1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "jump-threading" 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/IntrinsicInst.h" 17 #include "llvm/LLVMContext.h" 18 #include "llvm/Pass.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 21 #include "llvm/Transforms/Utils/Local.h" 22 #include "llvm/Transforms/Utils/SSAUpdater.h" 23 #include "llvm/Target/TargetData.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 using namespace llvm; 33 34 STATISTIC(NumThreads, "Number of jumps threaded"); 35 STATISTIC(NumFolds, "Number of terminators folded"); 36 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 37 38 static cl::opt<unsigned> 39 Threshold("jump-threading-threshold", 40 cl::desc("Max block size to duplicate for jump threading"), 41 cl::init(6), cl::Hidden); 42 43 namespace { 44 /// This pass performs 'jump threading', which looks at blocks that have 45 /// multiple predecessors and multiple successors. If one or more of the 46 /// predecessors of the block can be proven to always jump to one of the 47 /// successors, we forward the edge from the predecessor to the successor by 48 /// duplicating the contents of this block. 49 /// 50 /// An example of when this can occur is code like this: 51 /// 52 /// if () { ... 53 /// X = 4; 54 /// } 55 /// if (X < 3) { 56 /// 57 /// In this case, the unconditional branch at the end of the first if can be 58 /// revectored to the false side of the second if. 59 /// 60 class JumpThreading : public FunctionPass { 61 TargetData *TD; 62 #ifdef NDEBUG 63 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 64 #else 65 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 66 #endif 67 public: 68 static char ID; // Pass identification 69 JumpThreading() : FunctionPass(&ID) {} 70 71 bool runOnFunction(Function &F); 72 void FindLoopHeaders(Function &F); 73 74 bool ProcessBlock(BasicBlock *BB); 75 bool ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, BasicBlock *SuccBB); 76 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 77 BasicBlock *PredBB); 78 BasicBlock *FactorCommonPHIPreds(PHINode *PN, Value *Val); 79 80 typedef SmallVectorImpl<std::pair<ConstantInt*, 81 BasicBlock*> > PredValueInfo; 82 83 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 84 PredValueInfo &Result); 85 bool ProcessThreadableEdges(Instruction *CondInst, BasicBlock *BB); 86 87 88 bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 89 bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 90 91 bool ProcessJumpOnPHI(PHINode *PN); 92 bool ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB); 93 94 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 95 }; 96 } 97 98 char JumpThreading::ID = 0; 99 static RegisterPass<JumpThreading> 100 X("jump-threading", "Jump Threading"); 101 102 // Public interface to the Jump Threading pass 103 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); } 104 105 /// runOnFunction - Top level algorithm. 106 /// 107 bool JumpThreading::runOnFunction(Function &F) { 108 DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n"); 109 TD = getAnalysisIfAvailable<TargetData>(); 110 111 FindLoopHeaders(F); 112 113 bool AnotherIteration = true, EverChanged = false; 114 while (AnotherIteration) { 115 AnotherIteration = false; 116 bool Changed = false; 117 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 118 BasicBlock *BB = I; 119 while (ProcessBlock(BB)) 120 Changed = true; 121 122 ++I; 123 124 // If the block is trivially dead, zap it. This eliminates the successor 125 // edges which simplifies the CFG. 126 if (pred_begin(BB) == pred_end(BB) && 127 BB != &BB->getParent()->getEntryBlock()) { 128 DEBUG(errs() << " JT: Deleting dead block '" << BB->getName() 129 << "' with terminator: " << *BB->getTerminator() << '\n'); 130 LoopHeaders.erase(BB); 131 DeleteDeadBlock(BB); 132 Changed = true; 133 } 134 } 135 AnotherIteration = Changed; 136 EverChanged |= Changed; 137 } 138 139 LoopHeaders.clear(); 140 return EverChanged; 141 } 142 143 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 144 /// thread across it. 145 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) { 146 /// Ignore PHI nodes, these will be flattened when duplication happens. 147 BasicBlock::const_iterator I = BB->getFirstNonPHI(); 148 149 // Sum up the cost of each instruction until we get to the terminator. Don't 150 // include the terminator because the copy won't include it. 151 unsigned Size = 0; 152 for (; !isa<TerminatorInst>(I); ++I) { 153 // Debugger intrinsics don't incur code size. 154 if (isa<DbgInfoIntrinsic>(I)) continue; 155 156 // If this is a pointer->pointer bitcast, it is free. 157 if (isa<BitCastInst>(I) && isa<PointerType>(I->getType())) 158 continue; 159 160 // All other instructions count for at least one unit. 161 ++Size; 162 163 // Calls are more expensive. If they are non-intrinsic calls, we model them 164 // as having cost of 4. If they are a non-vector intrinsic, we model them 165 // as having cost of 2 total, and if they are a vector intrinsic, we model 166 // them as having cost 1. 167 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 168 if (!isa<IntrinsicInst>(CI)) 169 Size += 3; 170 else if (!isa<VectorType>(CI->getType())) 171 Size += 1; 172 } 173 } 174 175 // Threading through a switch statement is particularly profitable. If this 176 // block ends in a switch, decrease its cost to make it more likely to happen. 177 if (isa<SwitchInst>(I)) 178 Size = Size > 6 ? Size-6 : 0; 179 180 return Size; 181 } 182 183 184 185 /// FindLoopHeaders - We do not want jump threading to turn proper loop 186 /// structures into irreducible loops. Doing this breaks up the loop nesting 187 /// hierarchy and pessimizes later transformations. To prevent this from 188 /// happening, we first have to find the loop headers. Here we approximate this 189 /// by finding targets of backedges in the CFG. 190 /// 191 /// Note that there definitely are cases when we want to allow threading of 192 /// edges across a loop header. For example, threading a jump from outside the 193 /// loop (the preheader) to an exit block of the loop is definitely profitable. 194 /// It is also almost always profitable to thread backedges from within the loop 195 /// to exit blocks, and is often profitable to thread backedges to other blocks 196 /// within the loop (forming a nested loop). This simple analysis is not rich 197 /// enough to track all of these properties and keep it up-to-date as the CFG 198 /// mutates, so we don't allow any of these transformations. 