1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/GlobalsModRef.h" 22 #include "llvm/Analysis/CFG.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LazyValueInfo.h" 29 #include "llvm/Analysis/Loads.h" 30 #include "llvm/Analysis/LoopInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/ValueHandle.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 44 #include "llvm/Transforms/Utils/Local.h" 45 #include "llvm/Transforms/Utils/SSAUpdater.h" 46 #include <algorithm> 47 #include <memory> 48 using namespace llvm; 49 50 #define DEBUG_TYPE "jump-threading" 51 52 STATISTIC(NumThreads, "Number of jumps threaded"); 53 STATISTIC(NumFolds, "Number of terminators folded"); 54 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 55 56 static cl::opt<unsigned> 57 BBDuplicateThreshold("jump-threading-threshold", 58 cl::desc("Max block size to duplicate for jump threading"), 59 cl::init(6), cl::Hidden); 60 61 namespace { 62 // These are at global scope so static functions can use them too. 63 typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo; 64 typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy; 65 66 // This is used to keep track of what kind of constant we're currently hoping 67 // to find. 68 enum ConstantPreference { 69 WantInteger, 70 WantBlockAddress 71 }; 72 73 /// This pass performs 'jump threading', which looks at blocks that have 74 /// multiple predecessors and multiple successors. If one or more of the 75 /// predecessors of the block can be proven to always jump to one of the 76 /// successors, we forward the edge from the predecessor to the successor by 77 /// duplicating the contents of this block. 78 /// 79 /// An example of when this can occur is code like this: 80 /// 81 /// if () { ... 82 /// X = 4; 83 /// } 84 /// if (X < 3) { 85 /// 86 /// In this case, the unconditional branch at the end of the first if can be 87 /// revectored to the false side of the second if. 88 /// 89 class JumpThreading : public FunctionPass { 90 TargetLibraryInfo *TLI; 91 LazyValueInfo *LVI; 92 std::unique_ptr<BlockFrequencyInfo> BFI; 93 std::unique_ptr<BranchProbabilityInfo> BPI; 94 bool HasProfileData; 95 #ifdef NDEBUG 96 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 97 #else 98 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 99 #endif 100 DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet; 101 102 unsigned BBDupThreshold; 103 104 // RAII helper for updating the recursion stack. 105 struct RecursionSetRemover { 106 DenseSet<std::pair<Value*, BasicBlock*> > &TheSet; 107 std::pair<Value*, BasicBlock*> ThePair; 108 109 RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S, 110 std::pair<Value*, BasicBlock*> P) 111 : TheSet(S), ThePair(P) { } 112 113 ~RecursionSetRemover() { 114 TheSet.erase(ThePair); 115 } 116 }; 117 public: 118 static char ID; // Pass identification 119 JumpThreading(int T = -1) : FunctionPass(ID) { 120 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 121 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 122 } 123 124 bool runOnFunction(Function &F) override; 125 126 void getAnalysisUsage(AnalysisUsage &AU) const override { 127 AU.addRequired<LazyValueInfo>(); 128 AU.addPreserved<LazyValueInfo>(); 129 AU.addPreserved<GlobalsAAWrapperPass>(); 130 AU.addRequired<TargetLibraryInfoWrapperPass>(); 131 } 132 133 void releaseMemory() override { 134 BFI.reset(); 135 BPI.reset(); 136 } 137 138 void FindLoopHeaders(Function &F); 139 bool ProcessBlock(BasicBlock *BB); 140 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 141 BasicBlock *SuccBB); 142 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 143 const SmallVectorImpl<BasicBlock *> &PredBBs); 144 145 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 146 PredValueInfo &Result, 147 ConstantPreference Preference, 148 Instruction *CxtI = nullptr); 149 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 150 ConstantPreference Preference, 151 Instruction *CxtI = nullptr); 152 153 bool ProcessBranchOnPHI(PHINode *PN); 154 bool ProcessBranchOnXOR(BinaryOperator *BO); 155 156 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 157 bool TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB); 158 159 private: 160 BasicBlock *SplitBlockPreds(BasicBlock *BB, ArrayRef<BasicBlock *> Preds, 161 const char *Suffix); 162 void UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, BasicBlock *BB, 163 BasicBlock *NewBB, BasicBlock *SuccBB); 164 }; 165 } 166 167 char JumpThreading::ID = 0; 168 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 169 "Jump Threading", false, false) 170 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo) 171 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 172 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 173 "Jump Threading", false, false) 174 175 // Public interface to the Jump Threading pass 176 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); } 177 178 /// runOnFunction - Top level algorithm. 179 /// 180 bool JumpThreading::runOnFunction(Function &F) { 181 if (skipOptnoneFunction(F)) 182 return false; 183 184 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 185 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 186 LVI = &getAnalysis<LazyValueInfo>(); 187 BFI.reset(); 188 BPI.reset(); 189 // When profile data is available, we need to update edge weights after 190 // successful jump threading, which requires both BPI and BFI being available. 191 HasProfileData = F.getEntryCount().hasValue(); 192 if (HasProfileData) { 193 LoopInfo LI{DominatorTree(F)}; 194 BPI.reset(new BranchProbabilityInfo(F, LI)); 195 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 196 } 197 198 // Remove unreachable blocks from function as they may result in infinite 199 // loop. We do threading if we found something profitable. Jump threading a 200 // branch can create other opportunities. If these opportunities form a cycle 201 // i.e. if any jump threading is undoing previous threading in the path, then 202 // we will loop forever. We take care of this issue by not jump threading for 203 // back edges. This works for normal cases but not for unreachable blocks as 204 // they may have cycle with no back edge. 205 removeUnreachableBlocks(F); 206 207 FindLoopHeaders(F); 208 209 bool Changed, EverChanged = false; 210 do { 211 Changed = false; 212 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 213 BasicBlock *BB = I; 214 // Thread all of the branches we can over this block. 215 while (ProcessBlock(BB)) 216 Changed = true; 217 218 ++I; 219 220 // If the block is trivially dead, zap it. This eliminates the successor 221 // edges which simplifies the CFG. 222 if (pred_empty(BB) && 223 BB != &BB->getParent()->getEntryBlock()) { 224 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 225 << "' with terminator: " << *BB->getTerminator() << '\n'); 226 LoopHeaders.erase(BB); 227 LVI->eraseBlock(BB); 228 DeleteDeadBlock(BB); 229 Changed = true; 230 continue; 231 } 232 233 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 234 235 // Can't thread an unconditional jump, but if the block is "almost 236 // empty", we can replace uses of it with uses of the successor and make 237 // this dead. 238 if (BI && BI->isUnconditional() && 239 BB != &BB->getParent()->getEntryBlock() && 240 // If the terminator is the only non-phi instruction, try to nuke it. 241 BB->getFirstNonPHIOrDbg()->isTerminator()) { 242 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 243 // block, we have to make sure it isn't in the LoopHeaders set. We 244 // reinsert afterward if needed. 245 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 246 BasicBlock *Succ = BI->getSuccessor(0); 247 248 // FIXME: It is always conservatively correct to drop the info 249 // for a block even if it doesn't get erased. This isn't totally 250 // awesome, but it allows us to use AssertingVH to prevent nasty 251 // dangling pointer issues within LazyValueInfo. 252 LVI->eraseBlock(BB); 253 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { 254 Changed = true; 255 // If we deleted BB and BB was the header of a loop, then the 256 // successor is now the header of the loop. 257 BB = Succ; 258 } 259 260 if (ErasedFromLoopHeaders) 261 LoopHeaders.insert(BB); 262 } 263 } 264 EverChanged |= Changed; 265 } while (Changed); 266 267 LoopHeaders.clear(); 268 return EverChanged; 269 } 270 271 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 272 /// thread across it. Stop scanning the block when passing the threshold. 273 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB, 274 unsigned Threshold) { 275 /// Ignore PHI nodes, these will be flattened when duplication happens. 