1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "jump-threading" 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/IntrinsicInst.h" 17 #include "llvm/LLVMContext.h" 18 #include "llvm/Pass.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LazyValueInfo.h" 21 #include "llvm/Analysis/Loads.h" 22 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 23 #include "llvm/Transforms/Utils/Local.h" 24 #include "llvm/Transforms/Utils/SSAUpdater.h" 25 #include "llvm/Target/TargetData.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ValueHandle.h" 35 #include "llvm/Support/raw_ostream.h" 36 using namespace llvm; 37 38 STATISTIC(NumThreads, "Number of jumps threaded"); 39 STATISTIC(NumFolds, "Number of terminators folded"); 40 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 41 42 static cl::opt<unsigned> 43 Threshold("jump-threading-threshold", 44 cl::desc("Max block size to duplicate for jump threading"), 45 cl::init(6), cl::Hidden); 46 47 // Turn on use of LazyValueInfo. 48 static cl::opt<bool> 49 EnableLVI("enable-jump-threading-lvi", 50 cl::desc("Use LVI for jump threading"), 51 cl::init(true), 52 cl::ReallyHidden); 53 54 55 56 namespace { 57 /// This pass performs 'jump threading', which looks at blocks that have 58 /// multiple predecessors and multiple successors. If one or more of the 59 /// predecessors of the block can be proven to always jump to one of the 60 /// successors, we forward the edge from the predecessor to the successor by 61 /// duplicating the contents of this block. 62 /// 63 /// An example of when this can occur is code like this: 64 /// 65 /// if () { ... 66 /// X = 4; 67 /// } 68 /// if (X < 3) { 69 /// 70 /// In this case, the unconditional branch at the end of the first if can be 71 /// revectored to the false side of the second if. 72 /// 73 class JumpThreading : public FunctionPass { 74 TargetData *TD; 75 LazyValueInfo *LVI; 76 #ifdef NDEBUG 77 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 78 #else 79 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 80 #endif 81 DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet; 82 public: 83 static char ID; // Pass identification 84 JumpThreading() : FunctionPass(ID) {} 85 86 bool runOnFunction(Function &F); 87 88 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 89 if (EnableLVI) 90 AU.addRequired<LazyValueInfo>(); 91 } 92 93 void FindLoopHeaders(Function &F); 94 bool ProcessBlock(BasicBlock *BB); 95 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 96 BasicBlock *SuccBB); 97 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 98 const SmallVectorImpl<BasicBlock *> &PredBBs); 99 100 typedef SmallVectorImpl<std::pair<ConstantInt*, 101 BasicBlock*> > PredValueInfo; 102 103 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 104 PredValueInfo &Result); 105 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB); 106 107 108 bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 109 bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 110 111 bool ProcessBranchOnPHI(PHINode *PN); 112 bool ProcessBranchOnXOR(BinaryOperator *BO); 113 114 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 115 }; 116 } 117 118 char JumpThreading::ID = 0; 119 INITIALIZE_PASS(JumpThreading, "jump-threading", 120 "Jump Threading", false, false); 121 122 // Public interface to the Jump Threading pass 123 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); } 124 125 /// runOnFunction - Top level algorithm. 126 /// 127 bool JumpThreading::runOnFunction(Function &F) { 128 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 129 TD = getAnalysisIfAvailable<TargetData>(); 130 LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0; 131 132 FindLoopHeaders(F); 133 134 bool Changed, EverChanged = false; 135 do { 136 Changed = false; 137 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 138 BasicBlock *BB = I; 139 // Thread all of the branches we can over this block. 140 while (ProcessBlock(BB)) 141 Changed = true; 142 143 ++I; 144 145 // If the block is trivially dead, zap it. This eliminates the successor 146 // edges which simplifies the CFG. 147 if (pred_begin(BB) == pred_end(BB) && 148 BB != &BB->getParent()->getEntryBlock()) { 149 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 150 << "' with terminator: " << *BB->getTerminator() << '\n'); 151 LoopHeaders.erase(BB); 152 if (LVI) LVI->eraseBlock(BB); 153 DeleteDeadBlock(BB); 154 Changed = true; 155 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 156 // Can't thread an unconditional jump, but if the block is "almost 157 // empty", we can replace uses of it with uses of the successor and make 158 // this dead. 159 if (BI->isUnconditional() && 160 BB != &BB->getParent()->getEntryBlock()) { 161 BasicBlock::iterator BBI = BB->getFirstNonPHI(); 162 // Ignore dbg intrinsics. 163 while (isa<DbgInfoIntrinsic>(BBI)) 164 ++BBI; 165 // If the terminator is the only non-phi instruction, try to nuke it. 166 if (BBI->isTerminator()) { 167 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 168 // block, we have to make sure it isn't in the LoopHeaders set. We 169 // reinsert afterward if needed. 170 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 171 BasicBlock *Succ = BI->getSuccessor(0); 172 173 // FIXME: It is always conservatively correct to drop the info 174 // for a block even if it doesn't get erased. This isn't totally 175 // awesome, but it allows us to use AssertingVH to prevent nasty 176 // dangling pointer issues within LazyValueInfo. 177 if (LVI) LVI->eraseBlock(BB); 178 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { 179 Changed = true; 180 // If we deleted BB and BB was the header of a loop, then the 181 // successor is now the header of the loop. 182 BB = Succ; 183 } 184 185 if (ErasedFromLoopHeaders) 186 LoopHeaders.insert(BB); 187 } 188 } 189 } 190 } 191 EverChanged |= Changed; 192 } while (Changed); 193 194 LoopHeaders.clear(); 195 return EverChanged; 196 } 197 198 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 199 /// thread across it. 200 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) { 201 /// Ignore PHI nodes, these will be flattened when duplication happens. 202 BasicBlock::const_iterator I = BB->getFirstNonPHI(); 203 204 // FIXME: THREADING will delete values that are just used to compute the 205 // branch, so they shouldn't count against the duplication cost. 206 207 208 // Sum up the cost of each instruction until we get to the terminator. Don't 209 // include the terminator because the copy won't include it. 210 unsigned Size = 0; 211 for (; !isa<TerminatorInst>(I); ++I) { 212 // Debugger intrinsics don't incur code size. 213 if (isa<DbgInfoIntrinsic>(I)) continue; 214 215 // If this is a pointer->pointer bitcast, it is free. 216 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 217 continue; 218 219 // All other instructions count for at least one unit. 220 ++Size; 221 222 // Calls are more expensive. If they are non-intrinsic calls, we model them 223 // as having cost of 4. If they are a non-vector intrinsic, we model them 224 // as having cost of 2 total, and if they are a vector intrinsic, we model 225 // them as having cost 1. 226 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 227 if (!isa<IntrinsicInst>(CI)) 228 Size += 3; 229 else if (!CI->getType()->isVectorTy()) 230 Size += 1; 231 } 232 } 233 234 // Threading through a switch statement is particularly profitable. If this 235 // block ends in a switch, decrease its cost to make it more likely to happen. 236 if (isa<SwitchInst>(I)) 237 Size = Size > 6 ? Size-6 : 0; 238 239 return Size; 240 } 241 242 /// FindLoopHeaders - We do not want jump threading to turn proper loop 243 /// structures into irreducible loops. Doing this breaks up the loop nesting 244 /// hierarchy and pessimizes later transformations. To prevent this from 245 /// happening, we first have to find the loop headers. Here we approximate this 246 /// by finding targets of backedges in the CFG. 247 /// 248 /// Note that there definitely are cases when we want to allow threading of 249 /// edges across a loop header. For example, threading a jump from outside the 250 /// loop (the preheader) to an exit block of the loop is definitely profitable. 