199 /// 200 void JumpThreading::FindLoopHeaders(Function &F) { 201 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 202 FindFunctionBackedges(F, Edges); 203 204 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 205 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 206 } 207 208 209 /// FactorCommonPHIPreds - If there are multiple preds with the same incoming 210 /// value for the PHI, factor them together so we get one block to thread for 211 /// the whole group. 212 /// This is important for things like "phi i1 [true, true, false, true, x]" 213 /// where we only need to clone the block for the true blocks once. 214 /// 215 BasicBlock *JumpThreading::FactorCommonPHIPreds(PHINode *PN, Value *Val) { 216 SmallVector<BasicBlock*, 16> CommonPreds; 217 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 218 if (PN->getIncomingValue(i) == Val) 219 CommonPreds.push_back(PN->getIncomingBlock(i)); 220 221 if (CommonPreds.size() == 1) 222 return CommonPreds[0]; 223 224 DEBUG(errs() << " Factoring out " << CommonPreds.size() 225 << " common predecessors.\n"); 226 return SplitBlockPredecessors(PN->getParent(), 227 &CommonPreds[0], CommonPreds.size(), 228 ".thr_comm", this); 229 } 230 231 /// GetResultOfComparison - Given an icmp/fcmp predicate and the left and right 232 /// hand sides of the compare instruction, try to determine the result. If the 233 /// result can not be determined, a null pointer is returned. 234 static Constant *GetResultOfComparison(CmpInst::Predicate pred, 235 Value *LHS, Value *RHS) { 236 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 237 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 238 return ConstantExpr::getCompare(pred, CLHS, CRHS); 239 240 if (LHS == RHS) 241 if (isa<IntegerType>(LHS->getType()) || isa<PointerType>(LHS->getType())) 242 if (ICmpInst::isTrueWhenEqual(pred)) 243 return ConstantInt::getTrue(LHS->getContext()); 244 else 245 return ConstantInt::getFalse(LHS->getContext()); 246 return 0; 247 } 248 249 250 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 251 /// if we can infer that the value is a known ConstantInt in any of our 252 /// predecessors. If so, return the known the list of value and pred BB in the 253 /// result vector. If a value is known to be undef, it is returned as null. 254 /// 255 /// The BB basic block is known to start with a PHI node. 256 /// 257 /// This returns true if there were any known values. 258 /// 259 /// 260 /// TODO: Per PR2563, we could infer value range information about a predecessor 261 /// based on its terminator. 262 bool JumpThreading:: 263 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){ 264 PHINode *TheFirstPHI = cast<PHINode>(BB->begin()); 265 266 // If V is a constantint, then it is known in all predecessors. 267 if (isa<ConstantInt>(V) || isa<UndefValue>(V)) { 268 ConstantInt *CI = dyn_cast<ConstantInt>(V); 269 Result.resize(TheFirstPHI->getNumIncomingValues()); 270 for (unsigned i = 0, e = Result.size(); i != e; ++i) 271 Result.push_back(std::make_pair(CI, TheFirstPHI->getIncomingBlock(i))); 272 return true; 273 } 274 275 // If V is a non-instruction value, or an instruction in a different block, 276 // then it can't be derived from a PHI. 277 Instruction *I = dyn_cast<Instruction>(V); 278 if (I == 0 || I->getParent() != BB) 279 return false; 280 281 /// If I is a PHI node, then we know the incoming values for any constants. 282 if (PHINode *PN = dyn_cast<PHINode>(I)) { 283 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 284 Value *InVal = PN->getIncomingValue(i); 285 if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) { 286 ConstantInt *CI = dyn_cast<ConstantInt>(InVal); 287 Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i))); 288 } 289 } 290 return !Result.empty(); 291 } 292 293 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals; 294 295 // Handle some boolean conditions. 296 if (I->getType()->getPrimitiveSizeInBits() == 1) { 297 // X | true -> true 298 // X & false -> false 299 if (I->getOpcode() == Instruction::Or || 300 I->getOpcode() == Instruction::And) { 301 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals); 302 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals); 303 304 if (LHSVals.empty() && RHSVals.empty()) 305 return false; 306 307 ConstantInt *InterestingVal; 308 if (I->getOpcode() == Instruction::Or) 309 InterestingVal = ConstantInt::getTrue(I->getContext()); 310 else 311 InterestingVal = ConstantInt::getFalse(I->getContext()); 312 313 // Scan for the sentinel. 314 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 315 if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) 316 Result.push_back(LHSVals[i]); 317 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 318 if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) 319 Result.push_back(RHSVals[i]); 320 return !Result.empty(); 321 } 322 323 // TODO: Should handle the NOT form of XOR. 324 325 } 326 327 // Handle compare with phi operand, where the PHI is defined in this block. 328 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 329 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 330 if (PN && PN->getParent() == BB) { 331 // We can do this simplification if any comparisons fold to true or false. 332 // See if any do. 333 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 334 BasicBlock *PredBB = PN->getIncomingBlock(i); 335 Value *LHS = PN->getIncomingValue(i); 336 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 337 338 Constant *Res = GetResultOfComparison(Cmp->getPredicate(), LHS, RHS); 339 if (Res == 0) continue; 340 341 if (isa<UndefValue>(Res)) 342 Result.push_back(std::make_pair((ConstantInt*)0, PredBB)); 343 else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res)) 344 Result.push_back(std::make_pair(CI, PredBB)); 345 } 346 347 return !Result.empty(); 348 } 349 350 // TODO: We could also recurse to see if we can determine constants another 351 // way. 352 } 353 return false; 354 } 355 356 357 358 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 359 /// in an undefined jump, decide which block is best to revector to. 360 /// 361 /// Since we can pick an arbitrary destination, we pick the successor with the 362 /// fewest predecessors. This should reduce the in-degree of the others. 363 /// 364 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 365 TerminatorInst *BBTerm = BB->getTerminator(); 366 unsigned MinSucc = 0; 367 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 368 // Compute the successor with the minimum number of predecessors. 