1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "jump-threading" 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/IntrinsicInst.h" 17 #include "llvm/LLVMContext.h" 18 #include "llvm/Pass.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LazyValueInfo.h" 21 #include "llvm/Analysis/Loads.h" 22 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 23 #include "llvm/Transforms/Utils/Local.h" 24 #include "llvm/Transforms/Utils/SSAUpdater.h" 25 #include "llvm/Target/TargetData.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ValueHandle.h" 34 #include "llvm/Support/raw_ostream.h" 35 using namespace llvm; 36 37 STATISTIC(NumThreads, "Number of jumps threaded"); 38 STATISTIC(NumFolds, "Number of terminators folded"); 39 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 40 41 static cl::opt<unsigned> 42 Threshold("jump-threading-threshold", 43 cl::desc("Max block size to duplicate for jump threading"), 44 cl::init(6), cl::Hidden); 45 46 // Turn on use of LazyValueInfo. 47 static cl::opt<bool> 48 EnableLVI("enable-jump-threading-lvi", cl::ReallyHidden); 49 50 51 52 namespace { 53 /// This pass performs 'jump threading', which looks at blocks that have 54 /// multiple predecessors and multiple successors. If one or more of the 55 /// predecessors of the block can be proven to always jump to one of the 56 /// successors, we forward the edge from the predecessor to the successor by 57 /// duplicating the contents of this block. 58 /// 59 /// An example of when this can occur is code like this: 60 /// 61 /// if () { ... 62 /// X = 4; 63 /// } 64 /// if (X < 3) { 65 /// 66 /// In this case, the unconditional branch at the end of the first if can be 67 /// revectored to the false side of the second if. 68 /// 69 class JumpThreading : public FunctionPass { 70 TargetData *TD; 71 LazyValueInfo *LVI; 72 #ifdef NDEBUG 73 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 74 #else 75 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 76 #endif 77 public: 78 static char ID; // Pass identification 79 JumpThreading() : FunctionPass(&ID) {} 80 81 bool runOnFunction(Function &F); 82 83 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 84 if (EnableLVI) 85 AU.addRequired<LazyValueInfo>(); 86 } 87 88 void FindLoopHeaders(Function &F); 89 bool ProcessBlock(BasicBlock *BB); 90 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 91 BasicBlock *SuccBB); 92 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 93 const SmallVectorImpl<BasicBlock *> &PredBBs); 94 95 typedef SmallVectorImpl<std::pair<ConstantInt*, 96 BasicBlock*> > PredValueInfo; 97 98 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 99 PredValueInfo &Result); 100 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB); 101 102 103 bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 104 bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 105 106 bool ProcessBranchOnPHI(PHINode *PN); 107 bool ProcessBranchOnXOR(BinaryOperator *BO); 108 109 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 110 }; 111 } 112 113 char JumpThreading::ID = 0; 114 static RegisterPass<JumpThreading> 115 X("jump-threading", "Jump Threading"); 116 117 // Public interface to the Jump Threading pass 118 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); } 119 120 /// runOnFunction - Top level algorithm. 121 /// 122 bool JumpThreading::runOnFunction(Function &F) { 123 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 124 TD = getAnalysisIfAvailable<TargetData>(); 125 LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0; 126 127 FindLoopHeaders(F); 128 129 bool Changed, EverChanged = false; 130 do { 131 Changed = false; 132 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 133 BasicBlock *BB = I; 134 // Thread all of the branches we can over this block. 135 while (ProcessBlock(BB)) 136 Changed = true; 137 138 ++I; 139 140 // If the block is trivially dead, zap it. This eliminates the successor 141 // edges which simplifies the CFG. 142 if (pred_begin(BB) == pred_end(BB) && 143 BB != &BB->getParent()->getEntryBlock()) { 144 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 145 << "' with terminator: " << *BB->getTerminator() << '\n'); 146 LoopHeaders.erase(BB); 147 DeleteDeadBlock(BB); 148 Changed = true; 149 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 150 // Can't thread an unconditional jump, but if the block is "almost 151 // empty", we can replace uses of it with uses of the successor and make 152 // this dead. 153 if (BI->isUnconditional() && 154 BB != &BB->getParent()->getEntryBlock()) { 155 BasicBlock::iterator BBI = BB->getFirstNonPHI(); 156 // Ignore dbg intrinsics. 157 while (isa<DbgInfoIntrinsic>(BBI)) 158 ++BBI; 159 // If the terminator is the only non-phi instruction, try to nuke it. 160 if (BBI->isTerminator()) { 161 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 162 // block, we have to make sure it isn't in the LoopHeaders set. We 163 // reinsert afterward if needed. 164 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 165 BasicBlock *Succ = BI->getSuccessor(0); 166 167 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { 168 Changed = true; 169 // If we deleted BB and BB was the header of a loop, then the 170 // successor is now the header of the loop. 171 BB = Succ; 172 } 173 174 if (ErasedFromLoopHeaders) 175 LoopHeaders.insert(BB); 176 } 177 } 178 } 179 } 180 EverChanged |= Changed; 181 } while (Changed); 182 183 LoopHeaders.clear(); 184 return EverChanged; 185 } 186 187 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 188 /// thread across it. 189 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) { 190 /// Ignore PHI nodes, these will be flattened when duplication happens. 191 BasicBlock::const_iterator I = BB->getFirstNonPHI(); 192 193 // FIXME: THREADING will delete values that are just used to compute the 194 // branch, so they shouldn't count against the duplication cost. 195 196 197 // Sum up the cost of each instruction until we get to the terminator. Don't 198 // include the terminator because the copy won't include it. 199 unsigned Size = 0; 200 for (; !isa<TerminatorInst>(I); ++I) { 201 // Debugger intrinsics don't incur code size. 202 if (isa<DbgInfoIntrinsic>(I)) continue; 203 204 // If this is a pointer->pointer bitcast, it is free. 205 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 206 continue; 207 208 // All other instructions count for at least one unit. 209 ++Size; 210 211 // Calls are more expensive. If they are non-intrinsic calls, we model them 212 // as having cost of 4. If they are a non-vector intrinsic, we model them 213 // as having cost of 2 total, and if they are a vector intrinsic, we model 214 // them as having cost 1. 215 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 216 if (!isa<IntrinsicInst>(CI)) 217 Size += 3; 218 else if (!CI->getType()->isVectorTy()) 219 Size += 1; 220 } 221 } 222 223 // Threading through a switch statement is particularly profitable. If this 224 // block ends in a switch, decrease its cost to make it more likely to happen. 