251 /// It is also almost always profitable to thread backedges from within the loop 252 /// to exit blocks, and is often profitable to thread backedges to other blocks 253 /// within the loop (forming a nested loop). This simple analysis is not rich 254 /// enough to track all of these properties and keep it up-to-date as the CFG 255 /// mutates, so we don't allow any of these transformations. 256 /// 257 void JumpThreading::FindLoopHeaders(Function &F) { 258 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 259 FindFunctionBackedges(F, Edges); 260 261 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 262 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 263 } 264 265 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 266 /// if we can infer that the value is a known ConstantInt in any of our 267 /// predecessors. If so, return the known list of value and pred BB in the 268 /// result vector. If a value is known to be undef, it is returned as null. 269 /// 270 /// This returns true if there were any known values. 271 /// 272 bool JumpThreading:: 273 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){ 274 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 275 return false; 276 277 // If V is a constantint, then it is known in all predecessors. 278 if (isa<ConstantInt>(V) || isa<UndefValue>(V)) { 279 ConstantInt *CI = dyn_cast<ConstantInt>(V); 280 281 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 282 Result.push_back(std::make_pair(CI, *PI)); 283 284 RecursionSet.erase(std::make_pair(V, BB)); 285 return true; 286 } 287 288 // If V is a non-instruction value, or an instruction in a different block, 289 // then it can't be derived from a PHI. 290 Instruction *I = dyn_cast<Instruction>(V); 291 if (I == 0 || I->getParent() != BB) { 292 293 // Okay, if this is a live-in value, see if it has a known value at the end 294 // of any of our predecessors. 295 // 296 // FIXME: This should be an edge property, not a block end property. 297 /// TODO: Per PR2563, we could infer value range information about a 298 /// predecessor based on its terminator. 299 // 300 if (LVI) { 301 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 302 // "I" is a non-local compare-with-a-constant instruction. This would be 303 // able to handle value inequalities better, for example if the compare is 304 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 305 // Perhaps getConstantOnEdge should be smart enough to do this? 306 307 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 308 BasicBlock *P = *PI; 309 // If the value is known by LazyValueInfo to be a constant in a 310 // predecessor, use that information to try to thread this block. 311 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB); 312 if (PredCst == 0 || 313 (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst))) 314 continue; 315 316 Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), P)); 317 } 318 319 RecursionSet.erase(std::make_pair(V, BB)); 320 return !Result.empty(); 321 } 322 323 RecursionSet.erase(std::make_pair(V, BB)); 324 return false; 325 } 326 327 /// If I is a PHI node, then we know the incoming values for any constants. 328 if (PHINode *PN = dyn_cast<PHINode>(I)) { 329 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 330 Value *InVal = PN->getIncomingValue(i); 331 if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) { 332 ConstantInt *CI = dyn_cast<ConstantInt>(InVal); 333 Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i))); 334 } else if (LVI) { 335 Constant *CI = LVI->getConstantOnEdge(InVal, 336 PN->getIncomingBlock(i), BB); 337 // LVI returns null is no value could be determined. 338 if (!CI) continue; 339 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI)) 340 Result.push_back(std::make_pair(CInt, PN->getIncomingBlock(i))); 341 else if (isa<UndefValue>(CI)) 342 Result.push_back(std::make_pair((ConstantInt*)0, 343 PN->getIncomingBlock(i))); 344 } 345 } 346 347 RecursionSet.erase(std::make_pair(V, BB)); 348 return !Result.empty(); 349 } 350 351 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals; 352 353 // Handle some boolean conditions. 354 if (I->getType()->getPrimitiveSizeInBits() == 1) { 355 // X | true -> true 356 // X & false -> false 357 if (I->getOpcode() == Instruction::Or || 358 I->getOpcode() == Instruction::And) { 359 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals); 360 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals); 361 362 if (LHSVals.empty() && RHSVals.empty()) { 363 RecursionSet.erase(std::make_pair(V, BB)); 364 return false; 365 } 366 367 ConstantInt *InterestingVal; 368 if (I->getOpcode() == Instruction::Or) 369 InterestingVal = ConstantInt::getTrue(I->getContext()); 370 else 371 InterestingVal = ConstantInt::getFalse(I->getContext()); 372 373 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 374 375 // Scan for the sentinel. If we find an undef, force it to the 376 // interesting value: x|undef -> true and x&undef -> false. 377 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 378 if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) { 379 Result.push_back(LHSVals[i]); 380 Result.back().first = InterestingVal; 381 LHSKnownBBs.insert(LHSVals[i].second); 382 } 383 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 384 if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) { 385 // If we already inferred a value for this block on the LHS, don't 386 // re-add it. 387 if (!LHSKnownBBs.count(RHSVals[i].second)) { 388 Result.push_back(RHSVals[i]); 389 Result.back().first = InterestingVal; 390 } 391 } 392 393 RecursionSet.erase(std::make_pair(V, BB)); 394 return !Result.empty(); 395 } 396 397 // Handle the NOT form of XOR. 398 if (I->getOpcode() == Instruction::Xor && 399 isa<ConstantInt>(I->getOperand(1)) && 400 cast<ConstantInt>(I->getOperand(1))->isOne()) { 401 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result); 402 if (Result.empty()) { 403 RecursionSet.erase(std::make_pair(V, BB)); 404 return false; 405 } 406 407 // Invert the known values. 408 for (unsigned i = 0, e = Result.size(); i != e; ++i) 409 if (Result[i].first) 410 Result[i].first = 411 cast<ConstantInt>(ConstantExpr::getNot(Result[i].first)); 412 413 RecursionSet.erase(std::make_pair(V, BB)); 414 return true; 415 } 416 417 // Try to simplify some other binary operator values. 418 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 419 ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)); 420 if (CI) { 421 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals; 422 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals); 423 424 // Try to use constant folding to simplify the binary operator. 425 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 426 Constant *Folded = 0; 427 if (LHSVals[i].first == 0) { 428 Folded = ConstantExpr::get(BO->getOpcode(), 429 UndefValue::get(BO->getType()), 430 CI); 431 } else { 432 Folded = ConstantExpr::get(BO->getOpcode(), LHSVals[i].first, CI); 433 } 434 435 if (ConstantInt *FoldedCInt = dyn_cast<ConstantInt>(Folded)) 436 Result.push_back(std::make_pair(FoldedCInt, LHSVals[i].second)); 437 else if (isa<UndefValue>(Folded)) 438 Result.push_back(std::make_pair((ConstantInt*)0, LHSVals[i].second)); 439 } 440 } 441 442 RecursionSet.erase(std::make_pair(V, BB)); 443 return !Result.empty(); 444 } 445 446 // Handle compare with phi operand, where the PHI is defined in this block. 447 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 448 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 449 if (PN && PN->getParent() == BB) { 450 // We can do this simplification if any comparisons fold to true or false. 