xref: /llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp (revision 329ea064edad3375e00e011224132eb3acf6b1c8)
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "jump-threading"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/IntrinsicInst.h"
17 #include "llvm/LLVMContext.h"
18 #include "llvm/Pass.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LazyValueInfo.h"
21 #include "llvm/Analysis/Loads.h"
22 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
23 #include "llvm/Transforms/Utils/Local.h"
24 #include "llvm/Transforms/Utils/SSAUpdater.h"
25 #include "llvm/Target/TargetData.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ValueHandle.h"
34 #include "llvm/Support/raw_ostream.h"
35 using namespace llvm;
36 
37 STATISTIC(NumThreads, "Number of jumps threaded");
38 STATISTIC(NumFolds,   "Number of terminators folded");
39 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
40 
41 static cl::opt<unsigned>
42 Threshold("jump-threading-threshold",
43           cl::desc("Max block size to duplicate for jump threading"),
44           cl::init(6), cl::Hidden);
45 
46 // Turn on use of LazyValueInfo.
47 static cl::opt<bool>
48 EnableLVI("enable-jump-threading-lvi", cl::ReallyHidden);
49 
50 
51 
52 namespace {
53   /// This pass performs 'jump threading', which looks at blocks that have
54   /// multiple predecessors and multiple successors.  If one or more of the
55   /// predecessors of the block can be proven to always jump to one of the
56   /// successors, we forward the edge from the predecessor to the successor by
57   /// duplicating the contents of this block.
58   ///
59   /// An example of when this can occur is code like this:
60   ///
61   ///   if () { ...
62   ///     X = 4;
63   ///   }
64   ///   if (X < 3) {
65   ///
66   /// In this case, the unconditional branch at the end of the first if can be
67   /// revectored to the false side of the second if.
68   ///
69   class JumpThreading : public FunctionPass {
70     TargetData *TD;
71     LazyValueInfo *LVI;
72 #ifdef NDEBUG
73     SmallPtrSet<BasicBlock*, 16> LoopHeaders;
74 #else
75     SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
76 #endif
77   public:
78     static char ID; // Pass identification
79     JumpThreading() : FunctionPass(&ID) {}
80 
81     bool runOnFunction(Function &F);
82 
83     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
84       if (EnableLVI)
85         AU.addRequired<LazyValueInfo>();
86     }
87 
88     void FindLoopHeaders(Function &F);
89     bool ProcessBlock(BasicBlock *BB);
90     bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
91                     BasicBlock *SuccBB);
92     bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
93                                   const SmallVectorImpl<BasicBlock *> &PredBBs);
94 
95     typedef SmallVectorImpl<std::pair<ConstantInt*,
96                                       BasicBlock*> > PredValueInfo;
97 
98     bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
99                                          PredValueInfo &Result);
100     bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB);
101 
102 
103     bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
104     bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
105 
106     bool ProcessBranchOnPHI(PHINode *PN);
107     bool ProcessBranchOnXOR(BinaryOperator *BO);
108 
109     bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
110   };
111 }
112 
113 char JumpThreading::ID = 0;
114 static RegisterPass<JumpThreading>
115 X("jump-threading", "Jump Threading");
116 
117 // Public interface to the Jump Threading pass
118 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
119 
120 /// runOnFunction - Top level algorithm.
121 ///
122 bool JumpThreading::runOnFunction(Function &F) {
123   DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
124   TD = getAnalysisIfAvailable<TargetData>();
125   LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0;
126 
127   FindLoopHeaders(F);
128 
129   bool Changed, EverChanged = false;
130   do {
131     Changed = false;
132     for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
133       BasicBlock *BB = I;
134       // Thread all of the branches we can over this block.
135       while (ProcessBlock(BB))
136         Changed = true;
137 
138       ++I;
139 
140       // If the block is trivially dead, zap it.  This eliminates the successor
141       // edges which simplifies the CFG.
142       if (pred_begin(BB) == pred_end(BB) &&
143           BB != &BB->getParent()->getEntryBlock()) {
144         DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
145               << "' with terminator: " << *BB->getTerminator() << '\n');
146         LoopHeaders.erase(BB);
147         DeleteDeadBlock(BB);
148         Changed = true;
149       } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
150         // Can't thread an unconditional jump, but if the block is "almost
151         // empty", we can replace uses of it with uses of the successor and make
152         // this dead.
153         if (BI->isUnconditional() &&
154             BB != &BB->getParent()->getEntryBlock()) {
155           BasicBlock::iterator BBI = BB->getFirstNonPHI();
156           // Ignore dbg intrinsics.
157           while (isa<DbgInfoIntrinsic>(BBI))
158             ++BBI;
159           // If the terminator is the only non-phi instruction, try to nuke it.
160           if (BBI->isTerminator()) {
161             // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
162             // block, we have to make sure it isn't in the LoopHeaders set.  We
163             // reinsert afterward if needed.
164             bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
165             BasicBlock *Succ = BI->getSuccessor(0);
166 
167             if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
168               Changed = true;
169               // If we deleted BB and BB was the header of a loop, then the
170               // successor is now the header of the loop.
171               BB = Succ;
172             }
173 
174             if (ErasedFromLoopHeaders)
175               LoopHeaders.insert(BB);
176           }
177         }
178       }
179     }
180     EverChanged |= Changed;
181   } while (Changed);
182 
183   LoopHeaders.clear();
184   return EverChanged;
185 }
186 
187 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
188 /// thread across it.
189 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
190   /// Ignore PHI nodes, these will be flattened when duplication happens.
191   BasicBlock::const_iterator I = BB->getFirstNonPHI();
192 
193   // FIXME: THREADING will delete values that are just used to compute the
194   // branch, so they shouldn't count against the duplication cost.
195 
196 
197   // Sum up the cost of each instruction until we get to the terminator.  Don't
198   // include the terminator because the copy won't include it.
199   unsigned Size = 0;
200   for (; !isa<TerminatorInst>(I); ++I) {
201     // Debugger intrinsics don't incur code size.
202     if (isa<DbgInfoIntrinsic>(I)) continue;
203 
204     // If this is a pointer->pointer bitcast, it is free.
205     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
206       continue;
207 
208     // All other instructions count for at least one unit.
209     ++Size;
210 
211     // Calls are more expensive.  If they are non-intrinsic calls, we model them
212     // as having cost of 4.  If they are a non-vector intrinsic, we model them
213     // as having cost of 2 total, and if they are a vector intrinsic, we model
214     // them as having cost 1.