225 if (isa<SwitchInst>(I)) 226 Size = Size > 6 ? Size-6 : 0; 227 228 return Size; 229 } 230 231 /// FindLoopHeaders - We do not want jump threading to turn proper loop 232 /// structures into irreducible loops. Doing this breaks up the loop nesting 233 /// hierarchy and pessimizes later transformations. To prevent this from 234 /// happening, we first have to find the loop headers. Here we approximate this 235 /// by finding targets of backedges in the CFG. 236 /// 237 /// Note that there definitely are cases when we want to allow threading of 238 /// edges across a loop header. For example, threading a jump from outside the 239 /// loop (the preheader) to an exit block of the loop is definitely profitable. 240 /// It is also almost always profitable to thread backedges from within the loop 241 /// to exit blocks, and is often profitable to thread backedges to other blocks 242 /// within the loop (forming a nested loop). This simple analysis is not rich 243 /// enough to track all of these properties and keep it up-to-date as the CFG 244 /// mutates, so we don't allow any of these transformations. 245 /// 246 void JumpThreading::FindLoopHeaders(Function &F) { 247 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 248 FindFunctionBackedges(F, Edges); 249 250 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 251 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 252 } 253 254 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 255 /// if we can infer that the value is a known ConstantInt in any of our 256 /// predecessors. If so, return the known list of value and pred BB in the 257 /// result vector. If a value is known to be undef, it is returned as null. 258 /// 259 /// This returns true if there were any known values. 260 /// 261 bool JumpThreading:: 262 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){ 263 // If V is a constantint, then it is known in all predecessors. 264 if (isa<ConstantInt>(V) || isa<UndefValue>(V)) { 265 ConstantInt *CI = dyn_cast<ConstantInt>(V); 266 267 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 268 Result.push_back(std::make_pair(CI, *PI)); 269 return true; 270 } 271 272 // If V is a non-instruction value, or an instruction in a different block, 273 // then it can't be derived from a PHI. 274 Instruction *I = dyn_cast<Instruction>(V); 275 if (I == 0 || I->getParent() != BB) { 276 277 // Okay, if this is a live-in value, see if it has a known value at the end 278 // of any of our predecessors. 279 // 280 // FIXME: This should be an edge property, not a block end property. 281 /// TODO: Per PR2563, we could infer value range information about a 282 /// predecessor based on its terminator. 283 // 284 if (LVI) { 285 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 286 // "I" is a non-local compare-with-a-constant instruction. This would be 287 // able to handle value inequalities better, for example if the compare is 288 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 289 // Perhaps getConstantOnEdge should be smart enough to do this? 290 291 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 292 // If the value is known by LazyValueInfo to be a constant in a 293 // predecessor, use that information to try to thread this block. 294 Constant *PredCst = LVI->getConstantOnEdge(V, *PI, BB); 295 if (PredCst == 0 || 296 (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst))) 297 continue; 298 299 Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), *PI)); 300 } 301 302 return !Result.empty(); 303 } 304 305 return false; 306 } 307 308 /// If I is a PHI node, then we know the incoming values for any constants. 309 if (PHINode *PN = dyn_cast<PHINode>(I)) { 310 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 311 Value *InVal = PN->getIncomingValue(i); 312 if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) { 313 ConstantInt *CI = dyn_cast<ConstantInt>(InVal); 314 Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i))); 315 } 316 } 317 return !Result.empty(); 318 } 319 320 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals; 321 322 // Handle some boolean conditions. 323 if (I->getType()->getPrimitiveSizeInBits() == 1) { 324 // X | true -> true 325 // X & false -> false 326 if (I->getOpcode() == Instruction::Or || 327 I->getOpcode() == Instruction::And) { 328 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals); 329 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals); 330 331 if (LHSVals.empty() && RHSVals.empty()) 332 return false; 333 334 ConstantInt *InterestingVal; 335 if (I->getOpcode() == Instruction::Or) 336 InterestingVal = ConstantInt::getTrue(I->getContext()); 337 else 338 InterestingVal = ConstantInt::getFalse(I->getContext()); 339 340 // Scan for the sentinel. If we find an undef, force it to the 341 // interesting value: x|undef -> true and x&undef -> false. 342 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 343 if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) { 344 Result.push_back(LHSVals[i]); 345 Result.back().first = InterestingVal; 346 } 347 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 348 if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) { 349 Result.push_back(RHSVals[i]); 350 Result.back().first = InterestingVal; 351 } 352 return !Result.empty(); 353 } 354 355 // Handle the NOT form of XOR. 356 if (I->getOpcode() == Instruction::Xor && 357 isa<ConstantInt>(I->getOperand(1)) && 358 cast<ConstantInt>(I->getOperand(1))->isOne()) { 359 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result); 360 if (Result.empty()) 361 return false; 362 363 // Invert the known values. 364 for (unsigned i = 0, e = Result.size(); i != e; ++i) 365 if (Result[i].first) 366 Result[i].first = 367 cast<ConstantInt>(ConstantExpr::getNot(Result[i].first)); 368 return true; 369 } 370 } 371 372 // Handle compare with phi operand, where the PHI is defined in this block. 373 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 374 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 375 if (PN && PN->getParent() == BB) { 376 // We can do this simplification if any comparisons fold to true or false. 377 // See if any do. 378 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 379 BasicBlock *PredBB = PN->getIncomingBlock(i); 380 Value *LHS = PN->getIncomingValue(i); 381 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 382 383 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD); 384 if (Res == 0) { 385 if (!LVI || !isa<Constant>(RHS)) 386 continue; 387 388 LazyValueInfo::Tristate 389 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 390 cast<Constant>(RHS), PredBB, BB); 391 if (ResT == LazyValueInfo::Unknown) 392 continue; 393 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 394 } 395 396 if (isa<UndefValue>(Res)) 397 Result.push_back(std::make_pair((ConstantInt*)0, PredBB)); 398 else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res)) 399 Result.push_back(std::make_pair(CI, PredBB)); 400 } 401 402 return !Result.empty(); 403 } 404 405 406 // If comparing a live-in value against a constant, see if we know the 407 // live-in value on any predecessors. 408 if (LVI && isa<Constant>(Cmp->getOperand(1)) && 409 Cmp->getType()->isIntegerTy() && // Not vector compare. 