451 // See if any do. 452 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 453 BasicBlock *PredBB = PN->getIncomingBlock(i); 454 Value *LHS = PN->getIncomingValue(i); 455 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 456 457 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD); 458 if (Res == 0) { 459 if (!LVI || !isa<Constant>(RHS)) 460 continue; 461 462 LazyValueInfo::Tristate 463 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 464 cast<Constant>(RHS), PredBB, BB); 465 if (ResT == LazyValueInfo::Unknown) 466 continue; 467 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 468 } 469 470 if (isa<UndefValue>(Res)) 471 Result.push_back(std::make_pair((ConstantInt*)0, PredBB)); 472 else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res)) 473 Result.push_back(std::make_pair(CI, PredBB)); 474 } 475 476 RecursionSet.erase(std::make_pair(V, BB)); 477 return !Result.empty(); 478 } 479 480 481 // If comparing a live-in value against a constant, see if we know the 482 // live-in value on any predecessors. 483 if (LVI && isa<Constant>(Cmp->getOperand(1)) && 484 Cmp->getType()->isIntegerTy()) { 485 if (!isa<Instruction>(Cmp->getOperand(0)) || 486 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) { 487 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 488 489 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){ 490 BasicBlock *P = *PI; 491 // If the value is known by LazyValueInfo to be a constant in a 492 // predecessor, use that information to try to thread this block. 493 LazyValueInfo::Tristate Res = 494 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 495 RHSCst, P, BB); 496 if (Res == LazyValueInfo::Unknown) 497 continue; 498 499 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 500 Result.push_back(std::make_pair(cast<ConstantInt>(ResC), P)); 501 } 502 503 RecursionSet.erase(std::make_pair(V, BB)); 504 return !Result.empty(); 505 } 506 507 // Try to find a constant value for the LHS of a comparison, 508 // and evaluate it statically if we can. 509 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) { 510 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals; 511 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals); 512 513 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 514 Constant * Folded = 0; 515 if (LHSVals[i].first == 0) 516 Folded = ConstantExpr::getCompare(Cmp->getPredicate(), 517 UndefValue::get(CmpConst->getType()), CmpConst); 518 else 519 Folded = ConstantExpr::getCompare(Cmp->getPredicate(), 520 LHSVals[i].first, CmpConst); 521 522 if (ConstantInt *FoldedCInt = dyn_cast<ConstantInt>(Folded)) 523 Result.push_back(std::make_pair(FoldedCInt, LHSVals[i].second)); 524 else if (isa<UndefValue>(Folded)) 525 Result.push_back(std::make_pair((ConstantInt*)0,LHSVals[i].second)); 526 } 527 528 RecursionSet.erase(std::make_pair(V, BB)); 529 return !Result.empty(); 530 } 531 } 532 } 533 534 if (LVI) { 535 // If all else fails, see if LVI can figure out a constant value for us. 536 Constant *CI = LVI->getConstant(V, BB); 537 ConstantInt *CInt = dyn_cast_or_null<ConstantInt>(CI); 538 if (CInt) { 539 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 540 Result.push_back(std::make_pair(CInt, *PI)); 541 } 542 543 RecursionSet.erase(std::make_pair(V, BB)); 544 return !Result.empty(); 545 } 546 547 RecursionSet.erase(std::make_pair(V, BB)); 548 return false; 549 } 550 551 552 553 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 554 /// in an undefined jump, decide which block is best to revector to. 555 /// 556 /// Since we can pick an arbitrary destination, we pick the successor with the 557 /// fewest predecessors. This should reduce the in-degree of the others. 558 /// 559 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 560 TerminatorInst *BBTerm = BB->getTerminator(); 561 unsigned MinSucc = 0; 562 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 563 // Compute the successor with the minimum number of predecessors. 564 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 565 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 566 TestBB = BBTerm->getSuccessor(i); 567 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 568 if (NumPreds < MinNumPreds) 569 MinSucc = i; 570 } 571 572 return MinSucc; 573 } 574 575 /// ProcessBlock - If there are any predecessors whose control can be threaded 576 /// through to a successor, transform them now. 577 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 578 // If the block is trivially dead, just return and let the caller nuke it. 579 // This simplifies other transformations. 580 if (pred_begin(BB) == pred_end(BB) && 581 BB != &BB->getParent()->getEntryBlock()) 582 return false; 583 584 // If this block has a single predecessor, and if that pred has a single 585 // successor, merge the blocks. This encourages recursive jump threading 586 // because now the condition in this block can be threaded through 587 // predecessors of our predecessor block. 588 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 589 if (SinglePred->getTerminator()->getNumSuccessors() == 1 && 590 SinglePred != BB) { 591 // If SinglePred was a loop header, BB becomes one. 592 if (LoopHeaders.erase(SinglePred)) 593 LoopHeaders.insert(BB); 594 595 // Remember if SinglePred was the entry block of the function. If so, we 596 // will need to move BB back to the entry position. 597 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 598 if (LVI) LVI->eraseBlock(SinglePred); 599 MergeBasicBlockIntoOnlyPred(BB); 600 601 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 602 BB->moveBefore(&BB->getParent()->getEntryBlock()); 603 return true; 604 } 605 } 606 607 // Look to see if the terminator is a branch of switch, if not we can't thread 608 // it. 609 Value *Condition; 610 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 611 // Can't thread an unconditional jump. 612 if (BI->isUnconditional()) return false; 613 Condition = BI->getCondition(); 614 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 615 Condition = SI->getCondition(); 616 else 617 return false; // Must be an invoke. 618 619 // If the terminator of this block is branching on a constant, simplify the 620 // terminator to an unconditional branch. This can occur due to threading in 621 // other blocks. 622 if (isa<ConstantInt>(Condition)) { 623 DEBUG(dbgs() << " In block '" << BB->getName() 624 << "' folding terminator: " << *BB->getTerminator() << '\n'); 625 ++NumFolds; 626 ConstantFoldTerminator(BB); 627 return true; 628 } 629 630 // If the terminator is branching on an undef, we can pick any of the 631 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 632 if (isa<UndefValue>(Condition)) { 633 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 634 635 // Fold the branch/switch. 636 TerminatorInst *BBTerm = BB->getTerminator(); 637 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 638 if (i == BestSucc) continue; 639 RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD); 640 } 641 642 DEBUG(dbgs() << " In block '" << BB->getName() 643 << "' folding undef terminator: " << *BBTerm << '\n'); 644 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 645 BBTerm->eraseFromParent(); 646 return true; 647 } 648 649 Instruction *CondInst = dyn_cast<Instruction>(Condition); 650 651 // If the condition is an instruction defined in another block, see if a 652 // predecessor has the same condition: 653 // br COND, BBX, BBY 654 // BBX: 655 // br COND, BBZ, BBW 656 if (!LVI && 657 !Condition->hasOneUse() && // Multiple uses. 658 (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition. 659 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 660 if (isa<BranchInst>(BB->getTerminator())) { 661 for (; PI != E; ++PI) { 662 BasicBlock *P = *PI; 663 if (BranchInst *PBI = dyn_cast<BranchInst>(P->getTerminator())) 664 if (PBI->isConditional() && PBI->getCondition() == Condition && 665 ProcessBranchOnDuplicateCond(P, BB)) 666 return true; 667 } 668 } else { 669 assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator"); 670 for (; PI != E; ++PI) { 671 BasicBlock *P = *PI; 672 if (SwitchInst *PSI = dyn_cast<SwitchInst>(P->getTerminator())) 673 if (PSI->getCondition() == Condition && 674 ProcessSwitchOnDuplicateCond(P, BB)) 675 return true; 676 } 677 } 678 } 679 680 // All the rest of our checks depend on the condition being an instruction. 