //     br COND, BBZ, BBW
320   if (!Condition->hasOneUse() && // Multiple uses.
321       (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
322     pred_iterator PI = pred_begin(BB), E = pred_end(BB);
323     if (isa<BranchInst>(BB->getTerminator())) {
324       for (; PI != E; ++PI)
325         if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
326           if (PBI->isConditional() && PBI->getCondition() == Condition &&
327               ProcessBranchOnDuplicateCond(*PI, BB))
328             return true;
329     } else {
330       assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
331       for (; PI != E; ++PI)
332         if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
333           if (PSI->getCondition() == Condition &&
334               ProcessSwitchOnDuplicateCond(*PI, BB))
335             return true;
336     }
337   }
338 
339   // All the rest of our checks depend on the condition being an instruction.
340   if (CondInst == 0)
341     return false;
342 
343   // See if this is a phi node in the current block.
344   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
345     if (PN->getParent() == BB)
346       return ProcessJumpOnPHI(PN);
347 
348   // If this is a conditional branch whose condition is and/or of a phi, try to
349   // simplify it.
350   if ((CondInst->getOpcode() == Instruction::And ||
351        CondInst->getOpcode() == Instruction::Or) &&
352       isa<BranchInst>(BB->getTerminator()) &&
353       ProcessBranchOnLogical(CondInst, BB,
354                              CondInst->getOpcode() == Instruction::And))
355     return true;
356 
357   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
358     if (isa<PHINode>(CondCmp->getOperand(0))) {
359       // If we have "br (phi != 42)" and the phi node has any constant values
360       // as operands, we can thread through this block.
361       //
362       // If we have "br (cmp phi, x)" and the phi node contains x such that the
363       // comparison uniquely identifies the branch target, we can thread
364       // through this block.
365 
366       if (ProcessBranchOnCompare(CondCmp, BB))
367         return true;
368     }
369 
370     // If we have a comparison, loop over the predecessors to see if there is
371     // a condition with the same value.
372     pred_iterator PI = pred_begin(BB), E = pred_end(BB);
373     for (; PI != E; ++PI)
374       if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
375         if (PBI->isConditional() && *PI != BB) {
376           if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
377             if (CI->getOperand(0) == CondCmp->getOperand(0) &&
378                 CI->getOperand(1) == CondCmp->getOperand(1) &&
379                 CI->getPredicate() == CondCmp->getPredicate()) {
380               // TODO: Could handle things like (x != 4) --> (x == 17)
381               if (ProcessBranchOnDuplicateCond(*PI, BB))
382                 return true;
383             }
384           }
385         }
386   }
387 
388   // Check for some cases that are worth simplifying.  Right now we want to look
389   // for loads that are used by a switch or by the condition for the branch.  If
390   // we see one, check to see if it's partially redundant.  If so, insert a PHI
391   // which can then be used to thread the values.
392   //
393   // This is particularly important because reg2mem inserts loads and stores all
394   // over the place, and this blocks jump threading if we don't zap them.
395   Value *SimplifyValue = CondInst;
396   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
397     if (isa<Constant>(CondCmp->getOperand(1)))
398       SimplifyValue = CondCmp->getOperand(0);
399 
400   if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
401     if (SimplifyPartiallyRedundantLoad(LI))
402       return true;
403 
404   // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
405   // "(X == 4)" thread through this block.
406 
407   return false;
408 }
409 
410 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
411 /// block that jump on exactly the same condition.  This means that we almost
412 /// always know the direction of the edge in the DESTBB:
413 ///  PREDBB:
414 ///     br COND, DESTBB, BBY
415 ///  DESTBB:
416 ///     br COND, BBZ, BBW
417 ///
418 /// If DESTBB has multiple predecessors, we can't just constant fold the branch
419 /// in DESTBB, we have to thread over it.
420 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
421                                                  BasicBlock *BB) {
422   BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
423 
424   // If both successors of PredBB go to DESTBB, we don't know anything.  We can
425   // fold the branch to an unconditional one, which allows other recursive
426   // simplifications.
427   bool BranchDir;
428   if (PredBI->getSuccessor(1) != BB)
429     BranchDir = true;
430   else if (PredBI->getSuccessor(0) != BB)
431     BranchDir = false;
432   else {
433     DEBUG(errs() << "  In block '" << PredBB->getName()
434           << "' folding terminator: " << *PredBB->getTerminator() << '\n');
435     ++NumFolds;
436     ConstantFoldTerminator(PredBB);
437     return true;
438   }
439 
440   BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
441 
442   // If the dest block has one predecessor, just fix the branch condition to a
443   // constant and fold it.