410 (!isa<Instruction>(Cmp->getOperand(0)) || 411 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB)) { 412 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 413 414 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 415 // If the value is known by LazyValueInfo to be a constant in a 416 // predecessor, use that information to try to thread this block. 417 LazyValueInfo::Tristate 418 Res = LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 419 RHSCst, *PI, BB); 420 if (Res == LazyValueInfo::Unknown) 421 continue; 422 423 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 424 Result.push_back(std::make_pair(cast<ConstantInt>(ResC), *PI)); 425 } 426 427 return !Result.empty(); 428 } 429 } 430 return false; 431 } 432 433 434 435 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 436 /// in an undefined jump, decide which block is best to revector to. 437 /// 438 /// Since we can pick an arbitrary destination, we pick the successor with the 439 /// fewest predecessors. This should reduce the in-degree of the others. 440 /// 441 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 442 TerminatorInst *BBTerm = BB->getTerminator(); 443 unsigned MinSucc = 0; 444 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 445 // Compute the successor with the minimum number of predecessors. 446 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 447 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 448 TestBB = BBTerm->getSuccessor(i); 449 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 450 if (NumPreds < MinNumPreds) 451 MinSucc = i; 452 } 453 454 return MinSucc; 455 } 456 457 /// ProcessBlock - If there are any predecessors whose control can be threaded 458 /// through to a successor, transform them now. 459 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 460 // If the block is trivially dead, just return and let the caller nuke it. 461 // This simplifies other transformations. 462 if (pred_begin(BB) == pred_end(BB) && 463 BB != &BB->getParent()->getEntryBlock()) 464 return false; 465 466 // If this block has a single predecessor, and if that pred has a single 467 // successor, merge the blocks. This encourages recursive jump threading 468 // because now the condition in this block can be threaded through 469 // predecessors of our predecessor block. 470 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 471 if (SinglePred->getTerminator()->getNumSuccessors() == 1 && 472 SinglePred != BB) { 473 // If SinglePred was a loop header, BB becomes one. 474 if (LoopHeaders.erase(SinglePred)) 475 LoopHeaders.insert(BB); 476 477 // Remember if SinglePred was the entry block of the function. If so, we 478 // will need to move BB back to the entry position. 479 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 480 MergeBasicBlockIntoOnlyPred(BB); 481 482 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 483 BB->moveBefore(&BB->getParent()->getEntryBlock()); 484 return true; 485 } 486 } 487 488 // Look to see if the terminator is a branch of switch, if not we can't thread 489 // it. 490 Value *Condition; 491 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 492 // Can't thread an unconditional jump. 493 if (BI->isUnconditional()) return false; 494 Condition = BI->getCondition(); 495 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 496 Condition = SI->getCondition(); 497 else 498 return false; // Must be an invoke. 499 500 // If the terminator of this block is branching on a constant, simplify the 501 // terminator to an unconditional branch. This can occur due to threading in 502 // other blocks. 503 if (isa<ConstantInt>(Condition)) { 504 DEBUG(dbgs() << " In block '" << BB->getName() 505 << "' folding terminator: " << *BB->getTerminator() << '\n'); 506 ++NumFolds; 507 ConstantFoldTerminator(BB); 508 return true; 509 } 510 511 // If the terminator is branching on an undef, we can pick any of the 512 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 513 if (isa<UndefValue>(Condition)) { 514 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 515 516 // Fold the branch/switch. 517 TerminatorInst *BBTerm = BB->getTerminator(); 518 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 519 if (i == BestSucc) continue; 520 RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD); 521 } 522 523 DEBUG(dbgs() << " In block '" << BB->getName() 524 << "' folding undef terminator: " << *BBTerm << '\n'); 525 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 526 BBTerm->eraseFromParent(); 527 return true; 528 } 529 530 Instruction *CondInst = dyn_cast<Instruction>(Condition); 531 532 // If the condition is an instruction defined in another block, see if a 533 // predecessor has the same condition: 534 // br COND, BBX, BBY 535 // BBX: 536 // br COND, BBZ, BBW 537 if (!LVI && 538 !Condition->hasOneUse() && // Multiple uses. 539 (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition. 540 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 541 if (isa<BranchInst>(BB->getTerminator())) { 542 for (; PI != E; ++PI) 543 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 544 if (PBI->isConditional() && PBI->getCondition() == Condition && 545 ProcessBranchOnDuplicateCond(*PI, BB)) 546 return true; 547 } else { 548 assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator"); 549 for (; PI != E; ++PI) 550 if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator())) 551 if (PSI->getCondition() == Condition && 552 ProcessSwitchOnDuplicateCond(*PI, BB)) 553 return true; 554 } 555 } 556 557 // All the rest of our checks depend on the condition being an instruction. 558 if (CondInst == 0) { 559 // FIXME: Unify this with code below. 560 if (LVI && ProcessThreadableEdges(Condition, BB)) 561 return true; 562 return false; 563 } 564 565 566 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 567 if (!LVI && 568 (!isa<PHINode>(CondCmp->getOperand(0)) || 569 cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) { 570 // If we have a comparison, loop over the predecessors to see if there is 571 // a condition with a lexically identical value. 572 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 573 for (; PI != E; ++PI) 574 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 575 if (PBI->isConditional() && *PI != BB) { 576 if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) { 577 if (CI->getOperand(0) == CondCmp->getOperand(0) && 578 CI->getOperand(1) == CondCmp->getOperand(1) && 579 CI->getPredicate() == CondCmp->getPredicate()) { 580 // TODO: Could handle things like (x != 4) --> (x == 17) 581 if (ProcessBranchOnDuplicateCond(*PI, BB)) 582 return true; 583 } 584 } 585 } 586 } 587 } 588 589 // Check for some cases that are worth simplifying. Right now we want to look 590 // for loads that are used by a switch or by the condition for the branch. If 591 // we see one, check to see if it's partially redundant. If so, insert a PHI 592 // which can then be used to thread the values. 593 // 594 Value *SimplifyValue = CondInst; 595 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 596 if (isa<Constant>(CondCmp->getOperand(1))) 597 SimplifyValue = CondCmp->getOperand(0); 598 599 // TODO: There are other places where load PRE would be profitable, such as 600 // more complex comparisons. 