276 BasicBlock::const_iterator I = BB->getFirstNonPHI(); 277 278 // FIXME: THREADING will delete values that are just used to compute the 279 // branch, so they shouldn't count against the duplication cost. 280 281 // Sum up the cost of each instruction until we get to the terminator. Don't 282 // include the terminator because the copy won't include it. 283 unsigned Size = 0; 284 for (; !isa<TerminatorInst>(I); ++I) { 285 286 // Stop scanning the block if we've reached the threshold. 287 if (Size > Threshold) 288 return Size; 289 290 // Debugger intrinsics don't incur code size. 291 if (isa<DbgInfoIntrinsic>(I)) continue; 292 293 // If this is a pointer->pointer bitcast, it is free. 294 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 295 continue; 296 297 // Bail out if this instruction gives back a token type, it is not possible 298 // to duplicate it if it is used outside this BB. 299 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 300 return ~0U; 301 302 // All other instructions count for at least one unit. 303 ++Size; 304 305 // Calls are more expensive. If they are non-intrinsic calls, we model them 306 // as having cost of 4. If they are a non-vector intrinsic, we model them 307 // as having cost of 2 total, and if they are a vector intrinsic, we model 308 // them as having cost 1. 309 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 310 if (CI->cannotDuplicate() || CI->isConvergent()) 311 // Blocks with NoDuplicate are modelled as having infinite cost, so they 312 // are never duplicated. 313 return ~0U; 314 else if (!isa<IntrinsicInst>(CI)) 315 Size += 3; 316 else if (!CI->getType()->isVectorTy()) 317 Size += 1; 318 } 319 } 320 321 // Threading through a switch statement is particularly profitable. If this 322 // block ends in a switch, decrease its cost to make it more likely to happen. 323 if (isa<SwitchInst>(I)) 324 Size = Size > 6 ? Size-6 : 0; 325 326 // The same holds for indirect branches, but slightly more so. 327 if (isa<IndirectBrInst>(I)) 328 Size = Size > 8 ? Size-8 : 0; 329 330 return Size; 331 } 332 333 /// FindLoopHeaders - We do not want jump threading to turn proper loop 334 /// structures into irreducible loops. Doing this breaks up the loop nesting 335 /// hierarchy and pessimizes later transformations. To prevent this from 336 /// happening, we first have to find the loop headers. Here we approximate this 337 /// by finding targets of backedges in the CFG. 338 /// 339 /// Note that there definitely are cases when we want to allow threading of 340 /// edges across a loop header. For example, threading a jump from outside the 341 /// loop (the preheader) to an exit block of the loop is definitely profitable. 342 /// It is also almost always profitable to thread backedges from within the loop 343 /// to exit blocks, and is often profitable to thread backedges to other blocks 344 /// within the loop (forming a nested loop). This simple analysis is not rich 345 /// enough to track all of these properties and keep it up-to-date as the CFG 346 /// mutates, so we don't allow any of these transformations. 347 /// 348 void JumpThreading::FindLoopHeaders(Function &F) { 349 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 350 FindFunctionBackedges(F, Edges); 351 352 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 353 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 354 } 355 356 /// getKnownConstant - Helper method to determine if we can thread over a 357 /// terminator with the given value as its condition, and if so what value to 358 /// use for that. What kind of value this is depends on whether we want an 359 /// integer or a block address, but an undef is always accepted. 360 /// Returns null if Val is null or not an appropriate constant. 361 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 362 if (!Val) 363 return nullptr; 364 365 // Undef is "known" enough. 366 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 367 return U; 368 369 if (Preference == WantBlockAddress) 370 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 371 372 return dyn_cast<ConstantInt>(Val); 373 } 374 375 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 376 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 377 /// in any of our predecessors. If so, return the known list of value and pred 378 /// BB in the result vector. 379 /// 380 /// This returns true if there were any known values. 381 /// 382 bool JumpThreading:: 383 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result, 384 ConstantPreference Preference, 385 Instruction *CxtI) { 386 // This method walks up use-def chains recursively. Because of this, we could 387 // get into an infinite loop going around loops in the use-def chain. To 388 // prevent this, keep track of what (value, block) pairs we've already visited 389 // and terminate the search if we loop back to them 390 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 391 return false; 392 393 // An RAII help to remove this pair from the recursion set once the recursion 394 // stack pops back out again. 395 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 396 397 // If V is a constant, then it is known in all predecessors. 398 if (Constant *KC = getKnownConstant(V, Preference)) { 399 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 400 Result.push_back(std::make_pair(KC, *PI)); 401 402 return true; 403 } 404 405 // If V is a non-instruction value, or an instruction in a different block, 406 // then it can't be derived from a PHI. 407 Instruction *I = dyn_cast<Instruction>(V); 408 if (!I || I->getParent() != BB) { 409 410 // Okay, if this is a live-in value, see if it has a known value at the end 411 // of any of our predecessors. 412 // 413 // FIXME: This should be an edge property, not a block end property. 414 /// TODO: Per PR2563, we could infer value range information about a 415 /// predecessor based on its terminator. 416 // 417 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 418 // "I" is a non-local compare-with-a-constant instruction. This would be 419 // able to handle value inequalities better, for example if the compare is 420 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 421 // Perhaps getConstantOnEdge should be smart enough to do this? 422 423 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 424 BasicBlock *P = *PI; 425 // If the value is known by LazyValueInfo to be a constant in a 426 // predecessor, use that information to try to thread this block. 427 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 428 if (Constant *KC = getKnownConstant(PredCst, Preference)) 429 Result.push_back(std::make_pair(KC, P)); 430 } 431 432 return !Result.empty(); 433 } 434 435 /// If I is a PHI node, then we know the incoming values for any constants. 436 if (PHINode *PN = dyn_cast<PHINode>(I)) { 437 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 438 Value *InVal = PN->getIncomingValue(i); 439 if (Constant *KC = getKnownConstant(InVal, Preference)) { 440 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 441 } else { 442 Constant *CI = LVI->getConstantOnEdge(InVal, 443 PN->getIncomingBlock(i), 444 BB, CxtI); 445 if (Constant *KC = getKnownConstant(CI, Preference)) 446 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 447 } 448 } 449 450 return !Result.empty(); 451 } 452 453 PredValueInfoTy LHSVals, RHSVals; 454 455 // Handle some boolean conditions. 456 if (I->getType()->getPrimitiveSizeInBits() == 1) { 457 assert(Preference == WantInteger && "One-bit non-integer type?"); 458 // X | true -> true 459 // X & false -> false 460 if (I->getOpcode() == Instruction::Or || 461 I->getOpcode() == Instruction::And) { 462 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 463 WantInteger, CxtI); 464 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 465 WantInteger, CxtI); 466 467 if (LHSVals.empty() && RHSVals.empty()) 468 return false; 469 470 ConstantInt *InterestingVal; 471 if (I->getOpcode() == Instruction::Or) 472 InterestingVal = ConstantInt::getTrue(I->getContext()); 473 else 474 InterestingVal = ConstantInt::getFalse(I->getContext()); 475 476 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 477 478 // Scan for the sentinel. If we find an undef, force it to the 479 // interesting value: x|undef -> true and x&undef -> false. 