681 if (CondInst == 0) { 682 // FIXME: Unify this with code below. 683 if (LVI && ProcessThreadableEdges(Condition, BB)) 684 return true; 685 return false; 686 } 687 688 689 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 690 if (!LVI && 691 (!isa<PHINode>(CondCmp->getOperand(0)) || 692 cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) { 693 // If we have a comparison, loop over the predecessors to see if there is 694 // a condition with a lexically identical value. 695 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 696 for (; PI != E; ++PI) { 697 BasicBlock *P = *PI; 698 if (BranchInst *PBI = dyn_cast<BranchInst>(P->getTerminator())) 699 if (PBI->isConditional() && P != BB) { 700 if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) { 701 if (CI->getOperand(0) == CondCmp->getOperand(0) && 702 CI->getOperand(1) == CondCmp->getOperand(1) && 703 CI->getPredicate() == CondCmp->getPredicate()) { 704 // TODO: Could handle things like (x != 4) --> (x == 17) 705 if (ProcessBranchOnDuplicateCond(P, BB)) 706 return true; 707 } 708 } 709 } 710 } 711 } 712 713 // For a comparison where the LHS is outside this block, it's possible 714 // that we've branched on it before. Used LVI to see if we can simplify 715 // the branch based on that. 716 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 717 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 718 if (LVI && CondBr && CondConst && CondBr->isConditional() && 719 (!isa<Instruction>(CondCmp->getOperand(0)) || 720 cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) { 721 // For predecessor edge, determine if the comparison is true or false 722 // on that edge. If they're all true or all false, we can simplify the 723 // branch. 724 // FIXME: We could handle mixed true/false by duplicating code. 725 unsigned Trues = 0, Falses = 0, predcount = 0; 726 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB);PI != PE; ++PI){ 727 ++predcount; 728 LazyValueInfo::Tristate Ret = 729 LVI->getPredicateOnEdge(CondCmp->getPredicate(), 730 CondCmp->getOperand(0), CondConst, *PI, BB); 731 if (Ret == LazyValueInfo::True) 732 ++Trues; 733 else if (Ret == LazyValueInfo::False) 734 ++Falses; 735 } 736 737 // If we can determine the branch direction statically, convert 738 // the conditional branch to an unconditional one. 739 if (Trues && Trues == predcount) { 740 RemovePredecessorAndSimplify(CondBr->getSuccessor(1), BB, TD); 741 BranchInst::Create(CondBr->getSuccessor(0), CondBr); 742 CondBr->eraseFromParent(); 743 return true; 744 } else if (Falses && Falses == predcount) { 745 RemovePredecessorAndSimplify(CondBr->getSuccessor(0), BB, TD); 746 BranchInst::Create(CondBr->getSuccessor(1), CondBr); 747 CondBr->eraseFromParent(); 748 return true; 749 } 750 } 751 } 752 753 // Check for some cases that are worth simplifying. Right now we want to look 754 // for loads that are used by a switch or by the condition for the branch. If 755 // we see one, check to see if it's partially redundant. If so, insert a PHI 756 // which can then be used to thread the values. 757 // 758 Value *SimplifyValue = CondInst; 759 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 760 if (isa<Constant>(CondCmp->getOperand(1))) 761 SimplifyValue = CondCmp->getOperand(0); 762 763 // TODO: There are other places where load PRE would be profitable, such as 764 // more complex comparisons. 765 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 766 if (SimplifyPartiallyRedundantLoad(LI)) 767 return true; 768 769 770 // Handle a variety of cases where we are branching on something derived from 771 // a PHI node in the current block. If we can prove that any predecessors 772 // compute a predictable value based on a PHI node, thread those predecessors. 773 // 774 if (ProcessThreadableEdges(CondInst, BB)) 775 return true; 776 777 // If this is an otherwise-unfoldable branch on a phi node in the current 778 // block, see if we can simplify. 779 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 780 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 781 return ProcessBranchOnPHI(PN); 782 783 784 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 785 if (CondInst->getOpcode() == Instruction::Xor && 786 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 787 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 788 789 790 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 791 // "(X == 4)", thread through this block. 792 793 return false; 794 } 795 796 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that 797 /// block that jump on exactly the same condition. This means that we almost 798 /// always know the direction of the edge in the DESTBB: 799 /// PREDBB: 800 /// br COND, DESTBB, BBY 801 /// DESTBB: 802 /// br COND, BBZ, BBW 803 /// 804 /// If DESTBB has multiple predecessors, we can't just constant fold the branch 805 /// in DESTBB, we have to thread over it. 806 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB, 807 BasicBlock *BB) { 808 BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator()); 809 810 // If both successors of PredBB go to DESTBB, we don't know anything. We can 811 // fold the branch to an unconditional one, which allows other recursive 812 // simplifications. 813 bool BranchDir; 814 if (PredBI->getSuccessor(1) != BB) 815 BranchDir = true; 816 else if (PredBI->getSuccessor(0) != BB) 817 BranchDir = false; 818 else { 819 DEBUG(dbgs() << " In block '" << PredBB->getName() 820 << "' folding terminator: " << *PredBB->getTerminator() << '\n'); 821 ++NumFolds; 822 ConstantFoldTerminator(PredBB); 823 return true; 824 } 825 826 BranchInst *DestBI = cast<BranchInst>(BB->getTerminator()); 827 828 // If the dest block has one predecessor, just fix the branch condition to a 829 // constant and fold it. 830 if (BB->getSinglePredecessor()) { 831 DEBUG(dbgs() << " In block '" << BB->getName() 832 << "' folding condition to '" << BranchDir << "': " 833 << *BB->getTerminator() << '\n'); 834 ++NumFolds; 835 Value *OldCond = DestBI->getCondition(); 836 DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 837 BranchDir)); 838 // Delete dead instructions before we fold the branch. Folding the branch 839 // can eliminate edges from the CFG which can end up deleting OldCond. 840 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 841 ConstantFoldTerminator(BB); 842 return true; 843 } 844 845 846 // Next, figure out which successor we are threading to. 847 BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir); 848 849 SmallVector<BasicBlock*, 2> Preds; 850 Preds.push_back(PredBB); 851 852 // Ok, try to thread it! 853 return ThreadEdge(BB, Preds, SuccBB); 854 } 855 856 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that 857 /// block that switch on exactly the same condition. This means that we almost 858 /// always know the direction of the edge in the DESTBB: 859 /// PREDBB: 860 /// switch COND [... DESTBB, BBY ... ] 861 /// DESTBB: 862 /// switch COND [... BBZ, BBW ] 863 /// 864 /// Optimizing switches like this is very important, because simplifycfg builds 865 /// switches out of repeated 'if' conditions. 866 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, 867 BasicBlock *DestBB) { 868 // Can't thread edge to self. 869 if (PredBB == DestBB) 870 return false; 871 872 SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator()); 873 SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator()); 874 875 // There are a variety of optimizations that we can potentially do on these 876 // blocks: we order them from most to least preferable. 877 878 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB 879 // directly to their destination. This does not introduce *any* code size 880 // growth. Skip debug info first. 