215     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
216       if (!isa<IntrinsicInst>(CI))
217         Size += 3;
218       else if (!CI->getType()->isVectorTy())
219         Size += 1;
220     }
221   }
222 
223   // Threading through a switch statement is particularly profitable.  If this
224   // block ends in a switch, decrease its cost to make it more likely to happen.
225   if (isa<SwitchInst>(I))
226     Size = Size > 6 ? Size-6 : 0;
227 
228   return Size;
229 }
230 
231 /// FindLoopHeaders - We do not want jump threading to turn proper loop
232 /// structures into irreducible loops.  Doing this breaks up the loop nesting
233 /// hierarchy and pessimizes later transformations.  To prevent this from
234 /// happening, we first have to find the loop headers.  Here we approximate this
235 /// by finding targets of backedges in the CFG.
236 ///
237 /// Note that there definitely are cases when we want to allow threading of
238 /// edges across a loop header.  For example, threading a jump from outside the
239 /// loop (the preheader) to an exit block of the loop is definitely profitable.
240 /// It is also almost always profitable to thread backedges from within the loop
241 /// to exit blocks, and is often profitable to thread backedges to other blocks
242 /// within the loop (forming a nested loop).  This simple analysis is not rich
243 /// enough to track all of these properties and keep it up-to-date as the CFG
244 /// mutates, so we don't allow any of these transformations.
245 ///
246 void JumpThreading::FindLoopHeaders(Function &F) {
247   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
248   FindFunctionBackedges(F, Edges);
249 
250   for (unsigned i = 0, e = Edges.size(); i != e; ++i)
251     LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
252 }
253 
254 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
255 /// if we can infer that the value is a known ConstantInt in any of our
256 /// predecessors.  If so, return the known list of value and pred BB in the
257 /// result vector.  If a value is known to be undef, it is returned as null.
258 ///
259 /// This returns true if there were any known values.
260 ///
261 bool JumpThreading::
262 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
263   // If V is a constantint, then it is known in all predecessors.
264   if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
265     ConstantInt *CI = dyn_cast<ConstantInt>(V);
266 
267     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
268       Result.push_back(std::make_pair(CI, *PI));
269     return true;
270   }
271 
272   // If V is a non-instruction value, or an instruction in a different block,
273   // then it can't be derived from a PHI.
274   Instruction *I = dyn_cast<Instruction>(V);
275   if (I == 0 || I->getParent() != BB) {
276 
277     // Okay, if this is a live-in value, see if it has a known value at the end
278     // of any of our predecessors.
279     //
280     // FIXME: This should be an edge property, not a block end property.
281     /// TODO: Per PR2563, we could infer value range information about a
282     /// predecessor based on its terminator.
283     //
284     if (LVI) {
285       // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
286       // "I" is a non-local compare-with-a-constant instruction.  This would be
287       // able to handle value inequalities better, for example if the compare is
288       // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
289       // Perhaps getConstantOnEdge should be smart enough to do this?
290 
291       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
292         // If the value is known by LazyValueInfo to be a constant in a
293         // predecessor, use that information to try to thread this block.
294         Constant *PredCst = LVI->getConstantOnEdge(V, *PI, BB);
295         if (PredCst == 0 ||
296             (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst)))
297           continue;
298 
299         Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), *PI));
300       }
301 
302       return !Result.empty();
303     }
304 
305     return false;
306   }
307 
308   /// If I is a PHI node, then we know the incoming values for any constants.
309   if (PHINode *PN = dyn_cast<PHINode>(I)) {
310     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
311       Value *InVal = PN->getIncomingValue(i);
312       if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
313         ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
314         Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
315       }
316     }
317     return !Result.empty();
318   }
319 
320   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
321 
322   // Handle some boolean conditions.
323   if (I->getType()->getPrimitiveSizeInBits() == 1) {
324     // X | true -> true
325     // X & false -> false
326     if (I->getOpcode() == Instruction::Or ||
327         I->getOpcode() == Instruction::And) {
328       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
329       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
330 
331       if (LHSVals.empty() && RHSVals.empty())
332         return false;
333 
334       ConstantInt *InterestingVal;
335       if (I->getOpcode() == Instruction::Or)
336         InterestingVal = ConstantInt::getTrue(I->getContext());
337       else
338         InterestingVal = ConstantInt::getFalse(I->getContext());
339 
340       // Scan for the sentinel.  If we find an undef, force it to the
341       // interesting value: x|undef -> true and x&undef -> false.
342       for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
343         if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) {
344           Result.push_back(LHSVals[i]);
345           Result.back().first = InterestingVal;
346         }
347       for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
348         if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) {
349           Result.push_back(RHSVals[i]);
350           Result.back().first = InterestingVal;
351         }
352       return !Result.empty();
353     }
354 
355     // Handle the NOT form of XOR.
356     if (I->getOpcode() == Instruction::Xor &&
357         isa<ConstantInt>(I->getOperand(1)) &&
358         cast<ConstantInt>(I->getOperand(1))->isOne()) {
359       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result);
360       if (Result.empty())
361         return false;
362 
363       // Invert the known values.
364       for (unsigned i = 0, e = Result.size(); i != e; ++i)
365         if (Result[i].first)
366           Result[i].first =
367             cast<ConstantInt>(ConstantExpr::getNot(Result[i].first));
368       return true;
369     }
370   }
371 
372   // Handle compare with phi operand, where the PHI is defined in this block.
373   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
374     PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
375     if (PN && PN->getParent() == BB) {
376       // We can do this simplification if any comparisons fold to true or false.
377       // See if any do.
378       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
379         BasicBlock *PredBB = PN->getIncomingBlock(i);
380         Value *LHS = PN->getIncomingValue(i);
381         Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
382 
383         Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
384         if (Res == 0) {
385           if (!LVI || !isa<Constant>(RHS))
386             continue;
387 
388           LazyValueInfo::Tristate
389             ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
390                                            cast<Constant>(RHS), PredBB, BB);
391           if (ResT == LazyValueInfo::Unknown)
392             continue;
393           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
394         }
395 
396         if (isa<UndefValue>(Res))
397           Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
398         else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
399           Result.push_back(std::make_pair(CI, PredBB));
400       }
401 
402       return !Result.empty();
403     }
404 
405 
406     // If comparing a live-in value against a constant, see if we know the
407     // live-in value on any predecessors.