601 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 602 if (SimplifyPartiallyRedundantLoad(LI)) 603 return true; 604 605 606 // Handle a variety of cases where we are branching on something derived from 607 // a PHI node in the current block. If we can prove that any predecessors 608 // compute a predictable value based on a PHI node, thread those predecessors. 609 // 610 if (ProcessThreadableEdges(CondInst, BB)) 611 return true; 612 613 // If this is an otherwise-unfoldable branch on a phi node in the current 614 // block, see if we can simplify. 615 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 616 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 617 return ProcessBranchOnPHI(PN); 618 619 620 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 621 if (CondInst->getOpcode() == Instruction::Xor && 622 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 623 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 624 625 626 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 627 // "(X == 4)", thread through this block. 628 629 return false; 630 } 631 632 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that 633 /// block that jump on exactly the same condition. This means that we almost 634 /// always know the direction of the edge in the DESTBB: 635 /// PREDBB: 636 /// br COND, DESTBB, BBY 637 /// DESTBB: 638 /// br COND, BBZ, BBW 639 /// 640 /// If DESTBB has multiple predecessors, we can't just constant fold the branch 641 /// in DESTBB, we have to thread over it. 642 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB, 643 BasicBlock *BB) { 644 BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator()); 645 646 // If both successors of PredBB go to DESTBB, we don't know anything. We can 647 // fold the branch to an unconditional one, which allows other recursive 648 // simplifications. 649 bool BranchDir; 650 if (PredBI->getSuccessor(1) != BB) 651 BranchDir = true; 652 else if (PredBI->getSuccessor(0) != BB) 653 BranchDir = false; 654 else { 655 DEBUG(dbgs() << " In block '" << PredBB->getName() 656 << "' folding terminator: " << *PredBB->getTerminator() << '\n'); 657 ++NumFolds; 658 ConstantFoldTerminator(PredBB); 659 return true; 660 } 661 662 BranchInst *DestBI = cast<BranchInst>(BB->getTerminator()); 663 664 // If the dest block has one predecessor, just fix the branch condition to a 665 // constant and fold it. 666 if (BB->getSinglePredecessor()) { 667 DEBUG(dbgs() << " In block '" << BB->getName() 668 << "' folding condition to '" << BranchDir << "': " 669 << *BB->getTerminator() << '\n'); 670 ++NumFolds; 671 Value *OldCond = DestBI->getCondition(); 672 DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 673 BranchDir)); 674 // Delete dead instructions before we fold the branch. Folding the branch 675 // can eliminate edges from the CFG which can end up deleting OldCond. 676 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 677 ConstantFoldTerminator(BB); 678 return true; 679 } 680 681 682 // Next, figure out which successor we are threading to. 683 BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir); 684 685 SmallVector<BasicBlock*, 2> Preds; 686 Preds.push_back(PredBB); 687 688 // Ok, try to thread it! 689 return ThreadEdge(BB, Preds, SuccBB); 690 } 691 692 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that 693 /// block that switch on exactly the same condition. This means that we almost 694 /// always know the direction of the edge in the DESTBB: 695 /// PREDBB: 696 /// switch COND [... DESTBB, BBY ... ] 697 /// DESTBB: 698 /// switch COND [... BBZ, BBW ] 699 /// 700 /// Optimizing switches like this is very important, because simplifycfg builds 701 /// switches out of repeated 'if' conditions. 702 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, 703 BasicBlock *DestBB) { 704 // Can't thread edge to self. 705 if (PredBB == DestBB) 706 return false; 707 708 SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator()); 709 SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator()); 710 711 // There are a variety of optimizations that we can potentially do on these 712 // blocks: we order them from most to least preferable. 713 714 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB 715 // directly to their destination. This does not introduce *any* code size 716 // growth. Skip debug info first. 717 BasicBlock::iterator BBI = DestBB->begin(); 718 while (isa<DbgInfoIntrinsic>(BBI)) 719 BBI++; 720 721 // FIXME: Thread if it just contains a PHI. 722 if (isa<SwitchInst>(BBI)) { 723 bool MadeChange = false; 724 // Ignore the default edge for now. 725 for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) { 726 ConstantInt *DestVal = DestSI->getCaseValue(i); 727 BasicBlock *DestSucc = DestSI->getSuccessor(i); 728 729 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if 730 // PredSI has an explicit case for it. If so, forward. If it is covered 731 // by the default case, we can't update PredSI. 732 unsigned PredCase = PredSI->findCaseValue(DestVal); 733 if (PredCase == 0) continue; 734 735 // If PredSI doesn't go to DestBB on this value, then it won't reach the 736 // case on this condition. 737 if (PredSI->getSuccessor(PredCase) != DestBB && 738 DestSI->getSuccessor(i) != DestBB) 739 continue; 740 741 // Do not forward this if it already goes to this destination, this would 742 // be an infinite loop. 743 if (PredSI->getSuccessor(PredCase) == DestSucc) 744 continue; 745 746 // Otherwise, we're safe to make the change. Make sure that the edge from 747 // DestSI to DestSucc is not critical and has no PHI nodes. 748 DEBUG(dbgs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI); 749 DEBUG(dbgs() << "THROUGH: " << *DestSI); 750 751 // If the destination has PHI nodes, just split the edge for updating 752 // simplicity. 753 if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){ 754 SplitCriticalEdge(DestSI, i, this); 755 DestSucc = DestSI->getSuccessor(i); 756 } 757 FoldSingleEntryPHINodes(DestSucc); 758 PredSI->setSuccessor(PredCase, DestSucc); 759 MadeChange = true; 760 } 761 762 if (MadeChange) 763 return true; 764 } 765 766 return false; 767 } 768 769 770 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 771 /// load instruction, eliminate it by replacing it with a PHI node. This is an 772 /// important optimization that encourages jump threading, and needs to be run 773 /// interlaced with other jump threading tasks. 774 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 775 // Don't hack volatile loads. 776 if (LI->isVolatile()) return false; 777 778 // If the load is defined in a block with exactly one predecessor, it can't be 779 // partially redundant. 780 BasicBlock *LoadBB = LI->getParent(); 781 if (LoadBB->getSinglePredecessor()) 782 return false; 783 784 Value *LoadedPtr = LI->getOperand(0); 785 786 // If the loaded operand is defined in the LoadBB, it can't be available. 787 // TODO: Could do simple PHI translation, that would be fun :) 788 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 789 if (PtrOp->getParent() == LoadBB) 790 return false; 791 792 // Scan a few instructions up from the load, to see if it is obviously live at 793 // the entry to its block. 