xref: /llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp (revision 38c44ea6b03fa861b23e72961781434cdea28d1f)
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "jump-threading"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/IntrinsicInst.h"
17 #include "llvm/LLVMContext.h"
18 #include "llvm/Pass.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
21 #include "llvm/Transforms/Utils/Local.h"
22 #include "llvm/Transforms/Utils/SSAUpdater.h"
23 #include "llvm/Target/TargetData.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 using namespace llvm;
33 
34 STATISTIC(NumThreads, "Number of jumps threaded");
35 STATISTIC(NumFolds,   "Number of terminators folded");
36 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
37 
38 static cl::opt<unsigned>
39 Threshold("jump-threading-threshold",
40           cl::desc("Max block size to duplicate for jump threading"),
41           cl::init(6), cl::Hidden);
42 
43 namespace {
44   /// This pass performs 'jump threading', which looks at blocks that have
45   /// multiple predecessors and multiple successors.  If one or more of the
46   /// predecessors of the block can be proven to always jump to one of the
47   /// successors, we forward the edge from the predecessor to the successor by
48   /// duplicating the contents of this block.
49   ///
50   /// An example of when this can occur is code like this:
51   ///
52   ///   if () { ...
53   ///     X = 4;
54   ///   }
55   ///   if (X < 3) {
56   ///
57   /// In this case, the unconditional branch at the end of the first if can be
58   /// revectored to the false side of the second if.
59   ///
60   class JumpThreading : public FunctionPass {
61     TargetData *TD;
62 #ifdef NDEBUG
63     SmallPtrSet<BasicBlock*, 16> LoopHeaders;
64 #else
65     SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
66 #endif
67   public:
68     static char ID; // Pass identification
69     JumpThreading() : FunctionPass(&ID) {}
70 
71     bool runOnFunction(Function &F);
72     void FindLoopHeaders(Function &F);
73 
74     bool ProcessBlock(BasicBlock *BB);
75     bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
76                     BasicBlock *SuccBB);
77     bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
78                                           BasicBlock *PredBB);
79 
80     typedef SmallVectorImpl<std::pair<ConstantInt*,
81                                       BasicBlock*> > PredValueInfo;
82 
83     bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
84                                          PredValueInfo &Result);
85     bool ProcessThreadableEdges(Instruction *CondInst, BasicBlock *BB);
86 
87 
88     bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
89     bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
90 
91     bool ProcessJumpOnPHI(PHINode *PN);
92 
93     bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
94   };
95 }
96 
97 char JumpThreading::ID = 0;
98 static RegisterPass<JumpThreading>
99 X("jump-threading", "Jump Threading");
100 
101 // Public interface to the Jump Threading pass
102 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
103 
104 /// runOnFunction - Top level algorithm.
105 ///
106 bool JumpThreading::runOnFunction(Function &F) {
107   DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n");
108   TD = getAnalysisIfAvailable<TargetData>();
109 
110   FindLoopHeaders(F);
111 
112   bool AnotherIteration = true, EverChanged = false;
113   while (AnotherIteration) {
114     AnotherIteration = false;
115     bool Changed = false;
116     for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
117       BasicBlock *BB = I;
118       while (ProcessBlock(BB))
119         Changed = true;
120 
121       ++I;
122 
123       // If the block is trivially dead, zap it.  This eliminates the successor
124       // edges which simplifies the CFG.
125       if (pred_begin(BB) == pred_end(BB) &&
126           BB != &BB->getParent()->getEntryBlock()) {
127         DEBUG(errs() << "  JT: Deleting dead block '" << BB->getName()
128               << "' with terminator: " << *BB->getTerminator() << '\n');
129         LoopHeaders.erase(BB);
130         DeleteDeadBlock(BB);
131         Changed = true;
132       }
133     }
134     AnotherIteration = Changed;
135     EverChanged |= Changed;
136   }
137 
138   LoopHeaders.clear();
139   return EverChanged;
140 }
141 
142 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
143 /// thread across it.
144 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
145   /// Ignore PHI nodes, these will be flattened when duplication happens.
146   BasicBlock::const_iterator I = BB->getFirstNonPHI();
147 
148   // Sum up the cost of each instruction until we get to the terminator.  Don't
149   // include the terminator because the copy won't include it.
150   unsigned Size = 0;
151   for (; !isa<TerminatorInst>(I); ++I) {
152     // Debugger intrinsics don't incur code size.
153     if (isa<DbgInfoIntrinsic>(I)) continue;
154 
155     // If this is a pointer->pointer bitcast, it is free.
156     if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
157       continue;
158 
159     // All other instructions count for at least one unit.
160     ++Size;
161 
162     // Calls are more expensive.  If they are non-intrinsic calls, we model them
163     // as having cost of 4.  If they are a non-vector intrinsic, we model them
164     // as having cost of 2 total, and if they are a vector intrinsic, we model
165     // them as having cost 1.
166     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
167       if (!isa<IntrinsicInst>(CI))
168         Size += 3;
169       else if (!isa<VectorType>(CI->getType()))
170         Size += 1;
171     }
172   }
173 
174   // Threading through a switch statement is particularly profitable.  If this
175   // block ends in a switch, decrease its cost to make it more likely to happen.
176   if (isa<SwitchInst>(I))
177     Size = Size > 6 ? Size-6 : 0;
178 
179   return Size;
180 }
181 
182 
183 //===----------------------------------------------------------------------===//
184 
185 /// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then
186 /// delete the From instruction.  In addition to a basic RAUW, this does a
187 /// recursive simplification of the newly formed instructions.  This catches
188 /// things where one simplification exposes other opportunities.  This only
189 /// simplifies and deletes scalar operations, it does not change the CFG.