881 BasicBlock::iterator BBI = DestBB->begin(); 882 while (isa<DbgInfoIntrinsic>(BBI)) 883 BBI++; 884 885 // FIXME: Thread if it just contains a PHI. 886 if (isa<SwitchInst>(BBI)) { 887 bool MadeChange = false; 888 // Ignore the default edge for now. 889 for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) { 890 ConstantInt *DestVal = DestSI->getCaseValue(i); 891 BasicBlock *DestSucc = DestSI->getSuccessor(i); 892 893 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if 894 // PredSI has an explicit case for it. If so, forward. If it is covered 895 // by the default case, we can't update PredSI. 896 unsigned PredCase = PredSI->findCaseValue(DestVal); 897 if (PredCase == 0) continue; 898 899 // If PredSI doesn't go to DestBB on this value, then it won't reach the 900 // case on this condition. 901 if (PredSI->getSuccessor(PredCase) != DestBB && 902 DestSI->getSuccessor(i) != DestBB) 903 continue; 904 905 // Do not forward this if it already goes to this destination, this would 906 // be an infinite loop. 907 if (PredSI->getSuccessor(PredCase) == DestSucc) 908 continue; 909 910 // Otherwise, we're safe to make the change. Make sure that the edge from 911 // DestSI to DestSucc is not critical and has no PHI nodes. 912 DEBUG(dbgs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI); 913 DEBUG(dbgs() << "THROUGH: " << *DestSI); 914 915 // If the destination has PHI nodes, just split the edge for updating 916 // simplicity. 917 if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){ 918 SplitCriticalEdge(DestSI, i, this); 919 DestSucc = DestSI->getSuccessor(i); 920 } 921 FoldSingleEntryPHINodes(DestSucc); 922 PredSI->setSuccessor(PredCase, DestSucc); 923 MadeChange = true; 924 } 925 926 if (MadeChange) 927 return true; 928 } 929 930 return false; 931 } 932 933 934 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 935 /// load instruction, eliminate it by replacing it with a PHI node. This is an 936 /// important optimization that encourages jump threading, and needs to be run 937 /// interlaced with other jump threading tasks. 938 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 939 // Don't hack volatile loads. 940 if (LI->isVolatile()) return false; 941 942 // If the load is defined in a block with exactly one predecessor, it can't be 943 // partially redundant. 944 BasicBlock *LoadBB = LI->getParent(); 945 if (LoadBB->getSinglePredecessor()) 946 return false; 947 948 Value *LoadedPtr = LI->getOperand(0); 949 950 // If the loaded operand is defined in the LoadBB, it can't be available. 951 // TODO: Could do simple PHI translation, that would be fun :) 952 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 953 if (PtrOp->getParent() == LoadBB) 954 return false; 955 956 // Scan a few instructions up from the load, to see if it is obviously live at 957 // the entry to its block. 958 BasicBlock::iterator BBIt = LI; 959 960 if (Value *AvailableVal = 961 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) { 962 // If the value if the load is locally available within the block, just use 963 // it. This frequently occurs for reg2mem'd allocas. 964 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 965 966 // If the returned value is the load itself, replace with an undef. This can 967 // only happen in dead loops. 968 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 969 LI->replaceAllUsesWith(AvailableVal); 970 LI->eraseFromParent(); 971 return true; 972 } 973 974 // Otherwise, if we scanned the whole block and got to the top of the block, 975 // we know the block is locally transparent to the load. If not, something 976 // might clobber its value. 977 if (BBIt != LoadBB->begin()) 978 return false; 979 980 981 SmallPtrSet<BasicBlock*, 8> PredsScanned; 982 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 983 AvailablePredsTy AvailablePreds; 984 BasicBlock *OneUnavailablePred = 0; 985 986 // If we got here, the loaded value is transparent through to the start of the 987 // block. Check to see if it is available in any of the predecessor blocks. 988 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 989 PI != PE; ++PI) { 990 BasicBlock *PredBB = *PI; 991 992 // If we already scanned this predecessor, skip it. 993 if (!PredsScanned.insert(PredBB)) 994 continue; 995 996 // Scan the predecessor to see if the value is available in the pred. 997 BBIt = PredBB->end(); 998 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6); 999 if (!PredAvailable) { 1000 OneUnavailablePred = PredBB; 1001 continue; 1002 } 1003 1004 // If so, this load is partially redundant. Remember this info so that we 1005 // can create a PHI node. 1006 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 1007 } 1008 1009 // If the loaded value isn't available in any predecessor, it isn't partially 1010 // redundant. 1011 if (AvailablePreds.empty()) return false; 1012 1013 // Okay, the loaded value is available in at least one (and maybe all!) 1014 // predecessors. If the value is unavailable in more than one unique 1015 // predecessor, we want to insert a merge block for those common predecessors. 1016 // This ensures that we only have to insert one reload, thus not increasing 1017 // code size. 1018 BasicBlock *UnavailablePred = 0; 1019 1020 // If there is exactly one predecessor where the value is unavailable, the 1021 // already computed 'OneUnavailablePred' block is it. If it ends in an 1022 // unconditional branch, we know that it isn't a critical edge. 1023 if (PredsScanned.size() == AvailablePreds.size()+1 && 1024 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1025 UnavailablePred = OneUnavailablePred; 1026 } else if (PredsScanned.size() != AvailablePreds.size()) { 1027 // Otherwise, we had multiple unavailable predecessors or we had a critical 1028 // edge from the one. 1029 SmallVector<BasicBlock*, 8> PredsToSplit; 1030 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1031 1032 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 1033 AvailablePredSet.insert(AvailablePreds[i].first); 1034 1035 // Add all the unavailable predecessors to the PredsToSplit list. 1036 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 1037 PI != PE; ++PI) { 1038 BasicBlock *P = *PI; 1039 // If the predecessor is an indirect goto, we can't split the edge. 1040 if (isa<IndirectBrInst>(P->getTerminator())) 1041 return false; 1042 1043 if (!AvailablePredSet.count(P)) 1044 PredsToSplit.push_back(P); 1045 } 1046 1047 // Split them out to their own block. 1048 UnavailablePred = 1049 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(), 1050 "thread-pre-split", this); 1051 } 1052 1053 // If the value isn't available in all predecessors, then there will be 1054 // exactly one where it isn't available. Insert a load on that edge and add 1055 // it to the AvailablePreds list. 1056 if (UnavailablePred) { 1057 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1058 "Can't handle critical edge here!"); 1059 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, 1060 LI->getAlignment(), 1061 UnavailablePred->getTerminator()); 1062 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1063 } 1064 1065 // Now we know that each predecessor of this block has a value in 1066 // AvailablePreds, sort them for efficient access as we're walking the preds. 1067 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1068 1069 // Create a PHI node at the start of the block for the PRE'd load value. 