794 BasicBlock::iterator BBIt = LI; 795 796 if (Value *AvailableVal = 797 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) { 798 // If the value if the load is locally available within the block, just use 799 // it. This frequently occurs for reg2mem'd allocas. 800 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 801 802 // If the returned value is the load itself, replace with an undef. This can 803 // only happen in dead loops. 804 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 805 LI->replaceAllUsesWith(AvailableVal); 806 LI->eraseFromParent(); 807 return true; 808 } 809 810 // Otherwise, if we scanned the whole block and got to the top of the block, 811 // we know the block is locally transparent to the load. If not, something 812 // might clobber its value. 813 if (BBIt != LoadBB->begin()) 814 return false; 815 816 817 SmallPtrSet<BasicBlock*, 8> PredsScanned; 818 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 819 AvailablePredsTy AvailablePreds; 820 BasicBlock *OneUnavailablePred = 0; 821 822 // If we got here, the loaded value is transparent through to the start of the 823 // block. Check to see if it is available in any of the predecessor blocks. 824 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 825 PI != PE; ++PI) { 826 BasicBlock *PredBB = *PI; 827 828 // If we already scanned this predecessor, skip it. 829 if (!PredsScanned.insert(PredBB)) 830 continue; 831 832 // Scan the predecessor to see if the value is available in the pred. 833 BBIt = PredBB->end(); 834 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6); 835 if (!PredAvailable) { 836 OneUnavailablePred = PredBB; 837 continue; 838 } 839 840 // If so, this load is partially redundant. Remember this info so that we 841 // can create a PHI node. 842 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 843 } 844 845 // If the loaded value isn't available in any predecessor, it isn't partially 846 // redundant. 847 if (AvailablePreds.empty()) return false; 848 849 // Okay, the loaded value is available in at least one (and maybe all!) 850 // predecessors. If the value is unavailable in more than one unique 851 // predecessor, we want to insert a merge block for those common predecessors. 852 // This ensures that we only have to insert one reload, thus not increasing 853 // code size. 854 BasicBlock *UnavailablePred = 0; 855 856 // If there is exactly one predecessor where the value is unavailable, the 857 // already computed 'OneUnavailablePred' block is it. If it ends in an 858 // unconditional branch, we know that it isn't a critical edge. 859 if (PredsScanned.size() == AvailablePreds.size()+1 && 860 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 861 UnavailablePred = OneUnavailablePred; 862 } else if (PredsScanned.size() != AvailablePreds.size()) { 863 // Otherwise, we had multiple unavailable predecessors or we had a critical 864 // edge from the one. 865 SmallVector<BasicBlock*, 8> PredsToSplit; 866 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 867 868 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 869 AvailablePredSet.insert(AvailablePreds[i].first); 870 871 // Add all the unavailable predecessors to the PredsToSplit list. 872 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 873 PI != PE; ++PI) { 874 // If the predecessor is an indirect goto, we can't split the edge. 875 if (isa<IndirectBrInst>((*PI)->getTerminator())) 876 return false; 877 878 if (!AvailablePredSet.count(*PI)) 879 PredsToSplit.push_back(*PI); 880 } 881 882 // Split them out to their own block. 883 UnavailablePred = 884 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(), 885 "thread-pre-split", this); 886 } 887 888 // If the value isn't available in all predecessors, then there will be 889 // exactly one where it isn't available. Insert a load on that edge and add 890 // it to the AvailablePreds list. 891 if (UnavailablePred) { 892 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 893 "Can't handle critical edge here!"); 894 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, 895 LI->getAlignment(), 896 UnavailablePred->getTerminator()); 897 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 898 } 899 900 // Now we know that each predecessor of this block has a value in 901 // AvailablePreds, sort them for efficient access as we're walking the preds. 902 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 903 904 // Create a PHI node at the start of the block for the PRE'd load value. 905 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin()); 906 PN->takeName(LI); 907 908 // Insert new entries into the PHI for each predecessor. A single block may 909 // have multiple entries here. 910 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E; 911 ++PI) { 912 AvailablePredsTy::iterator I = 913 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 914 std::make_pair(*PI, (Value*)0)); 915 916 assert(I != AvailablePreds.end() && I->first == *PI && 917 "Didn't find entry for predecessor!"); 918 919 PN->addIncoming(I->second, I->first); 920 } 921 922 //cerr << "PRE: " << *LI << *PN << "\n"; 923 924 LI->replaceAllUsesWith(PN); 925 LI->eraseFromParent(); 926 927 return true; 928 } 929 930 /// FindMostPopularDest - The specified list contains multiple possible 931 /// threadable destinations. Pick the one that occurs the most frequently in 932 /// the list. 933 static BasicBlock * 934 FindMostPopularDest(BasicBlock *BB, 935 const SmallVectorImpl<std::pair<BasicBlock*, 936 BasicBlock*> > &PredToDestList) { 937 assert(!PredToDestList.empty()); 938 939 // Determine popularity. If there are multiple possible destinations, we 940 // explicitly choose to ignore 'undef' destinations. We prefer to thread 941 // blocks with known and real destinations to threading undef. We'll handle 942 // them later if interesting. 943 DenseMap<BasicBlock*, unsigned> DestPopularity; 944 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 945 if (PredToDestList[i].second) 946 DestPopularity[PredToDestList[i].second]++; 947 948 // Find the most popular dest. 949 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 950 BasicBlock *MostPopularDest = DPI->first; 951 unsigned Popularity = DPI->second; 952 SmallVector<BasicBlock*, 4> SamePopularity; 953 954 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 955 // If the popularity of this entry isn't higher than the popularity we've 956 // seen so far, ignore it. 957 if (DPI->second < Popularity) 958 ; // ignore. 959 else if (DPI->second == Popularity) { 960 // If it is the same as what we've seen so far, keep track of it. 961 SamePopularity.push_back(DPI->first); 962 } else { 963 // If it is more popular, remember it. 964 SamePopularity.clear(); 965 MostPopularDest = DPI->first; 966 Popularity = DPI->second; 967 } 968 } 969 970 // Okay, now we know the most popular destination. If there is more than 971 // destination, we need to determine one. This is arbitrary, but we need 972 // to make a deterministic decision. Pick the first one that appears in the 973 // successor list. 974 if (!SamePopularity.empty()) { 975 SamePopularity.push_back(MostPopularDest); 976 TerminatorInst *TI = BB->getTerminator(); 977 for (unsigned i = 0; ; ++i) { 978 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 979 980 if (std::find(SamePopularity.begin(), SamePopularity.end(), 981 TI->getSuccessor(i)) == SamePopularity.end()) 982 continue; 983 984 MostPopularDest = TI->getSuccessor(i); 985 break; 986 } 987 } 988 989 // Okay, we have finally picked the most popular destination. 