444   if (BB->getSinglePredecessor()) {
445     DEBUG(errs() << "  In block '" << BB->getName()
446           << "' folding condition to '" << BranchDir << "': "
447           << *BB->getTerminator() << '\n');
448     ++NumFolds;
449     Value *OldCond = DestBI->getCondition();
450     DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
451                                           BranchDir));
452     ConstantFoldTerminator(BB);
453     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
454     return true;
455   }
456 
457 
458   // Next, figure out which successor we are threading to.
459   BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
460 
461   // Ok, try to thread it!
462   return ThreadEdge(BB, PredBB, SuccBB);
463 }
464 
465 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
466 /// block that switch on exactly the same condition.  This means that we almost
467 /// always know the direction of the edge in the DESTBB:
468 ///  PREDBB:
469 ///     switch COND [... DESTBB, BBY ... ]
470 ///  DESTBB:
471 ///     switch COND [... BBZ, BBW ]
472 ///
473 /// Optimizing switches like this is very important, because simplifycfg builds
474 /// switches out of repeated 'if' conditions.
475 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
476                                                  BasicBlock *DestBB) {
477   // Can't thread edge to self.
478   if (PredBB == DestBB)
479     return false;
480 
481   SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
482   SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
483 
484   // There are a variety of optimizations that we can potentially do on these
485   // blocks: we order them from most to least preferable.
486 
487   // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
488   // directly to their destination.  This does not introduce *any* code size
489   // growth.  Skip debug info first.
490   BasicBlock::iterator BBI = DestBB->begin();
491   while (isa<DbgInfoIntrinsic>(BBI))
492     BBI++;
493 
494   // FIXME: Thread if it just contains a PHI.
495   if (isa<SwitchInst>(BBI)) {
496     bool MadeChange = false;
497     // Ignore the default edge for now.
498     for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
499       ConstantInt *DestVal = DestSI->getCaseValue(i);
500       BasicBlock *DestSucc = DestSI->getSuccessor(i);
501 
502       // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
503       // PredSI has an explicit case for it.  If so, forward.  If it is covered
504       // by the default case, we can't update PredSI.
505       unsigned PredCase = PredSI->findCaseValue(DestVal);
506       if (PredCase == 0) continue;
507 
508       // If PredSI doesn't go to DestBB on this value, then it won't reach the
509       // case on this condition.
510       if (PredSI->getSuccessor(PredCase) != DestBB &&
511           DestSI->getSuccessor(i) != DestBB)
512         continue;
513 
514       // Otherwise, we're safe to make the change.  Make sure that the edge from
515       // DestSI to DestSucc is not critical and has no PHI nodes.
516       DEBUG(errs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
517       DEBUG(errs() << "THROUGH: " << *DestSI);
518 
519       // If the destination has PHI nodes, just split the edge for updating
520       // simplicity.
521       if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
522         SplitCriticalEdge(DestSI, i, this);
523         DestSucc = DestSI->getSuccessor(i);
524       }
525       FoldSingleEntryPHINodes(DestSucc);
526       PredSI->setSuccessor(PredCase, DestSucc);
527       MadeChange = true;
528     }
529 
530     if (MadeChange)
531       return true;
532   }
533 
534   return false;
535 }
536 
537 
538 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
539 /// load instruction, eliminate it by replacing it with a PHI node.  This is an
540 /// important optimization that encourages jump threading, and needs to be run
541 /// interlaced with other jump threading tasks.
542 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
543   // Don't hack volatile loads.
544   if (LI->isVolatile()) return false;
545 
546   // If the load is defined in a block with exactly one predecessor, it can't be
547   // partially redundant.
548   BasicBlock *LoadBB = LI->getParent();
549   if (LoadBB->getSinglePredecessor())
550     return false;
551 
552   Value *LoadedPtr = LI->getOperand(0);
553 
554   // If the loaded operand is defined in the LoadBB, it can't be available.
555   // FIXME: Could do PHI translation, that would be fun :)
556   if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
557     if (PtrOp->getParent() == LoadBB)
558       return false;
559 
560   // Scan a few instructions up from the load, to see if it is obviously live at
561   // the entry to its block.