369 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 370 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 371 TestBB = BBTerm->getSuccessor(i); 372 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 373 if (NumPreds < MinNumPreds) 374 MinSucc = i; 375 } 376 377 return MinSucc; 378 } 379 380 /// ProcessBlock - If there are any predecessors whose control can be threaded 381 /// through to a successor, transform them now. 382 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 383 // If this block has a single predecessor, and if that pred has a single 384 // successor, merge the blocks. This encourages recursive jump threading 385 // because now the condition in this block can be threaded through 386 // predecessors of our predecessor block. 387 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 388 if (SinglePred->getTerminator()->getNumSuccessors() == 1 && 389 SinglePred != BB) { 390 // If SinglePred was a loop header, BB becomes one. 391 if (LoopHeaders.erase(SinglePred)) 392 LoopHeaders.insert(BB); 393 394 // Remember if SinglePred was the entry block of the function. If so, we 395 // will need to move BB back to the entry position. 396 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 397 MergeBasicBlockIntoOnlyPred(BB); 398 399 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 400 BB->moveBefore(&BB->getParent()->getEntryBlock()); 401 return true; 402 } 403 } 404 405 // Look to see if the terminator is a branch of switch, if not we can't thread 406 // it. 407 Value *Condition; 408 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 409 // Can't thread an unconditional jump. 410 if (BI->isUnconditional()) return false; 411 Condition = BI->getCondition(); 412 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 413 Condition = SI->getCondition(); 414 else 415 return false; // Must be an invoke. 416 417 // If the terminator of this block is branching on a constant, simplify the 418 // terminator to an unconditional branch. This can occur due to threading in 419 // other blocks. 420 if (isa<ConstantInt>(Condition)) { 421 DEBUG(errs() << " In block '" << BB->getName() 422 << "' folding terminator: " << *BB->getTerminator() << '\n'); 423 ++NumFolds; 424 ConstantFoldTerminator(BB); 425 return true; 426 } 427 428 // If the terminator is branching on an undef, we can pick any of the 429 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 430 if (isa<UndefValue>(Condition)) { 431 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 432 433 // Fold the branch/switch. 434 TerminatorInst *BBTerm = BB->getTerminator(); 435 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 436 if (i == BestSucc) continue; 437 BBTerm->getSuccessor(i)->removePredecessor(BB); 438 } 439 440 DEBUG(errs() << " In block '" << BB->getName() 441 << "' folding undef terminator: " << *BBTerm << '\n'); 442 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 443 BBTerm->eraseFromParent(); 444 return true; 445 } 446 447 Instruction *CondInst = dyn_cast<Instruction>(Condition); 448 449 // If the condition is an instruction defined in another block, see if a 450 // predecessor has the same condition: 451 // br COND, BBX, BBY 452 // BBX: 453 // br COND, BBZ, BBW 454 if (!Condition->hasOneUse() && // Multiple uses. 455 (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition. 456 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 457 if (isa<BranchInst>(BB->getTerminator())) { 458 for (; PI != E; ++PI) 459 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 460 if (PBI->isConditional() && PBI->getCondition() == Condition && 461 ProcessBranchOnDuplicateCond(*PI, BB)) 462 return true; 463 } else { 464 assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator"); 465 for (; PI != E; ++PI) 466 if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator())) 467 if (PSI->getCondition() == Condition && 468 ProcessSwitchOnDuplicateCond(*PI, BB)) 469 return true; 470 } 471 } 472 473 // All the rest of our checks depend on the condition being an instruction. 474 if (CondInst == 0) 475 return false; 476 477 // See if this is a phi node in the current block. 478 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 479 if (PN->getParent() == BB) 480 return ProcessJumpOnPHI(PN); 481 482 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 483 if (isa<PHINode>(CondCmp->getOperand(0))) { 484 // If we have "br (phi != 42)" and the phi node has any constant values 485 // as operands, we can thread through this block. 486 // 487 // If we have "br (cmp phi, x)" and the phi node contains x such that the 488 // comparison uniquely identifies the branch target, we can thread 489 // through this block. 490 491 if (ProcessBranchOnCompare(CondCmp, BB)) 492 return true; 493 } 494 495 // If we have a comparison, loop over the predecessors to see if there is 496 // a condition with a lexically identical value. 497 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 498 for (; PI != E; ++PI) 499 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 500 if (PBI->isConditional() && *PI != BB) { 501 if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) { 502 if (CI->getOperand(0) == CondCmp->getOperand(0) && 503 CI->getOperand(1) == CondCmp->getOperand(1) && 504 CI->getPredicate() == CondCmp->getPredicate()) { 505 // TODO: Could handle things like (x != 4) --> (x == 17) 506 if (ProcessBranchOnDuplicateCond(*PI, BB)) 507 return true; 508 } 509 } 510 } 511 } 512 513 // Check for some cases that are worth simplifying. Right now we want to look 514 // for loads that are used by a switch or by the condition for the branch. If 515 // we see one, check to see if it's partially redundant. If so, insert a PHI 516 // which can then be used to thread the values. 517 // 518 // This is particularly important because reg2mem inserts loads and stores all 519 // over the place, and this blocks jump threading if we don't zap them. 520 Value *SimplifyValue = CondInst; 521 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 522 if (isa<Constant>(CondCmp->getOperand(1))) 523 SimplifyValue = CondCmp->getOperand(0); 524 525 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 526 if (SimplifyPartiallyRedundantLoad(LI)) 527 return true; 528 529 530 // Handle a variety of cases where we are branching on something derived from 531 // a PHI node in the current block. If we can prove that any predecessors 532 // compute a predictable value based on a PHI node, thread those predecessors. 533 // 534 // We only bother doing this if the current block has a PHI node and if the 535 // conditional instruction lives in the current block. If either condition 536 // fail, this won't be a computable value anyway. 