990 return MostPopularDest; 991 } 992 993 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) { 994 // If threading this would thread across a loop header, don't even try to 995 // thread the edge. 996 if (LoopHeaders.count(BB)) 997 return false; 998 999 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues; 1000 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues)) 1001 return false; 1002 assert(!PredValues.empty() && 1003 "ComputeValueKnownInPredecessors returned true with no values"); 1004 1005 DEBUG(dbgs() << "IN BB: " << *BB; 1006 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1007 dbgs() << " BB '" << BB->getName() << "': FOUND condition = "; 1008 if (PredValues[i].first) 1009 dbgs() << *PredValues[i].first; 1010 else 1011 dbgs() << "UNDEF"; 1012 dbgs() << " for pred '" << PredValues[i].second->getName() 1013 << "'.\n"; 1014 }); 1015 1016 // Decide what we want to thread through. Convert our list of known values to 1017 // a list of known destinations for each pred. This also discards duplicate 1018 // predecessors and keeps track of the undefined inputs (which are represented 1019 // as a null dest in the PredToDestList). 1020 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1021 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1022 1023 BasicBlock *OnlyDest = 0; 1024 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1025 1026 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1027 BasicBlock *Pred = PredValues[i].second; 1028 if (!SeenPreds.insert(Pred)) 1029 continue; // Duplicate predecessor entry. 1030 1031 // If the predecessor ends with an indirect goto, we can't change its 1032 // destination. 1033 if (isa<IndirectBrInst>(Pred->getTerminator())) 1034 continue; 1035 1036 ConstantInt *Val = PredValues[i].first; 1037 1038 BasicBlock *DestBB; 1039 if (Val == 0) // Undef. 1040 DestBB = 0; 1041 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1042 DestBB = BI->getSuccessor(Val->isZero()); 1043 else { 1044 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator()); 1045 DestBB = SI->getSuccessor(SI->findCaseValue(Val)); 1046 } 1047 1048 // If we have exactly one destination, remember it for efficiency below. 1049 if (i == 0) 1050 OnlyDest = DestBB; 1051 else if (OnlyDest != DestBB) 1052 OnlyDest = MultipleDestSentinel; 1053 1054 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1055 } 1056 1057 // If all edges were unthreadable, we fail. 1058 if (PredToDestList.empty()) 1059 return false; 1060 1061 // Determine which is the most common successor. If we have many inputs and 1062 // this block is a switch, we want to start by threading the batch that goes 1063 // to the most popular destination first. If we only know about one 1064 // threadable destination (the common case) we can avoid this. 1065 BasicBlock *MostPopularDest = OnlyDest; 1066 1067 if (MostPopularDest == MultipleDestSentinel) 1068 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1069 1070 // Now that we know what the most popular destination is, factor all 1071 // predecessors that will jump to it into a single predecessor. 1072 SmallVector<BasicBlock*, 16> PredsToFactor; 1073 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1074 if (PredToDestList[i].second == MostPopularDest) { 1075 BasicBlock *Pred = PredToDestList[i].first; 1076 1077 // This predecessor may be a switch or something else that has multiple 1078 // edges to the block. Factor each of these edges by listing them 1079 // according to # occurrences in PredsToFactor. 1080 TerminatorInst *PredTI = Pred->getTerminator(); 1081 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 1082 if (PredTI->getSuccessor(i) == BB) 1083 PredsToFactor.push_back(Pred); 1084 } 1085 1086 // If the threadable edges are branching on an undefined value, we get to pick 1087 // the destination that these predecessors should get to. 1088 if (MostPopularDest == 0) 1089 MostPopularDest = BB->getTerminator()-> 1090 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1091 1092 // Ok, try to thread it! 1093 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1094 } 1095 1096 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1097 /// a PHI node in the current block. See if there are any simplifications we 1098 /// can do based on inputs to the phi node. 1099 /// 1100 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) { 1101 BasicBlock *BB = PN->getParent(); 1102 1103 // TODO: We could make use of this to do it once for blocks with common PHI 1104 // values. 1105 SmallVector<BasicBlock*, 1> PredBBs; 1106 PredBBs.resize(1); 1107 1108 // If any of the predecessor blocks end in an unconditional branch, we can 1109 // *duplicate* the conditional branch into that block in order to further 1110 // encourage jump threading and to eliminate cases where we have branch on a 1111 // phi of an icmp (branch on icmp is much better). 1112 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1113 BasicBlock *PredBB = PN->getIncomingBlock(i); 1114 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1115 if (PredBr->isUnconditional()) { 1116 PredBBs[0] = PredBB; 1117 // Try to duplicate BB into PredBB. 1118 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1119 return true; 1120 } 1121 } 1122 1123 return false; 1124 } 1125 1126 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1127 /// a xor instruction in the current block. See if there are any 1128 /// simplifications we can do based on inputs to the xor. 1129 /// 1130 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) { 1131 BasicBlock *BB = BO->getParent(); 1132 1133 // If either the LHS or RHS of the xor is a constant, don't do this 1134 // optimization. 1135 if (isa<ConstantInt>(BO->getOperand(0)) || 1136 isa<ConstantInt>(BO->getOperand(1))) 1137 return false; 1138 1139 // If the first instruction in BB isn't a phi, we won't be able to infer 1140 // anything special about any particular predecessor. 1141 if (!isa<PHINode>(BB->front())) 1142 return false; 1143 1144 // If we have a xor as the branch input to this block, and we know that the 1145 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1146 // the condition into the predecessor and fix that value to true, saving some 1147 // logical ops on that path and encouraging other paths to simplify. 1148 // 1149 // This copies something like this: 1150 // 1151 // BB: 1152 // %X = phi i1 [1], [%X'] 1153 // %Y = icmp eq i32 %A, %B 1154 // %Z = xor i1 %X, %Y 1155 // br i1 %Z, ... 1156 // 1157 // Into: 1158 // BB': 1159 // %Y = icmp ne i32 %A, %B 1160 // br i1 %Z, ... 1161 1162 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> XorOpValues; 1163 bool isLHS = true; 1164 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues)) { 1165 assert(XorOpValues.empty()); 1166 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues)) 1167 return false; 1168 isLHS = false; 1169 } 1170 1171 assert(!XorOpValues.empty() && 1172 "ComputeValueKnownInPredecessors returned true with no values"); 1173 1174 // Scan the information to see which is most popular: true or false. The 1175 // predecessors can be of the set true, false, or undef. 