562   BasicBlock::iterator BBIt = LI;
563 
564   if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB,
565                                                      BBIt, 6)) {
566     // If the value if the load is locally available within the block, just use
567     // it.  This frequently occurs for reg2mem'd allocas.
568     //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
569 
570     // If the returned value is the load itself, replace with an undef. This can
571     // only happen in dead loops.
572     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
573     LI->replaceAllUsesWith(AvailableVal);
574     LI->eraseFromParent();
575     return true;
576   }
577 
578   // Otherwise, if we scanned the whole block and got to the top of the block,
579   // we know the block is locally transparent to the load.  If not, something
580   // might clobber its value.
581   if (BBIt != LoadBB->begin())
582     return false;
583 
584 
585   SmallPtrSet<BasicBlock*, 8> PredsScanned;
586   typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
587   AvailablePredsTy AvailablePreds;
588   BasicBlock *OneUnavailablePred = 0;
589 
590   // If we got here, the loaded value is transparent through to the start of the
591   // block.  Check to see if it is available in any of the predecessor blocks.
592   for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
593        PI != PE; ++PI) {
594     BasicBlock *PredBB = *PI;
595 
596     // If we already scanned this predecessor, skip it.
597     if (!PredsScanned.insert(PredBB))
598       continue;
599 
600     // Scan the predecessor to see if the value is available in the pred.
601     BBIt = PredBB->end();
602     Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
603     if (!PredAvailable) {
604       OneUnavailablePred = PredBB;
605       continue;
606     }
607 
608     // If so, this load is partially redundant.  Remember this info so that we
609     // can create a PHI node.
610     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
611   }
612 
613   // If the loaded value isn't available in any predecessor, it isn't partially
614   // redundant.
615   if (AvailablePreds.empty()) return false;
616 
617   // Okay, the loaded value is available in at least one (and maybe all!)
618   // predecessors.  If the value is unavailable in more than one unique
619   // predecessor, we want to insert a merge block for those common predecessors.
620   // This ensures that we only have to insert one reload, thus not increasing
621   // code size.
622   BasicBlock *UnavailablePred = 0;
623 
624   // If there is exactly one predecessor where the value is unavailable, the
625   // already computed 'OneUnavailablePred' block is it.  If it ends in an
626   // unconditional branch, we know that it isn't a critical edge.
627   if (PredsScanned.size() == AvailablePreds.size()+1 &&
628       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
629     UnavailablePred = OneUnavailablePred;
630   } else if (PredsScanned.size() != AvailablePreds.size()) {
631     // Otherwise, we had multiple unavailable predecessors or we had a critical
632     // edge from the one.
633     SmallVector<BasicBlock*, 8> PredsToSplit;
634     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
635 
636     for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
637       AvailablePredSet.insert(AvailablePreds[i].first);
638 
639     // Add all the unavailable predecessors to the PredsToSplit list.
640     for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
641          PI != PE; ++PI)
642       if (!AvailablePredSet.count(*PI))
643         PredsToSplit.push_back(*PI);
644 
645     // Split them out to their own block.
646     UnavailablePred =
647       SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
648                              "thread-split", this);
649   }
650 
651   // If the value isn't available in all predecessors, then there will be
652   // exactly one where it isn't available.  Insert a load on that edge and add
653   // it to the AvailablePreds list.
654   if (UnavailablePred) {
655     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
656            "Can't handle critical edge here!");
657     Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr",
658                                  UnavailablePred->getTerminator());
659     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
660   }
661 
662   // Now we know that each predecessor of this block has a value in
663   // AvailablePreds, sort them for efficient access as we're walking the preds.
664   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
665 
666   // Create a PHI node at the start of the block for the PRE'd load value.
667   PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
668   PN->takeName(LI);
669 
670   // Insert new entries into the PHI for each predecessor.  A single block may
671   // have multiple entries here.
672   for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
673        ++PI) {
674     AvailablePredsTy::iterator I =
675       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
676                        std::make_pair(*PI, (Value*)0));
677 
678     assert(I != AvailablePreds.end() && I->first == *PI &&
679            "Didn't find entry for predecessor!");
680 
681     PN->addIncoming(I->second, I->first);
682   }
683 
684   //cerr << "PRE: " << *LI << *PN << "\n";
685 
686   LI->replaceAllUsesWith(PN);
687   LI->eraseFromParent();
688 
689   return true;
690 }
691 
692 
693 /// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
694 /// the current block.  See if there are any simplifications we can do based on
695 /// inputs to the phi node.