537 if (CondInst->getParent() == BB && isa<PHINode>(BB->front())) 538 if (ProcessThreadableEdges(CondInst, BB)) 539 return true; 540 541 542 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 543 // "(X == 4)" thread through this block. 544 545 return false; 546 } 547 548 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that 549 /// block that jump on exactly the same condition. This means that we almost 550 /// always know the direction of the edge in the DESTBB: 551 /// PREDBB: 552 /// br COND, DESTBB, BBY 553 /// DESTBB: 554 /// br COND, BBZ, BBW 555 /// 556 /// If DESTBB has multiple predecessors, we can't just constant fold the branch 557 /// in DESTBB, we have to thread over it. 558 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB, 559 BasicBlock *BB) { 560 BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator()); 561 562 // If both successors of PredBB go to DESTBB, we don't know anything. We can 563 // fold the branch to an unconditional one, which allows other recursive 564 // simplifications. 565 bool BranchDir; 566 if (PredBI->getSuccessor(1) != BB) 567 BranchDir = true; 568 else if (PredBI->getSuccessor(0) != BB) 569 BranchDir = false; 570 else { 571 DEBUG(errs() << " In block '" << PredBB->getName() 572 << "' folding terminator: " << *PredBB->getTerminator() << '\n'); 573 ++NumFolds; 574 ConstantFoldTerminator(PredBB); 575 return true; 576 } 577 578 BranchInst *DestBI = cast<BranchInst>(BB->getTerminator()); 579 580 // If the dest block has one predecessor, just fix the branch condition to a 581 // constant and fold it. 582 if (BB->getSinglePredecessor()) { 583 DEBUG(errs() << " In block '" << BB->getName() 584 << "' folding condition to '" << BranchDir << "': " 585 << *BB->getTerminator() << '\n'); 586 ++NumFolds; 587 Value *OldCond = DestBI->getCondition(); 588 DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 589 BranchDir)); 590 ConstantFoldTerminator(BB); 591 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 592 return true; 593 } 594 595 596 // Next, figure out which successor we are threading to. 597 BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir); 598 599 // Ok, try to thread it! 600 return ThreadEdge(BB, PredBB, SuccBB); 601 } 602 603 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that 604 /// block that switch on exactly the same condition. This means that we almost 605 /// always know the direction of the edge in the DESTBB: 606 /// PREDBB: 607 /// switch COND [... DESTBB, BBY ... ] 608 /// DESTBB: 609 /// switch COND [... BBZ, BBW ] 610 /// 611 /// Optimizing switches like this is very important, because simplifycfg builds 612 /// switches out of repeated 'if' conditions. 613 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, 614 BasicBlock *DestBB) { 615 // Can't thread edge to self. 616 if (PredBB == DestBB) 617 return false; 618 619 SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator()); 620 SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator()); 621 622 // There are a variety of optimizations that we can potentially do on these 623 // blocks: we order them from most to least preferable. 624 625 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB 626 // directly to their destination. This does not introduce *any* code size 627 // growth. Skip debug info first. 628 BasicBlock::iterator BBI = DestBB->begin(); 629 while (isa<DbgInfoIntrinsic>(BBI)) 630 BBI++; 631 632 // FIXME: Thread if it just contains a PHI. 633 if (isa<SwitchInst>(BBI)) { 634 bool MadeChange = false; 635 // Ignore the default edge for now. 636 for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) { 637 ConstantInt *DestVal = DestSI->getCaseValue(i); 638 BasicBlock *DestSucc = DestSI->getSuccessor(i); 639 640 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if 641 // PredSI has an explicit case for it. If so, forward. If it is covered 642 // by the default case, we can't update PredSI. 643 unsigned PredCase = PredSI->findCaseValue(DestVal); 644 if (PredCase == 0) continue; 645 646 // If PredSI doesn't go to DestBB on this value, then it won't reach the 647 // case on this condition. 648 if (PredSI->getSuccessor(PredCase) != DestBB && 649 DestSI->getSuccessor(i) != DestBB) 650 continue; 651 652 // Otherwise, we're safe to make the change. Make sure that the edge from 653 // DestSI to DestSucc is not critical and has no PHI nodes. 654 DEBUG(errs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI); 655 DEBUG(errs() << "THROUGH: " << *DestSI); 656 657 // If the destination has PHI nodes, just split the edge for updating 658 // simplicity. 659 if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){ 660 SplitCriticalEdge(DestSI, i, this); 661 DestSucc = DestSI->getSuccessor(i); 662 } 663 FoldSingleEntryPHINodes(DestSucc); 664 PredSI->setSuccessor(PredCase, DestSucc); 665 MadeChange = true; 666 } 667 668 if (MadeChange) 669 return true; 670 } 671 672 return false; 673 } 674 675 676 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 677 /// load instruction, eliminate it by replacing it with a PHI node. This is an 678 /// important optimization that encourages jump threading, and needs to be run 679 /// interlaced with other jump threading tasks. 680 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 681 // Don't hack volatile loads. 682 if (LI->isVolatile()) return false; 683 684 // If the load is defined in a block with exactly one predecessor, it can't be 685 // partially redundant. 686 BasicBlock *LoadBB = LI->getParent(); 687 if (LoadBB->getSinglePredecessor()) 688 return false; 689 690 Value *LoadedPtr = LI->getOperand(0); 691 692 // If the loaded operand is defined in the LoadBB, it can't be available. 693 // FIXME: Could do PHI translation, that would be fun :) 694 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 695 if (PtrOp->getParent() == LoadBB) 696 return false; 697 698 // Scan a few instructions up from the load, to see if it is obviously live at 699 // the entry to its block. 700 BasicBlock::iterator BBIt = LI; 701 702 if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB, 703 BBIt, 6)) { 704 // If the value if the load is locally available within the block, just use 705 // it. This frequently occurs for reg2mem'd allocas. 706 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 707 708 // If the returned value is the load itself, replace with an undef. This can 709 // only happen in dead loops. 710 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 711 LI->replaceAllUsesWith(AvailableVal); 712 LI->eraseFromParent(); 713 return true; 714 } 715 716 // Otherwise, if we scanned the whole block and got to the top of the block, 717 // we know the block is locally transparent to the load. If not, something 718 // might clobber its value. 