480 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 481 if (LHSVals[i].first == InterestingVal || 482 isa<UndefValue>(LHSVals[i].first)) { 483 Result.push_back(LHSVals[i]); 484 Result.back().first = InterestingVal; 485 LHSKnownBBs.insert(LHSVals[i].second); 486 } 487 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 488 if (RHSVals[i].first == InterestingVal || 489 isa<UndefValue>(RHSVals[i].first)) { 490 // If we already inferred a value for this block on the LHS, don't 491 // re-add it. 492 if (!LHSKnownBBs.count(RHSVals[i].second)) { 493 Result.push_back(RHSVals[i]); 494 Result.back().first = InterestingVal; 495 } 496 } 497 498 return !Result.empty(); 499 } 500 501 // Handle the NOT form of XOR. 502 if (I->getOpcode() == Instruction::Xor && 503 isa<ConstantInt>(I->getOperand(1)) && 504 cast<ConstantInt>(I->getOperand(1))->isOne()) { 505 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 506 WantInteger, CxtI); 507 if (Result.empty()) 508 return false; 509 510 // Invert the known values. 511 for (unsigned i = 0, e = Result.size(); i != e; ++i) 512 Result[i].first = ConstantExpr::getNot(Result[i].first); 513 514 return true; 515 } 516 517 // Try to simplify some other binary operator values. 518 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 519 assert(Preference != WantBlockAddress 520 && "A binary operator creating a block address?"); 521 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 522 PredValueInfoTy LHSVals; 523 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 524 WantInteger, CxtI); 525 526 // Try to use constant folding to simplify the binary operator. 527 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 528 Constant *V = LHSVals[i].first; 529 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 530 531 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 532 Result.push_back(std::make_pair(KC, LHSVals[i].second)); 533 } 534 } 535 536 return !Result.empty(); 537 } 538 539 // Handle compare with phi operand, where the PHI is defined in this block. 540 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 541 assert(Preference == WantInteger && "Compares only produce integers"); 542 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 543 if (PN && PN->getParent() == BB) { 544 const DataLayout &DL = PN->getModule()->getDataLayout(); 545 // We can do this simplification if any comparisons fold to true or false. 546 // See if any do. 547 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 548 BasicBlock *PredBB = PN->getIncomingBlock(i); 549 Value *LHS = PN->getIncomingValue(i); 550 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 551 552 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL); 553 if (!Res) { 554 if (!isa<Constant>(RHS)) 555 continue; 556 557 LazyValueInfo::Tristate 558 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 559 cast<Constant>(RHS), PredBB, BB, 560 CxtI ? CxtI : Cmp); 561 if (ResT == LazyValueInfo::Unknown) 562 continue; 563 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 564 } 565 566 if (Constant *KC = getKnownConstant(Res, WantInteger)) 567 Result.push_back(std::make_pair(KC, PredBB)); 568 } 569 570 return !Result.empty(); 571 } 572 573 // If comparing a live-in value against a constant, see if we know the 574 // live-in value on any predecessors. 575 if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) { 576 if (!isa<Instruction>(Cmp->getOperand(0)) || 577 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) { 578 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 579 580 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){ 581 BasicBlock *P = *PI; 582 // If the value is known by LazyValueInfo to be a constant in a 583 // predecessor, use that information to try to thread this block. 584 LazyValueInfo::Tristate Res = 585 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 586 RHSCst, P, BB, CxtI ? CxtI : Cmp); 587 if (Res == LazyValueInfo::Unknown) 588 continue; 589 590 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 591 Result.push_back(std::make_pair(ResC, P)); 592 } 593 594 return !Result.empty(); 595 } 596 597 // Try to find a constant value for the LHS of a comparison, 598 // and evaluate it statically if we can. 599 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) { 600 PredValueInfoTy LHSVals; 601 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 602 WantInteger, CxtI); 603 604 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 605 Constant *V = LHSVals[i].first; 606 Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(), 607 V, CmpConst); 608 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 609 Result.push_back(std::make_pair(KC, LHSVals[i].second)); 610 } 611 612 return !Result.empty(); 613 } 614 } 615 } 616 617 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 618 // Handle select instructions where at least one operand is a known constant 619 // and we can figure out the condition value for any predecessor block. 620 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 621 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 622 PredValueInfoTy Conds; 623 if ((TrueVal || FalseVal) && 624 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 625 WantInteger, CxtI)) { 626 for (unsigned i = 0, e = Conds.size(); i != e; ++i) { 627 Constant *Cond = Conds[i].first; 628 629 // Figure out what value to use for the condition. 630 bool KnownCond; 631 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 632 // A known boolean. 633 KnownCond = CI->isOne(); 634 } else { 635 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 636 // Either operand will do, so be sure to pick the one that's a known 637 // constant. 638 // FIXME: Do this more cleverly if both values are known constants? 639 KnownCond = (TrueVal != nullptr); 640 } 641 642 // See if the select has a known constant value for this predecessor. 643 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 644 Result.push_back(std::make_pair(Val, Conds[i].second)); 645 } 646 647 return !Result.empty(); 648 } 649 } 650 651 // If all else fails, see if LVI can figure out a constant value for us. 652 Constant *CI = LVI->getConstant(V, BB, CxtI); 653 if (Constant *KC = getKnownConstant(CI, Preference)) { 654 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 655 Result.push_back(std::make_pair(KC, *PI)); 656 } 657 658 return !Result.empty(); 659 } 660 661 662 663 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 664 /// in an undefined jump, decide which block is best to revector to. 665 /// 666 /// Since we can pick an arbitrary destination, we pick the successor with the 667 /// fewest predecessors. This should reduce the in-degree of the others. 668 /// 669 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 670 TerminatorInst *BBTerm = BB->getTerminator(); 671 unsigned MinSucc = 0; 672 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 673 // Compute the successor with the minimum number of predecessors. 674 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 675 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 676 TestBB = BBTerm->getSuccessor(i); 677 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 678 if (NumPreds < MinNumPreds) { 679 MinSucc = i; 680 MinNumPreds = NumPreds; 681 } 682 } 683 684 return MinSucc; 685 } 686 687 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 688 if (!BB->hasAddressTaken()) return false; 689 690 // If the block has its address taken, it may be a tree of dead constants 691 // hanging off of it. These shouldn't keep the block alive. 692 BlockAddress *BA = BlockAddress::get(BB); 693 BA->removeDeadConstantUsers(); 694 return !BA->use_empty(); 695 } 696 697 /// ProcessBlock - If there are any predecessors whose control can be threaded 698 /// through to a successor, transform them now. 699 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 700 // If the block is trivially dead, just return and let the caller nuke it. 701 // This simplifies other transformations. 702 if (pred_empty(BB) && 703 BB != &BB->getParent()->getEntryBlock()) 704 return false; 705 706 // If this block has a single predecessor, and if that pred has a single 707 // successor, merge the blocks. This encourages recursive jump threading 708 // because now the condition in this block can be threaded through 709 // predecessors of our predecessor block. 710 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 711 const TerminatorInst *TI = SinglePred->getTerminator(); 712 if (!TI->isExceptional() && TI->getNumSuccessors() == 1 && 713 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 714 // If SinglePred was a loop header, BB becomes one. 715 if (LoopHeaders.erase(SinglePred)) 716 LoopHeaders.insert(BB); 717 718 LVI->eraseBlock(SinglePred); 719 MergeBasicBlockIntoOnlyPred(BB); 720 721 return true; 722 } 723 } 724 725 // What kind of constant we're looking for. 726 ConstantPreference Preference = WantInteger; 727 728 // Look to see if the terminator is a conditional branch, switch or indirect 729 // branch, if not we can't thread it. 730 Value *Condition; 731 Instruction *Terminator = BB->getTerminator(); 732 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 733 // Can't thread an unconditional jump. 734 if (BI->isUnconditional()) return false; 735 Condition = BI->getCondition(); 736 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 737 Condition = SI->getCondition(); 738 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 739 // Can't thread indirect branch with no successors. 