696 ///
697 bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
698   BasicBlock *BB = PN->getParent();
699 
700   // See if the phi node has any constant integer or undef values.  If so, we
701   // can determine where the corresponding predecessor will branch.
702   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
703     Value *PredVal = PN->getIncomingValue(i);
704 
705     // Check to see if this input is a constant integer.  If so, the direction
706     // of the branch is predictable.
707     if (ConstantInt *CI = dyn_cast<ConstantInt>(PredVal)) {
708       // Merge any common predecessors that will act the same.
709       BasicBlock *PredBB = FactorCommonPHIPreds(PN, CI);
710 
711       BasicBlock *SuccBB;
712       if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
713         SuccBB = BI->getSuccessor(CI->isZero());
714       else {
715         SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
716         SuccBB = SI->getSuccessor(SI->findCaseValue(CI));
717       }
718 
719       // Ok, try to thread it!
720       return ThreadEdge(BB, PredBB, SuccBB);
721     }
722 
723     // If the input is an undef, then it doesn't matter which way it will go.
724     // Pick an arbitrary dest and thread the edge.
725     if (UndefValue *UV = dyn_cast<UndefValue>(PredVal)) {
726       // Merge any common predecessors that will act the same.
727       BasicBlock *PredBB = FactorCommonPHIPreds(PN, UV);
728       BasicBlock *SuccBB =
729         BB->getTerminator()->getSuccessor(GetBestDestForJumpOnUndef(BB));
730 
731       // Ok, try to thread it!
732       return ThreadEdge(BB, PredBB, SuccBB);
733     }
734   }
735 
736   // If the incoming values are all variables, we don't know the destination of
737   // any predecessors.  However, if any of the predecessor blocks end in an
738   // unconditional branch, we can *duplicate* the jump into that block in order
739   // to further encourage jump threading and to eliminate cases where we have
740   // branch on a phi of an icmp (branch on icmp is much better).
741 
742   // We don't want to do this tranformation for switches, because we don't
743   // really want to duplicate a switch.
744   if (isa<SwitchInst>(BB->getTerminator()))
745     return false;
746 
747   // Look for unconditional branch predecessors.
748   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
749     BasicBlock *PredBB = PN->getIncomingBlock(i);
750     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
751       if (PredBr->isUnconditional() &&
752           // Try to duplicate BB into PredBB.
753           DuplicateCondBranchOnPHIIntoPred(BB, PredBB))
754         return true;
755   }
756 
757   return false;
758 }
759 
760 
761 /// ProcessJumpOnLogicalPHI - PN's basic block contains a conditional branch
762 /// whose condition is an AND/OR where one side is PN.  If PN has constant
763 /// operands that permit us to evaluate the condition for some operand, thread
764 /// through the block.  For example with:
765 ///   br (and X, phi(Y, Z, false))
766 /// the predecessor corresponding to the 'false' will always jump to the false
767 /// destination of the branch.
768 ///
769 bool JumpThreading::ProcessBranchOnLogical(Value *V, BasicBlock *BB,
770                                            bool isAnd) {
771   // If this is a binary operator tree of the same AND/OR opcode, check the
772   // LHS/RHS.
773   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
774     if ((isAnd && BO->getOpcode() == Instruction::And) ||
775         (!isAnd && BO->getOpcode() == Instruction::Or)) {
776       if (ProcessBranchOnLogical(BO->getOperand(0), BB, isAnd))
777         return true;
778       if (ProcessBranchOnLogical(BO->getOperand(1), BB, isAnd))
779         return true;
780     }
781 
782   // If this isn't a PHI node, we can't handle it.
783   PHINode *PN = dyn_cast<PHINode>(V);
784   if (!PN || PN->getParent() != BB) return false;
785 
786   // We can only do the simplification for phi nodes of 'false' with AND or
787   // 'true' with OR.  See if we have any entries in the phi for this.
788   unsigned PredNo = ~0U;
789   ConstantInt *PredCst = ConstantInt::get(Type::getInt1Ty(BB->getContext()),
790                                           !isAnd);
791   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
792     if (PN->getIncomingValue(i) == PredCst) {
793       PredNo = i;
794       break;
795     }
796   }
797 
798   // If no match, bail out.