408     if (LVI && isa<Constant>(Cmp->getOperand(1)) &&
409         Cmp->getType()->isIntegerTy() && // Not vector compare.
410         (!isa<Instruction>(Cmp->getOperand(0)) ||
411          cast<Instruction>(Cmp->getOperand(0))->getParent() != BB)) {
412       Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
413 
414       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
415         // If the value is known by LazyValueInfo to be a constant in a
416         // predecessor, use that information to try to thread this block.
417         LazyValueInfo::Tristate
418           Res = LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
419                                         RHSCst, *PI, BB);
420         if (Res == LazyValueInfo::Unknown)
421           continue;
422 
423         Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
424         Result.push_back(std::make_pair(cast<ConstantInt>(ResC), *PI));
425       }
426 
427       return !Result.empty();
428     }
429   }
430   return false;
431 }
432 
433 
434 
435 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
436 /// in an undefined jump, decide which block is best to revector to.
437 ///
438 /// Since we can pick an arbitrary destination, we pick the successor with the
439 /// fewest predecessors.  This should reduce the in-degree of the others.
440 ///
441 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
442   TerminatorInst *BBTerm = BB->getTerminator();
443   unsigned MinSucc = 0;
444   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
445   // Compute the successor with the minimum number of predecessors.
446   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
447   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
448     TestBB = BBTerm->getSuccessor(i);
449     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
450     if (NumPreds < MinNumPreds)
451       MinSucc = i;
452   }
453 
454   return MinSucc;
455 }
456 
457 /// ProcessBlock - If there are any predecessors whose control can be threaded
458 /// through to a successor, transform them now.
459 bool JumpThreading::ProcessBlock(BasicBlock *BB) {
460   // If the block is trivially dead, just return and let the caller nuke it.
461   // This simplifies other transformations.
462   if (pred_begin(BB) == pred_end(BB) &&
463       BB != &BB->getParent()->getEntryBlock())
464     return false;
465 
466   // If this block has a single predecessor, and if that pred has a single
467   // successor, merge the blocks.  This encourages recursive jump threading
468   // because now the condition in this block can be threaded through
469   // predecessors of our predecessor block.
470   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
471     if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
472         SinglePred != BB) {
473       // If SinglePred was a loop header, BB becomes one.
474       if (LoopHeaders.erase(SinglePred))
475         LoopHeaders.insert(BB);
476 
477       // Remember if SinglePred was the entry block of the function.  If so, we
478       // will need to move BB back to the entry position.
479       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
480       MergeBasicBlockIntoOnlyPred(BB);
481 
482       if (isEntry && BB != &BB->getParent()->getEntryBlock())
483         BB->moveBefore(&BB->getParent()->getEntryBlock());
484       return true;
485     }
486   }
487 
488   // Look to see if the terminator is a branch of switch, if not we can't thread
489   // it.
490   Value *Condition;
491   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
492     // Can't thread an unconditional jump.
493     if (BI->isUnconditional()) return false;
494     Condition = BI->getCondition();
495   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
496     Condition = SI->getCondition();
497   else
498     return false; // Must be an invoke.
499 
500   // If the terminator of this block is branching on a constant, simplify the
501   // terminator to an unconditional branch.  This can occur due to threading in
502   // other blocks.
503   if (isa<ConstantInt>(Condition)) {
504     DEBUG(dbgs() << "  In block '" << BB->getName()
505           << "' folding terminator: " << *BB->getTerminator() << '\n');
506     ++NumFolds;
507     ConstantFoldTerminator(BB);
508     return true;
509   }
510 
511   // If the terminator is branching on an undef, we can pick any of the
512   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
513   if (isa<UndefValue>(Condition)) {
514     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
515 
516     // Fold the branch/switch.
517     TerminatorInst *BBTerm = BB->getTerminator();
518     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
519       if (i == BestSucc) continue;
520       RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
521     }
522 
523     DEBUG(dbgs() << "  In block '" << BB->getName()
524           << "' folding undef terminator: " << *BBTerm << '\n');
525     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
526     BBTerm->eraseFromParent();
527     return true;
528   }
529 
530   Instruction *CondInst = dyn_cast<Instruction>(Condition);
531 
532   // If the condition is an instruction defined in another block, see if a
533   // predecessor has the same condition:
534   //     br COND, BBX, BBY
535   //  BBX:
536   //     br COND, BBZ, BBW
537   if (!LVI &&
538       !Condition->hasOneUse() && // Multiple uses.
539       (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
540     pred_iterator PI = pred_begin(BB), E = pred_end(BB);
541     if (isa<BranchInst>(BB->getTerminator())) {
542       for (; PI != E; ++PI)
543         if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
544           if (PBI->isConditional() && PBI->getCondition() == Condition &&
545               ProcessBranchOnDuplicateCond(*PI, BB))
546             return true;
547     } else {
548       assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
549       for (; PI != E; ++PI)
550         if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
551           if (PSI->getCondition() == Condition &&
552               ProcessSwitchOnDuplicateCond(*PI, BB))
553             return true;
554     }
555   }
556 
557   // All the rest of our checks depend on the condition being an instruction.
558   if (CondInst == 0) {
559     // FIXME: Unify this with code below.
560     if (LVI && ProcessThreadableEdges(Condition, BB))
561       return true;
562     return false;
563   }
564 
565 
566   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
567     if (!LVI &&
568         (!isa<PHINode>(CondCmp->getOperand(0)) ||
569          cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) {
570       // If we have a comparison, loop over the predecessors to see if there is
571       // a condition with a lexically identical value.
572       pred_iterator PI = pred_begin(BB), E = pred_end(BB);
573       for (; PI != E; ++PI)
574         if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
575           if (PBI->isConditional() && *PI != BB) {
576             if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
577               if (CI->getOperand(0) == CondCmp->getOperand(0) &&
578                   CI->getOperand(1) == CondCmp->getOperand(1) &&
579                   CI->getPredicate() == CondCmp->getPredicate()) {
580                 // TODO: Could handle things like (x != 4) --> (x == 17)
581                 if (ProcessBranchOnDuplicateCond(*PI, BB))
582                   return true;
583               }
584             }
585           }
586     }
587   }
588 
589   // Check for some cases that are worth simplifying.  Right now we want to look
590   // for loads that are used by a switch or by the condition for the branch.  If
591   // we see one, check to see if it's partially redundant.  If so, insert a PHI
592   // which can then be used to thread the values.
593   //
594   Value *SimplifyValue = CondInst;
595   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
596     if (isa<Constant>(CondCmp->getOperand(1)))
597       SimplifyValue = CondCmp->getOperand(0);
598 
599   // TODO: There are other places where load PRE would be profitable, such as
600   // more complex comparisons.