740 if (IB->getNumSuccessors() == 0) return false; 741 Condition = IB->getAddress()->stripPointerCasts(); 742 Preference = WantBlockAddress; 743 } else { 744 return false; // Must be an invoke. 745 } 746 747 // Run constant folding to see if we can reduce the condition to a simple 748 // constant. 749 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 750 Value *SimpleVal = 751 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 752 if (SimpleVal) { 753 I->replaceAllUsesWith(SimpleVal); 754 I->eraseFromParent(); 755 Condition = SimpleVal; 756 } 757 } 758 759 // If the terminator is branching on an undef, we can pick any of the 760 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 761 if (isa<UndefValue>(Condition)) { 762 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 763 764 // Fold the branch/switch. 765 TerminatorInst *BBTerm = BB->getTerminator(); 766 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 767 if (i == BestSucc) continue; 768 BBTerm->getSuccessor(i)->removePredecessor(BB, true); 769 } 770 771 DEBUG(dbgs() << " In block '" << BB->getName() 772 << "' folding undef terminator: " << *BBTerm << '\n'); 773 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 774 BBTerm->eraseFromParent(); 775 return true; 776 } 777 778 // If the terminator of this block is branching on a constant, simplify the 779 // terminator to an unconditional branch. This can occur due to threading in 780 // other blocks. 781 if (getKnownConstant(Condition, Preference)) { 782 DEBUG(dbgs() << " In block '" << BB->getName() 783 << "' folding terminator: " << *BB->getTerminator() << '\n'); 784 ++NumFolds; 785 ConstantFoldTerminator(BB, true); 786 return true; 787 } 788 789 Instruction *CondInst = dyn_cast<Instruction>(Condition); 790 791 // All the rest of our checks depend on the condition being an instruction. 792 if (!CondInst) { 793 // FIXME: Unify this with code below. 794 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 795 return true; 796 return false; 797 } 798 799 800 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 801 // If we're branching on a conditional, LVI might be able to determine 802 // it's value at the branch instruction. We only handle comparisons 803 // against a constant at this time. 804 // TODO: This should be extended to handle switches as well. 805 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 806 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 807 if (CondBr && CondConst && CondBr->isConditional()) { 808 LazyValueInfo::Tristate Ret = 809 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 810 CondConst, CondBr); 811 if (Ret != LazyValueInfo::Unknown) { 812 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 813 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 814 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 815 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 816 CondBr->eraseFromParent(); 817 if (CondCmp->use_empty()) 818 CondCmp->eraseFromParent(); 819 else if (CondCmp->getParent() == BB) { 820 // If the fact we just learned is true for all uses of the 821 // condition, replace it with a constant value 822 auto *CI = Ret == LazyValueInfo::True ? 823 ConstantInt::getTrue(CondCmp->getType()) : 824 ConstantInt::getFalse(CondCmp->getType()); 825 CondCmp->replaceAllUsesWith(CI); 826 CondCmp->eraseFromParent(); 827 } 828 return true; 829 } 830 } 831 832 if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB)) 833 return true; 834 } 835 836 // Check for some cases that are worth simplifying. Right now we want to look 837 // for loads that are used by a switch or by the condition for the branch. If 838 // we see one, check to see if it's partially redundant. If so, insert a PHI 839 // which can then be used to thread the values. 840 // 841 Value *SimplifyValue = CondInst; 842 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 843 if (isa<Constant>(CondCmp->getOperand(1))) 844 SimplifyValue = CondCmp->getOperand(0); 845 846 // TODO: There are other places where load PRE would be profitable, such as 847 // more complex comparisons. 848 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 849 if (SimplifyPartiallyRedundantLoad(LI)) 850 return true; 851 852 853 // Handle a variety of cases where we are branching on something derived from 854 // a PHI node in the current block. If we can prove that any predecessors 855 // compute a predictable value based on a PHI node, thread those predecessors. 856 // 857 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 858 return true; 859 860 // If this is an otherwise-unfoldable branch on a phi node in the current 861 // block, see if we can simplify. 862 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 863 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 864 return ProcessBranchOnPHI(PN); 865 866 867 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 868 if (CondInst->getOpcode() == Instruction::Xor && 869 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 870 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 871 872 873 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 874 // "(X == 4)", thread through this block. 875 876 return false; 877 } 878 879 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 880 /// load instruction, eliminate it by replacing it with a PHI node. This is an 881 /// important optimization that encourages jump threading, and needs to be run 882 /// interlaced with other jump threading tasks. 883 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 884 // Don't hack volatile/atomic loads. 885 if (!LI->isSimple()) return false; 886 887 // If the load is defined in a block with exactly one predecessor, it can't be 888 // partially redundant. 889 BasicBlock *LoadBB = LI->getParent(); 890 if (LoadBB->getSinglePredecessor()) 891 return false; 892 893 // If the load is defined in an EH pad, it can't be partially redundant, 894 // because the edges between the invoke and the EH pad cannot have other 895 // instructions between them. 896 if (LoadBB->isEHPad()) 897 return false; 898 899 Value *LoadedPtr = LI->getOperand(0); 900 901 // If the loaded operand is defined in the LoadBB, it can't be available. 902 // TODO: Could do simple PHI translation, that would be fun :) 903 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 904 if (PtrOp->getParent() == LoadBB) 905 return false; 906 907 // Scan a few instructions up from the load, to see if it is obviously live at 908 // the entry to its block. 909 BasicBlock::iterator BBIt = LI; 910 911 if (Value *AvailableVal = 912 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, DefMaxInstsToScan)) { 913 // If the value of the load is locally available within the block, just use 914 // it. This frequently occurs for reg2mem'd allocas. 915 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 916 917 // If the returned value is the load itself, replace with an undef. This can 918 // only happen in dead loops. 919 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 920 if (AvailableVal->getType() != LI->getType()) 921 AvailableVal = 922 CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI); 923 LI->replaceAllUsesWith(AvailableVal); 924 LI->eraseFromParent(); 925 return true; 926 } 927 928 // Otherwise, if we scanned the whole block and got to the top of the block, 929 // we know the block is locally transparent to the load. If not, something 930 // might clobber its value. 931 if (BBIt != LoadBB->begin()) 932 return false; 933 934 // If all of the loads and stores that feed the value have the same AA tags, 935 // then we can propagate them onto any newly inserted loads. 936 AAMDNodes AATags; 937 LI->getAAMetadata(AATags); 938 939 SmallPtrSet<BasicBlock*, 8> PredsScanned; 940 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 941 AvailablePredsTy AvailablePreds; 942 BasicBlock *OneUnavailablePred = nullptr; 943 944 // If we got here, the loaded value is transparent through to the start of the 945 // block. Check to see if it is available in any of the predecessor blocks. 