190 ///
191 static void ReplaceAndSimplifyAllUses(Instruction *From, Value *To,
192                                       const TargetData *TD) {
193   assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!");
194 
195   // FromHandle - This keeps a weakvh on the from value so that we can know if
196   // it gets deleted out from under us in a recursive simplification.
197   WeakVH FromHandle(From);
198 
199   while (!From->use_empty()) {
200     // Update the instruction to use the new value.
201     Use &U = From->use_begin().getUse();
202     Instruction *User = cast<Instruction>(U.getUser());
203     U = To;
204 
205     // See if we can simplify it.
206     if (Value *V = SimplifyInstruction(User, TD)) {
207       // Recursively simplify this.
208       ReplaceAndSimplifyAllUses(User, V, TD);
209 
210       // If the recursive simplification ended up revisiting and deleting 'From'
211       // then we're done.
212       if (FromHandle == 0)
213         return;
214     }
215   }
216   From->eraseFromParent();
217 }
218 
219 
220 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
221 /// method is called when we're about to delete Pred as a predecessor of BB.  If
222 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
223 ///
224 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
225 /// nodes that collapse into identity values.  For example, if we have:
226 ///   x = phi(1, 0, 0, 0)
227 ///   y = and x, z
228 ///
229 /// .. and delete the predecessor corresponding to the '1', this will attempt to
230 /// recursively fold the and to 0.
231 static void RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
232                                          TargetData *TD) {
233   // This only adjusts blocks with PHI nodes.
234   if (!isa<PHINode>(BB->begin()))
235     return;
236 
237   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
238   // them down.  This will leave us with single entry phi nodes and other phis
239   // that can be removed.
240   BB->removePredecessor(Pred, true);
241 
242   WeakVH PhiIt = &BB->front();
243   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
244     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
245 
246     Value *PNV = PN->hasConstantValue();
247     if (PNV == 0) continue;
248 
249     // If we're able to simplify the phi to a single value, substitute the new
250     // value into all of its uses.
251     assert(PNV != PN && "hasConstantValue broken");
252 
253     ReplaceAndSimplifyAllUses(PN, PNV, TD);
254 
255     // If recursive simplification ended up deleting the next PHI node we would
256     // iterate to, then our iterator is invalid, restart scanning from the top
257     // of the block.
258     if (PhiIt == 0) PhiIt = &BB->front();
259   }
260 }
261 
262 //===----------------------------------------------------------------------===//
263 
264 
265 /// FindLoopHeaders - We do not want jump threading to turn proper loop
266 /// structures into irreducible loops.  Doing this breaks up the loop nesting
267 /// hierarchy and pessimizes later transformations.  To prevent this from
268 /// happening, we first have to find the loop headers.  Here we approximate this
269 /// by finding targets of backedges in the CFG.
270 ///
271 /// Note that there definitely are cases when we want to allow threading of
272 /// edges across a loop header.  For example, threading a jump from outside the
273 /// loop (the preheader) to an exit block of the loop is definitely profitable.
274 /// It is also almost always profitable to thread backedges from within the loop
275 /// to exit blocks, and is often profitable to thread backedges to other blocks
276 /// within the loop (forming a nested loop).  This simple analysis is not rich
277 /// enough to track all of these properties and keep it up-to-date as the CFG
278 /// mutates, so we don't allow any of these transformations.
279 ///
280 void JumpThreading::FindLoopHeaders(Function &F) {
281   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
282   FindFunctionBackedges(F, Edges);
283 
284   for (unsigned i = 0, e = Edges.size(); i != e; ++i)
285     LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
286 }
287 
288 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
289 /// if we can infer that the value is a known ConstantInt in any of our
290 /// predecessors.  If so, return the known list of value and pred BB in the
291 /// result vector.  If a value is known to be undef, it is returned as null.
292 ///
293 /// The BB basic block is known to start with a PHI node.
294 ///
295 /// This returns true if there were any known values.
296 ///
297 ///
298 /// TODO: Per PR2563, we could infer value range information about a predecessor
299 /// based on its terminator.
300 bool JumpThreading::
301 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
302   PHINode *TheFirstPHI = cast<PHINode>(BB->begin());
303 
304   // If V is a constantint, then it is known in all predecessors.
305   if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
306     ConstantInt *CI = dyn_cast<ConstantInt>(V);
307     Result.resize(TheFirstPHI->getNumIncomingValues());
308     for (unsigned i = 0, e = Result.size(); i != e; ++i)
309       Result[i] = std::make_pair(CI, TheFirstPHI->getIncomingBlock(i));
310     return true;
311   }
312 
313   // If V is a non-instruction value, or an instruction in a different block,
314   // then it can't be derived from a PHI.
315   Instruction *I = dyn_cast<Instruction>(V);
316   if (I == 0 || I->getParent() != BB)
317     return false;
318 
319   /// If I is a PHI node, then we know the incoming values for any constants.
320   if (PHINode *PN = dyn_cast<PHINode>(I)) {
321     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
322       Value *InVal = PN->getIncomingValue(i);
323       if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
324         ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
325         Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
326       }
327     }
328     return !Result.empty();
329   }
330 
331   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
332 
333   // Handle some boolean conditions.
334   if (I->getType()->getPrimitiveSizeInBits() == 1) {
335     // X | true -> true
336     // X & false -> false
337     if (I->getOpcode() == Instruction::Or ||
338         I->getOpcode() == Instruction::And) {
339       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
340       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
341 
342       if (LHSVals.empty() && RHSVals.empty())
343         return false;
344 
345       ConstantInt *InterestingVal;
346       if (I->getOpcode() == Instruction::Or)
347         InterestingVal = ConstantInt::getTrue(I->getContext());
348       else
349         InterestingVal = ConstantInt::getFalse(I->getContext());
350 
351       // Scan for the sentinel.