601   if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
602     if (SimplifyPartiallyRedundantLoad(LI))
603       return true;
604 
605 
606   // Handle a variety of cases where we are branching on something derived from
607   // a PHI node in the current block.  If we can prove that any predecessors
608   // compute a predictable value based on a PHI node, thread those predecessors.
609   //
610   if (ProcessThreadableEdges(CondInst, BB))
611     return true;
612 
613   // If this is an otherwise-unfoldable branch on a phi node in the current
614   // block, see if we can simplify.
615   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
616     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
617       return ProcessBranchOnPHI(PN);
618 
619 
620   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
621   if (CondInst->getOpcode() == Instruction::Xor &&
622       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
623     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
624 
625 
626   // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
627   // "(X == 4)", thread through this block.
628 
629   return false;
630 }
631 
632 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
633 /// block that jump on exactly the same condition.  This means that we almost
634 /// always know the direction of the edge in the DESTBB:
635 ///  PREDBB:
636 ///     br COND, DESTBB, BBY
637 ///  DESTBB:
638 ///     br COND, BBZ, BBW
639 ///
640 /// If DESTBB has multiple predecessors, we can't just constant fold the branch
641 /// in DESTBB, we have to thread over it.
642 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
643                                                  BasicBlock *BB) {
644   BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
645 
646   // If both successors of PredBB go to DESTBB, we don't know anything.  We can
647   // fold the branch to an unconditional one, which allows other recursive
648   // simplifications.
649   bool BranchDir;
650   if (PredBI->getSuccessor(1) != BB)
651     BranchDir = true;
652   else if (PredBI->getSuccessor(0) != BB)
653     BranchDir = false;
654   else {
655     DEBUG(dbgs() << "  In block '" << PredBB->getName()
656           << "' folding terminator: " << *PredBB->getTerminator() << '\n');
657     ++NumFolds;
658     ConstantFoldTerminator(PredBB);
659     return true;
660   }
661 
662   BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
663 
664   // If the dest block has one predecessor, just fix the branch condition to a
665   // constant and fold it.
666   if (BB->getSinglePredecessor()) {
667     DEBUG(dbgs() << "  In block '" << BB->getName()
668           << "' folding condition to '" << BranchDir << "': "
669           << *BB->getTerminator() << '\n');
670     ++NumFolds;
671     Value *OldCond = DestBI->getCondition();
672     DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
673                                           BranchDir));
674     // Delete dead instructions before we fold the branch.  Folding the branch
675     // can eliminate edges from the CFG which can end up deleting OldCond.
676     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
677     ConstantFoldTerminator(BB);
678     return true;
679   }
680 
681 
682   // Next, figure out which successor we are threading to.
683   BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
684 
685   SmallVector<BasicBlock*, 2> Preds;
686   Preds.push_back(PredBB);
687 
688   // Ok, try to thread it!
689   return ThreadEdge(BB, Preds, SuccBB);
690 }
691 
692 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
693 /// block that switch on exactly the same condition.  This means that we almost
694 /// always know the direction of the edge in the DESTBB:
695 ///  PREDBB:
696 ///     switch COND [... DESTBB, BBY ... ]
697 ///  DESTBB:
698 ///     switch COND [... BBZ, BBW ]
699 ///
700 /// Optimizing switches like this is very important, because simplifycfg builds
701 /// switches out of repeated 'if' conditions.
702 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
703                                                  BasicBlock *DestBB) {
704   // Can't thread edge to self.
705   if (PredBB == DestBB)
706     return false;
707 
708   SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
709   SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
710 
711   // There are a variety of optimizations that we can potentially do on these
712   // blocks: we order them from most to least preferable.
713 
714   // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
715   // directly to their destination.  This does not introduce *any* code size
716   // growth.  Skip debug info first.
717   BasicBlock::iterator BBI = DestBB->begin();
718   while (isa<DbgInfoIntrinsic>(BBI))
719     BBI++;
720 
721   // FIXME: Thread if it just contains a PHI.
722   if (isa<SwitchInst>(BBI)) {
723     bool MadeChange = false;
724     // Ignore the default edge for now.
725     for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
726       ConstantInt *DestVal = DestSI->getCaseValue(i);
727       BasicBlock *DestSucc = DestSI->getSuccessor(i);
728 
729       // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
730       // PredSI has an explicit case for it.  If so, forward.  If it is covered
731       // by the default case, we can't update PredSI.
732       unsigned PredCase = PredSI->findCaseValue(DestVal);
733       if (PredCase == 0) continue;
734 
735       // If PredSI doesn't go to DestBB on this value, then it won't reach the
736       // case on this condition.
737       if (PredSI->getSuccessor(PredCase) != DestBB &&
738           DestSI->getSuccessor(i) != DestBB)
739         continue;
740 
741       // Do not forward this if it already goes to this destination, this would
742       // be an infinite loop.
743       if (PredSI->getSuccessor(PredCase) == DestSucc)
744         continue;
745 
746       // Otherwise, we're safe to make the change.  Make sure that the edge from
747       // DestSI to DestSucc is not critical and has no PHI nodes.
748       DEBUG(dbgs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
749       DEBUG(dbgs() << "THROUGH: " << *DestSI);
750 
751       // If the destination has PHI nodes, just split the edge for updating
752       // simplicity.
753       if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
754         SplitCriticalEdge(DestSI, i, this);
755         DestSucc = DestSI->getSuccessor(i);
756       }
757       FoldSingleEntryPHINodes(DestSucc);
758       PredSI->setSuccessor(PredCase, DestSucc);
759       MadeChange = true;
760     }
761 
762     if (MadeChange)
763       return true;
764   }
765 
766   return false;
767 }
768 
769 
770 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
771 /// load instruction, eliminate it by replacing it with a PHI node.  This is an
772 /// important optimization that encourages jump threading, and needs to be run
773 /// interlaced with other jump threading tasks.
774 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
775   // Don't hack volatile loads.
776   if (LI->isVolatile()) return false;
777 
778   // If the load is defined in a block with exactly one predecessor, it can't be
779   // partially redundant.
780   BasicBlock *LoadBB = LI->getParent();
781   if (LoadBB->getSinglePredecessor())
782     return false;
783 
784   Value *LoadedPtr = LI->getOperand(0);
785 
786   // If the loaded operand is defined in the LoadBB, it can't be available.