946 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 947 PI != PE; ++PI) { 948 BasicBlock *PredBB = *PI; 949 950 // If we already scanned this predecessor, skip it. 951 if (!PredsScanned.insert(PredBB).second) 952 continue; 953 954 // Scan the predecessor to see if the value is available in the pred. 955 BBIt = PredBB->end(); 956 AAMDNodes ThisAATags; 957 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 958 DefMaxInstsToScan, 959 nullptr, &ThisAATags); 960 if (!PredAvailable) { 961 OneUnavailablePred = PredBB; 962 continue; 963 } 964 965 // If AA tags disagree or are not present, forget about them. 966 if (AATags != ThisAATags) AATags = AAMDNodes(); 967 968 // If so, this load is partially redundant. Remember this info so that we 969 // can create a PHI node. 970 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 971 } 972 973 // If the loaded value isn't available in any predecessor, it isn't partially 974 // redundant. 975 if (AvailablePreds.empty()) return false; 976 977 // Okay, the loaded value is available in at least one (and maybe all!) 978 // predecessors. If the value is unavailable in more than one unique 979 // predecessor, we want to insert a merge block for those common predecessors. 980 // This ensures that we only have to insert one reload, thus not increasing 981 // code size. 982 BasicBlock *UnavailablePred = nullptr; 983 984 // If there is exactly one predecessor where the value is unavailable, the 985 // already computed 'OneUnavailablePred' block is it. If it ends in an 986 // unconditional branch, we know that it isn't a critical edge. 987 if (PredsScanned.size() == AvailablePreds.size()+1 && 988 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 989 UnavailablePred = OneUnavailablePred; 990 } else if (PredsScanned.size() != AvailablePreds.size()) { 991 // Otherwise, we had multiple unavailable predecessors or we had a critical 992 // edge from the one. 993 SmallVector<BasicBlock*, 8> PredsToSplit; 994 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 995 996 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 997 AvailablePredSet.insert(AvailablePreds[i].first); 998 999 // Add all the unavailable predecessors to the PredsToSplit list. 1000 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 1001 PI != PE; ++PI) { 1002 BasicBlock *P = *PI; 1003 // If the predecessor is an indirect goto, we can't split the edge. 1004 if (isa<IndirectBrInst>(P->getTerminator())) 1005 return false; 1006 1007 if (!AvailablePredSet.count(P)) 1008 PredsToSplit.push_back(P); 1009 } 1010 1011 // Split them out to their own block. 1012 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1013 } 1014 1015 // If the value isn't available in all predecessors, then there will be 1016 // exactly one where it isn't available. Insert a load on that edge and add 1017 // it to the AvailablePreds list. 1018 if (UnavailablePred) { 1019 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1020 "Can't handle critical edge here!"); 1021 LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, 1022 LI->getAlignment(), 1023 UnavailablePred->getTerminator()); 1024 NewVal->setDebugLoc(LI->getDebugLoc()); 1025 if (AATags) 1026 NewVal->setAAMetadata(AATags); 1027 1028 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1029 } 1030 1031 // Now we know that each predecessor of this block has a value in 1032 // AvailablePreds, sort them for efficient access as we're walking the preds. 1033 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1034 1035 // Create a PHI node at the start of the block for the PRE'd load value. 1036 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1037 PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "", 1038 LoadBB->begin()); 1039 PN->takeName(LI); 1040 PN->setDebugLoc(LI->getDebugLoc()); 1041 1042 // Insert new entries into the PHI for each predecessor. A single block may 1043 // have multiple entries here. 1044 for (pred_iterator PI = PB; PI != PE; ++PI) { 1045 BasicBlock *P = *PI; 1046 AvailablePredsTy::iterator I = 1047 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1048 std::make_pair(P, (Value*)nullptr)); 1049 1050 assert(I != AvailablePreds.end() && I->first == P && 1051 "Didn't find entry for predecessor!"); 1052 1053 // If we have an available predecessor but it requires casting, insert the 1054 // cast in the predecessor and use the cast. Note that we have to update the 1055 // AvailablePreds vector as we go so that all of the PHI entries for this 1056 // predecessor use the same bitcast. 1057 Value *&PredV = I->second; 1058 if (PredV->getType() != LI->getType()) 1059 PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "", 1060 P->getTerminator()); 1061 1062 PN->addIncoming(PredV, I->first); 1063 } 1064 1065 //cerr << "PRE: " << *LI << *PN << "\n"; 1066 1067 LI->replaceAllUsesWith(PN); 1068 LI->eraseFromParent(); 1069 1070 return true; 1071 } 1072 1073 /// FindMostPopularDest - The specified list contains multiple possible 1074 /// threadable destinations. Pick the one that occurs the most frequently in 1075 /// the list. 1076 static BasicBlock * 1077 FindMostPopularDest(BasicBlock *BB, 1078 const SmallVectorImpl<std::pair<BasicBlock*, 1079 BasicBlock*> > &PredToDestList) { 1080 assert(!PredToDestList.empty()); 1081 1082 // Determine popularity. If there are multiple possible destinations, we 1083 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1084 // blocks with known and real destinations to threading undef. We'll handle 1085 // them later if interesting. 1086 DenseMap<BasicBlock*, unsigned> DestPopularity; 1087 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1088 if (PredToDestList[i].second) 1089 DestPopularity[PredToDestList[i].second]++; 1090 1091 // Find the most popular dest. 1092 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1093 BasicBlock *MostPopularDest = DPI->first; 1094 unsigned Popularity = DPI->second; 1095 SmallVector<BasicBlock*, 4> SamePopularity; 1096 1097 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1098 // If the popularity of this entry isn't higher than the popularity we've 1099 // seen so far, ignore it. 1100 if (DPI->second < Popularity) 1101 ; // ignore. 1102 else if (DPI->second == Popularity) { 1103 // If it is the same as what we've seen so far, keep track of it. 1104 SamePopularity.push_back(DPI->first); 1105 } else { 1106 // If it is more popular, remember it. 1107 SamePopularity.clear(); 1108 MostPopularDest = DPI->first; 1109 Popularity = DPI->second; 1110 } 1111 } 1112 1113 // Okay, now we know the most popular destination. If there is more than one 1114 // destination, we need to determine one. This is arbitrary, but we need 1115 // to make a deterministic decision. Pick the first one that appears in the 1116 // successor list. 1117 if (!SamePopularity.empty()) { 1118 SamePopularity.push_back(MostPopularDest); 1119 TerminatorInst *TI = BB->getTerminator(); 1120 for (unsigned i = 0; ; ++i) { 1121 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1122 1123 if (std::find(SamePopularity.begin(), SamePopularity.end(), 1124 TI->getSuccessor(i)) == SamePopularity.end()) 1125 continue; 1126 1127 MostPopularDest = TI->getSuccessor(i); 1128 break; 1129 } 1130 } 1131 1132 // Okay, we have finally picked the most popular destination. 1133 return MostPopularDest; 1134 } 1135 1136 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1137 ConstantPreference Preference, 1138 Instruction *CxtI) { 1139 // If threading this would thread across a loop header, don't even try to 1140 // thread the edge. 1141 if (LoopHeaders.count(BB)) 1142 return false; 1143 1144 PredValueInfoTy PredValues; 1145 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1146 return false; 1147 1148 assert(!PredValues.empty() && 1149 "ComputeValueKnownInPredecessors returned true with no values"); 1150 1151 DEBUG(dbgs() << "IN BB: " << *BB; 1152 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1153 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1154 << *PredValues[i].first 1155 << " for pred '" << PredValues[i].second->getName() << "'.\n"; 1156 }); 1157 1158 // Decide what we want to thread through. Convert our list of known values to 1159 // a list of known destinations for each pred. This also discards duplicate 1160 // predecessors and keeps track of the undefined inputs (which are represented 1161 // as a null dest in the PredToDestList). 1162 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1163 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1164 1165 BasicBlock *OnlyDest = nullptr; 1166 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1167 1168 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1169 BasicBlock *Pred = PredValues[i].second; 1170 if (!SeenPreds.insert(Pred).second) 1171 continue; // Duplicate predecessor entry. 