352       for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
353         if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0)
354           Result.push_back(LHSVals[i]);
355       for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
356         if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0)
357           Result.push_back(RHSVals[i]);
358       return !Result.empty();
359     }
360 
361     // TODO: Should handle the NOT form of XOR.
362 
363   }
364 
365   // Handle compare with phi operand, where the PHI is defined in this block.
366   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
367     PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
368     if (PN && PN->getParent() == BB) {
369       // We can do this simplification if any comparisons fold to true or false.
370       // See if any do.
371       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
372         BasicBlock *PredBB = PN->getIncomingBlock(i);
373         Value *LHS = PN->getIncomingValue(i);
374         Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
375 
376         Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS);
377         if (Res == 0) continue;
378 
379         if (isa<UndefValue>(Res))
380           Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
381         else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
382           Result.push_back(std::make_pair(CI, PredBB));
383       }
384 
385       return !Result.empty();
386     }
387 
388     // TODO: We could also recurse to see if we can determine constants another
389     // way.
390   }
391   return false;
392 }
393 
394 
395 
396 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
397 /// in an undefined jump, decide which block is best to revector to.
398 ///
399 /// Since we can pick an arbitrary destination, we pick the successor with the
400 /// fewest predecessors.  This should reduce the in-degree of the others.
401 ///
402 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
403   TerminatorInst *BBTerm = BB->getTerminator();
404   unsigned MinSucc = 0;
405   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
406   // Compute the successor with the minimum number of predecessors.
407   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
408   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
409     TestBB = BBTerm->getSuccessor(i);
410     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
411     if (NumPreds < MinNumPreds)
412       MinSucc = i;
413   }
414 
415   return MinSucc;
416 }
417 
418 /// ProcessBlock - If there are any predecessors whose control can be threaded
419 /// through to a successor, transform them now.
420 bool JumpThreading::ProcessBlock(BasicBlock *BB) {
421   // If this block has a single predecessor, and if that pred has a single
422   // successor, merge the blocks.  This encourages recursive jump threading
423   // because now the condition in this block can be threaded through
424   // predecessors of our predecessor block.
425   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
426     if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
427         SinglePred != BB) {
428       // If SinglePred was a loop header, BB becomes one.
429       if (LoopHeaders.erase(SinglePred))
430         LoopHeaders.insert(BB);
431 
432       // Remember if SinglePred was the entry block of the function.  If so, we
433       // will need to move BB back to the entry position.
434       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
435       MergeBasicBlockIntoOnlyPred(BB);
436 
437       if (isEntry && BB != &BB->getParent()->getEntryBlock())
438         BB->moveBefore(&BB->getParent()->getEntryBlock());
439       return true;
440     }
441   }
442 
443   // Look to see if the terminator is a branch of switch, if not we can't thread
444   // it.
445   Value *Condition;
446   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
447     // Can't thread an unconditional jump.
448     if (BI->isUnconditional()) return false;
449     Condition = BI->getCondition();
450   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
451     Condition = SI->getCondition();
452   else
453     return false; // Must be an invoke.
454 
455   // If the terminator of this block is branching on a constant, simplify the
456   // terminator to an unconditional branch.  This can occur due to threading in
457   // other blocks.
458   if (isa<ConstantInt>(Condition)) {
459     DEBUG(errs() << "  In block '" << BB->getName()
460           << "' folding terminator: " << *BB->getTerminator() << '\n');
461     ++NumFolds;
462     ConstantFoldTerminator(BB);
463     return true;
464   }
465 
466   // If the terminator is branching on an undef, we can pick any of the
467   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
468   if (isa<UndefValue>(Condition)) {
469     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
470 
471     // Fold the branch/switch.
472     TerminatorInst *BBTerm = BB->getTerminator();
473     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
474       if (i == BestSucc) continue;
475       RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
476     }
477 
478     DEBUG(errs() << "  In block '" << BB->getName()
479           << "' folding undef terminator: " << *BBTerm << '\n');
480     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
481     BBTerm->eraseFromParent();
482     return true;
483   }
484 
485   Instruction *CondInst = dyn_cast<Instruction>(Condition);
486 
487   // If the condition is an instruction defined in another block, see if a
488   // predecessor has the same condition:
489   //     br COND, BBX, BBY
490   //  BBX:
491   //     br COND, BBZ, BBW
492   if (!Condition->hasOneUse() && // Multiple uses.
493       (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
494     pred_iterator PI = pred_begin(BB), E = pred_end(BB);
495     if (isa<BranchInst>(BB->getTerminator())) {
496       for (; PI != E; ++PI)
497         if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
498           if (PBI->isConditional() && PBI->getCondition() == Condition &&
499               ProcessBranchOnDuplicateCond(*PI, BB))
500             return true;
501     } else {
502       assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
503       for (; PI != E; ++PI)
504         if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
505           if (PSI->getCondition() == Condition &&
506               ProcessSwitchOnDuplicateCond(*PI, BB))
507             return true;
508     }
509   }
510 
511   // All the rest of our checks depend on the condition being an instruction.
512   if (CondInst == 0)
513     return false;
514 
515   // See if this is a phi node in the current block.
516   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
517     if (PN->getParent() == BB)
518       return ProcessJumpOnPHI(PN);
519 
520   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
521     if (!isa<PHINode>(CondCmp->getOperand(0)) ||
522         cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB) {
523       // If we have a comparison, loop over the predecessors to see if there is
524       // a condition with a lexically identical value.