799   if (PredNo == ~0U)
800     return false;
801 
802   // If so, we can actually do this threading.  Merge any common predecessors
803   // that will act the same.
804   BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
805 
806   // Next, figure out which successor we are threading to.  If this was an AND,
807   // the constant must be FALSE, and we must be targeting the 'false' block.
808   // If this is an OR, the constant must be TRUE, and we must be targeting the
809   // 'true' block.
810   BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(isAnd);
811 
812   // Ok, try to thread it!
813   return ThreadEdge(BB, PredBB, SuccBB);
814 }
815 
816 /// GetResultOfComparison - Given an icmp/fcmp predicate and the left and right
817 /// hand sides of the compare instruction, try to determine the result. If the
818 /// result can not be determined, a null pointer is returned.
819 static Constant *GetResultOfComparison(CmpInst::Predicate pred,
820                                        Value *LHS, Value *RHS,
821                                        LLVMContext &Context) {
822   if (Constant *CLHS = dyn_cast<Constant>(LHS))
823     if (Constant *CRHS = dyn_cast<Constant>(RHS))
824       return ConstantExpr::getCompare(pred, CLHS, CRHS);
825 
826   if (LHS == RHS)
827     if (isa<IntegerType>(LHS->getType()) || isa<PointerType>(LHS->getType()))
828       return ICmpInst::isTrueWhenEqual(pred) ?
829                  ConstantInt::getTrue(Context) : ConstantInt::getFalse(Context);
830 
831   return 0;
832 }
833 
834 /// ProcessBranchOnCompare - We found a branch on a comparison between a phi
835 /// node and a value.  If we can identify when the comparison is true between
836 /// the phi inputs and the value, we can fold the compare for that edge and
837 /// thread through it.
838 bool JumpThreading::ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB) {
839   PHINode *PN = cast<PHINode>(Cmp->getOperand(0));
840   Value *RHS = Cmp->getOperand(1);
841 
842   // If the phi isn't in the current block, an incoming edge to this block
843   // doesn't control the destination.
844   if (PN->getParent() != BB)
845     return false;
846 
847   // We can do this simplification if any comparisons fold to true or false.
848   // See if any do.
849   Value *PredVal = 0;
850   bool TrueDirection = false;
851   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
852     PredVal = PN->getIncomingValue(i);
853 
854     Constant *Res = GetResultOfComparison(Cmp->getPredicate(), PredVal,
855                                           RHS, Cmp->getContext());
856     if (!Res) {
857       PredVal = 0;
858       continue;
859     }
860 
861     // If this folded to a constant expr, we can't do anything.
862     if (ConstantInt *ResC = dyn_cast<ConstantInt>(Res)) {
863       TrueDirection = ResC->getZExtValue();
864       break;
865     }
866     // If this folded to undef, just go the false way.
867     if (isa<UndefValue>(Res)) {
868       TrueDirection = false;
869       break;
870     }
871 
872     // Otherwise, we can't fold this input.
873     PredVal = 0;
874   }
875 
876   // If no match, bail out.
877   if (PredVal == 0)
878     return false;
879 
880   // If so, we can actually do this threading.  Merge any common predecessors
881   // that will act the same.
882   BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredVal);
883 
884   // Next, get our successor.
885   BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(!TrueDirection);
886 
887   // Ok, try to thread it!
888   return ThreadEdge(BB, PredBB, SuccBB);
889 }
890 
891 
892 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
893 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
894 /// NewPred using the entries from OldPred (suitably mapped).
895 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
896                                             BasicBlock *OldPred,
897                                             BasicBlock *NewPred,
898                                      DenseMap<Instruction*, Value*> &ValueMap) {
899   for (BasicBlock::iterator PNI = PHIBB->begin();
900        PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
901     // Ok, we have a PHI node.  Figure out what the incoming value was for the
902     // DestBlock.
903     Value *IV = PN->getIncomingValueForBlock(OldPred);
904 
905     // Remap the value if necessary.
906     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
907       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
908       if (I != ValueMap.end())
909         IV = I->second;
910     }
911 
912     PN->addIncoming(IV, NewPred);
913   }
914 }
915 
916 /// ThreadEdge - We have decided that it is safe and profitable to thread an
917 /// edge from PredBB to SuccBB across BB.  Transform the IR to reflect this
918 /// change.
919 bool JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB,
920                                BasicBlock *SuccBB) {
921   // If threading to the same block as we come from, we would infinite loop.