1172 1173 // If the predecessor ends with an indirect goto, we can't change its 1174 // destination. 1175 if (isa<IndirectBrInst>(Pred->getTerminator())) 1176 continue; 1177 1178 Constant *Val = PredValues[i].first; 1179 1180 BasicBlock *DestBB; 1181 if (isa<UndefValue>(Val)) 1182 DestBB = nullptr; 1183 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1184 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1185 else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1186 DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor(); 1187 } else { 1188 assert(isa<IndirectBrInst>(BB->getTerminator()) 1189 && "Unexpected terminator"); 1190 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1191 } 1192 1193 // If we have exactly one destination, remember it for efficiency below. 1194 if (PredToDestList.empty()) 1195 OnlyDest = DestBB; 1196 else if (OnlyDest != DestBB) 1197 OnlyDest = MultipleDestSentinel; 1198 1199 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1200 } 1201 1202 // If all edges were unthreadable, we fail. 1203 if (PredToDestList.empty()) 1204 return false; 1205 1206 // Determine which is the most common successor. If we have many inputs and 1207 // this block is a switch, we want to start by threading the batch that goes 1208 // to the most popular destination first. If we only know about one 1209 // threadable destination (the common case) we can avoid this. 1210 BasicBlock *MostPopularDest = OnlyDest; 1211 1212 if (MostPopularDest == MultipleDestSentinel) 1213 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1214 1215 // Now that we know what the most popular destination is, factor all 1216 // predecessors that will jump to it into a single predecessor. 1217 SmallVector<BasicBlock*, 16> PredsToFactor; 1218 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1219 if (PredToDestList[i].second == MostPopularDest) { 1220 BasicBlock *Pred = PredToDestList[i].first; 1221 1222 // This predecessor may be a switch or something else that has multiple 1223 // edges to the block. Factor each of these edges by listing them 1224 // according to # occurrences in PredsToFactor. 1225 TerminatorInst *PredTI = Pred->getTerminator(); 1226 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 1227 if (PredTI->getSuccessor(i) == BB) 1228 PredsToFactor.push_back(Pred); 1229 } 1230 1231 // If the threadable edges are branching on an undefined value, we get to pick 1232 // the destination that these predecessors should get to. 1233 if (!MostPopularDest) 1234 MostPopularDest = BB->getTerminator()-> 1235 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1236 1237 // Ok, try to thread it! 1238 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1239 } 1240 1241 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1242 /// a PHI node in the current block. See if there are any simplifications we 1243 /// can do based on inputs to the phi node. 1244 /// 1245 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) { 1246 BasicBlock *BB = PN->getParent(); 1247 1248 // TODO: We could make use of this to do it once for blocks with common PHI 1249 // values. 1250 SmallVector<BasicBlock*, 1> PredBBs; 1251 PredBBs.resize(1); 1252 1253 // If any of the predecessor blocks end in an unconditional branch, we can 1254 // *duplicate* the conditional branch into that block in order to further 1255 // encourage jump threading and to eliminate cases where we have branch on a 1256 // phi of an icmp (branch on icmp is much better). 1257 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1258 BasicBlock *PredBB = PN->getIncomingBlock(i); 1259 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1260 if (PredBr->isUnconditional()) { 1261 PredBBs[0] = PredBB; 1262 // Try to duplicate BB into PredBB. 1263 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1264 return true; 1265 } 1266 } 1267 1268 return false; 1269 } 1270 1271 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1272 /// a xor instruction in the current block. See if there are any 1273 /// simplifications we can do based on inputs to the xor. 1274 /// 1275 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) { 1276 BasicBlock *BB = BO->getParent(); 1277 1278 // If either the LHS or RHS of the xor is a constant, don't do this 1279 // optimization. 1280 if (isa<ConstantInt>(BO->getOperand(0)) || 1281 isa<ConstantInt>(BO->getOperand(1))) 1282 return false; 1283 1284 // If the first instruction in BB isn't a phi, we won't be able to infer 1285 // anything special about any particular predecessor. 1286 if (!isa<PHINode>(BB->front())) 1287 return false; 1288 1289 // If we have a xor as the branch input to this block, and we know that the 1290 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1291 // the condition into the predecessor and fix that value to true, saving some 1292 // logical ops on that path and encouraging other paths to simplify. 1293 // 1294 // This copies something like this: 1295 // 1296 // BB: 1297 // %X = phi i1 [1], [%X'] 1298 // %Y = icmp eq i32 %A, %B 1299 // %Z = xor i1 %X, %Y 1300 // br i1 %Z, ... 1301 // 1302 // Into: 1303 // BB': 1304 // %Y = icmp ne i32 %A, %B 1305 // br i1 %Y, ... 1306 1307 PredValueInfoTy XorOpValues; 1308 bool isLHS = true; 1309 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1310 WantInteger, BO)) { 1311 assert(XorOpValues.empty()); 1312 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1313 WantInteger, BO)) 1314 return false; 1315 isLHS = false; 1316 } 1317 1318 assert(!XorOpValues.empty() && 1319 "ComputeValueKnownInPredecessors returned true with no values"); 1320 1321 // Scan the information to see which is most popular: true or false. The 1322 // predecessors can be of the set true, false, or undef. 1323 unsigned NumTrue = 0, NumFalse = 0; 1324 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1325 if (isa<UndefValue>(XorOpValues[i].first)) 1326 // Ignore undefs for the count. 1327 continue; 1328 if (cast<ConstantInt>(XorOpValues[i].first)->isZero()) 1329 ++NumFalse; 1330 else 1331 ++NumTrue; 1332 } 1333 1334 // Determine which value to split on, true, false, or undef if neither. 1335 ConstantInt *SplitVal = nullptr; 1336 if (NumTrue > NumFalse) 1337 SplitVal = ConstantInt::getTrue(BB->getContext()); 1338 else if (NumTrue != 0 || NumFalse != 0) 1339 SplitVal = ConstantInt::getFalse(BB->getContext()); 1340 1341 // Collect all of the blocks that this can be folded into so that we can 1342 // factor this once and clone it once. 1343 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1344 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1345 if (XorOpValues[i].first != SplitVal && 1346 !isa<UndefValue>(XorOpValues[i].first)) 1347 continue; 1348 1349 BlocksToFoldInto.push_back(XorOpValues[i].second); 1350 } 1351 1352 // If we inferred a value for all of the predecessors, then duplication won't 1353 // help us. However, we can just replace the LHS or RHS with the constant. 1354 if (BlocksToFoldInto.size() == 1355 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1356 if (!SplitVal) { 1357 // If all preds provide undef, just nuke the xor, because it is undef too. 1358 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1359 BO->eraseFromParent(); 1360 } else if (SplitVal->isZero()) { 1361 // If all preds provide 0, replace the xor with the other input. 1362 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1363 BO->eraseFromParent(); 1364 } else { 1365 // If all preds provide 1, set the computed value to 1. 1366 BO->setOperand(!isLHS, SplitVal); 1367 } 1368 1369 return true; 1370 } 1371 1372 // Try to duplicate BB into PredBB. 1373 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1374 } 1375 1376 1377 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1378 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1379 /// NewPred using the entries from OldPred (suitably mapped). 1380 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1381 BasicBlock *OldPred, 1382 BasicBlock *NewPred, 1383 DenseMap<Instruction*, Value*> &ValueMap) { 1384 for (BasicBlock::iterator PNI = PHIBB->begin(); 1385 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1386 // Ok, we have a PHI node. Figure out what the incoming value was for the 1387 // DestBlock. 1388 Value *IV = PN->getIncomingValueForBlock(OldPred); 1389 1390 // Remap the value if necessary. 1391 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1392 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1393 if (I != ValueMap.end()) 1394 IV = I->second; 1395 } 1396 1397 PN->addIncoming(IV, NewPred); 1398 } 1399 } 1400 1401 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1402 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1403 /// across BB. Transform the IR to reflect this change. 