719 if (BBIt != LoadBB->begin()) 720 return false; 721 722 723 SmallPtrSet<BasicBlock*, 8> PredsScanned; 724 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 725 AvailablePredsTy AvailablePreds; 726 BasicBlock *OneUnavailablePred = 0; 727 728 // If we got here, the loaded value is transparent through to the start of the 729 // block. Check to see if it is available in any of the predecessor blocks. 730 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 731 PI != PE; ++PI) { 732 BasicBlock *PredBB = *PI; 733 734 // If we already scanned this predecessor, skip it. 735 if (!PredsScanned.insert(PredBB)) 736 continue; 737 738 // Scan the predecessor to see if the value is available in the pred. 739 BBIt = PredBB->end(); 740 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6); 741 if (!PredAvailable) { 742 OneUnavailablePred = PredBB; 743 continue; 744 } 745 746 // If so, this load is partially redundant. Remember this info so that we 747 // can create a PHI node. 748 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 749 } 750 751 // If the loaded value isn't available in any predecessor, it isn't partially 752 // redundant. 753 if (AvailablePreds.empty()) return false; 754 755 // Okay, the loaded value is available in at least one (and maybe all!) 756 // predecessors. If the value is unavailable in more than one unique 757 // predecessor, we want to insert a merge block for those common predecessors. 758 // This ensures that we only have to insert one reload, thus not increasing 759 // code size. 760 BasicBlock *UnavailablePred = 0; 761 762 // If there is exactly one predecessor where the value is unavailable, the 763 // already computed 'OneUnavailablePred' block is it. If it ends in an 764 // unconditional branch, we know that it isn't a critical edge. 765 if (PredsScanned.size() == AvailablePreds.size()+1 && 766 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 767 UnavailablePred = OneUnavailablePred; 768 } else if (PredsScanned.size() != AvailablePreds.size()) { 769 // Otherwise, we had multiple unavailable predecessors or we had a critical 770 // edge from the one. 771 SmallVector<BasicBlock*, 8> PredsToSplit; 772 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 773 774 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 775 AvailablePredSet.insert(AvailablePreds[i].first); 776 777 // Add all the unavailable predecessors to the PredsToSplit list. 778 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 779 PI != PE; ++PI) 780 if (!AvailablePredSet.count(*PI)) 781 PredsToSplit.push_back(*PI); 782 783 // Split them out to their own block. 784 UnavailablePred = 785 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(), 786 "thread-split", this); 787 } 788 789 // If the value isn't available in all predecessors, then there will be 790 // exactly one where it isn't available. Insert a load on that edge and add 791 // it to the AvailablePreds list. 792 if (UnavailablePred) { 793 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 794 "Can't handle critical edge here!"); 795 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", 796 UnavailablePred->getTerminator()); 797 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 798 } 799 800 // Now we know that each predecessor of this block has a value in 801 // AvailablePreds, sort them for efficient access as we're walking the preds. 802 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 803 804 // Create a PHI node at the start of the block for the PRE'd load value. 805 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin()); 806 PN->takeName(LI); 807 808 // Insert new entries into the PHI for each predecessor. A single block may 809 // have multiple entries here. 810 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E; 811 ++PI) { 812 AvailablePredsTy::iterator I = 813 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 814 std::make_pair(*PI, (Value*)0)); 815 816 assert(I != AvailablePreds.end() && I->first == *PI && 817 "Didn't find entry for predecessor!"); 818 819 PN->addIncoming(I->second, I->first); 820 } 821 822 //cerr << "PRE: " << *LI << *PN << "\n"; 823 824 LI->replaceAllUsesWith(PN); 825 LI->eraseFromParent(); 826 827 return true; 828 } 829 830 /// FindMostPopularDest - The specified list contains multiple possible 831 /// threadable destinations. Pick the one that occurs the most frequently in 832 /// the list. 833 static BasicBlock * 834 FindMostPopularDest(BasicBlock *BB, 835 const SmallVectorImpl<std::pair<BasicBlock*, 836 BasicBlock*> > &PredToDestList) { 837 assert(!PredToDestList.empty()); 838 839 // Determine popularity. If there are multiple possible destinations, we 840 // explicitly choose to ignore 'undef' destinations. We prefer to thread 841 // blocks with known and real destinations to threading undef. We'll handle 842 // them later if interesting. 843 DenseMap<BasicBlock*, unsigned> DestPopularity; 844 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 845 if (PredToDestList[i].second) 846 DestPopularity[PredToDestList[i].second]++; 847 848 // Find the most popular dest. 849 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 850 BasicBlock *MostPopularDest = DPI->first; 851 unsigned Popularity = DPI->second; 852 SmallVector<BasicBlock*, 4> SamePopularity; 853 854 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 855 // If the popularity of this entry isn't higher than the popularity we've 856 // seen so far, ignore it. 857 if (DPI->second < Popularity) 858 ; // ignore. 859 else if (DPI->second == Popularity) { 860 // If it is the same as what we've seen so far, keep track of it. 861 SamePopularity.push_back(DPI->first); 862 } else { 863 // If it is more popular, remember it. 864 SamePopularity.clear(); 865 MostPopularDest = DPI->first; 866 Popularity = DPI->second; 867 } 868 } 869 870 // Okay, now we know the most popular destination. If there is more than 871 // destination, we need to determine one. This is arbitrary, but we need 872 // to make a deterministic decision. Pick the first one that appears in the 873 // successor list. 874 if (!SamePopularity.empty()) { 875 SamePopularity.push_back(MostPopularDest); 876 TerminatorInst *TI = BB->getTerminator(); 877 for (unsigned i = 0; ; ++i) { 878 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 879 880 if (std::find(SamePopularity.begin(), SamePopularity.end(), 881 TI->getSuccessor(i)) == SamePopularity.end()) 882 continue; 883 884 MostPopularDest = TI->getSuccessor(i); 885 break; 886 } 887 } 888 889 // Okay, we have finally picked the most popular destination. 