922   if (SuccBB == BB) {
923     DEBUG(errs() << "  Not threading across BB '" << BB->getName()
924           << "' - would thread to self!\n");
925     return false;
926   }
927 
928   // If threading this would thread across a loop header, don't thread the edge.
929   // See the comments above FindLoopHeaders for justifications and caveats.
930   if (LoopHeaders.count(BB)) {
931     DEBUG(errs() << "  Not threading from '" << PredBB->getName()
932           << "' across loop header BB '" << BB->getName()
933           << "' to dest BB '" << SuccBB->getName()
934           << "' - it might create an irreducible loop!\n");
935     return false;
936   }
937 
938   unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
939   if (JumpThreadCost > Threshold) {
940     DEBUG(errs() << "  Not threading BB '" << BB->getName()
941           << "' - Cost is too high: " << JumpThreadCost << "\n");
942     return false;
943   }
944 
945   // And finally, do it!
946   DEBUG(errs() << "  Threading edge from '" << PredBB->getName() << "' to '"
947         << SuccBB->getName() << "' with cost: " << JumpThreadCost
948         << ", across block:\n    "
949         << *BB << "\n");
950 
951   // We are going to have to map operands from the original BB block to the new
952   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
953   // account for entry from PredBB.
954   DenseMap<Instruction*, Value*> ValueMapping;
955 
956   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
957                                          BB->getName()+".thread",
958                                          BB->getParent(), BB);
959   NewBB->moveAfter(PredBB);
960 
961   BasicBlock::iterator BI = BB->begin();
962   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
963     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
964 
965   // Clone the non-phi instructions of BB into NewBB, keeping track of the
966   // mapping and using it to remap operands in the cloned instructions.
967   for (; !isa<TerminatorInst>(BI); ++BI) {
968     Instruction *New = BI->clone();
969     New->setName(BI->getName());
970     NewBB->getInstList().push_back(New);
971     ValueMapping[BI] = New;
972 
973     // Remap operands to patch up intra-block references.
974     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
975       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
976         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
977         if (I != ValueMapping.end())
978           New->setOperand(i, I->second);
979       }
980   }
981 
982   // We didn't copy the terminator from BB over to NewBB, because there is now
983   // an unconditional jump to SuccBB.  Insert the unconditional jump.
984   BranchInst::Create(SuccBB, NewBB);
985 
986   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
987   // PHI nodes for NewBB now.
988   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
989 
990   // If there were values defined in BB that are used outside the block, then we
991   // now have to update all uses of the value to use either the original value,
992   // the cloned value, or some PHI derived value.  This can require arbitrary
993   // PHI insertion, of which we are prepared to do, clean these up now.
994   SSAUpdater SSAUpdate;
995   SmallVector<Use*, 16> UsesToRename;
996   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
997     // Scan all uses of this instruction to see if it is used outside of its
998     // block, and if so, record them in UsesToRename.
999     for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1000          ++UI) {
1001       Instruction *User = cast<Instruction>(*UI);
1002       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1003         if (UserPN->getIncomingBlock(UI) == BB)
1004           continue;
1005       } else if (User->getParent() == BB)
1006         continue;
1007 
1008       UsesToRename.push_back(&UI.getUse());
1009     }
1010 
1011     // If there are no uses outside the block, we're done with this instruction.
1012     if (UsesToRename.empty())
1013       continue;
1014 
1015     DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1016 
1017     // We found a use of I outside of BB.  Rename all uses of I that are outside
1018     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1019     // with the two values we know.
1020     SSAUpdate.Initialize(I);
1021     SSAUpdate.AddAvailableValue(BB, I);
1022     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1023 
1024     while (!UsesToRename.empty())
1025       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1026     DEBUG(errs() << "\n");
1027   }
1028 
1029 
1030   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1031   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1032   // us to simplify any PHI nodes in BB.
1033   TerminatorInst *PredTerm = PredBB->getTerminator();
1034   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1035     if (PredTerm->getSuccessor(i) == BB) {
1036       BB->removePredecessor(PredBB);
1037       PredTerm->setSuccessor(i, NewBB);
1038     }
1039 
1040   // At this point, the IR is fully up to date and consistent.  Do a quick scan
1041   // over the new instructions and zap any that are constants or dead.  This
1042   // frequently happens because of phi translation.