787   // TODO: Could do simple PHI translation, that would be fun :)
788   if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
789     if (PtrOp->getParent() == LoadBB)
790       return false;
791 
792   // Scan a few instructions up from the load, to see if it is obviously live at
793   // the entry to its block.
794   BasicBlock::iterator BBIt = LI;
795 
796   if (Value *AvailableVal =
797         FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
798     // If the value if the load is locally available within the block, just use
799     // it.  This frequently occurs for reg2mem'd allocas.
800     //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
801 
802     // If the returned value is the load itself, replace with an undef. This can
803     // only happen in dead loops.
804     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
805     LI->replaceAllUsesWith(AvailableVal);
806     LI->eraseFromParent();
807     return true;
808   }
809 
810   // Otherwise, if we scanned the whole block and got to the top of the block,
811   // we know the block is locally transparent to the load.  If not, something
812   // might clobber its value.
813   if (BBIt != LoadBB->begin())
814     return false;
815 
816 
817   SmallPtrSet<BasicBlock*, 8> PredsScanned;
818   typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
819   AvailablePredsTy AvailablePreds;
820   BasicBlock *OneUnavailablePred = 0;
821 
822   // If we got here, the loaded value is transparent through to the start of the
823   // block.  Check to see if it is available in any of the predecessor blocks.
824   for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
825        PI != PE; ++PI) {
826     BasicBlock *PredBB = *PI;
827 
828     // If we already scanned this predecessor, skip it.
829     if (!PredsScanned.insert(PredBB))
830       continue;
831 
832     // Scan the predecessor to see if the value is available in the pred.
833     BBIt = PredBB->end();
834     Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
835     if (!PredAvailable) {
836       OneUnavailablePred = PredBB;
837       continue;
838     }
839 
840     // If so, this load is partially redundant.  Remember this info so that we
841     // can create a PHI node.
842     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
843   }
844 
845   // If the loaded value isn't available in any predecessor, it isn't partially
846   // redundant.
847   if (AvailablePreds.empty()) return false;
848 
849   // Okay, the loaded value is available in at least one (and maybe all!)
850   // predecessors.  If the value is unavailable in more than one unique
851   // predecessor, we want to insert a merge block for those common predecessors.
852   // This ensures that we only have to insert one reload, thus not increasing
853   // code size.
854   BasicBlock *UnavailablePred = 0;
855 
856   // If there is exactly one predecessor where the value is unavailable, the
857   // already computed 'OneUnavailablePred' block is it.  If it ends in an
858   // unconditional branch, we know that it isn't a critical edge.
859   if (PredsScanned.size() == AvailablePreds.size()+1 &&
860       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
861     UnavailablePred = OneUnavailablePred;
862   } else if (PredsScanned.size() != AvailablePreds.size()) {
863     // Otherwise, we had multiple unavailable predecessors or we had a critical
864     // edge from the one.
865     SmallVector<BasicBlock*, 8> PredsToSplit;
866     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
867 
868     for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
869       AvailablePredSet.insert(AvailablePreds[i].first);
870 
871     // Add all the unavailable predecessors to the PredsToSplit list.
872     for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
873          PI != PE; ++PI) {
874       // If the predecessor is an indirect goto, we can't split the edge.
875       if (isa<IndirectBrInst>((*PI)->getTerminator()))
876         return false;
877 
878       if (!AvailablePredSet.count(*PI))
879         PredsToSplit.push_back(*PI);
880     }
881 
882     // Split them out to their own block.
883     UnavailablePred =
884       SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
885                              "thread-pre-split", this);
886   }
887 
888   // If the value isn't available in all predecessors, then there will be
889   // exactly one where it isn't available.  Insert a load on that edge and add
890   // it to the AvailablePreds list.
891   if (UnavailablePred) {
892     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
893            "Can't handle critical edge here!");
894     Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
895                                  LI->getAlignment(),
896                                  UnavailablePred->getTerminator());
897     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
898   }
899 
900   // Now we know that each predecessor of this block has a value in
901   // AvailablePreds, sort them for efficient access as we're walking the preds.
902   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
903 
904   // Create a PHI node at the start of the block for the PRE'd load value.
905   PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
906   PN->takeName(LI);
907 
908   // Insert new entries into the PHI for each predecessor.  A single block may
909   // have multiple entries here.
910   for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
911        ++PI) {
912     AvailablePredsTy::iterator I =
913       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
914                        std::make_pair(*PI, (Value*)0));
915 
916     assert(I != AvailablePreds.end() && I->first == *PI &&
917            "Didn't find entry for predecessor!");
918 
919     PN->addIncoming(I->second, I->first);
920   }
921 
922   //cerr << "PRE: " << *LI << *PN << "\n";
923 
924   LI->replaceAllUsesWith(PN);
925   LI->eraseFromParent();
926 
927   return true;
928 }
929 
930 /// FindMostPopularDest - The specified list contains multiple possible
931 /// threadable destinations.  Pick the one that occurs the most frequently in
932 /// the list.
933 static BasicBlock *
934 FindMostPopularDest(BasicBlock *BB,
935                     const SmallVectorImpl<std::pair<BasicBlock*,
936                                   BasicBlock*> > &PredToDestList) {
937   assert(!PredToDestList.empty());
938 
939   // Determine popularity.  If there are multiple possible destinations, we
940   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
941   // blocks with known and real destinations to threading undef.  We'll handle
942   // them later if interesting.
943   DenseMap<BasicBlock*, unsigned> DestPopularity;
944   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
945     if (PredToDestList[i].second)
946       DestPopularity[PredToDestList[i].second]++;
947 
948   // Find the most popular dest.
949   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
950   BasicBlock *MostPopularDest = DPI->first;
951   unsigned Popularity = DPI->second;
952   SmallVector<BasicBlock*, 4> SamePopularity;
953 
954   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
955     // If the popularity of this entry isn't higher than the popularity we've
956     // seen so far, ignore it.
957     if (DPI->second < Popularity)
958       ; // ignore.
959     else if (DPI->second == Popularity) {
960       // If it is the same as what we've seen so far, keep track of it.
961       SamePopularity.push_back(DPI->first);
962     } else {
963       // If it is more popular, remember it.
964       SamePopularity.clear();
965       MostPopularDest = DPI->first;
966       Popularity = DPI->second;
967     }
968   }
969 
970   // Okay, now we know the most popular destination.  If there is more than
971   // destination, we need to determine one.  This is arbitrary, but we need
972   // to make a deterministic decision.  Pick the first one that appears in the
973   // successor list.