1070 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin()); 1071 PN->takeName(LI); 1072 1073 // Insert new entries into the PHI for each predecessor. A single block may 1074 // have multiple entries here. 1075 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E; 1076 ++PI) { 1077 BasicBlock *P = *PI; 1078 AvailablePredsTy::iterator I = 1079 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1080 std::make_pair(P, (Value*)0)); 1081 1082 assert(I != AvailablePreds.end() && I->first == P && 1083 "Didn't find entry for predecessor!"); 1084 1085 PN->addIncoming(I->second, I->first); 1086 } 1087 1088 //cerr << "PRE: " << *LI << *PN << "\n"; 1089 1090 LI->replaceAllUsesWith(PN); 1091 LI->eraseFromParent(); 1092 1093 return true; 1094 } 1095 1096 /// FindMostPopularDest - The specified list contains multiple possible 1097 /// threadable destinations. Pick the one that occurs the most frequently in 1098 /// the list. 1099 static BasicBlock * 1100 FindMostPopularDest(BasicBlock *BB, 1101 const SmallVectorImpl<std::pair<BasicBlock*, 1102 BasicBlock*> > &PredToDestList) { 1103 assert(!PredToDestList.empty()); 1104 1105 // Determine popularity. If there are multiple possible destinations, we 1106 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1107 // blocks with known and real destinations to threading undef. We'll handle 1108 // them later if interesting. 1109 DenseMap<BasicBlock*, unsigned> DestPopularity; 1110 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1111 if (PredToDestList[i].second) 1112 DestPopularity[PredToDestList[i].second]++; 1113 1114 // Find the most popular dest. 1115 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1116 BasicBlock *MostPopularDest = DPI->first; 1117 unsigned Popularity = DPI->second; 1118 SmallVector<BasicBlock*, 4> SamePopularity; 1119 1120 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1121 // If the popularity of this entry isn't higher than the popularity we've 1122 // seen so far, ignore it. 1123 if (DPI->second < Popularity) 1124 ; // ignore. 1125 else if (DPI->second == Popularity) { 1126 // If it is the same as what we've seen so far, keep track of it. 1127 SamePopularity.push_back(DPI->first); 1128 } else { 1129 // If it is more popular, remember it. 1130 SamePopularity.clear(); 1131 MostPopularDest = DPI->first; 1132 Popularity = DPI->second; 1133 } 1134 } 1135 1136 // Okay, now we know the most popular destination. If there is more than 1137 // destination, we need to determine one. This is arbitrary, but we need 1138 // to make a deterministic decision. Pick the first one that appears in the 1139 // successor list. 1140 if (!SamePopularity.empty()) { 1141 SamePopularity.push_back(MostPopularDest); 1142 TerminatorInst *TI = BB->getTerminator(); 1143 for (unsigned i = 0; ; ++i) { 1144 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1145 1146 if (std::find(SamePopularity.begin(), SamePopularity.end(), 1147 TI->getSuccessor(i)) == SamePopularity.end()) 1148 continue; 1149 1150 MostPopularDest = TI->getSuccessor(i); 1151 break; 1152 } 1153 } 1154 1155 // Okay, we have finally picked the most popular destination. 1156 return MostPopularDest; 1157 } 1158 1159 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) { 1160 // If threading this would thread across a loop header, don't even try to 1161 // thread the edge. 1162 if (LoopHeaders.count(BB)) 1163 return false; 1164 1165 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues; 1166 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues)) { 1167 return false; 1168 } 1169 assert(!PredValues.empty() && 1170 "ComputeValueKnownInPredecessors returned true with no values"); 1171 1172 DEBUG(dbgs() << "IN BB: " << *BB; 1173 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1174 dbgs() << " BB '" << BB->getName() << "': FOUND condition = "; 1175 if (PredValues[i].first) 1176 dbgs() << *PredValues[i].first; 1177 else 1178 dbgs() << "UNDEF"; 1179 dbgs() << " for pred '" << PredValues[i].second->getName() 1180 << "'.\n"; 1181 }); 1182 1183 // Decide what we want to thread through. Convert our list of known values to 1184 // a list of known destinations for each pred. This also discards duplicate 1185 // predecessors and keeps track of the undefined inputs (which are represented 1186 // as a null dest in the PredToDestList). 1187 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1188 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1189 1190 BasicBlock *OnlyDest = 0; 1191 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1192 1193 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1194 BasicBlock *Pred = PredValues[i].second; 1195 if (!SeenPreds.insert(Pred)) 1196 continue; // Duplicate predecessor entry. 1197 1198 // If the predecessor ends with an indirect goto, we can't change its 1199 // destination. 1200 if (isa<IndirectBrInst>(Pred->getTerminator())) 1201 continue; 1202 1203 ConstantInt *Val = PredValues[i].first; 1204 1205 BasicBlock *DestBB; 1206 if (Val == 0) // Undef. 1207 DestBB = 0; 1208 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1209 DestBB = BI->getSuccessor(Val->isZero()); 1210 else { 1211 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator()); 1212 DestBB = SI->getSuccessor(SI->findCaseValue(Val)); 1213 } 1214 1215 // If we have exactly one destination, remember it for efficiency below. 1216 if (i == 0) 1217 OnlyDest = DestBB; 1218 else if (OnlyDest != DestBB) 1219 OnlyDest = MultipleDestSentinel; 1220 1221 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1222 } 1223 1224 // If all edges were unthreadable, we fail. 1225 if (PredToDestList.empty()) 1226 return false; 1227 1228 // Determine which is the most common successor. If we have many inputs and 1229 // this block is a switch, we want to start by threading the batch that goes 1230 // to the most popular destination first. If we only know about one 1231 // threadable destination (the common case) we can avoid this. 1232 BasicBlock *MostPopularDest = OnlyDest; 1233 1234 if (MostPopularDest == MultipleDestSentinel) 1235 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1236 1237 // Now that we know what the most popular destination is, factor all 1238 // predecessors that will jump to it into a single predecessor. 1239 SmallVector<BasicBlock*, 16> PredsToFactor; 1240 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1241 if (PredToDestList[i].second == MostPopularDest) { 1242 BasicBlock *Pred = PredToDestList[i].first; 1243 1244 // This predecessor may be a switch or something else that has multiple 1245 // edges to the block. Factor each of these edges by listing them 1246 // according to # occurrences in PredsToFactor. 1247 TerminatorInst *PredTI = Pred->getTerminator(); 1248 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 1249 if (PredTI->getSuccessor(i) == BB) 1250 PredsToFactor.push_back(Pred); 1251 } 1252 1253 // If the threadable edges are branching on an undefined value, we get to pick 1254 // the destination that these predecessors should get to. 1255 if (MostPopularDest == 0) 1256 MostPopularDest = BB->getTerminator()-> 1257 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1258 1259 // Ok, try to thread it! 1260 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1261 } 1262 1263 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1264 /// a PHI node in the current block. See if there are any simplifications we 1265 /// can do based on inputs to the phi node. 1266 /// 1267 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) { 1268 BasicBlock *BB = PN->getParent(); 1269 1270 // TODO: We could make use of this to do it once for blocks with common PHI 1271 // values. 1272 SmallVector<BasicBlock*, 1> PredBBs; 1273 PredBBs.resize(1); 1274 1275 // If any of the predecessor blocks end in an unconditional branch, we can 1276 // *duplicate* the conditional branch into that block in order to further 1277 // encourage jump threading and to eliminate cases where we have branch on a 1278 // phi of an icmp (branch on icmp is much better). 1279 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1280 BasicBlock *PredBB = PN->getIncomingBlock(i); 1281 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1282 if (PredBr->isUnconditional()) { 1283 PredBBs[0] = PredBB; 1284 // Try to duplicate BB into PredBB. 1285 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1286 return true; 1287 } 1288 } 1289 1290 return false; 1291 } 1292 1293 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1294 /// a xor instruction in the current block. See if there are any 1295 /// simplifications we can do based on inputs to the xor. 1296 /// 1297 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) { 1298 BasicBlock *BB = BO->getParent(); 1299 1300 // If either the LHS or RHS of the xor is a constant, don't do this 1301 // optimization. 