890 return MostPopularDest; 891 } 892 893 bool JumpThreading::ProcessThreadableEdges(Instruction *CondInst, 894 BasicBlock *BB) { 895 // If threading this would thread across a loop header, don't even try to 896 // thread the edge. 897 if (LoopHeaders.count(BB)) 898 return false; 899 900 901 902 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues; 903 if (!ComputeValueKnownInPredecessors(CondInst, BB, PredValues)) 904 return false; 905 assert(!PredValues.empty() && 906 "ComputeValueKnownInPredecessors returned true with no values"); 907 908 DEBUG(errs() << "IN BB: " << *BB; 909 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 910 errs() << " BB '" << BB->getName() << "': FOUND condition = "; 911 if (PredValues[i].first) 912 errs() << *PredValues[i].first; 913 else 914 errs() << "UNDEF"; 915 errs() << " for pred '" << PredValues[i].second->getName() 916 << "'.\n"; 917 }); 918 919 // Decide what we want to thread through. Convert our list of known values to 920 // a list of known destinations for each pred. This also discards duplicate 921 // predecessors and keeps track of the undefined inputs (which are represented 922 // as a null dest in the PredToDestList. 923 SmallPtrSet<BasicBlock*, 16> SeenPreds; 924 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 925 926 BasicBlock *OnlyDest = 0; 927 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 928 929 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 930 BasicBlock *Pred = PredValues[i].second; 931 if (!SeenPreds.insert(Pred)) 932 continue; // Duplicate predecessor entry. 933 934 // If the predecessor ends with an indirect goto, we can't change its 935 // destination. 936 if (isa<IndirectBrInst>(Pred->getTerminator())) 937 continue; 938 939 ConstantInt *Val = PredValues[i].first; 940 941 BasicBlock *DestBB; 942 if (Val == 0) // Undef. 943 DestBB = 0; 944 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 945 DestBB = BI->getSuccessor(Val->isZero()); 946 else { 947 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator()); 948 DestBB = SI->getSuccessor(SI->findCaseValue(Val)); 949 } 950 951 // If we have exactly one destination, remember it for efficiency below. 952 if (i == 0) 953 OnlyDest = DestBB; 954 else if (OnlyDest != DestBB) 955 OnlyDest = MultipleDestSentinel; 956 957 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 958 } 959 960 // If all edges were unthreadable, we fail. 961 if (PredToDestList.empty()) 962 return false; 963 964 // Determine which is the most common successor. If we have many inputs and 965 // this block is a switch, we want to start by threading the batch that goes 966 // to the most popular destination first. If we only know about one 967 // threadable destination (the common case) we can avoid this. 968 BasicBlock *MostPopularDest = OnlyDest; 969 970 if (MostPopularDest == MultipleDestSentinel) 971 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 972 973 // Now that we know what the most popular destination is, factor all 974 // predecessors that will jump to it into a single predecessor. 975 SmallVector<BasicBlock*, 16> PredsToFactor; 976 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 977 if (PredToDestList[i].second == MostPopularDest) 978 PredsToFactor.push_back(PredToDestList[i].first); 979 980 BasicBlock *PredToThread; 981 if (PredsToFactor.size() == 1) 982 PredToThread = PredsToFactor[0]; 983 else { 984 DEBUG(errs() << " Factoring out " << PredsToFactor.size() 985 << " common predecessors.\n"); 986 PredToThread = SplitBlockPredecessors(BB, &PredsToFactor[0], 987 PredsToFactor.size(), 988 ".thr_comm", this); 989 } 990 991 // If the threadable edges are branching on an undefined value, we get to pick 992 // the destination that these predecessors should get to. 993 if (MostPopularDest == 0) 994 MostPopularDest = BB->getTerminator()-> 995 getSuccessor(GetBestDestForJumpOnUndef(BB)); 996 997 // Ok, try to thread it! 998 return ThreadEdge(BB, PredToThread, MostPopularDest); 999 } 1000 1001 /// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in 1002 /// the current block. See if there are any simplifications we can do based on 1003 /// inputs to the phi node. 1004 /// 1005 bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) { 1006 BasicBlock *BB = PN->getParent(); 1007 1008 // See if the phi node has any constant integer or undef values. If so, we 1009 // can determine where the corresponding predecessor will branch. 1010 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1011 Value *PredVal = PN->getIncomingValue(i); 1012 1013 // Check to see if this input is a constant integer. If so, the direction 1014 // of the branch is predictable. 1015 if (ConstantInt *CI = dyn_cast<ConstantInt>(PredVal)) { 1016 // Merge any common predecessors that will act the same. 1017 BasicBlock *PredBB = FactorCommonPHIPreds(PN, CI); 1018 1019 BasicBlock *SuccBB; 1020 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1021 SuccBB = BI->getSuccessor(CI->isZero()); 1022 else { 1023 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator()); 1024 SuccBB = SI->getSuccessor(SI->findCaseValue(CI)); 1025 } 1026 1027 // Ok, try to thread it! 1028 return ThreadEdge(BB, PredBB, SuccBB); 1029 } 1030 1031 // If the input is an undef, then it doesn't matter which way it will go. 1032 // Pick an arbitrary dest and thread the edge. 1033 if (UndefValue *UV = dyn_cast<UndefValue>(PredVal)) { 1034 // Merge any common predecessors that will act the same. 1035 BasicBlock *PredBB = FactorCommonPHIPreds(PN, UV); 1036 BasicBlock *SuccBB = 1037 BB->getTerminator()->getSuccessor(GetBestDestForJumpOnUndef(BB)); 1038 1039 // Ok, try to thread it! 1040 return ThreadEdge(BB, PredBB, SuccBB); 1041 } 1042 } 1043 1044 // If the incoming values are all variables, we don't know the destination of 1045 // any predecessors. However, if any of the predecessor blocks end in an 1046 // unconditional branch, we can *duplicate* the jump into that block in order 1047 // to further encourage jump threading and to eliminate cases where we have 1048 // branch on a phi of an icmp (branch on icmp is much better). 1049 1050 // We don't want to do this tranformation for switches, because we don't 1051 // really want to duplicate a switch. 1052 if (isa<SwitchInst>(BB->getTerminator())) 1053 return false; 1054 1055 // Look for unconditional branch predecessors. 1056 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1057 BasicBlock *PredBB = PN->getIncomingBlock(i); 1058 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1059 if (PredBr->isUnconditional() && 1060 // Try to duplicate BB into PredBB. 