974   if (!SamePopularity.empty()) {
975     SamePopularity.push_back(MostPopularDest);
976     TerminatorInst *TI = BB->getTerminator();
977     for (unsigned i = 0; ; ++i) {
978       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
979 
980       if (std::find(SamePopularity.begin(), SamePopularity.end(),
981                     TI->getSuccessor(i)) == SamePopularity.end())
982         continue;
983 
984       MostPopularDest = TI->getSuccessor(i);
985       break;
986     }
987   }
988 
989   // Okay, we have finally picked the most popular destination.
990   return MostPopularDest;
991 }
992 
993 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) {
994   // If threading this would thread across a loop header, don't even try to
995   // thread the edge.
996   if (LoopHeaders.count(BB))
997     return false;
998 
999   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
1000   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues))
1001     return false;
1002   assert(!PredValues.empty() &&
1003          "ComputeValueKnownInPredecessors returned true with no values");
1004 
1005   DEBUG(dbgs() << "IN BB: " << *BB;
1006         for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1007           dbgs() << "  BB '" << BB->getName() << "': FOUND condition = ";
1008           if (PredValues[i].first)
1009             dbgs() << *PredValues[i].first;
1010           else
1011             dbgs() << "UNDEF";
1012           dbgs() << " for pred '" << PredValues[i].second->getName()
1013           << "'.\n";
1014         });
1015 
1016   // Decide what we want to thread through.  Convert our list of known values to
1017   // a list of known destinations for each pred.  This also discards duplicate
1018   // predecessors and keeps track of the undefined inputs (which are represented
1019   // as a null dest in the PredToDestList).
1020   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1021   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1022 
1023   BasicBlock *OnlyDest = 0;
1024   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1025 
1026   for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1027     BasicBlock *Pred = PredValues[i].second;
1028     if (!SeenPreds.insert(Pred))
1029       continue;  // Duplicate predecessor entry.
1030 
1031     // If the predecessor ends with an indirect goto, we can't change its
1032     // destination.
1033     if (isa<IndirectBrInst>(Pred->getTerminator()))
1034       continue;
1035 
1036     ConstantInt *Val = PredValues[i].first;
1037 
1038     BasicBlock *DestBB;
1039     if (Val == 0)      // Undef.
1040       DestBB = 0;
1041     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1042       DestBB = BI->getSuccessor(Val->isZero());
1043     else {
1044       SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
1045       DestBB = SI->getSuccessor(SI->findCaseValue(Val));
1046     }
1047 
1048     // If we have exactly one destination, remember it for efficiency below.
1049     if (i == 0)
1050       OnlyDest = DestBB;
1051     else if (OnlyDest != DestBB)
1052       OnlyDest = MultipleDestSentinel;
1053 
1054     PredToDestList.push_back(std::make_pair(Pred, DestBB));
1055   }
1056 
1057   // If all edges were unthreadable, we fail.
1058   if (PredToDestList.empty())
1059     return false;
1060 
1061   // Determine which is the most common successor.  If we have many inputs and
1062   // this block is a switch, we want to start by threading the batch that goes
1063   // to the most popular destination first.  If we only know about one
1064   // threadable destination (the common case) we can avoid this.
1065   BasicBlock *MostPopularDest = OnlyDest;
1066 
1067   if (MostPopularDest == MultipleDestSentinel)
1068     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1069 
1070   // Now that we know what the most popular destination is, factor all
1071   // predecessors that will jump to it into a single predecessor.
1072   SmallVector<BasicBlock*, 16> PredsToFactor;
1073   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1074     if (PredToDestList[i].second == MostPopularDest) {
1075       BasicBlock *Pred = PredToDestList[i].first;
1076 
1077       // This predecessor may be a switch or something else that has multiple
1078       // edges to the block.  Factor each of these edges by listing them
1079       // according to # occurrences in PredsToFactor.
1080       TerminatorInst *PredTI = Pred->getTerminator();
1081       for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1082         if (PredTI->getSuccessor(i) == BB)
1083           PredsToFactor.push_back(Pred);
1084     }
1085 
1086   // If the threadable edges are branching on an undefined value, we get to pick
1087   // the destination that these predecessors should get to.
1088   if (MostPopularDest == 0)
1089     MostPopularDest = BB->getTerminator()->
1090                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1091 
1092   // Ok, try to thread it!
1093   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1094 }
1095 
1096 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1097 /// a PHI node in the current block.  See if there are any simplifications we
1098 /// can do based on inputs to the phi node.
1099 ///
1100 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
1101   BasicBlock *BB = PN->getParent();
1102 
1103   // TODO: We could make use of this to do it once for blocks with common PHI
1104   // values.
1105   SmallVector<BasicBlock*, 1> PredBBs;
1106   PredBBs.resize(1);
1107 
1108   // If any of the predecessor blocks end in an unconditional branch, we can
1109   // *duplicate* the conditional branch into that block in order to further
1110   // encourage jump threading and to eliminate cases where we have branch on a
1111   // phi of an icmp (branch on icmp is much better).
1112   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1113     BasicBlock *PredBB = PN->getIncomingBlock(i);
1114     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1115       if (PredBr->isUnconditional()) {
1116         PredBBs[0] = PredBB;
1117         // Try to duplicate BB into PredBB.
1118         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1119           return true;
1120       }
1121   }
1122 
1123   return false;
1124 }
1125 
1126 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1127 /// a xor instruction in the current block.  See if there are any
1128 /// simplifications we can do based on inputs to the xor.
1129 ///
1130 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
1131   BasicBlock *BB = BO->getParent();
1132 
1133   // If either the LHS or RHS of the xor is a constant, don't do this
1134   // optimization.
1135   if (isa<ConstantInt>(BO->getOperand(0)) ||
1136       isa<ConstantInt>(BO->getOperand(1)))
1137     return false;
1138 
1139   // If the first instruction in BB isn't a phi, we won't be able to infer
1140   // anything special about any particular predecessor.
1141   if (!isa<PHINode>(BB->front()))
1142     return false;
1143 
1144   // If we have a xor as the branch input to this block, and we know that the
1145   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1146   // the condition into the predecessor and fix that value to true, saving some
1147   // logical ops on that path and encouraging other paths to simplify.
1148   //
1149   // This copies something like this:
1150   //
1151   //  BB:
1152   //    %X = phi i1 [1],  [%X']
1153   //    %Y = icmp eq i32 %A, %B
1154   //    %Z = xor i1 %X, %Y
1155   //    br i1 %Z, ...