1043   BI = NewBB->begin();
1044   for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
1045     Instruction *Inst = BI++;
1046     if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
1047       Inst->replaceAllUsesWith(C);
1048       Inst->eraseFromParent();
1049       continue;
1050     }
1051 
1052     RecursivelyDeleteTriviallyDeadInstructions(Inst);
1053   }
1054 
1055   // Threaded an edge!
1056   ++NumThreads;
1057   return true;
1058 }
1059 
1060 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1061 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1062 /// If we can duplicate the contents of BB up into PredBB do so now, this
1063 /// improves the odds that the branch will be on an analyzable instruction like
1064 /// a compare.
1065 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1066                                                      BasicBlock *PredBB) {
1067   // If BB is a loop header, then duplicating this block outside the loop would
1068   // cause us to transform this into an irreducible loop, don't do this.
1069   // See the comments above FindLoopHeaders for justifications and caveats.
1070   if (LoopHeaders.count(BB)) {
1071     DEBUG(errs() << "  Not duplicating loop header '" << BB->getName()
1072           << "' into predecessor block '" << PredBB->getName()
1073           << "' - it might create an irreducible loop!\n");
1074     return false;
1075   }
1076 
1077   unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1078   if (DuplicationCost > Threshold) {
1079     DEBUG(errs() << "  Not duplicating BB '" << BB->getName()
1080           << "' - Cost is too high: " << DuplicationCost << "\n");
1081     return false;
1082   }
1083 
1084   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1085   // of PredBB.
1086   DEBUG(errs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1087         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1088         << DuplicationCost << " block is:" << *BB << "\n");
1089 
1090   // We are going to have to map operands from the original BB block into the
1091   // PredBB block.  Evaluate PHI nodes in BB.
1092   DenseMap<Instruction*, Value*> ValueMapping;
1093 
1094   BasicBlock::iterator BI = BB->begin();
1095   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1096     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1097 
1098   BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1099 
1100   // Clone the non-phi instructions of BB into PredBB, keeping track of the
1101   // mapping and using it to remap operands in the cloned instructions.
1102   for (; BI != BB->end(); ++BI) {
1103     Instruction *New = BI->clone();
1104     New->setName(BI->getName());
1105     PredBB->getInstList().insert(OldPredBranch, New);
1106     ValueMapping[BI] = New;
1107 
1108     // Remap operands to patch up intra-block references.
1109     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1110       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1111         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1112         if (I != ValueMapping.end())
1113           New->setOperand(i, I->second);
1114       }
1115   }
1116 
1117   // Check to see if the targets of the branch had PHI nodes. If so, we need to
1118   // add entries to the PHI nodes for branch from PredBB now.
1119   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1120   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1121                                   ValueMapping);
1122   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1123                                   ValueMapping);
1124 
1125   // If there were values defined in BB that are used outside the block, then we
1126   // now have to update all uses of the value to use either the original value,
1127   // the cloned value, or some PHI derived value.  This can require arbitrary
1128   // PHI insertion, of which we are prepared to do, clean these up now.
1129   SSAUpdater SSAUpdate;
1130   SmallVector<Use*, 16> UsesToRename;
1131   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1132     // Scan all uses of this instruction to see if it is used outside of its
1133     // block, and if so, record them in UsesToRename.
1134     for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1135          ++UI) {
1136       Instruction *User = cast<Instruction>(*UI);
1137       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1138         if (UserPN->getIncomingBlock(UI) == BB)
1139           continue;
1140       } else if (User->getParent() == BB)
1141         continue;
1142 
1143       UsesToRename.push_back(&UI.getUse());
1144     }
1145 
1146     // If there are no uses outside the block, we're done with this instruction.
1147     if (UsesToRename.empty())
1148       continue;
1149 
1150     DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1151 
1152     // We found a use of I outside of BB.  Rename all uses of I that are outside
1153     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1154     // with the two values we know.
1155     SSAUpdate.Initialize(I);
1156     SSAUpdate.AddAvailableValue(BB, I);
1157     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1158 
1159     while (!UsesToRename.empty())
1160       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1161     DEBUG(errs() << "\n");
1162   }
1163 
1164   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1165   // that we nuked.
1166   BB->removePredecessor(PredBB);
1167 
1168   // Remove the unconditional branch at the end of the PredBB block.
1169   OldPredBranch->eraseFromParent();
1170 
1171   ++NumDupes;
1172   return true;
1173 }
1174 
1175 
1176