1061 DuplicateCondBranchOnPHIIntoPred(BB, PredBB)) 1062 return true; 1063 } 1064 1065 return false; 1066 } 1067 1068 /// ProcessBranchOnCompare - We found a branch on a comparison between a phi 1069 /// node and a value. If we can identify when the comparison is true between 1070 /// the phi inputs and the value, we can fold the compare for that edge and 1071 /// thread through it. 1072 bool JumpThreading::ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB) { 1073 PHINode *PN = cast<PHINode>(Cmp->getOperand(0)); 1074 Value *RHS = Cmp->getOperand(1); 1075 1076 // If the phi isn't in the current block, an incoming edge to this block 1077 // doesn't control the destination. 1078 if (PN->getParent() != BB) 1079 return false; 1080 1081 // We can do this simplification if any comparisons fold to true or false. 1082 // See if any do. 1083 Value *PredVal = 0; 1084 bool TrueDirection = false; 1085 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1086 PredVal = PN->getIncomingValue(i); 1087 1088 Constant *Res = GetResultOfComparison(Cmp->getPredicate(), PredVal, RHS); 1089 if (!Res) { 1090 PredVal = 0; 1091 continue; 1092 } 1093 1094 // If this folded to a constant expr, we can't do anything. 1095 if (ConstantInt *ResC = dyn_cast<ConstantInt>(Res)) { 1096 TrueDirection = ResC->getZExtValue(); 1097 break; 1098 } 1099 // If this folded to undef, just go the false way. 1100 if (isa<UndefValue>(Res)) { 1101 TrueDirection = false; 1102 break; 1103 } 1104 1105 // Otherwise, we can't fold this input. 1106 PredVal = 0; 1107 } 1108 1109 // If no match, bail out. 1110 if (PredVal == 0) 1111 return false; 1112 1113 // If so, we can actually do this threading. Merge any common predecessors 1114 // that will act the same. 1115 BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredVal); 1116 1117 // Next, get our successor. 1118 BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(!TrueDirection); 1119 1120 // Ok, try to thread it! 1121 return ThreadEdge(BB, PredBB, SuccBB); 1122 } 1123 1124 1125 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1126 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1127 /// NewPred using the entries from OldPred (suitably mapped). 1128 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1129 BasicBlock *OldPred, 1130 BasicBlock *NewPred, 1131 DenseMap<Instruction*, Value*> &ValueMap) { 1132 for (BasicBlock::iterator PNI = PHIBB->begin(); 1133 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1134 // Ok, we have a PHI node. Figure out what the incoming value was for the 1135 // DestBlock. 1136 Value *IV = PN->getIncomingValueForBlock(OldPred); 1137 1138 // Remap the value if necessary. 1139 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1140 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1141 if (I != ValueMap.end()) 1142 IV = I->second; 1143 } 1144 1145 PN->addIncoming(IV, NewPred); 1146 } 1147 } 1148 1149 /// ThreadEdge - We have decided that it is safe and profitable to thread an 1150 /// edge from PredBB to SuccBB across BB. Transform the IR to reflect this 1151 /// change. 1152 bool JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, 1153 BasicBlock *SuccBB) { 1154 // If threading to the same block as we come from, we would infinite loop. 1155 if (SuccBB == BB) { 1156 DEBUG(errs() << " Not threading across BB '" << BB->getName() 1157 << "' - would thread to self!\n"); 1158 return false; 1159 } 1160 1161 // If threading this would thread across a loop header, don't thread the edge. 1162 // See the comments above FindLoopHeaders for justifications and caveats. 1163 if (LoopHeaders.count(BB)) { 1164 DEBUG(errs() << " Not threading from '" << PredBB->getName() 1165 << "' across loop header BB '" << BB->getName() 1166 << "' to dest BB '" << SuccBB->getName() 1167 << "' - it might create an irreducible loop!\n"); 1168 return false; 1169 } 1170 1171 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB); 1172 if (JumpThreadCost > Threshold) { 1173 DEBUG(errs() << " Not threading BB '" << BB->getName() 1174 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1175 return false; 1176 } 1177 1178 // And finally, do it! 1179 DEBUG(errs() << " Threading edge from '" << PredBB->getName() << "' to '" 1180 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1181 << ", across block:\n " 1182 << *BB << "\n"); 1183 1184 // We are going to have to map operands from the original BB block to the new 1185 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1186 // account for entry from PredBB. 1187 DenseMap<Instruction*, Value*> ValueMapping; 1188 1189 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1190 BB->getName()+".thread", 1191 BB->getParent(), BB); 1192 NewBB->moveAfter(PredBB); 1193 1194 BasicBlock::iterator BI = BB->begin(); 1195 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1196 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1197 1198 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1199 // mapping and using it to remap operands in the cloned instructions. 1200 for (; !isa<TerminatorInst>(BI); ++BI) { 1201 Instruction *New = BI->clone(); 1202 New->setName(BI->getName()); 1203 NewBB->getInstList().push_back(New); 1204 ValueMapping[BI] = New; 1205 1206 // Remap operands to patch up intra-block references. 1207 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1208 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1209 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1210 if (I != ValueMapping.end()) 1211 New->setOperand(i, I->second); 1212 } 1213 } 1214 1215 // We didn't copy the terminator from BB over to NewBB, because there is now 1216 // an unconditional jump to SuccBB. Insert the unconditional jump. 1217 BranchInst::Create(SuccBB, NewBB); 1218 1219 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1220 // PHI nodes for NewBB now. 1221 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1222 1223 // If there were values defined in BB that are used outside the block, then we 1224 // now have to update all uses of the value to use either the original value, 1225 // the cloned value, or some PHI derived value. This can require arbitrary 1226 // PHI insertion, of which we are prepared to do, clean these up now. 1227 SSAUpdater SSAUpdate; 1228 SmallVector<Use*, 16> UsesToRename; 1229 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1230 // Scan all uses of this instruction to see if it is used outside of its 1231 // block, and if so, record them in UsesToRename. 