525       pred_iterator PI = pred_begin(BB), E = pred_end(BB);
526       for (; PI != E; ++PI)
527         if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
528           if (PBI->isConditional() && *PI != BB) {
529             if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
530               if (CI->getOperand(0) == CondCmp->getOperand(0) &&
531                   CI->getOperand(1) == CondCmp->getOperand(1) &&
532                   CI->getPredicate() == CondCmp->getPredicate()) {
533                 // TODO: Could handle things like (x != 4) --> (x == 17)
534                 if (ProcessBranchOnDuplicateCond(*PI, BB))
535                   return true;
536               }
537             }
538           }
539     }
540   }
541 
542   // Check for some cases that are worth simplifying.  Right now we want to look
543   // for loads that are used by a switch or by the condition for the branch.  If
544   // we see one, check to see if it's partially redundant.  If so, insert a PHI
545   // which can then be used to thread the values.
546   //
547   // This is particularly important because reg2mem inserts loads and stores all
548   // over the place, and this blocks jump threading if we don't zap them.
549   Value *SimplifyValue = CondInst;
550   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
551     if (isa<Constant>(CondCmp->getOperand(1)))
552       SimplifyValue = CondCmp->getOperand(0);
553 
554   if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
555     if (SimplifyPartiallyRedundantLoad(LI))
556       return true;
557 
558 
559   // Handle a variety of cases where we are branching on something derived from
560   // a PHI node in the current block.  If we can prove that any predecessors
561   // compute a predictable value based on a PHI node, thread those predecessors.
562   //
563   // We only bother doing this if the current block has a PHI node and if the
564   // conditional instruction lives in the current block.  If either condition
565   // fails, this won't be a computable value anyway.
566   if (CondInst->getParent() == BB && isa<PHINode>(BB->front()))
567     if (ProcessThreadableEdges(CondInst, BB))
568       return true;
569 
570 
571   // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
572   // "(X == 4)" thread through this block.
573 
574   return false;
575 }
576 
577 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
578 /// block that jump on exactly the same condition.  This means that we almost
579 /// always know the direction of the edge in the DESTBB:
580 ///  PREDBB:
581 ///     br COND, DESTBB, BBY
582 ///  DESTBB:
583 ///     br COND, BBZ, BBW
584 ///
585 /// If DESTBB has multiple predecessors, we can't just constant fold the branch
586 /// in DESTBB, we have to thread over it.
587 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
588                                                  BasicBlock *BB) {
589   BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
590 
591   // If both successors of PredBB go to DESTBB, we don't know anything.  We can
592   // fold the branch to an unconditional one, which allows other recursive
593   // simplifications.
594   bool BranchDir;
595   if (PredBI->getSuccessor(1) != BB)
596     BranchDir = true;
597   else if (PredBI->getSuccessor(0) != BB)
598     BranchDir = false;
599   else {
600     DEBUG(errs() << "  In block '" << PredBB->getName()
601           << "' folding terminator: " << *PredBB->getTerminator() << '\n');
602     ++NumFolds;
603     ConstantFoldTerminator(PredBB);
604     return true;
605   }
606 
607   BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
608 
609   // If the dest block has one predecessor, just fix the branch condition to a
610   // constant and fold it.
611   if (BB->getSinglePredecessor()) {
612     DEBUG(errs() << "  In block '" << BB->getName()
613           << "' folding condition to '" << BranchDir << "': "
614           << *BB->getTerminator() << '\n');
615     ++NumFolds;
616     Value *OldCond = DestBI->getCondition();
617     DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
618                                           BranchDir));
619     ConstantFoldTerminator(BB);
620     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
621     return true;
622   }
623 
624 
625   // Next, figure out which successor we are threading to.
626   BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
627 
628   SmallVector<BasicBlock*, 2> Preds;
629   Preds.push_back(PredBB);
630 
631   // Ok, try to thread it!
632   return ThreadEdge(BB, Preds, SuccBB);
633 }
634 
635 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
636 /// block that switch on exactly the same condition.  This means that we almost
637 /// always know the direction of the edge in the DESTBB:
638 ///  PREDBB:
639 ///     switch COND [... DESTBB, BBY ... ]
640 ///  DESTBB:
641 ///     switch COND [... BBZ, BBW ]
642 ///
643 /// Optimizing switches like this is very important, because simplifycfg builds
644 /// switches out of repeated 'if' conditions.
645 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
646                                                  BasicBlock *DestBB) {
647   // Can't thread edge to self.
648   if (PredBB == DestBB)
649     return false;
650 
651   SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
652   SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
653 
654   // There are a variety of optimizations that we can potentially do on these
655   // blocks: we order them from most to least preferable.
656 
657   // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
658   // directly to their destination.  This does not introduce *any* code size
659   // growth.  Skip debug info first.
660   BasicBlock::iterator BBI = DestBB->begin();
661   while (isa<DbgInfoIntrinsic>(BBI))
662     BBI++;
663 
664   // FIXME: Thread if it just contains a PHI.
665   if (isa<SwitchInst>(BBI)) {
666     bool MadeChange = false;
667     // Ignore the default edge for now.
668     for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
669       ConstantInt *DestVal = DestSI->getCaseValue(i);
670       BasicBlock *DestSucc = DestSI->getSuccessor(i);
671 
672       // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
673       // PredSI has an explicit case for it.  If so, forward.  If it is covered
674       // by the default case, we can't update PredSI.
675       unsigned PredCase = PredSI->findCaseValue(DestVal);
676       if (PredCase == 0) continue;
677 
678       // If PredSI doesn't go to DestBB on this value, then it won't reach the
679       // case on this condition.
680       if (PredSI->getSuccessor(PredCase) != DestBB &&
681           DestSI->getSuccessor(i) != DestBB)
682         continue;
683 
684       // Otherwise, we're safe to make the change.  Make sure that the edge from
685       // DestSI to DestSucc is not critical and has no PHI nodes.
686       DEBUG(errs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
687       DEBUG(errs() << "THROUGH: " << *DestSI);
688 
689       // If the destination has PHI nodes, just split the edge for updating
690       // simplicity.