1404 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1405 const SmallVectorImpl<BasicBlock*> &PredBBs, 1406 BasicBlock *SuccBB) { 1407 // If threading to the same block as we come from, we would infinite loop. 1408 if (SuccBB == BB) { 1409 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1410 << "' - would thread to self!\n"); 1411 return false; 1412 } 1413 1414 // If threading this would thread across a loop header, don't thread the edge. 1415 // See the comments above FindLoopHeaders for justifications and caveats. 1416 if (LoopHeaders.count(BB)) { 1417 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1418 << "' to dest BB '" << SuccBB->getName() 1419 << "' - it might create an irreducible loop!\n"); 1420 return false; 1421 } 1422 1423 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, BBDupThreshold); 1424 if (JumpThreadCost > BBDupThreshold) { 1425 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1426 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1427 return false; 1428 } 1429 1430 // And finally, do it! Start by factoring the predecessors if needed. 1431 BasicBlock *PredBB; 1432 if (PredBBs.size() == 1) 1433 PredBB = PredBBs[0]; 1434 else { 1435 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1436 << " common predecessors.\n"); 1437 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1438 } 1439 1440 // And finally, do it! 1441 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1442 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1443 << ", across block:\n " 1444 << *BB << "\n"); 1445 1446 LVI->threadEdge(PredBB, BB, SuccBB); 1447 1448 // We are going to have to map operands from the original BB block to the new 1449 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1450 // account for entry from PredBB. 1451 DenseMap<Instruction*, Value*> ValueMapping; 1452 1453 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1454 BB->getName()+".thread", 1455 BB->getParent(), BB); 1456 NewBB->moveAfter(PredBB); 1457 1458 // Set the block frequency of NewBB. 1459 if (HasProfileData) { 1460 auto NewBBFreq = 1461 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 1462 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 1463 } 1464 1465 BasicBlock::iterator BI = BB->begin(); 1466 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1467 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1468 1469 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1470 // mapping and using it to remap operands in the cloned instructions. 1471 for (; !isa<TerminatorInst>(BI); ++BI) { 1472 Instruction *New = BI->clone(); 1473 New->setName(BI->getName()); 1474 NewBB->getInstList().push_back(New); 1475 ValueMapping[BI] = New; 1476 1477 // Remap operands to patch up intra-block references. 1478 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1479 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1480 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1481 if (I != ValueMapping.end()) 1482 New->setOperand(i, I->second); 1483 } 1484 } 1485 1486 // We didn't copy the terminator from BB over to NewBB, because there is now 1487 // an unconditional jump to SuccBB. Insert the unconditional jump. 1488 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 1489 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1490 1491 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1492 // PHI nodes for NewBB now. 1493 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1494 1495 // If there were values defined in BB that are used outside the block, then we 1496 // now have to update all uses of the value to use either the original value, 1497 // the cloned value, or some PHI derived value. This can require arbitrary 1498 // PHI insertion, of which we are prepared to do, clean these up now. 1499 SSAUpdater SSAUpdate; 1500 SmallVector<Use*, 16> UsesToRename; 1501 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1502 // Scan all uses of this instruction to see if it is used outside of its 1503 // block, and if so, record them in UsesToRename. 1504 for (Use &U : I->uses()) { 1505 Instruction *User = cast<Instruction>(U.getUser()); 1506 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1507 if (UserPN->getIncomingBlock(U) == BB) 1508 continue; 1509 } else if (User->getParent() == BB) 1510 continue; 1511 1512 UsesToRename.push_back(&U); 1513 } 1514 1515 // If there are no uses outside the block, we're done with this instruction. 1516 if (UsesToRename.empty()) 1517 continue; 1518 1519 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1520 1521 // We found a use of I outside of BB. Rename all uses of I that are outside 1522 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1523 // with the two values we know. 1524 SSAUpdate.Initialize(I->getType(), I->getName()); 1525 SSAUpdate.AddAvailableValue(BB, I); 1526 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); 1527 1528 while (!UsesToRename.empty()) 1529 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1530 DEBUG(dbgs() << "\n"); 1531 } 1532 1533 1534 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1535 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1536 // us to simplify any PHI nodes in BB. 1537 TerminatorInst *PredTerm = PredBB->getTerminator(); 1538 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1539 if (PredTerm->getSuccessor(i) == BB) { 1540 BB->removePredecessor(PredBB, true); 1541 PredTerm->setSuccessor(i, NewBB); 1542 } 1543 1544 // At this point, the IR is fully up to date and consistent. Do a quick scan 1545 // over the new instructions and zap any that are constants or dead. This 1546 // frequently happens because of phi translation. 1547 SimplifyInstructionsInBlock(NewBB, TLI); 1548 1549 // Update the edge weight from BB to SuccBB, which should be less than before. 1550 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 1551 1552 // Threaded an edge! 1553 ++NumThreads; 1554 return true; 1555 } 1556 1557 /// Create a new basic block that will be the predecessor of BB and successor of 1558 /// all blocks in Preds. When profile data is availble, update the frequency of 1559 /// this new block. 1560 BasicBlock *JumpThreading::SplitBlockPreds(BasicBlock *BB, 1561 ArrayRef<BasicBlock *> Preds, 1562 const char *Suffix) { 1563 // Collect the frequencies of all predecessors of BB, which will be used to 1564 // update the edge weight on BB->SuccBB. 1565 BlockFrequency PredBBFreq(0); 1566 if (HasProfileData) 1567 for (auto Pred : Preds) 1568 PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB); 1569 1570 BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix); 1571 1572 // Set the block frequency of the newly created PredBB, which is the sum of 1573 // frequencies of Preds. 1574 if (HasProfileData) 1575 BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency()); 1576 return PredBB; 1577 } 1578 1579 /// Update the block frequency of BB and branch weight and the metadata on the 1580 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 1581 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 1582 void JumpThreading::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 1583 BasicBlock *BB, 1584 BasicBlock *NewBB, 1585 BasicBlock *SuccBB) { 1586 if (!HasProfileData) 1587 return; 1588 1589 assert(BFI && BPI && "BFI & BPI should have been created here"); 1590 1591 // As the edge from PredBB to BB is deleted, we have to update the block 1592 // frequency of BB. 1593 auto BBOrigFreq = BFI->getBlockFreq(BB); 1594 auto NewBBFreq = BFI->getBlockFreq(NewBB); 1595 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 1596 auto BBNewFreq = BBOrigFreq - NewBBFreq; 1597 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 1598 1599 // Collect updated outgoing edges' frequencies from BB and use them to update 1600 // edge weights. 1601 SmallVector<uint64_t, 4> BBSuccFreq; 1602 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I) { 1603 auto SuccFreq = (*I == SuccBB) 1604 ? BB2SuccBBFreq - NewBBFreq 1605 : BBOrigFreq * BPI->getEdgeProbability(BB, *I); 1606 BBSuccFreq.push_back(SuccFreq.getFrequency()); 1607 } 1608 1609 // Normalize edge weights in Weights64 so that the sum of them can fit in 1610 MachineBranchProbabilityInfo::normalizeEdgeWeights(BBSuccFreq.begin(), 1611 BBSuccFreq.end()); 1612 1613 SmallVector<uint32_t, 4> Weights; 1614 for (auto Freq : BBSuccFreq) 1615 Weights.push_back(static_cast<uint32_t>(Freq)); 1616 1617 // Update edge weights in BPI. 1618 for (int I = 0, E = Weights.size(); I < E; I++) 1619 BPI->setEdgeWeight(BB, I, Weights[I]); 1620 1621 if (Weights.size() >= 2) { 1622 auto TI = BB->getTerminator(); 1623 TI->setMetadata( 1624 LLVMContext::MD_prof, 1625 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 1626 } 1627 } 1628 1629 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1630 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1631 /// If we can duplicate the contents of BB up into PredBB do so now, this 1632 /// improves the odds that the branch will be on an analyzable instruction like 1633 /// a compare. 