1302 if (isa<ConstantInt>(BO->getOperand(0)) || 1303 isa<ConstantInt>(BO->getOperand(1))) 1304 return false; 1305 1306 // If the first instruction in BB isn't a phi, we won't be able to infer 1307 // anything special about any particular predecessor. 1308 if (!isa<PHINode>(BB->front())) 1309 return false; 1310 1311 // If we have a xor as the branch input to this block, and we know that the 1312 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1313 // the condition into the predecessor and fix that value to true, saving some 1314 // logical ops on that path and encouraging other paths to simplify. 1315 // 1316 // This copies something like this: 1317 // 1318 // BB: 1319 // %X = phi i1 [1], [%X'] 1320 // %Y = icmp eq i32 %A, %B 1321 // %Z = xor i1 %X, %Y 1322 // br i1 %Z, ... 1323 // 1324 // Into: 1325 // BB': 1326 // %Y = icmp ne i32 %A, %B 1327 // br i1 %Z, ... 1328 1329 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> XorOpValues; 1330 bool isLHS = true; 1331 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues)) { 1332 assert(XorOpValues.empty()); 1333 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues)) 1334 return false; 1335 isLHS = false; 1336 } 1337 1338 assert(!XorOpValues.empty() && 1339 "ComputeValueKnownInPredecessors returned true with no values"); 1340 1341 // Scan the information to see which is most popular: true or false. The 1342 // predecessors can be of the set true, false, or undef. 1343 unsigned NumTrue = 0, NumFalse = 0; 1344 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1345 if (!XorOpValues[i].first) continue; // Ignore undefs for the count. 1346 if (XorOpValues[i].first->isZero()) 1347 ++NumFalse; 1348 else 1349 ++NumTrue; 1350 } 1351 1352 // Determine which value to split on, true, false, or undef if neither. 1353 ConstantInt *SplitVal = 0; 1354 if (NumTrue > NumFalse) 1355 SplitVal = ConstantInt::getTrue(BB->getContext()); 1356 else if (NumTrue != 0 || NumFalse != 0) 1357 SplitVal = ConstantInt::getFalse(BB->getContext()); 1358 1359 // Collect all of the blocks that this can be folded into so that we can 1360 // factor this once and clone it once. 1361 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1362 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1363 if (XorOpValues[i].first != SplitVal && XorOpValues[i].first != 0) continue; 1364 1365 BlocksToFoldInto.push_back(XorOpValues[i].second); 1366 } 1367 1368 // If we inferred a value for all of the predecessors, then duplication won't 1369 // help us. However, we can just replace the LHS or RHS with the constant. 1370 if (BlocksToFoldInto.size() == 1371 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1372 if (SplitVal == 0) { 1373 // If all preds provide undef, just nuke the xor, because it is undef too. 1374 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1375 BO->eraseFromParent(); 1376 } else if (SplitVal->isZero()) { 1377 // If all preds provide 0, replace the xor with the other input. 1378 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1379 BO->eraseFromParent(); 1380 } else { 1381 // If all preds provide 1, set the computed value to 1. 1382 BO->setOperand(!isLHS, SplitVal); 1383 } 1384 1385 return true; 1386 } 1387 1388 // Try to duplicate BB into PredBB. 1389 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1390 } 1391 1392 1393 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1394 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1395 /// NewPred using the entries from OldPred (suitably mapped). 1396 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1397 BasicBlock *OldPred, 1398 BasicBlock *NewPred, 1399 DenseMap<Instruction*, Value*> &ValueMap) { 1400 for (BasicBlock::iterator PNI = PHIBB->begin(); 1401 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1402 // Ok, we have a PHI node. Figure out what the incoming value was for the 1403 // DestBlock. 1404 Value *IV = PN->getIncomingValueForBlock(OldPred); 1405 1406 // Remap the value if necessary. 1407 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1408 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1409 if (I != ValueMap.end()) 1410 IV = I->second; 1411 } 1412 1413 PN->addIncoming(IV, NewPred); 1414 } 1415 } 1416 1417 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1418 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1419 /// across BB. Transform the IR to reflect this change. 1420 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1421 const SmallVectorImpl<BasicBlock*> &PredBBs, 1422 BasicBlock *SuccBB) { 1423 // If threading to the same block as we come from, we would infinite loop. 1424 if (SuccBB == BB) { 1425 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1426 << "' - would thread to self!\n"); 1427 return false; 1428 } 1429 1430 // If threading this would thread across a loop header, don't thread the edge. 1431 // See the comments above FindLoopHeaders for justifications and caveats. 1432 if (LoopHeaders.count(BB)) { 1433 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1434 << "' to dest BB '" << SuccBB->getName() 1435 << "' - it might create an irreducible loop!\n"); 1436 return false; 1437 } 1438 1439 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB); 1440 if (JumpThreadCost > Threshold) { 1441 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1442 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1443 return false; 1444 } 1445 1446 // And finally, do it! Start by factoring the predecessors is needed. 1447 BasicBlock *PredBB; 1448 if (PredBBs.size() == 1) 1449 PredBB = PredBBs[0]; 1450 else { 1451 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1452 << " common predecessors.\n"); 1453 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), 1454 ".thr_comm", this); 1455 } 1456 1457 // And finally, do it! 1458 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1459 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1460 << ", across block:\n " 1461 << *BB << "\n"); 1462 1463 if (LVI) 1464 LVI->threadEdge(PredBB, BB, SuccBB); 1465 1466 // We are going to have to map operands from the original BB block to the new 1467 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1468 // account for entry from PredBB. 1469 DenseMap<Instruction*, Value*> ValueMapping; 1470 1471 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1472 BB->getName()+".thread", 1473 BB->getParent(), BB); 1474 NewBB->moveAfter(PredBB); 1475 1476 BasicBlock::iterator BI = BB->begin(); 1477 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1478 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1479 1480 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1481 // mapping and using it to remap operands in the cloned instructions. 1482 for (; !isa<TerminatorInst>(BI); ++BI) { 1483 Instruction *New = BI->clone(); 1484 New->setName(BI->getName()); 1485 NewBB->getInstList().push_back(New); 1486 ValueMapping[BI] = New; 1487 1488 // Remap operands to patch up intra-block references. 1489 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1490 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1491 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1492 if (I != ValueMapping.end()) 1493 New->setOperand(i, I->second); 1494 } 1495 } 1496 1497 // We didn't copy the terminator from BB over to NewBB, because there is now 1498 // an unconditional jump to SuccBB. Insert the unconditional jump. 1499 BranchInst::Create(SuccBB, NewBB); 1500 1501 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1502 // PHI nodes for NewBB now. 1503 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1504 1505 // If there were values defined in BB that are used outside the block, then we 1506 // now have to update all uses of the value to use either the original value, 1507 // the cloned value, or some PHI derived value. This can require arbitrary 1508 // PHI insertion, of which we are prepared to do, clean these up now. 1509 SSAUpdater SSAUpdate; 1510 SmallVector<Use*, 16> UsesToRename; 1511 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1512 // Scan all uses of this instruction to see if it is used outside of its 1513 // block, and if so, record them in UsesToRename. 