691       if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
692         SplitCriticalEdge(DestSI, i, this);
693         DestSucc = DestSI->getSuccessor(i);
694       }
695       FoldSingleEntryPHINodes(DestSucc);
696       PredSI->setSuccessor(PredCase, DestSucc);
697       MadeChange = true;
698     }
699 
700     if (MadeChange)
701       return true;
702   }
703 
704   return false;
705 }
706 
707 
708 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
709 /// load instruction, eliminate it by replacing it with a PHI node.  This is an
710 /// important optimization that encourages jump threading, and needs to be run
711 /// interlaced with other jump threading tasks.
712 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
713   // Don't hack volatile loads.
714   if (LI->isVolatile()) return false;
715 
716   // If the load is defined in a block with exactly one predecessor, it can't be
717   // partially redundant.
718   BasicBlock *LoadBB = LI->getParent();
719   if (LoadBB->getSinglePredecessor())
720     return false;
721 
722   Value *LoadedPtr = LI->getOperand(0);
723 
724   // If the loaded operand is defined in the LoadBB, it can't be available.
725   // FIXME: Could do PHI translation, that would be fun :)
726   if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
727     if (PtrOp->getParent() == LoadBB)
728       return false;
729 
730   // Scan a few instructions up from the load, to see if it is obviously live at
731   // the entry to its block.
732   BasicBlock::iterator BBIt = LI;
733 
734   if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB,
735                                                      BBIt, 6)) {
736     // If the value if the load is locally available within the block, just use
737     // it.  This frequently occurs for reg2mem'd allocas.
738     //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
739 
740     // If the returned value is the load itself, replace with an undef. This can
741     // only happen in dead loops.
742     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
743     LI->replaceAllUsesWith(AvailableVal);
744     LI->eraseFromParent();
745     return true;
746   }
747 
748   // Otherwise, if we scanned the whole block and got to the top of the block,
749   // we know the block is locally transparent to the load.  If not, something
750   // might clobber its value.
751   if (BBIt != LoadBB->begin())
752     return false;
753 
754 
755   SmallPtrSet<BasicBlock*, 8> PredsScanned;
756   typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
757   AvailablePredsTy AvailablePreds;
758   BasicBlock *OneUnavailablePred = 0;
759 
760   // If we got here, the loaded value is transparent through to the start of the
761   // block.  Check to see if it is available in any of the predecessor blocks.
762   for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
763        PI != PE; ++PI) {
764     BasicBlock *PredBB = *PI;
765 
766     // If we already scanned this predecessor, skip it.
767     if (!PredsScanned.insert(PredBB))
768       continue;
769 
770     // Scan the predecessor to see if the value is available in the pred.
771     BBIt = PredBB->end();
772     Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
773     if (!PredAvailable) {
774       OneUnavailablePred = PredBB;
775       continue;
776     }
777 
778     // If so, this load is partially redundant.  Remember this info so that we
779     // can create a PHI node.
780     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
781   }
782 
783   // If the loaded value isn't available in any predecessor, it isn't partially
784   // redundant.
785   if (AvailablePreds.empty()) return false;
786 
787   // Okay, the loaded value is available in at least one (and maybe all!)
788   // predecessors.  If the value is unavailable in more than one unique
789   // predecessor, we want to insert a merge block for those common predecessors.
790   // This ensures that we only have to insert one reload, thus not increasing
791   // code size.
792   BasicBlock *UnavailablePred = 0;
793 
794   // If there is exactly one predecessor where the value is unavailable, the
795   // already computed 'OneUnavailablePred' block is it.  If it ends in an
796   // unconditional branch, we know that it isn't a critical edge.
797   if (PredsScanned.size() == AvailablePreds.size()+1 &&
798       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
799     UnavailablePred = OneUnavailablePred;
800   } else if (PredsScanned.size() != AvailablePreds.size()) {
801     // Otherwise, we had multiple unavailable predecessors or we had a critical
802     // edge from the one.
803     SmallVector<BasicBlock*, 8> PredsToSplit;
804     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
805 
806     for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
807       AvailablePredSet.insert(AvailablePreds[i].first);
808 
809     // Add all the unavailable predecessors to the PredsToSplit list.
810     for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
811          PI != PE; ++PI)
812       if (!AvailablePredSet.count(*PI))
813         PredsToSplit.push_back(*PI);
814 
815     // Split them out to their own block.
816     UnavailablePred =
817       SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
818                              "thread-split", this);
819   }
820 
821   // If the value isn't available in all predecessors, then there will be
822   // exactly one where it isn't available.  Insert a load on that edge and add
823   // it to the AvailablePreds list.
824   if (UnavailablePred) {
825     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
826            "Can't handle critical edge here!");
827     Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr",
828                                  UnavailablePred->getTerminator());
829     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
830   }
831 
832   // Now we know that each predecessor of this block has a value in
833   // AvailablePreds, sort them for efficient access as we're walking the preds.
834   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
835 
836   // Create a PHI node at the start of the block for the PRE'd load value.
837   PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
838   PN->takeName(LI);
839 
840   // Insert new entries into the PHI for each predecessor.  A single block may
841   // have multiple entries here.
842   for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
843        ++PI) {
844     AvailablePredsTy::iterator I =
845       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
846                        std::make_pair(*PI, (Value*)0));
847 
848     assert(I != AvailablePreds.end() && I->first == *PI &&
849            "Didn't find entry for predecessor!");
850 
851     PN->addIncoming(I->second, I->first);
852   }
853 
854   //cerr << "PRE: " << *LI << *PN << "\n";
855 
856   LI->replaceAllUsesWith(PN);
857   LI->eraseFromParent();
858 
859   return true;
860 }
861 
862 /// FindMostPopularDest - The specified list contains multiple possible
863 /// threadable destinations.  Pick the one that occurs the most frequently in
864 /// the list.