1634 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1635 const SmallVectorImpl<BasicBlock *> &PredBBs) { 1636 assert(!PredBBs.empty() && "Can't handle an empty set"); 1637 1638 // If BB is a loop header, then duplicating this block outside the loop would 1639 // cause us to transform this into an irreducible loop, don't do this. 1640 // See the comments above FindLoopHeaders for justifications and caveats. 1641 if (LoopHeaders.count(BB)) { 1642 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1643 << "' into predecessor block '" << PredBBs[0]->getName() 1644 << "' - it might create an irreducible loop!\n"); 1645 return false; 1646 } 1647 1648 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, BBDupThreshold); 1649 if (DuplicationCost > BBDupThreshold) { 1650 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1651 << "' - Cost is too high: " << DuplicationCost << "\n"); 1652 return false; 1653 } 1654 1655 // And finally, do it! Start by factoring the predecessors if needed. 1656 BasicBlock *PredBB; 1657 if (PredBBs.size() == 1) 1658 PredBB = PredBBs[0]; 1659 else { 1660 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1661 << " common predecessors.\n"); 1662 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1663 } 1664 1665 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1666 // of PredBB. 1667 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1668 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1669 << DuplicationCost << " block is:" << *BB << "\n"); 1670 1671 // Unless PredBB ends with an unconditional branch, split the edge so that we 1672 // can just clone the bits from BB into the end of the new PredBB. 1673 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 1674 1675 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 1676 PredBB = SplitEdge(PredBB, BB); 1677 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1678 } 1679 1680 // We are going to have to map operands from the original BB block into the 1681 // PredBB block. Evaluate PHI nodes in BB. 1682 DenseMap<Instruction*, Value*> ValueMapping; 1683 1684 BasicBlock::iterator BI = BB->begin(); 1685 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1686 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1687 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1688 // mapping and using it to remap operands in the cloned instructions. 1689 for (; BI != BB->end(); ++BI) { 1690 Instruction *New = BI->clone(); 1691 1692 // Remap operands to patch up intra-block references. 1693 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1694 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1695 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1696 if (I != ValueMapping.end()) 1697 New->setOperand(i, I->second); 1698 } 1699 1700 // If this instruction can be simplified after the operands are updated, 1701 // just use the simplified value instead. This frequently happens due to 1702 // phi translation. 1703 if (Value *IV = 1704 SimplifyInstruction(New, BB->getModule()->getDataLayout())) { 1705 delete New; 1706 ValueMapping[BI] = IV; 1707 } else { 1708 // Otherwise, insert the new instruction into the block. 1709 New->setName(BI->getName()); 1710 PredBB->getInstList().insert(OldPredBranch, New); 1711 ValueMapping[BI] = New; 1712 } 1713 } 1714 1715 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1716 // add entries to the PHI nodes for branch from PredBB now. 1717 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1718 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1719 ValueMapping); 1720 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1721 ValueMapping); 1722 1723 // If there were values defined in BB that are used outside the block, then we 1724 // now have to update all uses of the value to use either the original value, 1725 // the cloned value, or some PHI derived value. This can require arbitrary 1726 // PHI insertion, of which we are prepared to do, clean these up now. 1727 SSAUpdater SSAUpdate; 1728 SmallVector<Use*, 16> UsesToRename; 1729 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1730 // Scan all uses of this instruction to see if it is used outside of its 1731 // block, and if so, record them in UsesToRename. 1732 for (Use &U : I->uses()) { 1733 Instruction *User = cast<Instruction>(U.getUser()); 1734 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1735 if (UserPN->getIncomingBlock(U) == BB) 1736 continue; 1737 } else if (User->getParent() == BB) 1738 continue; 1739 1740 UsesToRename.push_back(&U); 1741 } 1742 1743 // If there are no uses outside the block, we're done with this instruction. 1744 if (UsesToRename.empty()) 1745 continue; 1746 1747 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1748 1749 // We found a use of I outside of BB. Rename all uses of I that are outside 1750 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1751 // with the two values we know. 1752 SSAUpdate.Initialize(I->getType(), I->getName()); 1753 SSAUpdate.AddAvailableValue(BB, I); 1754 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); 1755 1756 while (!UsesToRename.empty()) 1757 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1758 DEBUG(dbgs() << "\n"); 1759 } 1760 1761 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1762 // that we nuked. 1763 BB->removePredecessor(PredBB, true); 1764 1765 // Remove the unconditional branch at the end of the PredBB block. 1766 OldPredBranch->eraseFromParent(); 1767 1768 ++NumDupes; 1769 return true; 1770 } 1771 1772 /// TryToUnfoldSelect - Look for blocks of the form 1773 /// bb1: 1774 /// %a = select 1775 /// br bb 1776 /// 1777 /// bb2: 1778 /// %p = phi [%a, %bb] ... 1779 /// %c = icmp %p 1780 /// br i1 %c 1781 /// 1782 /// And expand the select into a branch structure if one of its arms allows %c 1783 /// to be folded. This later enables threading from bb1 over bb2. 1784 bool JumpThreading::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 1785 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1786 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 1787 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 1788 1789 if (!CondBr || !CondBr->isConditional() || !CondLHS || 1790 CondLHS->getParent() != BB) 1791 return false; 1792 1793 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 1794 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 1795 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 1796 1797 // Look if one of the incoming values is a select in the corresponding 1798 // predecessor. 1799 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 1800 continue; 1801 1802 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 1803 if (!PredTerm || !PredTerm->isUnconditional()) 1804 continue; 1805 1806 // Now check if one of the select values would allow us to constant fold the 1807 // terminator in BB. We don't do the transform if both sides fold, those 1808 // cases will be threaded in any case. 1809 LazyValueInfo::Tristate LHSFolds = 1810 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 1811 CondRHS, Pred, BB, CondCmp); 1812 LazyValueInfo::Tristate RHSFolds = 1813 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 1814 CondRHS, Pred, BB, CondCmp); 1815 if ((LHSFolds != LazyValueInfo::Unknown || 1816 RHSFolds != LazyValueInfo::Unknown) && 1817 LHSFolds != RHSFolds) { 1818 // Expand the select. 1819 // 1820 // Pred -- 1821 // | v 1822 // | NewBB 1823 // | | 1824 // |----- 1825 // v 1826 // BB 1827 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 1828 BB->getParent(), BB); 1829 // Move the unconditional branch to NewBB. 1830 PredTerm->removeFromParent(); 1831 NewBB->getInstList().insert(NewBB->end(), PredTerm); 1832 // Create a conditional branch and update PHI nodes. 1833 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 1834 CondLHS->setIncomingValue(I, SI->getFalseValue()); 1835 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 1836 // The select is now dead. 1837 SI->eraseFromParent(); 1838 1839 // Update any other PHI nodes in BB. 1840 for (BasicBlock::iterator BI = BB->begin(); 1841 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 1842 if (Phi != CondLHS) 1843 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 1844 return true; 1845 } 1846 } 1847 return false; 1848 } 1849