1176 unsigned NumTrue = 0, NumFalse = 0; 1177 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1178 if (!XorOpValues[i].first) continue; // Ignore undefs for the count. 1179 if (XorOpValues[i].first->isZero()) 1180 ++NumFalse; 1181 else 1182 ++NumTrue; 1183 } 1184 1185 // Determine which value to split on, true, false, or undef if neither. 1186 ConstantInt *SplitVal = 0; 1187 if (NumTrue > NumFalse) 1188 SplitVal = ConstantInt::getTrue(BB->getContext()); 1189 else if (NumTrue != 0 || NumFalse != 0) 1190 SplitVal = ConstantInt::getFalse(BB->getContext()); 1191 1192 // Collect all of the blocks that this can be folded into so that we can 1193 // factor this once and clone it once. 1194 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1195 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1196 if (XorOpValues[i].first != SplitVal && XorOpValues[i].first != 0) continue; 1197 1198 BlocksToFoldInto.push_back(XorOpValues[i].second); 1199 } 1200 1201 // If we inferred a value for all of the predecessors, then duplication won't 1202 // help us. However, we can just replace the LHS or RHS with the constant. 1203 if (BlocksToFoldInto.size() == 1204 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1205 if (SplitVal == 0) { 1206 // If all preds provide undef, just nuke the xor, because it is undef too. 1207 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1208 BO->eraseFromParent(); 1209 } else if (SplitVal->isZero()) { 1210 // If all preds provide 0, replace the xor with the other input. 1211 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1212 BO->eraseFromParent(); 1213 } else { 1214 // If all preds provide 1, set the computed value to 1. 1215 BO->setOperand(!isLHS, SplitVal); 1216 } 1217 1218 return true; 1219 } 1220 1221 // Try to duplicate BB into PredBB. 1222 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1223 } 1224 1225 1226 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1227 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1228 /// NewPred using the entries from OldPred (suitably mapped). 1229 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1230 BasicBlock *OldPred, 1231 BasicBlock *NewPred, 1232 DenseMap<Instruction*, Value*> &ValueMap) { 1233 for (BasicBlock::iterator PNI = PHIBB->begin(); 1234 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1235 // Ok, we have a PHI node. Figure out what the incoming value was for the 1236 // DestBlock. 1237 Value *IV = PN->getIncomingValueForBlock(OldPred); 1238 1239 // Remap the value if necessary. 1240 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1241 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1242 if (I != ValueMap.end()) 1243 IV = I->second; 1244 } 1245 1246 PN->addIncoming(IV, NewPred); 1247 } 1248 } 1249 1250 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1251 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1252 /// across BB. Transform the IR to reflect this change. 1253 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1254 const SmallVectorImpl<BasicBlock*> &PredBBs, 1255 BasicBlock *SuccBB) { 1256 // If threading to the same block as we come from, we would infinite loop. 1257 if (SuccBB == BB) { 1258 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1259 << "' - would thread to self!\n"); 1260 return false; 1261 } 1262 1263 // If threading this would thread across a loop header, don't thread the edge. 1264 // See the comments above FindLoopHeaders for justifications and caveats. 1265 if (LoopHeaders.count(BB)) { 1266 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1267 << "' to dest BB '" << SuccBB->getName() 1268 << "' - it might create an irreducible loop!\n"); 1269 return false; 1270 } 1271 1272 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB); 1273 if (JumpThreadCost > Threshold) { 1274 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1275 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1276 return false; 1277 } 1278 1279 // And finally, do it! Start by factoring the predecessors is needed. 1280 BasicBlock *PredBB; 1281 if (PredBBs.size() == 1) 1282 PredBB = PredBBs[0]; 1283 else { 1284 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1285 << " common predecessors.\n"); 1286 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), 1287 ".thr_comm", this); 1288 } 1289 1290 // And finally, do it! 1291 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1292 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1293 << ", across block:\n " 1294 << *BB << "\n"); 1295 1296 // We are going to have to map operands from the original BB block to the new 1297 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1298 // account for entry from PredBB. 1299 DenseMap<Instruction*, Value*> ValueMapping; 1300 1301 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1302 BB->getName()+".thread", 1303 BB->getParent(), BB); 1304 NewBB->moveAfter(PredBB); 1305 1306 BasicBlock::iterator BI = BB->begin(); 1307 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1308 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1309 1310 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1311 // mapping and using it to remap operands in the cloned instructions. 1312 for (; !isa<TerminatorInst>(BI); ++BI) { 1313 Instruction *New = BI->clone(); 1314 New->setName(BI->getName()); 1315 NewBB->getInstList().push_back(New); 1316 ValueMapping[BI] = New; 1317 1318 // Remap operands to patch up intra-block references. 1319 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1320 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1321 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1322 if (I != ValueMapping.end()) 1323 New->setOperand(i, I->second); 1324 } 1325 } 1326 1327 // We didn't copy the terminator from BB over to NewBB, because there is now 1328 // an unconditional jump to SuccBB. Insert the unconditional jump. 1329 BranchInst::Create(SuccBB, NewBB); 1330 1331 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1332 // PHI nodes for NewBB now. 1333 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1334 1335 // If there were values defined in BB that are used outside the block, then we 1336 // now have to update all uses of the value to use either the original value, 1337 // the cloned value, or some PHI derived value. This can require arbitrary 1338 // PHI insertion, of which we are prepared to do, clean these up now. 1339 SSAUpdater SSAUpdate; 1340 SmallVector<Use*, 16> UsesToRename; 1341 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1342 // Scan all uses of this instruction to see if it is used outside of its 1343 // block, and if so, record them in UsesToRename. 1344 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1345 ++UI) { 1346 Instruction *User = cast<Instruction>(*UI); 1347 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1348 if (UserPN->getIncomingBlock(UI) == BB) 1349 continue; 1350 } else if (User->getParent() == BB) 1351 continue; 1352 1353 UsesToRename.push_back(&UI.getUse()); 1354 } 1355 1356 // If there are no uses outside the block, we're done with this instruction. 