1514 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1515 ++UI) { 1516 Instruction *User = cast<Instruction>(*UI); 1517 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1518 if (UserPN->getIncomingBlock(UI) == BB) 1519 continue; 1520 } else if (User->getParent() == BB) 1521 continue; 1522 1523 UsesToRename.push_back(&UI.getUse()); 1524 } 1525 1526 // If there are no uses outside the block, we're done with this instruction. 1527 if (UsesToRename.empty()) 1528 continue; 1529 1530 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1531 1532 // We found a use of I outside of BB. Rename all uses of I that are outside 1533 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1534 // with the two values we know. 1535 SSAUpdate.Initialize(I); 1536 SSAUpdate.AddAvailableValue(BB, I); 1537 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); 1538 1539 while (!UsesToRename.empty()) 1540 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1541 DEBUG(dbgs() << "\n"); 1542 } 1543 1544 1545 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1546 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1547 // us to simplify any PHI nodes in BB. 1548 TerminatorInst *PredTerm = PredBB->getTerminator(); 1549 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1550 if (PredTerm->getSuccessor(i) == BB) { 1551 RemovePredecessorAndSimplify(BB, PredBB, TD); 1552 PredTerm->setSuccessor(i, NewBB); 1553 } 1554 1555 // At this point, the IR is fully up to date and consistent. Do a quick scan 1556 // over the new instructions and zap any that are constants or dead. This 1557 // frequently happens because of phi translation. 1558 SimplifyInstructionsInBlock(NewBB, TD); 1559 1560 // Threaded an edge! 1561 ++NumThreads; 1562 return true; 1563 } 1564 1565 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1566 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1567 /// If we can duplicate the contents of BB up into PredBB do so now, this 1568 /// improves the odds that the branch will be on an analyzable instruction like 1569 /// a compare. 1570 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1571 const SmallVectorImpl<BasicBlock *> &PredBBs) { 1572 assert(!PredBBs.empty() && "Can't handle an empty set"); 1573 1574 // If BB is a loop header, then duplicating this block outside the loop would 1575 // cause us to transform this into an irreducible loop, don't do this. 1576 // See the comments above FindLoopHeaders for justifications and caveats. 1577 if (LoopHeaders.count(BB)) { 1578 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1579 << "' into predecessor block '" << PredBBs[0]->getName() 1580 << "' - it might create an irreducible loop!\n"); 1581 return false; 1582 } 1583 1584 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB); 1585 if (DuplicationCost > Threshold) { 1586 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1587 << "' - Cost is too high: " << DuplicationCost << "\n"); 1588 return false; 1589 } 1590 1591 // And finally, do it! Start by factoring the predecessors is needed. 1592 BasicBlock *PredBB; 1593 if (PredBBs.size() == 1) 1594 PredBB = PredBBs[0]; 1595 else { 1596 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1597 << " common predecessors.\n"); 1598 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), 1599 ".thr_comm", this); 1600 } 1601 1602 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1603 // of PredBB. 1604 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1605 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1606 << DuplicationCost << " block is:" << *BB << "\n"); 1607 1608 // Unless PredBB ends with an unconditional branch, split the edge so that we 1609 // can just clone the bits from BB into the end of the new PredBB. 1610 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 1611 1612 if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) { 1613 PredBB = SplitEdge(PredBB, BB, this); 1614 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1615 } 1616 1617 // We are going to have to map operands from the original BB block into the 1618 // PredBB block. Evaluate PHI nodes in BB. 1619 DenseMap<Instruction*, Value*> ValueMapping; 1620 1621 BasicBlock::iterator BI = BB->begin(); 1622 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1623 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1624 1625 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1626 // mapping and using it to remap operands in the cloned instructions. 1627 for (; BI != BB->end(); ++BI) { 1628 Instruction *New = BI->clone(); 1629 1630 // Remap operands to patch up intra-block references. 1631 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1632 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1633 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1634 if (I != ValueMapping.end()) 1635 New->setOperand(i, I->second); 1636 } 1637 1638 // If this instruction can be simplified after the operands are updated, 1639 // just use the simplified value instead. This frequently happens due to 1640 // phi translation. 1641 if (Value *IV = SimplifyInstruction(New, TD)) { 1642 delete New; 1643 ValueMapping[BI] = IV; 1644 } else { 1645 // Otherwise, insert the new instruction into the block. 1646 New->setName(BI->getName()); 1647 PredBB->getInstList().insert(OldPredBranch, New); 1648 ValueMapping[BI] = New; 1649 } 1650 } 1651 1652 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1653 // add entries to the PHI nodes for branch from PredBB now. 1654 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1655 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1656 ValueMapping); 1657 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1658 ValueMapping); 1659 1660 // If there were values defined in BB that are used outside the block, then we 1661 // now have to update all uses of the value to use either the original value, 1662 // the cloned value, or some PHI derived value. This can require arbitrary 1663 // PHI insertion, of which we are prepared to do, clean these up now. 1664 SSAUpdater SSAUpdate; 1665 SmallVector<Use*, 16> UsesToRename; 1666 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1667 // Scan all uses of this instruction to see if it is used outside of its 1668 // block, and if so, record them in UsesToRename. 1669 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1670 ++UI) { 1671 Instruction *User = cast<Instruction>(*UI); 1672 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1673 if (UserPN->getIncomingBlock(UI) == BB) 1674 continue; 1675 } else if (User->getParent() == BB) 1676 continue; 1677 1678 UsesToRename.push_back(&UI.getUse()); 1679 } 1680 1681 // If there are no uses outside the block, we're done with this instruction. 1682 if (UsesToRename.empty()) 1683 continue; 1684 1685 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1686 1687 // We found a use of I outside of BB. Rename all uses of I that are outside 1688 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1689 // with the two values we know. 1690 SSAUpdate.Initialize(I); 1691 SSAUpdate.AddAvailableValue(BB, I); 1692 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); 1693 1694 while (!UsesToRename.empty()) 1695 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1696 DEBUG(dbgs() << "\n"); 1697 } 1698 1699 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1700 // that we nuked. 1701 RemovePredecessorAndSimplify(BB, PredBB, TD); 1702 1703 // Remove the unconditional branch at the end of the PredBB block. 1704 OldPredBranch->eraseFromParent(); 1705 1706 ++NumDupes; 1707 return true; 1708 } 1709 1710 1711