865 static BasicBlock *
866 FindMostPopularDest(BasicBlock *BB,
867                     const SmallVectorImpl<std::pair<BasicBlock*,
868                                   BasicBlock*> > &PredToDestList) {
869   assert(!PredToDestList.empty());
870 
871   // Determine popularity.  If there are multiple possible destinations, we
872   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
873   // blocks with known and real destinations to threading undef.  We'll handle
874   // them later if interesting.
875   DenseMap<BasicBlock*, unsigned> DestPopularity;
876   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
877     if (PredToDestList[i].second)
878       DestPopularity[PredToDestList[i].second]++;
879 
880   // Find the most popular dest.
881   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
882   BasicBlock *MostPopularDest = DPI->first;
883   unsigned Popularity = DPI->second;
884   SmallVector<BasicBlock*, 4> SamePopularity;
885 
886   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
887     // If the popularity of this entry isn't higher than the popularity we've
888     // seen so far, ignore it.
889     if (DPI->second < Popularity)
890       ; // ignore.
891     else if (DPI->second == Popularity) {
892       // If it is the same as what we've seen so far, keep track of it.
893       SamePopularity.push_back(DPI->first);
894     } else {
895       // If it is more popular, remember it.
896       SamePopularity.clear();
897       MostPopularDest = DPI->first;
898       Popularity = DPI->second;
899     }
900   }
901 
902   // Okay, now we know the most popular destination.  If there is more than
903   // destination, we need to determine one.  This is arbitrary, but we need
904   // to make a deterministic decision.  Pick the first one that appears in the
905   // successor list.
906   if (!SamePopularity.empty()) {
907     SamePopularity.push_back(MostPopularDest);
908     TerminatorInst *TI = BB->getTerminator();
909     for (unsigned i = 0; ; ++i) {
910       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
911 
912       if (std::find(SamePopularity.begin(), SamePopularity.end(),
913                     TI->getSuccessor(i)) == SamePopularity.end())
914         continue;
915 
916       MostPopularDest = TI->getSuccessor(i);
917       break;
918     }
919   }
920 
921   // Okay, we have finally picked the most popular destination.
922   return MostPopularDest;
923 }
924 
925 bool JumpThreading::ProcessThreadableEdges(Instruction *CondInst,
926                                            BasicBlock *BB) {
927   // If threading this would thread across a loop header, don't even try to
928   // thread the edge.
929   if (LoopHeaders.count(BB))
930     return false;
931 
932   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
933   if (!ComputeValueKnownInPredecessors(CondInst, BB, PredValues))
934     return false;
935   assert(!PredValues.empty() &&
936          "ComputeValueKnownInPredecessors returned true with no values");
937 
938   DEBUG(errs() << "IN BB: " << *BB;
939         for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
940           errs() << "  BB '" << BB->getName() << "': FOUND condition = ";
941           if (PredValues[i].first)
942             errs() << *PredValues[i].first;
943           else
944             errs() << "UNDEF";
945           errs() << " for pred '" << PredValues[i].second->getName()
946           << "'.\n";
947         });
948 
949   // Decide what we want to thread through.  Convert our list of known values to
950   // a list of known destinations for each pred.  This also discards duplicate
951   // predecessors and keeps track of the undefined inputs (which are represented
952   // as a null dest in the PredToDestList).
953   SmallPtrSet<BasicBlock*, 16> SeenPreds;
954   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
955 
956   BasicBlock *OnlyDest = 0;
957   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
958 
959   for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
960     BasicBlock *Pred = PredValues[i].second;
961     if (!SeenPreds.insert(Pred))
962       continue;  // Duplicate predecessor entry.
963 
964     // If the predecessor ends with an indirect goto, we can't change its
965     // destination.
966     if (isa<IndirectBrInst>(Pred->getTerminator()))
967       continue;
968 
969     ConstantInt *Val = PredValues[i].first;
970 
971     BasicBlock *DestBB;
972     if (Val == 0)      // Undef.
973       DestBB = 0;
974     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
975       DestBB = BI->getSuccessor(Val->isZero());
976     else {
977       SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
978       DestBB = SI->getSuccessor(SI->findCaseValue(Val));
979     }
980 
981     // If we have exactly one destination, remember it for efficiency below.
982     if (i == 0)
983       OnlyDest = DestBB;
984     else if (OnlyDest != DestBB)
985       OnlyDest = MultipleDestSentinel;
986 
987     PredToDestList.push_back(std::make_pair(Pred, DestBB));
988   }
989 
990   // If all edges were unthreadable, we fail.
991   if (PredToDestList.empty())
992     return false;
993 
994   // Determine which is the most common successor.  If we have many inputs and
995   // this block is a switch, we want to start by threading the batch that goes
996   // to the most popular destination first.  If we only know about one
997   // threadable destination (the common case) we can avoid this.
998   BasicBlock *MostPopularDest = OnlyDest;
999 
1000   if (MostPopularDest == MultipleDestSentinel)
1001     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1002 
1003   // Now that we know what the most popular destination is, factor all
1004   // predecessors that will jump to it into a single predecessor.
1005   SmallVector<BasicBlock*, 16> PredsToFactor;
1006   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1007     if (PredToDestList[i].second == MostPopularDest) {
1008       BasicBlock *Pred = PredToDestList[i].first;
1009 
1010       // This predecessor may be a switch or something else that has multiple
1011       // edges to the block.  Factor each of these edges by listing them
1012       // according to # occurrences in PredsToFactor.
1013       TerminatorInst *PredTI = Pred->getTerminator();
1014       for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1015         if (PredTI->getSuccessor(i) == BB)
1016           PredsToFactor.push_back(Pred);
1017     }
1018 
1019   // If the threadable edges are branching on an undefined value, we get to pick
1020   // the destination that these predecessors should get to.