1156   //
1157   // Into:
1158   //  BB':
1159   //    %Y = icmp ne i32 %A, %B
1160   //    br i1 %Z, ...
1161 
1162   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> XorOpValues;
1163   bool isLHS = true;
1164   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues)) {
1165     assert(XorOpValues.empty());
1166     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues))
1167       return false;
1168     isLHS = false;
1169   }
1170 
1171   assert(!XorOpValues.empty() &&
1172          "ComputeValueKnownInPredecessors returned true with no values");
1173 
1174   // Scan the information to see which is most popular: true or false.  The
1175   // predecessors can be of the set true, false, or undef.
1176   unsigned NumTrue = 0, NumFalse = 0;
1177   for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1178     if (!XorOpValues[i].first) continue;  // Ignore undefs for the count.
1179     if (XorOpValues[i].first->isZero())
1180       ++NumFalse;
1181     else
1182       ++NumTrue;
1183   }
1184 
1185   // Determine which value to split on, true, false, or undef if neither.
1186   ConstantInt *SplitVal = 0;
1187   if (NumTrue > NumFalse)
1188     SplitVal = ConstantInt::getTrue(BB->getContext());
1189   else if (NumTrue != 0 || NumFalse != 0)
1190     SplitVal = ConstantInt::getFalse(BB->getContext());
1191 
1192   // Collect all of the blocks that this can be folded into so that we can
1193   // factor this once and clone it once.
1194   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1195   for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1196     if (XorOpValues[i].first != SplitVal && XorOpValues[i].first != 0) continue;
1197 
1198     BlocksToFoldInto.push_back(XorOpValues[i].second);
1199   }
1200 
1201   // If we inferred a value for all of the predecessors, then duplication won't
1202   // help us.  However, we can just replace the LHS or RHS with the constant.
1203   if (BlocksToFoldInto.size() ==
1204       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1205     if (SplitVal == 0) {
1206       // If all preds provide undef, just nuke the xor, because it is undef too.
1207       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1208       BO->eraseFromParent();
1209     } else if (SplitVal->isZero()) {
1210       // If all preds provide 0, replace the xor with the other input.
1211       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1212       BO->eraseFromParent();
1213     } else {
1214       // If all preds provide 1, set the computed value to 1.
1215       BO->setOperand(!isLHS, SplitVal);
1216     }
1217 
1218     return true;
1219   }
1220 
1221   // Try to duplicate BB into PredBB.
1222   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1223 }
1224 
1225 
1226 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1227 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1228 /// NewPred using the entries from OldPred (suitably mapped).
1229 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1230                                             BasicBlock *OldPred,
1231                                             BasicBlock *NewPred,
1232                                      DenseMap<Instruction*, Value*> &ValueMap) {
1233   for (BasicBlock::iterator PNI = PHIBB->begin();
1234        PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1235     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1236     // DestBlock.
1237     Value *IV = PN->getIncomingValueForBlock(OldPred);
1238 
1239     // Remap the value if necessary.
1240     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1241       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1242       if (I != ValueMap.end())
1243         IV = I->second;
1244     }
1245 
1246     PN->addIncoming(IV, NewPred);
1247   }
1248 }
1249 
1250 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1251 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1252 /// across BB.  Transform the IR to reflect this change.
1253 bool JumpThreading::ThreadEdge(BasicBlock *BB,
1254                                const SmallVectorImpl<BasicBlock*> &PredBBs,
1255                                BasicBlock *SuccBB) {
1256   // If threading to the same block as we come from, we would infinite loop.
1257   if (SuccBB == BB) {
1258     DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1259           << "' - would thread to self!\n");
1260     return false;
1261   }
1262 
1263   // If threading this would thread across a loop header, don't thread the edge.
1264   // See the comments above FindLoopHeaders for justifications and caveats.
1265   if (LoopHeaders.count(BB)) {
1266     DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
1267           << "' to dest BB '" << SuccBB->getName()
1268           << "' - it might create an irreducible loop!\n");
1269     return false;
1270   }
1271 
1272   unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1273   if (JumpThreadCost > Threshold) {
1274     DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1275           << "' - Cost is too high: " << JumpThreadCost << "\n");
1276     return false;
1277   }
1278 
1279   // And finally, do it!  Start by factoring the predecessors is needed.
1280   BasicBlock *PredBB;
1281   if (PredBBs.size() == 1)
1282     PredBB = PredBBs[0];
1283   else {
1284     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1285           << " common predecessors.\n");
1286     PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1287                                     ".thr_comm", this);
1288   }
1289 
1290   // And finally, do it!
1291   DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1292         << SuccBB->getName() << "' with cost: " << JumpThreadCost
1293         << ", across block:\n    "
1294         << *BB << "\n");
1295 
1296   // We are going to have to map operands from the original BB block to the new
1297   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1298   // account for entry from PredBB.
1299   DenseMap<Instruction*, Value*> ValueMapping;
1300 
1301   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1302                                          BB->getName()+".thread",
1303                                          BB->getParent(), BB);
1304   NewBB->moveAfter(PredBB);
1305 
1306   BasicBlock::iterator BI = BB->begin();
1307   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1308     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1309 
1310   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1311   // mapping and using it to remap operands in the cloned instructions.
1312   for (; !isa<TerminatorInst>(BI); ++BI) {
1313     Instruction *New = BI->clone();
1314     New->setName(BI->getName());
1315     NewBB->getInstList().push_back(New);
1316     ValueMapping[BI] = New;
1317 
1318     // Remap operands to patch up intra-block references.
1319     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1320       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1321         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1322         if (I != ValueMapping.end())
1323           New->setOperand(i, I->second);
1324       }
1325   }
1326 
1327   // We didn't copy the terminator from BB over to NewBB, because there is now
1328   // an unconditional jump to SuccBB.  Insert the unconditional jump.
1329   BranchInst::Create(SuccBB, NewBB);
1330 
1331   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1332   // PHI nodes for NewBB now.
1333   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1334 
1335   // If there were values defined in BB that are used outside the block, then we
1336   // now have to update all uses of the value to use either the original value,
1337   // the cloned value, or some PHI derived value.  This can require arbitrary
1338   // PHI insertion, of which we are prepared to do, clean these up now.
1339   SSAUpdater SSAUpdate;
1340   SmallVector<Use*, 16> UsesToRename;
1341   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1342     // Scan all uses of this instruction to see if it is used outside of its
1343     // block, and if so, record them in UsesToRename.