1232 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1233 ++UI) { 1234 Instruction *User = cast<Instruction>(*UI); 1235 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1236 if (UserPN->getIncomingBlock(UI) == BB) 1237 continue; 1238 } else if (User->getParent() == BB) 1239 continue; 1240 1241 UsesToRename.push_back(&UI.getUse()); 1242 } 1243 1244 // If there are no uses outside the block, we're done with this instruction. 1245 if (UsesToRename.empty()) 1246 continue; 1247 1248 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1249 1250 // We found a use of I outside of BB. Rename all uses of I that are outside 1251 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1252 // with the two values we know. 1253 SSAUpdate.Initialize(I); 1254 SSAUpdate.AddAvailableValue(BB, I); 1255 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); 1256 1257 while (!UsesToRename.empty()) 1258 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1259 DEBUG(errs() << "\n"); 1260 } 1261 1262 1263 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1264 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1265 // us to simplify any PHI nodes in BB. 1266 TerminatorInst *PredTerm = PredBB->getTerminator(); 1267 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1268 if (PredTerm->getSuccessor(i) == BB) { 1269 BB->removePredecessor(PredBB); 1270 PredTerm->setSuccessor(i, NewBB); 1271 } 1272 1273 // At this point, the IR is fully up to date and consistent. Do a quick scan 1274 // over the new instructions and zap any that are constants or dead. This 1275 // frequently happens because of phi translation. 1276 BI = NewBB->begin(); 1277 for (BasicBlock::iterator E = NewBB->end(); BI != E; ) { 1278 Instruction *Inst = BI++; 1279 if (Constant *C = ConstantFoldInstruction(Inst, TD)) { 1280 Inst->replaceAllUsesWith(C); 1281 Inst->eraseFromParent(); 1282 continue; 1283 } 1284 1285 RecursivelyDeleteTriviallyDeadInstructions(Inst); 1286 } 1287 1288 // Threaded an edge! 1289 ++NumThreads; 1290 return true; 1291 } 1292 1293 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1294 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1295 /// If we can duplicate the contents of BB up into PredBB do so now, this 1296 /// improves the odds that the branch will be on an analyzable instruction like 1297 /// a compare. 1298 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1299 BasicBlock *PredBB) { 1300 // If BB is a loop header, then duplicating this block outside the loop would 1301 // cause us to transform this into an irreducible loop, don't do this. 1302 // See the comments above FindLoopHeaders for justifications and caveats. 1303 if (LoopHeaders.count(BB)) { 1304 DEBUG(errs() << " Not duplicating loop header '" << BB->getName() 1305 << "' into predecessor block '" << PredBB->getName() 1306 << "' - it might create an irreducible loop!\n"); 1307 return false; 1308 } 1309 1310 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB); 1311 if (DuplicationCost > Threshold) { 1312 DEBUG(errs() << " Not duplicating BB '" << BB->getName() 1313 << "' - Cost is too high: " << DuplicationCost << "\n"); 1314 return false; 1315 } 1316 1317 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1318 // of PredBB. 1319 DEBUG(errs() << " Duplicating block '" << BB->getName() << "' into end of '" 1320 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1321 << DuplicationCost << " block is:" << *BB << "\n"); 1322 1323 // We are going to have to map operands from the original BB block into the 1324 // PredBB block. Evaluate PHI nodes in BB. 1325 DenseMap<Instruction*, Value*> ValueMapping; 1326 1327 BasicBlock::iterator BI = BB->begin(); 1328 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1329 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1330 1331 BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1332 1333 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1334 // mapping and using it to remap operands in the cloned instructions. 1335 for (; BI != BB->end(); ++BI) { 1336 Instruction *New = BI->clone(); 1337 New->setName(BI->getName()); 1338 PredBB->getInstList().insert(OldPredBranch, New); 1339 ValueMapping[BI] = New; 1340 1341 // Remap operands to patch up intra-block references. 1342 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1343 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1344 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1345 if (I != ValueMapping.end()) 1346 New->setOperand(i, I->second); 1347 } 1348 } 1349 1350 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1351 // add entries to the PHI nodes for branch from PredBB now. 1352 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1353 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1354 ValueMapping); 1355 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1356 ValueMapping); 1357 1358 // If there were values defined in BB that are used outside the block, then we 1359 // now have to update all uses of the value to use either the original value, 1360 // the cloned value, or some PHI derived value. This can require arbitrary 1361 // PHI insertion, of which we are prepared to do, clean these up now. 1362 SSAUpdater SSAUpdate; 1363 SmallVector<Use*, 16> UsesToRename; 1364 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1365 // Scan all uses of this instruction to see if it is used outside of its 1366 // block, and if so, record them in UsesToRename. 1367 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1368 ++UI) { 1369 Instruction *User = cast<Instruction>(*UI); 1370 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1371 if (UserPN->getIncomingBlock(UI) == BB) 1372 continue; 1373 } else if (User->getParent() == BB) 1374 continue; 1375 1376 UsesToRename.push_back(&UI.getUse()); 1377 } 1378 1379 // If there are no uses outside the block, we're done with this instruction. 1380 if (UsesToRename.empty()) 1381 continue; 1382 1383 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1384 1385 // We found a use of I outside of BB. Rename all uses of I that are outside 1386 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1387 // with the two values we know. 1388 SSAUpdate.Initialize(I); 1389 SSAUpdate.AddAvailableValue(BB, I); 1390 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); 1391 1392 while (!UsesToRename.empty()) 1393 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1394 DEBUG(errs() << "\n"); 1395 } 1396 1397 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1398 // that we nuked. 1399 BB->removePredecessor(PredBB); 1400 1401 // Remove the unconditional branch at the end of the PredBB block. 1402 OldPredBranch->eraseFromParent(); 1403 1404 ++NumDupes; 1405 return true; 1406 } 1407 1408 1409