1021   if (MostPopularDest == 0)
1022     MostPopularDest = BB->getTerminator()->
1023                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1024 
1025   // Ok, try to thread it!
1026   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1027 }
1028 
1029 /// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
1030 /// the current block.  See if there are any simplifications we can do based on
1031 /// inputs to the phi node.
1032 ///
1033 bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
1034   BasicBlock *BB = PN->getParent();
1035 
1036   // If any of the predecessor blocks end in an unconditional branch, we can
1037   // *duplicate* the jump into that block in order to further encourage jump
1038   // threading and to eliminate cases where we have branch on a phi of an icmp
1039   // (branch on icmp is much better).
1040 
1041   // We don't want to do this tranformation for switches, because we don't
1042   // really want to duplicate a switch.
1043   if (isa<SwitchInst>(BB->getTerminator()))
1044     return false;
1045 
1046   // Look for unconditional branch predecessors.
1047   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1048     BasicBlock *PredBB = PN->getIncomingBlock(i);
1049     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1050       if (PredBr->isUnconditional() &&
1051           // Try to duplicate BB into PredBB.
1052           DuplicateCondBranchOnPHIIntoPred(BB, PredBB))
1053         return true;
1054   }
1055 
1056   return false;
1057 }
1058 
1059 
1060 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1061 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1062 /// NewPred using the entries from OldPred (suitably mapped).
1063 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1064                                             BasicBlock *OldPred,
1065                                             BasicBlock *NewPred,
1066                                      DenseMap<Instruction*, Value*> &ValueMap) {
1067   for (BasicBlock::iterator PNI = PHIBB->begin();
1068        PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1069     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1070     // DestBlock.
1071     Value *IV = PN->getIncomingValueForBlock(OldPred);
1072 
1073     // Remap the value if necessary.
1074     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1075       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1076       if (I != ValueMap.end())
1077         IV = I->second;
1078     }
1079 
1080     PN->addIncoming(IV, NewPred);
1081   }
1082 }
1083 
1084 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1085 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1086 /// across BB.  Transform the IR to reflect this change.
1087 bool JumpThreading::ThreadEdge(BasicBlock *BB,
1088                                const SmallVectorImpl<BasicBlock*> &PredBBs,
1089                                BasicBlock *SuccBB) {
1090   // If threading to the same block as we come from, we would infinite loop.
1091   if (SuccBB == BB) {
1092     DEBUG(errs() << "  Not threading across BB '" << BB->getName()
1093           << "' - would thread to self!\n");
1094     return false;
1095   }
1096 
1097   // If threading this would thread across a loop header, don't thread the edge.
1098   // See the comments above FindLoopHeaders for justifications and caveats.
1099   if (LoopHeaders.count(BB)) {
1100     DEBUG(errs() << "  Not threading across loop header BB '" << BB->getName()
1101           << "' to dest BB '" << SuccBB->getName()
1102           << "' - it might create an irreducible loop!\n");
1103     return false;
1104   }
1105 
1106   unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1107   if (JumpThreadCost > Threshold) {
1108     DEBUG(errs() << "  Not threading BB '" << BB->getName()
1109           << "' - Cost is too high: " << JumpThreadCost << "\n");
1110     return false;
1111   }
1112 
1113   // And finally, do it!  Start by factoring the predecessors is needed.
1114   BasicBlock *PredBB;
1115   if (PredBBs.size() == 1)
1116     PredBB = PredBBs[0];
1117   else {
1118     DEBUG(errs() << "  Factoring out " << PredBBs.size()
1119           << " common predecessors.\n");
1120     PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1121                                     ".thr_comm", this);
1122   }
1123 
1124   // And finally, do it!
1125   DEBUG(errs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1126         << SuccBB->getName() << "' with cost: " << JumpThreadCost
1127         << ", across block:\n    "
1128         << *BB << "\n");
1129 
1130   // We are going to have to map operands from the original BB block to the new
1131   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1132   // account for entry from PredBB.
1133   DenseMap<Instruction*, Value*> ValueMapping;
1134 
1135   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1136                                          BB->getName()+".thread",
1137                                          BB->getParent(), BB);
1138   NewBB->moveAfter(PredBB);
1139 
1140   BasicBlock::iterator BI = BB->begin();
1141   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1142     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1143 
1144   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1145   // mapping and using it to remap operands in the cloned instructions.
1146   for (; !isa<TerminatorInst>(BI); ++BI) {
1147     Instruction *New = BI->clone();
1148     New->setName(BI->getName());
1149     NewBB->getInstList().push_back(New);
1150     ValueMapping[BI] = New;
1151 
1152     // Remap operands to patch up intra-block references.
1153     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1154       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1155         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1156         if (I != ValueMapping.end())
1157           New->setOperand(i, I->second);
1158       }
1159   }
1160 
1161   // We didn't copy the terminator from BB over to NewBB, because there is now
1162   // an unconditional jump to SuccBB.  Insert the unconditional jump.
1163   BranchInst::Create(SuccBB, NewBB);
1164 
1165   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1166   // PHI nodes for NewBB now.
1167   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1168 
1169   // If there were values defined in BB that are used outside the block, then we
1170   // now have to update all uses of the value to use either the original value,
1171   // the cloned value, or some PHI derived value.  This can require arbitrary
1172   // PHI insertion, of which we are prepared to do, clean these up now.
1173   SSAUpdater SSAUpdate;
1174   SmallVector<Use*, 16> UsesToRename;
1175   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1176     // Scan all uses of this instruction to see if it is used outside of its
1177     // block, and if so, record them in UsesToRename.
1178     for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1179          ++UI) {
1180       Instruction *User = cast<Instruction>(*UI);
1181       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1182         if (UserPN->getIncomingBlock(UI) == BB)
1183           continue;
1184       } else if (User->getParent() == BB)
1185         continue;
1186 
1187       UsesToRename.push_back(&UI.getUse());
1188     }
1189 
1190     // If there are no uses outside the block, we're done with this instruction.