1344     for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1345          ++UI) {
1346       Instruction *User = cast<Instruction>(*UI);
1347       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1348         if (UserPN->getIncomingBlock(UI) == BB)
1349           continue;
1350       } else if (User->getParent() == BB)
1351         continue;
1352 
1353       UsesToRename.push_back(&UI.getUse());
1354     }
1355 
1356     // If there are no uses outside the block, we're done with this instruction.
1357     if (UsesToRename.empty())
1358       continue;
1359 
1360     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1361 
1362     // We found a use of I outside of BB.  Rename all uses of I that are outside
1363     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1364     // with the two values we know.
1365     SSAUpdate.Initialize(I);
1366     SSAUpdate.AddAvailableValue(BB, I);
1367     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1368 
1369     while (!UsesToRename.empty())
1370       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1371     DEBUG(dbgs() << "\n");
1372   }
1373 
1374 
1375   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1376   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1377   // us to simplify any PHI nodes in BB.
1378   TerminatorInst *PredTerm = PredBB->getTerminator();
1379   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1380     if (PredTerm->getSuccessor(i) == BB) {
1381       RemovePredecessorAndSimplify(BB, PredBB, TD);
1382       PredTerm->setSuccessor(i, NewBB);
1383     }
1384 
1385   // At this point, the IR is fully up to date and consistent.  Do a quick scan
1386   // over the new instructions and zap any that are constants or dead.  This
1387   // frequently happens because of phi translation.
1388   SimplifyInstructionsInBlock(NewBB, TD);
1389 
1390   // Threaded an edge!
1391   ++NumThreads;
1392   return true;
1393 }
1394 
1395 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1396 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1397 /// If we can duplicate the contents of BB up into PredBB do so now, this
1398 /// improves the odds that the branch will be on an analyzable instruction like
1399 /// a compare.
1400 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1401                                  const SmallVectorImpl<BasicBlock *> &PredBBs) {
1402   assert(!PredBBs.empty() && "Can't handle an empty set");
1403 
1404   // If BB is a loop header, then duplicating this block outside the loop would
1405   // cause us to transform this into an irreducible loop, don't do this.
1406   // See the comments above FindLoopHeaders for justifications and caveats.
1407   if (LoopHeaders.count(BB)) {
1408     DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
1409           << "' into predecessor block '" << PredBBs[0]->getName()
1410           << "' - it might create an irreducible loop!\n");
1411     return false;
1412   }
1413 
1414   unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1415   if (DuplicationCost > Threshold) {
1416     DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
1417           << "' - Cost is too high: " << DuplicationCost << "\n");
1418     return false;
1419   }
1420 
1421   // And finally, do it!  Start by factoring the predecessors is needed.
1422   BasicBlock *PredBB;
1423   if (PredBBs.size() == 1)
1424     PredBB = PredBBs[0];
1425   else {
1426     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1427           << " common predecessors.\n");
1428     PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1429                                     ".thr_comm", this);
1430   }
1431 
1432   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1433   // of PredBB.
1434   DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1435         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1436         << DuplicationCost << " block is:" << *BB << "\n");
1437 
1438   // Unless PredBB ends with an unconditional branch, split the edge so that we
1439   // can just clone the bits from BB into the end of the new PredBB.
1440   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1441 
1442   if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) {
1443     PredBB = SplitEdge(PredBB, BB, this);
1444     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1445   }
1446 
1447   // We are going to have to map operands from the original BB block into the
1448   // PredBB block.  Evaluate PHI nodes in BB.
1449   DenseMap<Instruction*, Value*> ValueMapping;
1450 
1451   BasicBlock::iterator BI = BB->begin();
1452   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1453     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1454 
1455   // Clone the non-phi instructions of BB into PredBB, keeping track of the
1456   // mapping and using it to remap operands in the cloned instructions.
1457   for (; BI != BB->end(); ++BI) {
1458     Instruction *New = BI->clone();
1459 
1460     // Remap operands to patch up intra-block references.
1461     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1462       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1463         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1464         if (I != ValueMapping.end())
1465           New->setOperand(i, I->second);
1466       }
1467 
1468     // If this instruction can be simplified after the operands are updated,
1469     // just use the simplified value instead.  This frequently happens due to
1470     // phi translation.
1471     if (Value *IV = SimplifyInstruction(New, TD)) {
1472       delete New;
1473       ValueMapping[BI] = IV;
1474     } else {
1475       // Otherwise, insert the new instruction into the block.
1476       New->setName(BI->getName());
1477       PredBB->getInstList().insert(OldPredBranch, New);
1478       ValueMapping[BI] = New;
1479     }
1480   }
1481 
1482   // Check to see if the targets of the branch had PHI nodes. If so, we need to
1483   // add entries to the PHI nodes for branch from PredBB now.
1484   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1485   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1486                                   ValueMapping);
1487   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1488                                   ValueMapping);
1489 
1490   // If there were values defined in BB that are used outside the block, then we
1491   // now have to update all uses of the value to use either the original value,
1492   // the cloned value, or some PHI derived value.  This can require arbitrary
1493   // PHI insertion, of which we are prepared to do, clean these up now.
1494   SSAUpdater SSAUpdate;
1495   SmallVector<Use*, 16> UsesToRename;
1496   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1497     // Scan all uses of this instruction to see if it is used outside of its
1498     // block, and if so, record them in UsesToRename.
1499     for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1500          ++UI) {
1501       Instruction *User = cast<Instruction>(*UI);
1502       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1503         if (UserPN->getIncomingBlock(UI) == BB)
1504           continue;
1505       } else if (User->getParent() == BB)
1506         continue;
1507 
1508       UsesToRename.push_back(&UI.getUse());
1509     }
1510 
1511     // If there are no uses outside the block, we're done with this instruction.
1512     if (UsesToRename.empty())
1513       continue;
1514 
1515     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1516 
1517     // We found a use of I outside of BB.  Rename all uses of I that are outside
1518     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1519     // with the two values we know.
1520     SSAUpdate.Initialize(I);
1521     SSAUpdate.AddAvailableValue(BB, I);
1522     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1523 
1524     while (!UsesToRename.empty())
1525       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1526     DEBUG(dbgs() << "\n");
1527   }
1528 
1529   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1530   // that we nuked.
1531   RemovePredecessorAndSimplify(BB, PredBB, TD);
1532 
1533   // Remove the unconditional branch at the end of the PredBB block.
1534   OldPredBranch->eraseFromParent();
1535 
1536   ++NumDupes;
1537   return true;
1538 }
1539 
1540 
1541