1357 if (UsesToRename.empty()) 1358 continue; 1359 1360 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1361 1362 // We found a use of I outside of BB. Rename all uses of I that are outside 1363 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1364 // with the two values we know. 1365 SSAUpdate.Initialize(I); 1366 SSAUpdate.AddAvailableValue(BB, I); 1367 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); 1368 1369 while (!UsesToRename.empty()) 1370 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1371 DEBUG(dbgs() << "\n"); 1372 } 1373 1374 1375 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1376 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1377 // us to simplify any PHI nodes in BB. 1378 TerminatorInst *PredTerm = PredBB->getTerminator(); 1379 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1380 if (PredTerm->getSuccessor(i) == BB) { 1381 RemovePredecessorAndSimplify(BB, PredBB, TD); 1382 PredTerm->setSuccessor(i, NewBB); 1383 } 1384 1385 // At this point, the IR is fully up to date and consistent. Do a quick scan 1386 // over the new instructions and zap any that are constants or dead. This 1387 // frequently happens because of phi translation. 1388 SimplifyInstructionsInBlock(NewBB, TD); 1389 1390 // Threaded an edge! 1391 ++NumThreads; 1392 return true; 1393 } 1394 1395 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1396 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1397 /// If we can duplicate the contents of BB up into PredBB do so now, this 1398 /// improves the odds that the branch will be on an analyzable instruction like 1399 /// a compare. 1400 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1401 const SmallVectorImpl<BasicBlock *> &PredBBs) { 1402 assert(!PredBBs.empty() && "Can't handle an empty set"); 1403 1404 // If BB is a loop header, then duplicating this block outside the loop would 1405 // cause us to transform this into an irreducible loop, don't do this. 1406 // See the comments above FindLoopHeaders for justifications and caveats. 1407 if (LoopHeaders.count(BB)) { 1408 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1409 << "' into predecessor block '" << PredBBs[0]->getName() 1410 << "' - it might create an irreducible loop!\n"); 1411 return false; 1412 } 1413 1414 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB); 1415 if (DuplicationCost > Threshold) { 1416 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1417 << "' - Cost is too high: " << DuplicationCost << "\n"); 1418 return false; 1419 } 1420 1421 // And finally, do it! Start by factoring the predecessors is needed. 1422 BasicBlock *PredBB; 1423 if (PredBBs.size() == 1) 1424 PredBB = PredBBs[0]; 1425 else { 1426 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1427 << " common predecessors.\n"); 1428 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), 1429 ".thr_comm", this); 1430 } 1431 1432 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1433 // of PredBB. 1434 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1435 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1436 << DuplicationCost << " block is:" << *BB << "\n"); 1437 1438 // Unless PredBB ends with an unconditional branch, split the edge so that we 1439 // can just clone the bits from BB into the end of the new PredBB. 1440 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 1441 1442 if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) { 1443 PredBB = SplitEdge(PredBB, BB, this); 1444 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1445 } 1446 1447 // We are going to have to map operands from the original BB block into the 1448 // PredBB block. Evaluate PHI nodes in BB. 1449 DenseMap<Instruction*, Value*> ValueMapping; 1450 1451 BasicBlock::iterator BI = BB->begin(); 1452 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1453 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1454 1455 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1456 // mapping and using it to remap operands in the cloned instructions. 1457 for (; BI != BB->end(); ++BI) { 1458 Instruction *New = BI->clone(); 1459 1460 // Remap operands to patch up intra-block references. 1461 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1462 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1463 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1464 if (I != ValueMapping.end()) 1465 New->setOperand(i, I->second); 1466 } 1467 1468 // If this instruction can be simplified after the operands are updated, 1469 // just use the simplified value instead. This frequently happens due to 1470 // phi translation. 1471 if (Value *IV = SimplifyInstruction(New, TD)) { 1472 delete New; 1473 ValueMapping[BI] = IV; 1474 } else { 1475 // Otherwise, insert the new instruction into the block. 1476 New->setName(BI->getName()); 1477 PredBB->getInstList().insert(OldPredBranch, New); 1478 ValueMapping[BI] = New; 1479 } 1480 } 1481 1482 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1483 // add entries to the PHI nodes for branch from PredBB now. 1484 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1485 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1486 ValueMapping); 1487 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1488 ValueMapping); 1489 1490 // If there were values defined in BB that are used outside the block, then we 1491 // now have to update all uses of the value to use either the original value, 1492 // the cloned value, or some PHI derived value. This can require arbitrary 1493 // PHI insertion, of which we are prepared to do, clean these up now. 1494 SSAUpdater SSAUpdate; 1495 SmallVector<Use*, 16> UsesToRename; 1496 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1497 // Scan all uses of this instruction to see if it is used outside of its 1498 // block, and if so, record them in UsesToRename. 1499 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1500 ++UI) { 1501 Instruction *User = cast<Instruction>(*UI); 1502 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1503 if (UserPN->getIncomingBlock(UI) == BB) 1504 continue; 1505 } else if (User->getParent() == BB) 1506 continue; 1507 1508 UsesToRename.push_back(&UI.getUse()); 1509 } 1510 1511 // If there are no uses outside the block, we're done with this instruction. 1512 if (UsesToRename.empty()) 1513 continue; 1514 1515 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1516 1517 // We found a use of I outside of BB. Rename all uses of I that are outside 1518 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1519 // with the two values we know. 1520 SSAUpdate.Initialize(I); 1521 SSAUpdate.AddAvailableValue(BB, I); 1522 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); 1523 1524 while (!UsesToRename.empty()) 1525 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1526 DEBUG(dbgs() << "\n"); 1527 } 1528 1529 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1530 // that we nuked. 1531 RemovePredecessorAndSimplify(BB, PredBB, TD); 1532 1533 // Remove the unconditional branch at the end of the PredBB block. 1534 OldPredBranch->eraseFromParent(); 1535 1536 ++NumDupes; 1537 return true; 1538 } 1539 1540 1541