1191     if (UsesToRename.empty())
1192       continue;
1193 
1194     DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1195 
1196     // We found a use of I outside of BB.  Rename all uses of I that are outside
1197     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1198     // with the two values we know.
1199     SSAUpdate.Initialize(I);
1200     SSAUpdate.AddAvailableValue(BB, I);
1201     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1202 
1203     while (!UsesToRename.empty())
1204       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1205     DEBUG(errs() << "\n");
1206   }
1207 
1208 
1209   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1210   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1211   // us to simplify any PHI nodes in BB.
1212   TerminatorInst *PredTerm = PredBB->getTerminator();
1213   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1214     if (PredTerm->getSuccessor(i) == BB) {
1215       RemovePredecessorAndSimplify(BB, PredBB, TD);
1216       PredTerm->setSuccessor(i, NewBB);
1217     }
1218 
1219   // At this point, the IR is fully up to date and consistent.  Do a quick scan
1220   // over the new instructions and zap any that are constants or dead.  This
1221   // frequently happens because of phi translation.
1222   BI = NewBB->begin();
1223   for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
1224     Instruction *Inst = BI++;
1225 
1226     if (Value *V = SimplifyInstruction(Inst, TD)) {
1227       WeakVH BIHandle(BI);
1228       ReplaceAndSimplifyAllUses(Inst, V, TD);
1229       if (BIHandle == 0)
1230         BI = NewBB->begin();
1231       continue;
1232     }
1233 
1234     RecursivelyDeleteTriviallyDeadInstructions(Inst);
1235   }
1236 
1237   // Threaded an edge!
1238   ++NumThreads;
1239   return true;
1240 }
1241 
1242 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1243 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1244 /// If we can duplicate the contents of BB up into PredBB do so now, this
1245 /// improves the odds that the branch will be on an analyzable instruction like
1246 /// a compare.
1247 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1248                                                      BasicBlock *PredBB) {
1249   // If BB is a loop header, then duplicating this block outside the loop would
1250   // cause us to transform this into an irreducible loop, don't do this.
1251   // See the comments above FindLoopHeaders for justifications and caveats.
1252   if (LoopHeaders.count(BB)) {
1253     DEBUG(errs() << "  Not duplicating loop header '" << BB->getName()
1254           << "' into predecessor block '" << PredBB->getName()
1255           << "' - it might create an irreducible loop!\n");
1256     return false;
1257   }
1258 
1259   unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1260   if (DuplicationCost > Threshold) {
1261     DEBUG(errs() << "  Not duplicating BB '" << BB->getName()
1262           << "' - Cost is too high: " << DuplicationCost << "\n");
1263     return false;
1264   }
1265 
1266   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1267   // of PredBB.
1268   DEBUG(errs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1269         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1270         << DuplicationCost << " block is:" << *BB << "\n");
1271 
1272   // We are going to have to map operands from the original BB block into the
1273   // PredBB block.  Evaluate PHI nodes in BB.
1274   DenseMap<Instruction*, Value*> ValueMapping;
1275 
1276   BasicBlock::iterator BI = BB->begin();
1277   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1278     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1279 
1280   BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1281 
1282   // Clone the non-phi instructions of BB into PredBB, keeping track of the
1283   // mapping and using it to remap operands in the cloned instructions.
1284   for (; BI != BB->end(); ++BI) {
1285     Instruction *New = BI->clone();
1286     New->setName(BI->getName());
1287     PredBB->getInstList().insert(OldPredBranch, New);
1288     ValueMapping[BI] = New;
1289 
1290     // Remap operands to patch up intra-block references.
1291     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1292       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1293         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1294         if (I != ValueMapping.end())
1295           New->setOperand(i, I->second);
1296       }
1297   }
1298 
1299   // Check to see if the targets of the branch had PHI nodes. If so, we need to
1300   // add entries to the PHI nodes for branch from PredBB now.
1301   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1302   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1303                                   ValueMapping);
1304   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1305                                   ValueMapping);
1306 
1307   // If there were values defined in BB that are used outside the block, then we
1308   // now have to update all uses of the value to use either the original value,
1309   // the cloned value, or some PHI derived value.  This can require arbitrary
1310   // PHI insertion, of which we are prepared to do, clean these up now.
1311   SSAUpdater SSAUpdate;
1312   SmallVector<Use*, 16> UsesToRename;
1313   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1314     // Scan all uses of this instruction to see if it is used outside of its
1315     // block, and if so, record them in UsesToRename.
1316     for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1317          ++UI) {
1318       Instruction *User = cast<Instruction>(*UI);
1319       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1320         if (UserPN->getIncomingBlock(UI) == BB)
1321           continue;
1322       } else if (User->getParent() == BB)
1323         continue;
1324 
1325       UsesToRename.push_back(&UI.getUse());
1326     }
1327 
1328     // If there are no uses outside the block, we're done with this instruction.
1329     if (UsesToRename.empty())
1330       continue;
1331 
1332     DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1333 
1334     // We found a use of I outside of BB.  Rename all uses of I that are outside
1335     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1336     // with the two values we know.
1337     SSAUpdate.Initialize(I);
1338     SSAUpdate.AddAvailableValue(BB, I);
1339     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1340 
1341     while (!UsesToRename.empty())
1342       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1343     DEBUG(errs() << "\n");
1344   }
1345 
1346   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1347   // that we nuked.
1348   RemovePredecessorAndSimplify(BB, PredBB, TD);
1349 
1350   // Remove the unconditional branch at the end of the PredBB block.
1351   OldPredBranch->eraseFromParent();
1352 
1353   ++NumDupes;
1354   return true;
1355 }
1356 
1357 
1358